JP5331561B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5331561B2
JP5331561B2 JP2009109776A JP2009109776A JP5331561B2 JP 5331561 B2 JP5331561 B2 JP 5331561B2 JP 2009109776 A JP2009109776 A JP 2009109776A JP 2009109776 A JP2009109776 A JP 2009109776A JP 5331561 B2 JP5331561 B2 JP 5331561B2
Authority
JP
Japan
Prior art keywords
tire
rim
width direction
pneumatic tire
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009109776A
Other languages
Japanese (ja)
Other versions
JP2010254243A (en
Inventor
靖雄 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009109776A priority Critical patent/JP5331561B2/en
Publication of JP2010254243A publication Critical patent/JP2010254243A/en
Application granted granted Critical
Publication of JP5331561B2 publication Critical patent/JP5331561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、転がり抵抗の低減を実現した空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire that achieves a reduction in rolling resistance.

近年、地球温暖化をはじめとする環境問題を考慮した各種の開発が活発に行われており、その一例として、自動車の低燃費化が挙げられる。これを達成するための一つの手段として、タイヤの転がり抵抗の低減があり、従来から、様々な技術開発が行われている。
タイヤの転がり抵抗の増加は、図9に示すような、荷重負荷時にトレッド踏面の路面への接地時の、トレッドゴムの圧縮変形、せん断変形等が主たる原因となっていると考えられている。そこで、例えば、トレッド部に使用されるトレッドゴムを損失正接(tanδ)が小さい低発熱性のゴムに変更して、トレッドゴムの変形に伴う発熱量の低減を図ることが、転がり抵抗を低下させる上で有効であると知られている。
しかしながら、従来のタイヤは、例えば、内圧を充填したときに、カーカス等に生じる張力が一定となる自然平衡形状に代表される比較的丸い断面形状に設計されることが多く、転がり抵抗の大きな寄与を占めるトレッド部の変形の低減の改良が行われていないことが多かった。
In recent years, various developments that take into account environmental issues such as global warming have been actively conducted, and one example is the reduction in fuel consumption of automobiles. One means for achieving this is to reduce the rolling resistance of the tire, and various technical developments have been made conventionally.
It is considered that the increase in rolling resistance of the tire is mainly caused by tread rubber compression deformation, shear deformation, and the like at the time of contact with the road surface of the tread surface when a load is applied as shown in FIG. Therefore, for example, changing the tread rubber used for the tread portion to a low heat generation rubber with a small loss tangent (tan δ) to reduce the amount of heat generated due to the deformation of the tread rubber reduces the rolling resistance. It is known to be effective above.
However, conventional tires are often designed to have a relatively round cross-sectional shape typified by a natural equilibrium shape in which, for example, when the internal pressure is filled, the tension generated in the carcass or the like is constant, which contributes greatly to rolling resistance. In many cases, the improvement of the deformation reduction of the tread portion occupying is not performed.

従来のタイヤにおいて、転がり抵抗を低減させる手法として、タイヤのサイド部のトレッド部に近接したバットレス部に、周方向に向かって複数のえぐり部(窪み部)を連続的あるいは断続的に設けることが提案されている(例えば特許文献1、2参照)。   In conventional tires, as a technique for reducing rolling resistance, a plurality of punched portions (dents) are provided continuously or intermittently in the circumferential direction on the buttress portion adjacent to the tread portion of the side portion of the tire. It has been proposed (see, for example, Patent Documents 1 and 2).

特許第3419881号公報Japanese Patent No. 3419881 特開平11−222013号公報JP-A-11-2222013

しかし、上述した、比較的丸い断面形状に設計された従来のタイヤにおける転がり抵抗低減の手法は、タイヤのサイド部の変形に着目しておらず、さらなる改善の余地があった。
そこで、本発明の目的は、転がり抵抗の低減に有利な変形形状を具えた空気入りタイヤを提供することにある。
However, the above-described technique for reducing rolling resistance in a conventional tire designed with a relatively round cross-sectional shape does not focus on deformation of the side portion of the tire, and there is room for further improvement.
Accordingly, an object of the present invention is to provide a pneumatic tire having a deformed shape that is advantageous for reducing rolling resistance.

本発明の要旨構成は、次のとおりである。
(1)一対のビード部間にトロイダル状に跨るカーカスを骨格として、該カーカスのクラウン部の径方向外側に、タイヤの赤道面に対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも1層の傾斜ベルト層を配置して成るベルトを有し、該ベルトのタイヤ径方向外側にトレッドを配置した空気入りタイヤであって、
該タイヤを適用リムに装着し、内圧を負荷せず、若しくは30kPa程度の極低内圧の状態のタイヤ幅方向断面において、ビードトゥにタイヤの回転軸と平行に引いた線分に対して、カーカスのトレッドセンター部からの距離SHとカーカスの最大幅位置からの距離SHは、0.6SH≦SH≦0.9SHを満たし、
リムフランジよりタイヤ径方向外側のサイド部外面にタイヤ幅方向外側に向かって突出するリムガードを設け、該リムガードがタイヤ幅方向外側に向かって最も突出した位置からサイド部の外表面の曲率が変化する位置までにおける、外表面と最外層プライとの最外層プライに垂直な方向における距離の平均値が、リムガードがタイヤ幅方向外側に向かって最も突出した位置から、リムフランジとサイド部の外表面の離反点までにおける、外表面と最外層プライとの最外層プライに垂直な方向における距離の平均値より小さいことを特徴とする空気入りタイヤ。
The gist configuration of the present invention is as follows.
(1) Using a carcass straddling a toroidal shape between a pair of bead portions, a large number of cords extending in a direction inclined with respect to the equatorial plane of the tire are coated with rubber on the radially outer side of the crown portion of the carcass A pneumatic tire having a belt in which at least one inclined belt layer is disposed, and a tread disposed on the outer side in the tire radial direction of the belt,
When the tire is mounted on an applicable rim and the internal pressure is not applied or the cross section of the tire in the tire width direction with an extremely low internal pressure of about 30 kPa, The distance SH 1 from the tread center portion and the distance SH 2 from the maximum width position of the carcass satisfy 0.6SH 1 ≦ SH 2 ≦ 0.9SH 1 ,
A rim guard that protrudes outward in the tire width direction is provided on the outer surface of the side portion outside the rim flange in the tire radial direction, and the curvature of the outer surface of the side portion changes from the position where the rim guard protrudes most outward in the tire width direction. The average distance between the outer surface and the outermost layer ply in the direction perpendicular to the outermost layer ply from the position where the rim guard protrudes most outward in the tire width direction is the distance between the outer surface of the rim flange and the side portion. A pneumatic tire characterized by being smaller than the average value of the distance between the outer surface and the outermost layer ply in the direction perpendicular to the outermost layer ply up to the separation point .

ここで、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) YEAR BOOK、欧州ではETRTO(European Tyre and Rim Technical Organisation) STANDARD MANUAL、米国ではTRA(THE TIRE and RIM ASSOCIATION INC.)YEAR BOOK等に規定されたものとする。
「適用リムに装着した状態」とは、適用リムに組み付けて、内圧を0〜30kPa程度までのバルブコアを取り除いた状態や極低内圧を付加した状態をいうものとする。
「タイヤ最大幅位置」とは、JATMA等に規定された適用リムに、タイヤを組み付けて、JATMA等の規格にタイヤサイズに応じて規定された、無負荷状態での、タイヤ幅方向断面内の最大幅位置をいうものとする。
Here, “applicable rim” is an industrial standard effective in the area where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) YEAR BOOK is used, and in Europe, ETRTO (European Tire and Rim Technical Organization). ) It is assumed that STANDARD MANUAL, in the United States, TRA (THE TIRE and RIM ASSOCIATION INC.) YEAR BOOK, etc.
The “state attached to the applied rim” refers to a state in which the valve core is assembled to the applied rim and the internal pressure is about 0 to 30 kPa is removed, or an extremely low internal pressure is applied.
“Tire maximum width position” means that the tire is assembled to an applicable rim specified in JATMA, etc., and in the cross section in the tire width direction in the no-load state specified in accordance with the tire size in the standard of JATMA, etc. The maximum width position shall be said.

(2)前記リムガードの中心よりタイヤ径方向外側に溝を設けてなることを特徴とする上記(1)に記載の空気入りタイヤ。 (2) The pneumatic tire according to (1), wherein a groove is provided on the outer side in the tire radial direction from the center of the rim guard.

(3)前記溝が、タイヤ周方向に連続して延びることを特徴とする上記(2)に記載の空気入りタイヤ。 (3) The pneumatic tire according to (2) , wherein the groove extends continuously in the tire circumferential direction.

(4)前記傾斜ベルト層の最外側傾斜ベルト層の幅BWに対する、当該最外側層の幅方向中心部と幅方向端部との径差BDの比BD/BWが0.01以上0.04以下であることを特徴とする上記(1)〜(3)のいずれかに記載の空気入りタイヤ。 (4) The ratio BD / BW of the diameter difference BD between the center in the width direction and the end in the width direction of the outermost layer with respect to the width BW of the outermost inclined belt layer of the inclined belt layer is 0.01 or more and 0.04. The pneumatic tire according to any one of the above (1) to (3), which is the following.

本発明により、転がり抵抗の低減に有利な変形形状を具えた空気入りタイヤを提供することができる。   According to the present invention, it is possible to provide a pneumatic tire having a deformed shape advantageous for reducing rolling resistance.

本発明の空気入りタイヤを適用リムに装着した状態での幅方向断面である。It is a cross section in the width direction in a state where the pneumatic tire of the present invention is mounted on an applicable rim. 本発明の空気入りタイヤを適用リムに装着した状態の幅方向断面の半部である。It is a half part of the cross section of the width direction in the state where the pneumatic tire of the present invention was attached to the application rim. 図1の空気入りタイヤの、適用リムに装着した状態および内圧充填後荷重を負荷した状態の断面内変形を模式的に示す図である。It is a figure which shows typically the deformation | transformation in the cross section of the state with which the pneumatic tire of FIG. 1 was mounted | worn to the applicable rim, and the state after applying the internal pressure filling load. 梁の断面2次モーメントを説明するための図である。It is a figure for demonstrating the cross-sectional secondary moment of a beam. (a)は本発明のその他の実施例に係る空気入りタイヤを適用リムに装着した状態での幅方向断面の半部であり、(b)はその部分側面図である。(A) is the half part of the cross section of the width direction in the state which mounted | wore the applied rim with the pneumatic tire which concerns on the other Example of this invention, (b) is the partial side view. 本発明の空気入りタイヤの部分側面図である。It is a partial side view of the pneumatic tire of the present invention. 従来の空気入りタイヤを適用リムに装着した状態での幅方向断面である。It is the cross section of the width direction in the state where the conventional pneumatic tire was mounted in the application rim. 従来の空気入りタイヤを適用リムに装着した状態での幅方向断面である。It is the cross section of the width direction in the state where the conventional pneumatic tire was mounted in the application rim. 空気入りタイヤを適用リムに装着し規定の空気圧を充填して、荷重負荷時のタイヤ幅方向のせん断歪について説明する図である。It is a figure explaining the shear distortion of the tire width direction at the time of load loading by mounting a pneumatic tire on an application rim, filling prescribed air pressure.

以下、図面を参照して、本発明の空気入りタイヤを具体的に説明する。
図1は本発明の空気入りタイヤを適用リムに装着した状態での幅方向断面である。本発明の空気入りタイヤ6は、一対のビードコア1を埋設した一対のビード部間にトロイダル状に跨るカーカス2を骨格として、このカーカス2のクラウン部の径方向外側に、タイヤの赤道面CLに対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも1層、図示例では2層の傾斜ベルト層3a、3bと、タイヤ赤道面CLに沿って延びるコードの多数本をゴムで被覆した、少なくとも1層、図示例で1層の周方向ベルト層4を順に配置して成るベルトを有し、該ベルトの径方向外側にトレッド5を配置してなる。このような空気入りタイヤ6は、適用リム7に装着されて使用に供される。
Hereinafter, the pneumatic tire of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a cross section in the width direction in a state where the pneumatic tire of the present invention is mounted on an applied rim. A pneumatic tire 6 according to the present invention has a carcass 2 straddling a toroidal shape between a pair of bead portions in which a pair of bead cores 1 are embedded, and a equator plane CL of the tire on the radially outer side of the crown portion of the carcass 2. A plurality of cords extending in a direction inclined with respect to the rubber are coated with rubber, and at least one, in the illustrated example, two inclined belt layers 3a and 3b, and a plurality of cords extending along the tire equatorial plane CL are made of rubber. The belt has a belt in which at least one layer, in the illustrated example, one circumferential belt layer 4 is disposed in order, and a tread 5 is disposed on the outer side in the radial direction of the belt. Such a pneumatic tire 6 is mounted on the application rim 7 and used.

ここで、タイヤ6を適用リム7に装着した状態のタイヤ幅方向断面において、図1に示すように、ビードトゥ10にタイヤの回転軸と平行に引いた線分に対して、カーカス2のトレッドセンター部からの距離SHとカーカス2の最大幅位置WCMAXからの距離SHは、0.6SH≦SH≦0.9SHを満たす。
この規定は、カーカス2の最大幅位置WCMAXがトレッド5に近いことを意味し、サイドウォールのトレッド5に近い領域に曲率半径が小さい部分があることを示す。
転がり抵抗は、前述したように、タイヤトレッド部のゴム中で発生するエネルギーロスが支配的であり、その変形の一つである幅方向断面内のせん断変形を抑えることが、転がり抵抗の低減に有効である。このせん断変形が起こる原因は、接地時に湾曲したベルトが平らに伸ばされる変形である。さらに、通常のラジアルタイヤでは、タイヤセンター対比ショルダーの半径が小さく径差を持っているため、ショルダー付近のベルトはタイヤ周方向に伸ばされる。すると、コードが交差して配置された傾斜ベルト層はパンタグラフ状に変形して周方向に伸びる結果として幅方向に縮むことになるため、上記せん断変形を助長することになる。この変形を、タイヤの形状面から最も簡便に抑制するには、ベルトをなるべく平坦にする必要がある。しかしながら、実際のタイヤ設計では、サイド部の変形に伴った変形成分や、偏摩耗を起こさないための接地形状並びに接地圧分布を考慮しなければいけないことから、完全に平坦にすることなく適正な範囲に設定することが肝要である。この適正な範囲について鋭意究明したところ、上記した0.6SH≦SH≦0.9SHであることが判明した。
特に、トレッド部の形状から上記のせん断変形を抑制する改良を行った場合、接地面内のせん断力やすべり分布も縮小される方向に変化するため、耐摩耗性能を同時に改良することができることも解明するに到った。
Here, in the cross section in the tire width direction in a state where the tire 6 is mounted on the applicable rim 7, as shown in FIG. 1, the tread center of the carcass 2 with respect to the line segment drawn on the bead toe 10 in parallel with the rotation axis of the tire. distance SH 1 and the distance SH 2 from the maximum width position W CMAX carcass 2 from section satisfies 0.6SH 1 ≦ SH 2 ≦ 0.9SH 1 .
This definition means that the maximum width position W CMAX of the carcass 2 is close to the tread 5, and indicates that there is a portion having a small curvature radius in a region near the tread 5 of the sidewall.
As described above, the rolling resistance is dominated by the energy loss generated in the rubber of the tire tread part, and suppressing shear deformation in the cross section in the width direction, which is one of the deformations, reduces rolling resistance. It is valid. The cause of this shear deformation is a deformation in which a curved belt is stretched flat when touched. Further, in a normal radial tire, since the radius of the shoulder relative to the tire center is small and has a diameter difference, the belt near the shoulder is stretched in the tire circumferential direction. Then, the inclined belt layer in which the cords are arranged so as to cross each other is deformed into a pantograph shape and stretched in the circumferential direction, and as a result, contracts in the width direction, thereby promoting the shear deformation. In order to suppress this deformation most simply from the shape of the tire, it is necessary to make the belt as flat as possible. However, in actual tire design, it is necessary to consider the deformation component accompanying the deformation of the side part, the ground contact shape to prevent uneven wear, and the contact pressure distribution. It is important to set the range. As a result of intensive investigations on this appropriate range, it was found that 0.6SH 1 ≦ SH 2 ≦ 0.9SH 1 described above.
In particular, when the improvement of suppressing the above-mentioned shear deformation is performed from the shape of the tread portion, the shearing force and the slip distribution in the contact surface also change in a direction to be reduced, so that the wear resistance performance can be improved at the same time. It came to elucidate.

さらに、この空気入りタイヤ6は、リムフランジ7aよりタイヤ径方向外側のサイド部外面にタイヤ幅方向外側に向かって突出するリムガード8を設けてなり、このリムガード8の中心よりタイヤ径方向外側における、外表面と最外層プライと最外層プライに垂直な方向における距離の平均値が、リムガード中心よりタイヤ径方向内側における、外表面と最外層プライとの最外層プライに垂直な方向における距離の平均値より小さいことが肝要である。以下、この理由を説明する。
なお、リムガード8の中心Cとは、図2に示すように、リムガード8がタイヤ幅方向外側に向かって最も突出した位置をいうものとする。また、リムガード8の中心Cよりタイヤ径方向外側RGとは、リムガード8の中心Cからサイド部の外表面の曲率が変化する位置(変曲点)Uまでをいい、リムガード8の中心Cよりタイヤ径方向内側RGとは、リムガード8の中心Cから、リムフランジ7とサイド部の外表面の離反点Lまでをいうものとする。
Further, the pneumatic tire 6 is provided with a rim guard 8 that protrudes toward the outer side in the tire width direction on the outer side surface of the tire portion in the tire radial direction from the rim flange 7a, and on the outer side in the tire radial direction from the center of the rim guard 8 . The average distance in the direction perpendicular to the outermost layer ply between the outer surface and the outermost layer ply is the average distance in the direction perpendicular to the outermost layer ply between the outer surface and the outermost layer ply inside the rim guard center in the tire radial direction. It is important to be smaller than the value . Hereinafter, the reason will be described.
The center C of the rim guard 8 is a position where the rim guard 8 protrudes most outward in the tire width direction as shown in FIG. Further, the tire radial direction outer side RG u from the center C of the rim guard 8 means from the center C of the rim guard 8 to a position (inflection point) U where the curvature of the outer surface of the side portion changes, from the center C of the rim guard 8. The inner side RG l in the tire radial direction means from the center C of the rim guard 8 to the separation point L between the rim flange 7 and the outer surface of the side portion.

空気入りタイヤのサイド部剛性は、サイド部のカーカス2の張力によるものと、サイド部の構造によるものとに分けられる。
カーカス2の張力について検討すると、カーカス2のトレッドセンター部高さSHと最大幅位置WCMAXの高さSHとの関係を0.6SH≦SH≦0.9SHにしたことで、最外側傾斜ベルト層3bの幅方向端部3bEとタイヤ最大幅位置WMAXとの間の領域である、いわゆるバットレス部におけるカーカス2の曲率半径が最小となる部分を作り、この部分のカーカス2の張力を下げることができる。
空気入りタイヤに内圧を充填した場合にカーカス2にかかる張力は、タイヤ半径(ケースラインの半径)R、内圧Pを用いて、R×Pで求めることができる(自動車用タイヤの基礎と実際 山海堂)。
また、タイヤ6を適用リム7に装着した状態のタイヤ幅方向断面において、図1に示すように、傾斜ベルト層3a、3bのうち最外側傾斜ベルト層3bの幅BWに対する、当該最外側傾斜ベルト層3bの幅方向中心部(タイヤ赤道面CL)と幅方向端部3bEとの径差BDの比BD/BWが0.01以上0.04以下とすると、最外側傾斜ベルト層3bの幅方向端部3bEとタイヤの最大幅位置WMAXとの間にカーカス2の曲率半径が小さい部分を広くすることができる。
なお、カーカス2の曲率半径とは、タイヤの内側に中心をもつ、カーカス2の厚み中心線の半径をいうものとする。
サイド部のカーカス2の張力を低下させることで、張力による剛性を下げて、曲率半径が最小となる部分で荷重時に大きく変形させて、その結果、トレッド部付近のゴムに発生する変形を減少させ、これにより歪エネルギー損失を低減させることができる。
The side portion rigidity of the pneumatic tire is divided into that due to the tension of the carcass 2 in the side portion and that due to the structure of the side portion.
Examining the tension of the carcass 2, the relationship between the tread center height SH 1 of the carcass 2 and the height SH 2 of the maximum width position W CMAX is set to 0.6SH 1 ≦ SH 2 ≦ 0.9SH 1 . outermost is the region between the widthwise end portion 3bE the tire maximum width position W MAX of the slant belt layer 3b, create a partial radius of curvature becomes the minimum carcass 2 in the so-called buttress portion, the carcass 2 of this part Tension can be lowered.
The tension applied to the carcass 2 when the pneumatic tire is filled with the internal pressure can be obtained by R × P using the tire radius (case line radius) R and the internal pressure P (the basic and actual mountain tires for automobile tires). Do).
Further, in the cross section in the tire width direction in a state where the tire 6 is mounted on the applied rim 7, as shown in FIG. 1, the outermost inclined belt with respect to the width BW of the outermost inclined belt layer 3b among the inclined belt layers 3a and 3b. When the ratio BD / BW of the diameter difference BD between the center portion (tire equatorial plane CL) of the layer 3b and the end portion 3bE in the width direction is 0.01 or more and 0.04 or less, the width direction of the outermost inclined belt layer 3b A portion having a small radius of curvature of the carcass 2 can be widened between the end 3bE and the maximum width position W MAX of the tire.
The radius of curvature of the carcass 2 refers to the radius of the thickness center line of the carcass 2 having the center inside the tire.
By reducing the tension of the carcass 2 on the side part, the rigidity due to the tension is lowered, and the part where the radius of curvature is minimized is greatly deformed during loading, and as a result, the deformation generated in the rubber near the tread part is reduced. Thus, strain energy loss can be reduced.

次に、サイド部の構造による剛性に着目する。図3は、図1の空気入りタイヤの、適用リムに装着した状態および内圧充填後荷重を負荷した状態の断面内変形を模式的に示す図である。図3から分かるように、リムガード8の中心Cよりタイヤ径方向外側RGはリム組み後内圧充填時から、内圧充填後荷重時になると、曲率半径が小さくなる方向に曲げられていることがわかる。
ここで、サイド部は曲げ変形を受ける梁として見ることができる。タイヤ周方向に見て単位長さあたりの曲げ剛性は、部材の弾性率Eおよび断面2次モーメントIを用いて、E×Iで求められる。Iは断面形状により決まる値で、長方形断面の場合、図4に示すように、I=bh/12になる。これをタイヤのサイド部に当てはめると、bが周方向長さ、lがサイド部のラジアル方向長さ、hが厚さに相当する。周方向の単位長さを考えているのでb=lとすると、曲げ剛性は厚さの3乗に比例し、厚さを薄くすることで曲げ剛性を非常に効果的に低減できる。
リムガードを持つタイヤでは、縁石等に当たったときにリムを保護するリムガードの機能を発揮するためにはリムとリムガード中心との間での最外層プライと外表面との距離を大きくする必要がある。そこで本発明者は、この機能を維持したまま転がり抵抗をより低減するための方途を鋭意検討し、リムガード中心より径方向外側の最外層プライと外表面との距離を小さくし、この部分の曲げ剛性を下げ、荷重時に大きく変形させ、トレッド部変形を小さくできることを発見した。
Next, attention is focused on the rigidity due to the structure of the side portion. FIG. 3 is a diagram schematically showing in-section deformation of the pneumatic tire of FIG. 1 in a state where the pneumatic tire is mounted on an applicable rim and a state where a load after filling with internal pressure is applied. As can be seen from FIG. 3, it can be seen that the tire radial direction outer side RG u from the center C of the rim guard 8 is bent in a direction in which the radius of curvature decreases when the inner pressure is filled after the rim assembly and when the load is loaded after the inner pressure.
Here, the side portion can be viewed as a beam that undergoes bending deformation. The bending rigidity per unit length as viewed in the tire circumferential direction is obtained by E × I using the elastic modulus E and the secondary moment of inertia I of the member. I is a value determined by the cross-sectional shape, if the rectangular cross-section, as shown in FIG. 4, the I = bh 3/12. When this is applied to the side portion of the tire, b corresponds to the circumferential length, l corresponds to the radial length of the side portion, and h corresponds to the thickness. Since the unit length in the circumferential direction is considered, if b = 1, the bending rigidity is proportional to the cube of the thickness, and the bending rigidity can be reduced very effectively by reducing the thickness.
In tires with rim guards, it is necessary to increase the distance between the outermost ply and the outer surface between the rim and the center of the rim guard in order to exert the function of the rim guard that protects the rim when it hits a curb or the like . Therefore, the present inventor has intensively studied ways to further reduce rolling resistance while maintaining this function, reduced the distance between the outermost layer ply and the outer surface radially outward from the center of the rim guard, and bent this portion. It was discovered that the rigidity of the tread can be reduced by reducing the rigidity and greatly deforming the load.

また、図2に示すように、リムガード8の中心Cよりタイヤ径方向外側RGのゲージを滑らかに変化させて薄くすることで、従来のタイヤと同様にサイド部にメーカー名や商品名などを表示することができる。 In addition, as shown in FIG. 2, the gauge on the outer side RG u of the tire radial direction from the center C of the rim guard 8 is smoothly changed and thinned so that the manufacturer name, the product name, etc. are displayed on the side portion in the same manner as the conventional tire. Can be displayed.

図5(a)は本発明のその他の実施例に係る空気入りタイヤを適用リムに装着した状態での幅方向断面の半部を示し、図5(b)はその部分側面図である。図5に示すように、リムガード8の中心Cよりタイヤ径方向外側RGに溝8aを設けることが好適である。これにより、タイヤ径方向外側RGのゲージをさらに薄くすることができるので、この部分の剛性を低減させることができる。その結果、トレッド部付近のゴムに発生する変形を減少させ、歪エネルギー損失を低減させることができる。 FIG. 5 (a) shows a half of the cross section in the width direction in a state where a pneumatic tire according to another embodiment of the present invention is mounted on an applied rim, and FIG. 5 (b) is a partial side view thereof. As shown in FIG. 5, it is preferable to provide a groove 8 a on the outer side RG u in the tire radial direction from the center C of the rim guard 8. Thus, it is possible to further reduce the gauge in the tire radial direction outer RG u, it is possible to reduce the rigidity of this portion. As a result, deformation generated in the rubber near the tread portion can be reduced, and strain energy loss can be reduced.

図6は本発明の空気入りタイヤの部分側面図である。図6に示すように、溝8bがタイヤ周方向に連続して延びることが好適である。なぜなら、製造時にサイドウォール部材をタイヤ周方向に押し出すため、タイヤ周方向に連続している溝8bに相当する部分のゴムゲージをあらかじめ小さくして部材を準備することでタイヤ周方向の均一性に優れた転がり抵抗の小さい空気入りタイヤを容易に製造することができるからである。   FIG. 6 is a partial side view of the pneumatic tire of the present invention. As shown in FIG. 6, it is preferable that the groove 8b extends continuously in the tire circumferential direction. Because, in order to extrude the sidewall member in the tire circumferential direction at the time of manufacture, it is excellent in uniformity in the tire circumferential direction by preparing the member by reducing the rubber gauge of the portion corresponding to the groove 8b continuous in the tire circumferential direction in advance. This is because a pneumatic tire with low rolling resistance can be easily manufactured.

サイズ225/50R17の発明例タイヤおよび従来例タイヤを、表1に示す仕様の下に試作し、各試作タイヤについて、転がり抵抗の測定を行ったので以下に説明する。
各供試タイヤは、タイヤ径方向内側から1層のカーカス2とタイヤ赤道面CLに対して26°の傾斜角度で配置したスチールコードを層間で相互に交差させた傾斜ベルト層3a、3bと、タイヤ赤道面CLに沿った向きに延びるナイロンコードによるキャップ4aとレイヤ4bとを具える。
Inventive tires and conventional tires of size 225 / 50R17 were prototyped under the specifications shown in Table 1, and the rolling resistance of each prototype tire was measured and will be described below.
Each of the test tires has inclined belt layers 3a and 3b in which steel cords arranged at an inclination angle of 26 ° with respect to the carcass 2 and the tire equatorial plane CL from the inner side in the tire radial direction cross each other. A cap 4a and a layer 4b made of a nylon cord extending in a direction along the tire equatorial plane CL are provided.

発明例タイヤ1は、図1、2に示すような、クラウン部がフラットな断面形状を有し、かつ、リムガード8の中心Cよりタイヤ径方向外側RGのゲージが、径方向内側RGのゲージより小さい。
発明例タイヤ2は、図5に示すような、タイヤ周方向に不連続の長方形の溝8aを有する点以外、発明例タイヤ1と同様である。
発明例タイヤ3は、図6に示すような、タイヤ周方向に連続している溝8b(深さ3mm、幅10mm)を有する点以外、発明例タイヤ1と同様である。
従来例タイヤ1は、図7に示すような、クラウン部が丸い断面形状を有している。
従来例タイヤ2は、図8に示すような、クラウン部がフラットな断面形状を有している。リムガード8の中心Cよりタイヤ径方向外側RGの最外層プライと外表面との距離が、径方向内側RGの同距離より大きい点以外、発明例タイヤ1と同様である。
The tire 1 of the invention has a flat cross-sectional shape as shown in FIGS. 1 and 2, and the gauge of the tire radial outer side RG u from the center C of the rim guard 8 is the radial inner side RG l . Smaller than gauge.
Invention Example Tire 2 is the same as Invention Example Tire 1 except that it has a rectangular groove 8a that is discontinuous in the tire circumferential direction as shown in FIG.
Invention Example Tire 3 is the same as Invention Example Tire 1 except that it has a groove 8b (depth 3 mm, width 10 mm) continuous in the tire circumferential direction as shown in FIG.
The conventional tire 1 has a cross-sectional shape with a round crown as shown in FIG.
Conventional tire 2 has a cross-sectional shape with a flat crown as shown in FIG. Except for the point that the distance between the outermost layer ply of the tire radial direction outer side RG u and the outer surface from the center C of the rim guard 8 is larger than the same distance of the radial direction inner side RG l , it is the same as the tire 1 of the invention example.

これら供試タイヤを、サイズ7J×17のリムに組み込み、内圧を230kPaに調整した上で、荷重を4.5kN、時速80.0km/hの条件にて転がり抵抗測定を実施した。なお、この転がり抵抗測定は、ISO18164に準拠し、スムースドラム、フォース式にて実施したものである。表1に示す測定結果は、従来例タイヤ1の結果を100として指数で表し、指数が小さいほど、転がり抵抗が小さいことを示している。   These test tires were assembled in a rim of size 7J × 17, the internal pressure was adjusted to 230 kPa, and rolling resistance was measured under the conditions of a load of 4.5 kN and a speed of 80.0 km / h. This rolling resistance measurement was performed in accordance with ISO18164 using a smooth drum and a force type. The measurement results shown in Table 1 are expressed as an index with the result of the conventional tire 1 being 100, and the smaller the index, the lower the rolling resistance.

Figure 0005331561
Figure 0005331561

発明例タイヤはいずれも従来例タイヤ1、2と比較して転がり抵抗指数が良化していることが分かる。   It can be seen that all of the inventive tires have improved rolling resistance index compared to the conventional tires 1 and 2.

1 ビードコア
2 カーカス
3a 傾斜ベルト層
3b 傾斜ベルト層(最外側傾斜ベルト層)
4 周方向ベルト層
5 トレッド
6 空気入りタイヤ
7 適用リム
8 リムガード
8a、8b 溝
9 ショルダーブロック
10 ビードトゥ
CL タイヤ赤道面
1 bead core 2 carcass 3a inclined belt layer 3b inclined belt layer (outermost inclined belt layer)
4 Belt belt layer 5 Tread 6 Pneumatic tire 7 Applicable rim 8 Rim guard 8a, 8b Groove 9 Shoulder block 10 Bead toe CL Tire equatorial plane

Claims (4)

一対のビード部間にトロイダル状に跨るカーカスを骨格として、該カーカスのクラウン部の径方向外側に、タイヤの赤道面に対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも1層の傾斜ベルト層を配置して成るベルトを有し、該ベルトのタイヤ径方向外側にトレッドを配置した空気入りタイヤであって、
該タイヤを適用リムに装着し、内圧を負荷せず、若しくは30kPa程度の極低内圧の状態のタイヤ幅方向断面において、ビードトゥにタイヤの回転軸と平行に引いた線分に対して、カーカスのトレッドセンター部からの距離SHとカーカスの最大幅位置からの距離SHは、0.6SH≦SH≦0.9SHを満たし、
リムフランジよりタイヤ径方向外側のサイド部外面にタイヤ幅方向外側に向かって突出するリムガードを設け、該リムガードがタイヤ幅方向外側に向かって最も突出した位置からサイド部の外表面の曲率が変化する位置までにおける、外表面と最外層プライとの最外層プライに垂直な方向の距離の平均値が、リムガードがタイヤ幅方向外側に向かって最も突出した位置から、リムフランジとサイド部の外表面の離反点までにおける、外表面と最外層プライとの最外層プライに垂直な方向の距離の平均値より小さいことを特徴とする空気入りタイヤ。
A carcass straddling a toroidal shape between a pair of bead portions, and a large number of cords extending in a direction inclined with respect to the equatorial plane of the tire are coated with rubber on the radially outer side of the crown portion of the carcass. A pneumatic tire having a belt formed by arranging an inclined belt layer of a layer, and a tread arranged on the outer side in the tire radial direction of the belt,
When the tire is mounted on an applicable rim and the internal pressure is not applied or the cross section of the tire in the tire width direction with an extremely low internal pressure of about 30 kPa, The distance SH 1 from the tread center portion and the distance SH 2 from the maximum width position of the carcass satisfy 0.6SH 1 ≦ SH 2 ≦ 0.9SH 1 ,
A rim guard that protrudes outward in the tire width direction is provided on the outer surface of the side portion outside the rim flange in the tire radial direction, and the curvature of the outer surface of the side portion changes from the position where the rim guard protrudes most outward in the tire width direction. The average value of the distance between the outer surface and the outermost layer ply in the direction perpendicular to the outermost layer ply up to the position from the position where the rim guard protrudes most outward in the tire width direction is the distance between the outer surface of the rim flange and the side portion. A pneumatic tire characterized by being smaller than the average value of the distance between the outer surface and the outermost layer ply in the direction perpendicular to the outermost layer ply up to the separation point .
前記リムガードがタイヤ幅方向外側に向かって最も突出した位置よりタイヤ径方向外側に溝を設けてなることを特徴とする請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein a groove is provided on the outer side in the tire radial direction from a position where the rim guard protrudes most outward in the tire width direction . 前記溝が、タイヤ周方向に連続して延びることを特徴とする請求項に記載の空気入りタイヤ。 The pneumatic tire according to claim 2 , wherein the groove extends continuously in the tire circumferential direction. 前記傾斜ベルト層の最外側傾斜ベルト層の幅BWに対する、当該最外側層の幅方向中心部と幅方向端部との径差BDの比BD/BWが0.01以上0.04以下であることを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。   The ratio BD / BW of the diameter difference BD between the width direction center and the width direction end of the outermost layer with respect to the width BW of the outermost inclined belt layer of the inclined belt layer is 0.01 or more and 0.04 or less. The pneumatic tire according to any one of claims 1 to 3.
JP2009109776A 2009-04-28 2009-04-28 Pneumatic tire Expired - Fee Related JP5331561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109776A JP5331561B2 (en) 2009-04-28 2009-04-28 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109776A JP5331561B2 (en) 2009-04-28 2009-04-28 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010254243A JP2010254243A (en) 2010-11-11
JP5331561B2 true JP5331561B2 (en) 2013-10-30

Family

ID=43315668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109776A Expired - Fee Related JP5331561B2 (en) 2009-04-28 2009-04-28 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5331561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851921B2 (en) * 2012-04-18 2016-02-03 株式会社ブリヂストン Pneumatic tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582845B2 (en) * 1979-01-24 1983-01-19 株式会社ブリヂストン Radial tire for passenger cars with low rolling resistance and anti-slip properties
JPH06156011A (en) * 1992-11-18 1994-06-03 Bridgestone Corp Pneumatic radial tire
JP3081828B2 (en) * 1998-10-29 2000-08-28 住友ゴム工業株式会社 Pneumatic tire
US20030111152A1 (en) * 2001-12-06 2003-06-19 Laurent Colantonio Pneumatic tire bead area construction for improved chafer cracking resistance during run-flat operation

Also Published As

Publication number Publication date
JP2010254243A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP6050568B2 (en) Pneumatic tire
JP6772601B2 (en) Pneumatic tires
WO2009139182A1 (en) Pneumatic tire
JP5457415B2 (en) Run flat tire
WO2011016215A1 (en) Pneumatic tire
JP5257185B2 (en) Pneumatic tire
JP4471410B2 (en) Heavy duty radial tire
JP6988540B2 (en) Pneumatic tires
JP2013063738A (en) Pneumatic tire
JP2012131254A (en) Run-flat tire
JP5745539B2 (en) Pneumatic tire
JP5727128B2 (en) Pneumatic tire
JP5331561B2 (en) Pneumatic tire
KR102034751B1 (en) Pneumatic tire
JP2000016032A (en) Pneumatic radial tire
JP6728795B2 (en) Pneumatic tire
JP6450111B2 (en) Pneumatic tire
JP6363911B2 (en) Pneumatic tire
JP7180273B2 (en) Heavy duty pneumatic tire
JP5693124B2 (en) Pneumatic tire
US20210170807A1 (en) Pneumatic Tire
JP3771545B2 (en) Pneumatic tire
JP7448796B2 (en) pneumatic tires
JP6489917B2 (en) Pneumatic tire
JP6501600B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees