JP5330042B2 - Current collecting member and solid oxide fuel cell - Google Patents

Current collecting member and solid oxide fuel cell Download PDF

Info

Publication number
JP5330042B2
JP5330042B2 JP2009064080A JP2009064080A JP5330042B2 JP 5330042 B2 JP5330042 B2 JP 5330042B2 JP 2009064080 A JP2009064080 A JP 2009064080A JP 2009064080 A JP2009064080 A JP 2009064080A JP 5330042 B2 JP5330042 B2 JP 5330042B2
Authority
JP
Japan
Prior art keywords
fuel
current collecting
collecting member
interconnector
single cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009064080A
Other languages
Japanese (ja)
Other versions
JP2010218874A (en
Inventor
武志 小松
公一 川崎
雄一郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
NHK Spring Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd, Nippon Telegraph and Telephone Corp filed Critical NHK Spring Co Ltd
Priority to JP2009064080A priority Critical patent/JP5330042B2/en
Publication of JP2010218874A publication Critical patent/JP2010218874A/en
Application granted granted Critical
Publication of JP5330042B2 publication Critical patent/JP5330042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池の単セルとインターコネクタとの間に配設される集電部材に関するものである。   The present invention relates to a current collecting member disposed between a single cell of a solid oxide fuel cell and an interconnector.

従来より、固体酸化物からなる平板状の電解質層と、この電解質層の表裏面にそれぞれ形成した空気極および燃料極とで単セルを形成し、燃料極と空気極とに燃料ガスと酸化剤ガスとをそれぞれ供給して酸化還元反応を行わせることにより、水の電気分解の逆の反応を利用して発電する固体酸化物形燃料電池(Solid Oxide Fuel Cells:SOFC)が知られている。このような固体酸化物形燃料電池は、高いエネルギー変換効率を有するとともに、二酸化炭素の排出を抑えた発電が行えるため、多くの研究機関で開発が盛んに行われている。   Conventionally, a single cell is formed by a flat electrolyte layer made of a solid oxide and an air electrode and a fuel electrode formed on the front and back surfaces of the electrolyte layer, respectively, and a fuel gas and an oxidant are formed on the fuel electrode and the air electrode. A solid oxide fuel cell (SOFC) that generates electricity by using a reverse reaction of water electrolysis by supplying a gas and causing an oxidation-reduction reaction is known. Such solid oxide fuel cells have high energy conversion efficiency and can generate power with reduced carbon dioxide emissions, and are therefore being actively developed by many research institutions.

単セルを実際に燃料電池として動作させる際には、実用上十分な発電量を得るために単セルを積層(スタック化)して直列接続し、燃料極側を還元雰囲気に、空気極側を酸化雰囲気に保つとともに、十分な発電効率を得るために電解質のイオン伝導性を確保して容易に電気化学反応が起こる800−1000℃程度の高温に燃料電池本体を保つ必要がある。これを実現するために、互いに異なる雰囲気に晒される燃料極と空気極間をガス不透過でかつ電気伝導性のある部品で電気的に接続し、各電極にそれぞれ燃料ガスと酸化剤ガスを適正に分配および供給する目的で、各単セル間に金属で作られたインターコネクタ(セパレータ)が配置される。また、単セルとインターコネクタとの間には、これらの電気的な接続を確実にするために金属からなる集電部材が配設されている。単セルと、この単セルを収容するインターコネクタと、単セルとインターコネクタとの間に配設される集電部材とを備えた単スタックを積層し、当該インターコネクタを介してマニホールドから供給される燃料ガスおよび酸化剤ガスを各単セルに供給し、上端と下端のインターコネクタを端子として電池回路を構成することにより、固体酸化物形燃料電池は、所定の電圧レベルの電力を生成することができる。   When actually operating a single cell as a fuel cell, in order to obtain a practically sufficient amount of power generation, the single cells are stacked (stacked) and connected in series, with the fuel electrode side in a reducing atmosphere and the air electrode side In addition to maintaining an oxidizing atmosphere, it is necessary to maintain the fuel cell body at a high temperature of about 800-1000 ° C. in which an electrochemical reaction easily occurs by securing the ionic conductivity of the electrolyte in order to obtain sufficient power generation efficiency. In order to achieve this, the fuel electrode and the air electrode exposed to different atmospheres are electrically connected with gas-impermeable and electrically conductive parts, and the fuel gas and oxidant gas are appropriately connected to each electrode. An interconnector (separator) made of metal is arranged between each single cell for the purpose of distributing and supplying to each cell. In addition, a current collecting member made of metal is disposed between the single cell and the interconnector to ensure the electrical connection between them. A single stack including a single cell, an interconnector that accommodates the single cell, and a current collecting member disposed between the single cell and the interconnector is stacked, and is supplied from the manifold via the interconnector. The solid oxide fuel cell generates electric power at a predetermined voltage level by supplying a fuel gas and an oxidant gas to each single cell and configuring a battery circuit using the upper and lower interconnectors as terminals. Can do.

ここで、インターコネクタには、単セルに燃料ガスおよび酸化剤ガスを均一に供給するために、集電部材と接触する面に複数個の溝や柱状の突起物が形成されている。その面に導かれた燃料ガスや酸化剤ガスは、その溝や突起物の配置に沿ってインターコネクタと集電部材との間を流れていくことにより、その面内に一様に広がる。このように一様に広がった後、燃料ガスや酸化剤ガスは、集電部材を透過して単セルに到達する。これにより、燃料ガスおよび酸化剤ガスは、単セルの燃料極または空気極に対して均一に供給されることとなる。   Here, in the interconnector, a plurality of grooves and columnar protrusions are formed on the surface in contact with the current collecting member in order to uniformly supply the fuel gas and the oxidant gas to the single cell. The fuel gas or oxidant gas guided to the surface spreads uniformly in the surface by flowing between the interconnector and the current collecting member along the arrangement of the grooves and protrusions. After spreading uniformly in this way, the fuel gas and the oxidant gas pass through the current collecting member and reach the single cell. As a result, the fuel gas and the oxidant gas are uniformly supplied to the fuel electrode or air electrode of the single cell.

インターコネクタに形成された溝や突起物は、金属平板に切削加工やエッチング処理を施すことによって作成されている。固体酸化物形燃料電池は、近年小型化や低コスト化が望まれており、これを実現するには、インターコネクタを形成するもととなる金属平板はより薄いものを用いるのが望ましい。また、加工方法についても、製造効率の向上や低コスト化を図るには、切削加工やエッチング処理よりも、例えばプレス加工などの加工方法を用いるのが望ましい。   The grooves and protrusions formed in the interconnector are created by cutting or etching a metal flat plate. In recent years, solid oxide fuel cells are desired to be reduced in size and cost, and in order to realize this, it is desirable to use a thinner metal flat plate from which an interconnector is formed. As for the processing method, it is desirable to use a processing method such as press processing, for example, rather than cutting processing or etching processing in order to improve manufacturing efficiency and reduce costs.

マグネクス株式会社、業務案内、燃料電池関連部品、[online]、[平成21年1月29日検索]、インターネット<URL:http://www.magnex.co.jp/products/>Magnex Co., Ltd., Business Guide, Fuel Cell Components, [online], [Search January 29, 2009], Internet <URL: http://www.magnex.co.jp/products/>

しかしながら、インターコネクタに溝や突起物を形成するには、金型に複雑な形状を作成しなければならないので、技術的にもコスト的にも実現するのが困難であった。   However, in order to form grooves and protrusions on the interconnector, it is necessary to create a complicated shape in the mold, so that it is difficult to realize both technically and in terms of cost.

そこで、本願発明は、小型化および低コスト化を実現することができる集電部材および固体酸化物形燃料電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a current collecting member and a solid oxide fuel cell capable of realizing a reduction in size and cost.

上述したような課題を解決するために、本発明に係る集電部材は、電解質をはさんで燃料極および空気極を有する単セルと、この単セルを収容しかつ単セルに燃料ガスまたは酸化剤ガスを供給するインターコネクタとの間に配設されて、燃料極または空気極とインターコネクタとを電気的に接続する固体酸化物形燃料電池用の集電部材であって、燃料ガスまたは酸化剤ガスが流れる複数の凹部を備えることを特徴とするものである。   In order to solve the above-described problems, a current collecting member according to the present invention includes a single cell having a fuel electrode and an air electrode sandwiched between electrolytes, and a fuel gas or an oxidation in the single cell. A current collecting member for a solid oxide fuel cell, which is disposed between an interconnector for supplying an agent gas and electrically connects a fuel electrode or an air electrode and the interconnector, A plurality of recesses through which the agent gas flows are provided.

上記集電部材において、凹部の一部または全ては、孔であるようにしてもよい。   In the current collecting member, a part or all of the recesses may be holes.

上記集電部材において、凹部は、単セルまたはインターコネクタと接する面の中央部から縁部に向かって放射状に配置されているようにしてもよい。また、凹部は、平面視直線状に配置されているようにしてもよい。また、凹部は、平面視螺旋状に配置されているようにしてもよい。   In the current collecting member, the recesses may be arranged radially from the center of the surface in contact with the single cell or the interconnector toward the edge. Moreover, you may make it arrange | position a recessed part in planar view linear form. Moreover, you may make it arrange | position the recessed part in planar view spiral shape.

また、本発明に係る固体酸化物形燃料電池は、単セルと、この単セルを収容しかつ単セルに燃料ガスおよび酸化剤ガスを供給するインターコネクタと、単セルとインターコネクタとの間に配設される集電部材とを備えた固体酸化物形燃料電池であって、集電部材は、上述したうちの何れかの集電部材からなることを特徴とするものである。   The solid oxide fuel cell according to the present invention includes a single cell, an interconnector that accommodates the single cell and supplies fuel gas and oxidant gas to the single cell, and the single cell and the interconnector. It is a solid oxide fuel cell provided with the current collection member arrange | positioned, Comprising: A current collection member consists of one of the current collection members mentioned above, It is characterized by the above-mentioned.

本発明によれば、集電部材が燃料ガスまたは酸化剤ガスが流れる流路を備えることにより、インターコネクタにガス流路等を形成しなくてよいので、例えば、インターコネクタをプレス加工で形成することが可能となり、結果として、小型化および低コスト化を実現することができる。   According to the present invention, since the current collecting member includes the flow path through which the fuel gas or the oxidant gas flows, it is not necessary to form a gas flow path or the like in the interconnector. For example, the interconnector is formed by pressing. As a result, downsizing and cost reduction can be realized.

本発明の平板型固体酸化物形燃料電池の構成を示す分解図である。It is an exploded view which shows the structure of the flat type solid oxide fuel cell of this invention. 燃料極インターコネクタと燃料極集電部材の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a fuel electrode interconnector and a fuel electrode current collection member. 燃料極集電部材の構成を示す平面図である。It is a top view which shows the structure of a fuel electrode current collection member. 燃料極集電部材の変形例の構成を示す平面図である。It is a top view which shows the structure of the modification of a fuel electrode current collection member. 燃料極集電部材の変形例の構成を示す平面図である。It is a top view which shows the structure of the modification of a fuel electrode current collection member. 燃料極インターコネクタと燃料極集電部材の変形例の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the modification of a fuel electrode interconnector and a fuel electrode current collection member.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施の形態に係る平板型固体酸化物形燃料電池スタックは、単セル1と、導電性を有する部材から構成され単セル1を収容する凹部が形成された燃料極インターコネクタ2と、導電性を有する部材から構成され燃料極インターコネクタ2と協働して単セル1を収容する空気極インターコネクタ3と、単セル1と燃料極インターコネクタ2との間に配設された燃料極集電部材4と、単セル1と空気極インターコネクタ3との間に配設された空気極集電部材5と、燃料極インターコネクタ2と空気極インターコネクタ3との間に配設された絶縁部材6とを備え、これらを1組とするセルを複数組重ねて設けた構造を有する。   As shown in FIG. 1, the flat-plate solid oxide fuel cell stack according to the present embodiment is a fuel electrode in which a single cell 1 and a recess that accommodates the single cell 1 are formed. An interconnector 2, an air electrode interconnector 3 that is composed of a conductive member and accommodates the single cell 1 in cooperation with the fuel electrode interconnector 2, and is disposed between the single cell 1 and the fuel electrode interconnector 2. Between the provided fuel electrode current collecting member 4, the air electrode current collecting member 5 disposed between the single cell 1 and the air electrode interconnector 3, and between the fuel electrode interconnector 2 and the air electrode interconnector 3. And the insulating member 6 arranged in the above, and a structure in which a plurality of cells each including these as a set are provided.

単セル1は、平面視略円形の平板からなる電解質と、この電解質の一方の面に形成された平板からなる燃料極と、電解質の他方の面に形成された平板からなる空気極とから構成されている。   The unit cell 1 includes an electrolyte made of a flat plate having a substantially circular shape in plan view, a fuel electrode made of a flat plate formed on one surface of the electrolyte, and an air electrode made of a flat plate formed on the other surface of the electrolyte. Has been.

燃料極インターコネクタ2は、図1,図2に示すように、平面視略円形の板状の形状を有し、上面の略中央部が上面側から下面側に掘り込まれた凹部2aと、この凹部2aの底面の中央部に形成され外部から供給された燃料ガスを凹部2a内部に送出する燃料送出流路2bと、この凹部2aの底面または側面に形成され凹部2a内部の未反応の燃料ガスを外部に排出する燃料排出流路2cとを備えている。   As shown in FIGS. 1 and 2, the fuel electrode interconnector 2 has a plate-like shape having a substantially circular shape in plan view, and a concave portion 2 a in which a substantially central portion of the upper surface is dug from the upper surface side to the lower surface side, A fuel delivery passage 2b that is formed in the center of the bottom surface of the recess 2a and delivers fuel gas supplied from the outside to the inside of the recess 2a, and an unreacted fuel formed in the bottom or side surface of the recess 2a. And a fuel discharge passage 2c for discharging gas to the outside.

空気極インターコネクタ3は、平面視略円形の板状の形状を有し、下面に形成され酸化剤ガスを単セル1側に送出するため空気流路3aを備える。   The air electrode interconnector 3 has a plate-like shape that is substantially circular in plan view, and includes an air flow path 3a that is formed on the lower surface and sends an oxidant gas to the single cell 1 side.

燃料極集電部材4は、平面視略円形の板状の形状を有し、図2に示すように、燃料極集電部材4の一方の面(下面)に、中央部から縁部かけて放射状に延在する溝からなる燃料ガス流路4aが形成されている。燃料極集電部材4は、例えば、Ni、金属合金(SUS,Inconel,ZMC等)、貴金属(Ag,Au,Pt等)など、還元雰囲気における耐性および導電性を有する材料から形成される。本実施の形態において、燃料極集電部材4は、スポンジ状の多孔質の材料から構成され、一方の面に、燃料ガス流路4aに対応する溝を形成されている。この溝は、プレス加工等により形成される。   The anode current collecting member 4 has a plate-like shape that is substantially circular in plan view. As shown in FIG. 2, the anode current collecting member 4 extends from the center to the edge on one surface (lower surface) of the anode current collecting member 4. A fuel gas flow path 4a made up of radially extending grooves is formed. The anode current collecting member 4 is made of a material having resistance and conductivity in a reducing atmosphere, such as Ni, metal alloys (SUS, Inconel, ZMC, etc.), and noble metals (Ag, Au, Pt, etc.). In the present embodiment, the fuel electrode current collecting member 4 is made of a sponge-like porous material, and a groove corresponding to the fuel gas channel 4a is formed on one surface. This groove is formed by press working or the like.

空気極集電部材5は、平面視略円形の板状の形状を有し、燃料極集電部材4と同様、全体に複数の凹部または孔が形成されている。このような空気極集電部材5は、ペロブスカイト形酸化物(LSFC,LSC,LSM,LNF,LCO等)など酸化雰囲気におる耐性および導電性を有する材料から形成される。   The air electrode current collecting member 5 has a substantially circular plate shape in plan view, and a plurality of recesses or holes are formed in the whole like the fuel electrode current collecting member 4. Such an air electrode current collecting member 5 is made of a material having resistance and conductivity in an oxidizing atmosphere such as perovskite oxide (LSFC, LSC, LSM, LNF, LCO, etc.).

このような平板型固体酸化物形燃料電池スタックの1つのセルは、次のように作成される。まず、燃料極インターコネクタ2の凹部2aの底面に、燃料極集電部材4と、燃料極を燃料極集電部材4側に向けた状態の単セル4とを順次積層する。このとき、燃料極集電部材4は、燃料ガス流路4aが形成された下面を燃料極インターコネクタ2の凹部2aの底面に対向させた状態で載置される。
次に、絶縁部材6を燃料極インターコネクタ2の縁部に載置した後、単セル4および絶縁部材6上に、空気極集電部材5および空気極インターコネクタ3を順次積層する。これにより、単セル4が、燃料極集電部材4および空気極集電部材5を介して燃料極インターコネクタ2と空気極インターコネクタ3との間に保持された1つのセルが生成される。
このとき、燃料極は、燃料極集電部材4を介して燃料極インターコネクタ2と電気的に接続され、空気極は、空気極集電部材5を介して空気極インターコネクタ3に接続されている。また、燃料極インターコネクタ2と空気極インターコネクタ3とは、それぞれ隣接する燃料極インターコネクタ2または空気極インターコネクタ3に電気的に接続されている。
One cell of such a flat type solid oxide fuel cell stack is produced as follows. First, the fuel electrode current collecting member 4 and the single cells 4 with the fuel electrode facing the fuel electrode current collecting member 4 are sequentially stacked on the bottom surface of the recess 2a of the fuel electrode interconnector 2. At this time, the fuel electrode current collecting member 4 is placed in a state where the lower surface on which the fuel gas channel 4 a is formed is opposed to the bottom surface of the recess 2 a of the fuel electrode interconnector 2.
Next, after the insulating member 6 is placed on the edge of the fuel electrode interconnector 2, the air electrode current collecting member 5 and the air electrode interconnector 3 are sequentially stacked on the single cell 4 and the insulating member 6. Accordingly, one cell is generated in which the single cell 4 is held between the fuel electrode interconnector 2 and the air electrode interconnector 3 via the fuel electrode current collector 4 and the air electrode current collector 5.
At this time, the fuel electrode is electrically connected to the fuel electrode interconnector 2 via the fuel electrode current collector 4, and the air electrode is connected to the air electrode interconnector 3 via the air electrode current collector 5. Yes. The fuel electrode interconnector 2 and the air electrode interconnector 3 are electrically connected to the adjacent fuel electrode interconnector 2 or air electrode interconnector 3, respectively.

次に、本実施の形態に係る平板型固体酸化物形燃料電池スタックの発電動作について説明する。   Next, the power generation operation of the flat solid oxide fuel cell stack according to the present embodiment will be described.

まず、水素等の燃料ガスは、燃料供給マニホールド(図示せず)から燃料極インターコネクタ2の燃料送出流路2bを通り、燃料極集電部材4を経由して、単セル1の燃料極に供給される。一方、空気等の酸化剤ガスは、空気供給マニホールド(図示せず)から空気極インターコネクタ3の空気流路3aを通り、空気極集電部材5を経由して、単セル1の空気極に供給される。このように燃料ガスおよび酸化剤ガスが所定の温度下において単セル1に供給されると、燃料極と空気極とにおいて電気化学反応が発生する。このような状態で、平板型固体酸化物形燃料電池スタックの上端の空気極インターコネクタ3と下端の燃料極インターコネクタ2とを端子として負荷回路を構成すると、所定の電圧レベルの電力を取り出すことができる。   First, fuel gas such as hydrogen passes from the fuel supply manifold (not shown) through the fuel delivery passage 2b of the fuel electrode interconnector 2 to the fuel electrode of the single cell 1 through the fuel electrode current collecting member 4. Supplied. On the other hand, an oxidant gas such as air passes from the air supply manifold (not shown) through the air flow path 3a of the air electrode interconnector 3 to the air electrode of the single cell 1 through the air electrode current collecting member 5. Supplied. As described above, when the fuel gas and the oxidant gas are supplied to the single cell 1 at a predetermined temperature, an electrochemical reaction occurs between the fuel electrode and the air electrode. In such a state, when a load circuit is configured with the air electrode interconnector 3 at the upper end and the fuel electrode interconnector 2 at the lower end of the flat plate solid oxide fuel cell stack as terminals, power at a predetermined voltage level can be taken out. Can do.

ここで、燃料極集電部材4には、上述したように溝の形状を有する燃料ガス流路4aが設けられている。したがって、燃料極インターコネクタ2の燃料送出流路2bから燃料極集電部材4の下面に向けて放出された燃料ガスは、燃料極集電部材4の平面方向において、燃料極集電部材4下面の他の部分よりも燃料ガス流路4aを優先的に流れていく。本実施の形態においては、燃料ガス流路4aが燃料極集電部材4の中央部から縁部にかけて放射状に延在しているので、燃料ガスは、燃料極集電部材4の中央部から縁部に向かって流れていくこととなる。燃料極集電部材4が上述したように多孔質から構成されているので、燃料ガスは、燃料ガス流路4aを流れていく過程で、多孔質の孔に入り込んで燃料極集電部材4の上面側に移動し、燃料極集電部材4の上面から単セル1の燃料極に到達する。   Here, the fuel electrode current collecting member 4 is provided with the fuel gas channel 4a having the groove shape as described above. Therefore, the fuel gas released from the fuel delivery channel 2 b of the fuel electrode interconnector 2 toward the lower surface of the fuel electrode current collector 4 is in the plane direction of the fuel electrode current collector 4 and the lower surface of the fuel electrode current collector 4. The fuel gas flow path 4a flows preferentially over other parts. In the present embodiment, the fuel gas flow path 4a extends radially from the center portion to the edge portion of the anode current collecting member 4, so that the fuel gas flows from the center portion of the anode current collecting member 4 to the edge. It will flow toward the part. Since the fuel electrode current collecting member 4 is made of a porous material as described above, the fuel gas enters the porous hole in the process of flowing through the fuel gas flow path 4a, and the fuel electrode current collecting member 4 It moves to the upper surface side and reaches the fuel electrode of the single cell 1 from the upper surface of the fuel electrode current collecting member 4.

このとき、燃料ガスは、燃料極集電部材4の上面側のみならず、平面方向にも移動する。すなわち、燃料ガスは、燃料ガス流路4aを流れていく過程で、燃料ガス流路4aに隣接する孔に入り込み、燃料ガス流路4aの周囲に染み出していく。この周囲に染み出した燃料ガスは、燃料極集電部材4の上面側に移動し、燃料極集電部材4の上面から単セル1の燃料極に到達する。このように、燃料ガスが燃料ガス流路4aの周囲に染み出すことにより、燃料ガスは、燃料極集電部材4の上面から一様に、単セル1の燃料極に供給されることとなる。   At this time, the fuel gas moves not only on the upper surface side of the anode current collecting member 4 but also in the plane direction. That is, in the process of flowing through the fuel gas flow path 4a, the fuel gas enters the hole adjacent to the fuel gas flow path 4a and oozes out around the fuel gas flow path 4a. The fuel gas that oozes out to the periphery moves to the upper surface side of the fuel electrode current collector 4 and reaches the fuel electrode of the single cell 1 from the upper surface of the fuel electrode current collector 4. In this way, the fuel gas oozes out around the fuel gas flow path 4a, so that the fuel gas is uniformly supplied from the upper surface of the fuel electrode current collecting member 4 to the fuel electrode of the single cell 1. .

以上説明したように、本実施の形態によれば、燃料極集電部材4が燃料極インターコネクタ2を介して供給される燃料ガスが流れる燃料ガス流路4aを有することにより、燃料極インターコネクタ2にガス流路等を形成しなくてよいので、インターコネクタをプレス加工で形成することが可能となり、結果として、小型化および低コスト化を実現することができる。   As described above, according to the present embodiment, the fuel electrode current collector 4 has the fuel gas flow path 4a through which the fuel gas supplied via the fuel electrode interconnector 2 flows. Since it is not necessary to form a gas flow path or the like in 2, the interconnector can be formed by press working, and as a result, downsizing and cost reduction can be realized.

なお、燃料ガス流路4aは、溝の形状に限定されず、例えば、その溝を複数の凹部が連続して配置されることにより形成したり、多孔質の孔のうちその溝に対応する部分の孔が他の部分よりも大きくなるように形成したり、その溝に対応する部分が貫通孔から形成されたりするようにしてもよい。この場合、プレス加工やパンチ加工等を施すことにより、燃料ガス流路4aに対応する箇所に凹部や貫通孔を形成する。   The fuel gas channel 4a is not limited to the shape of the groove. For example, the groove is formed by continuously arranging a plurality of recesses, or a portion corresponding to the groove in the porous hole. These holes may be formed to be larger than other parts, or the part corresponding to the groove may be formed from a through hole. In this case, a recess or a through hole is formed at a location corresponding to the fuel gas flow path 4a by performing press working or punching.

また、燃料極集電部材4は、繊維を編み込んだマット状の材料から構成され、一方の面に、燃料ガス流路4aに対応する溝を形成したり、この溝を複数の凹部が連続して配置されることにより形成したり、多孔質の孔のうちその溝に対応する部分の孔が他の部分よりも大きくなるように形成したりするようにしてもよい。この場合、その材料を編み込む際に、燃料ガス流路4aに対応する箇所の編み目が他の箇所よりも大きくなるように編み込むことにより、形成される。   The anode current collecting member 4 is made of a mat-like material in which fibers are knitted. A groove corresponding to the fuel gas flow path 4a is formed on one surface, or a plurality of recesses are continuously formed in the groove. Alternatively, the holes may be formed so that the hole corresponding to the groove in the porous hole is larger than the other part. In this case, when the material is knitted, it is formed by knitting so that the stitches corresponding to the fuel gas flow path 4a are larger than other portions.

また、燃料極集電部材4は、金属板等の板材からからなり、一方の面に、燃料ガス流路4aに対応する領域に溝を形成したり、燃料ガス流路4aに対応する領域の周囲に複数の凸部を形成した構成を有するようにしてもよい。この場合、その金属板に対してプレス加工等を施すことにより、燃料ガス流路4aに対応する領域に溝を形成したり、燃料ガス流路4aの周囲に複数の凸部を形成したりする。   The anode current collecting member 4 is made of a plate material such as a metal plate, and a groove is formed in one area corresponding to the fuel gas flow path 4a or a region corresponding to the fuel gas flow path 4a. You may make it have the structure which formed the several convex part in the circumference | surroundings. In this case, a groove or the like is formed in a region corresponding to the fuel gas flow path 4a or a plurality of convex portions are formed around the fuel gas flow path 4a by pressing the metal plate. .

また、本実施の形態では、燃料ガス流路4aを、燃料極集電部材4のインターコネクタの凹部2aの底面と接触する側に設ける場合を例に説明したが、燃料極集電部材4の単セル1と接触する側に設けるようにしたり、底面と接触する側および単セル1と接触する側の両方に設けるようにしてもよい。   In the present embodiment, the case where the fuel gas flow path 4a is provided on the side of the fuel electrode current collecting member 4 that contacts the bottom surface of the recess 2a of the interconnector has been described as an example. It may be provided on the side in contact with the single cell 1 or may be provided on both the side in contact with the bottom surface and the side in contact with the single cell 1.

また、本実施の形態では、燃料ガス流路4aが放射状の平面形状を有する場合を例に説明したが、その平面形状は放射状に限定されず、適宜自由に設定することができる。   In the present embodiment, the case where the fuel gas flow path 4a has a radial planar shape has been described as an example. However, the planar shape is not limited to a radial shape, and can be freely set as appropriate.

例えば、図4に示す燃料極集電部材41のように、螺旋状の平面形状を有する燃料ガス流路41aを形成するようにしてもよい。なお、図4に示す燃料極集電部材41は、格子状の開口を有するメッシュから構成されており、燃料ガス流路41aは、他の部分よりも開口が大きく形成されている。このような場合においても、燃料極集電部材41に流入した燃料ガスは、燃料極集電部材41の他の部分よりも燃料ガス流路41aを優先的に流れていくので、燃料極集電部材41の中央部から燃料ガス流路41aの渦巻き形状に沿って燃料極集電部材41内部を流れていくこととなる。この流れていく過程で、燃料ガスは、燃料ガス流路41aからこの周囲に染み出していく。したがって、燃料ガスは、燃料極集電部材41の単セル1と対向する面から一様に、単セル1の燃料極に供給されることとなる。   For example, a fuel gas channel 41a having a spiral planar shape may be formed as in the fuel electrode current collecting member 41 shown in FIG. The fuel electrode current collecting member 41 shown in FIG. 4 is composed of a mesh having a grid-like opening, and the fuel gas channel 41a is formed with a larger opening than the other parts. Even in such a case, the fuel gas that has flowed into the fuel electrode current collector 41 flows preferentially through the fuel gas channel 41a over the other parts of the fuel electrode current collector 41. The inside of the anode current collecting member 41 flows from the central portion of the member 41 along the spiral shape of the fuel gas passage 41a. In the course of this flow, the fuel gas oozes out from the fuel gas passage 41a to the surroundings. Therefore, the fuel gas is uniformly supplied to the fuel electrode of the single cell 1 from the surface of the fuel electrode current collecting member 41 facing the single cell 1.

また、本実施の形態では、燃料送出流路2bが燃料極インターコネクタ2の凹部2aの底面に形成した場合を例に説明したが、燃料送出流路2bを形成する場所は凹部2aの底面に限定されず、適宜自由に設定することができる。   Further, in the present embodiment, the case where the fuel delivery channel 2b is formed on the bottom surface of the recess 2a of the fuel electrode interconnector 2 has been described as an example. However, the place where the fuel delivery channel 2b is formed is on the bottom surface of the recess 2a. It is not limited and can be set freely as appropriate.

例えば、凹部2aの周面の対向する位置に、燃料送出流路2bと燃料排出流路2cとを形成するようにしてもよい。この場合、燃料極集電部材は、図5に示すように、互いに平行な複数の直線状の平面形状を有する燃料ガス流路42aを形成するようにしてもよい。ここで、燃料極集電部材42は、多孔質から構成されており、燃料ガス流路42aには、多数の貫通孔が形成されている。   For example, you may make it form the fuel delivery flow path 2b and the fuel discharge flow path 2c in the position which the peripheral surface of the recessed part 2a opposes. In this case, as shown in FIG. 5, the fuel electrode current collecting member may form a fuel gas flow path 42 a having a plurality of linear planar shapes parallel to each other. Here, the fuel electrode current collecting member 42 is made of a porous material, and a large number of through holes are formed in the fuel gas channel 42a.

このようなストライプ状の燃料ガス流路42aを有する燃料極集電部材42は、その直線の端部が燃料送出流路2bまたは燃料排出流路2cと対向するように凹部2a内部に配設される。これにより、燃料送出流路2bから燃料極集電部材42に流入した燃料ガスは、燃料ガス流路42aを通って、燃料排出流路2cに向かって流れていく。この流れていく過程で、燃料ガスは、燃料ガス流路42aからこの周囲に染み出していく。したがって、燃料ガスは、燃料極集電部材42の単セル1と対向する面から一様に、単セル1の燃料極に供給されることとなる。また、未反応の燃料ガスは、燃料排出流路2cから外部に排出されることとなる。   The anode current collecting member 42 having such a striped fuel gas channel 42a is disposed inside the recess 2a so that the end of the straight line faces the fuel delivery channel 2b or the fuel discharge channel 2c. The As a result, the fuel gas that has flowed into the fuel electrode current collector 42 from the fuel delivery channel 2b flows through the fuel gas channel 42a toward the fuel discharge channel 2c. In the course of this flow, the fuel gas oozes out from the fuel gas flow path 42a to the surroundings. Therefore, the fuel gas is uniformly supplied to the fuel electrode of the single cell 1 from the surface of the fuel electrode current collecting member 42 facing the single cell 1. Further, the unreacted fuel gas is discharged to the outside from the fuel discharge channel 2c.

また、燃料極インターコネクタは、図6に示すように、図1,2で示した燃料極インターコネクタ2の側部にその中心に対して対称な一対の凸部を設けた形状としてもよい。この燃料極インターコネクタ21は、上面側から下面側に掘り込まれた凹部21aと、この凹部21aの一方の上記凸部に対応する箇所の底面に形成された燃料送出流路21bと、凹部21aの他方の上記凸部に対応する箇所の底面に形成された燃料排出流路21cを備えている。この場合、燃料極集電部材43は、燃料極インターコネクタ21の底面と同等の平面形状を有し、上記凸部に対応する箇所に形成された開口43aと、この開口43aを結ぶ方向に沿い、かつ、互いに平行に形成された複数の直線状の平面形状を有する燃料ガス流路43bとを備えるようにしてもよい。ここで、燃料極集電部材43は、多孔質から構成されており、燃料ガス流路43aは、多数の貫通孔から形成されている。   Further, as shown in FIG. 6, the fuel electrode interconnector may have a shape in which a pair of convex portions symmetrical with respect to the center are provided on the side portion of the fuel electrode interconnector 2 shown in FIGS. The fuel electrode interconnector 21 includes a concave portion 21a dug from the upper surface side to the lower surface side, a fuel delivery channel 21b formed on the bottom surface of the concave portion 21a corresponding to one of the convex portions, and a concave portion 21a. The fuel discharge flow path 21c formed in the bottom face of the location corresponding to the other said convex part is provided. In this case, the fuel electrode current collecting member 43 has a planar shape equivalent to the bottom surface of the fuel electrode interconnector 21, and is along the direction connecting the opening 43a formed at a position corresponding to the convex portion and the opening 43a. In addition, a fuel gas flow path 43b having a plurality of linear planar shapes formed in parallel to each other may be provided. Here, the fuel electrode current collecting member 43 is made of a porous material, and the fuel gas channel 43a is formed of a large number of through holes.

このような構成を採ることにより、燃料送出流路21bから燃料極集電部材43に流入した燃料ガスは、燃料ガス流路43bを通って、燃料排出流路21cに向かって流れていく。この流れていく過程で、燃料ガスは、燃料ガス流路43bからこの周囲に染み出していく。したがって、燃料ガスは、燃料極集電部材43の単セル1と対向する面から一様に、単セル1の燃料極に供給されることとなる。また、未反応の燃料ガスは、燃料排出流路21cから外部に排出されることとなる。   By adopting such a configuration, the fuel gas that has flowed into the fuel electrode current collecting member 43 from the fuel delivery passage 21b flows through the fuel gas passage 43b toward the fuel discharge passage 21c. In the course of this flow, the fuel gas oozes out from the fuel gas flow path 43b to the surroundings. Therefore, the fuel gas is uniformly supplied to the fuel electrode of the single cell 1 from the surface of the fuel electrode current collecting member 43 facing the single cell 1. Further, unreacted fuel gas is discharged to the outside from the fuel discharge passage 21c.

なお、本実施の形態においては、燃料極集電部材4のみに流路(燃料ガス流路4a)が形成される場合を例に説明したが、空気極集電部材5にも同様の流路を形成するようにしてもよいことは言うまでもない。   In the present embodiment, the case where the flow path (fuel gas flow path 4a) is formed only in the fuel electrode current collecting member 4 has been described as an example, but a similar flow path is also formed in the air electrode current collecting member 5. Needless to say, it may be formed.

本発明は、平板型の単セルを有する燃料電池など、平板状の部材にガスを供給する各種装置に適用することができる。   The present invention can be applied to various devices that supply gas to a flat member, such as a fuel cell having a flat single cell.

1…単セル、2…燃料極インターコネクタ、2a…凹部、2b…燃料送出流路、2c…燃料排出流路、3…空気極インターコネクタ、3a…空気流路、4…燃料極集電部材、4a…燃料ガス流路、5…空気極集電部材、6…絶縁体、21…燃料極インターコネクタ、21a…凹部、21b…燃料送出流路、21c…燃料排出流路、41,42,43…燃料極集電部材、41a,42a,43b…燃料ガス流路、43a…開口。   DESCRIPTION OF SYMBOLS 1 ... Single cell, 2 ... Fuel electrode interconnector, 2a ... Recessed part, 2b ... Fuel delivery flow path, 2c ... Fuel discharge flow path, 3 ... Air electrode interconnector, 3a ... Air flow path, 4 ... Fuel electrode current collection member 4a ... Fuel gas flow path, 5 ... Air electrode current collecting member, 6 ... Insulator, 21 ... Fuel electrode interconnector, 21a ... Recess, 21b ... Fuel delivery flow path, 21c ... Fuel discharge flow path, 41, 42, 43 ... Fuel electrode current collecting member, 41a, 42a, 43b ... Fuel gas flow path, 43a ... Opening.

Claims (6)

電解質をはさんで燃料極および空気極を有する単セルと、この単セルを収容しかつ前記単セルに燃料ガスおよび酸化剤ガスを平面方向に供給する流路が形成されていないインターコネクタとの間に配設されて、前記燃料極または前記空気極と前記インターコネクタとを電気的に接続する固体酸化物形燃料電池用の集電部材であって、
前記燃料ガスまたは前記酸化剤ガスが平面方向に流れる複数の凹部を備える
ことを特徴とする集電部材。
A single cell having a fuel electrode and an air electrode sandwiched between electrolytes, and an interconnector that accommodates the single cell and has no flow path for supplying fuel gas and oxidant gas to the single cell in a planar direction . A current collecting member for a solid oxide fuel cell that is disposed between and electrically connects the fuel electrode or the air electrode and the interconnector,
A current collecting member comprising a plurality of recesses through which the fuel gas or the oxidant gas flows in a planar direction .
前記凹部の一部または全ては、孔である
ことを特徴とする請求項1記載の集電部材。
The current collecting member according to claim 1, wherein a part or all of the recess is a hole.
前記凹部は、前記単セルまたは前記インターコネクタと接する面の中央部から縁部に向かって放射状に配置されている
ことを特徴とする請求項1または2に記載の集電部材。
The current collecting member according to claim 1, wherein the concave portions are arranged radially from a central portion of a surface in contact with the single cell or the interconnector toward an edge portion.
前記凹部は、平面視直線状に配置されている
ことを特徴とする請求項1または2に記載の集電部材。
The current collecting member according to claim 1, wherein the concave portion is arranged in a straight line shape in a plan view.
前記凹部は、平面視螺旋状に配置されている
ことを特徴とする請求項1または2に記載の集電部材。
The current collecting member according to claim 1, wherein the concave portion is arranged in a spiral shape in a plan view.
単セルと、この単セルを収容しかつ前記単セルに燃料ガスおよび酸化剤ガスを供給するインターコネクタと、前記単セルと前記インターコネクタとの間に配設される集電部材とを備えた固体酸化物形燃料電池であって、
前記集電部材は、請求項1乃至5の何れか1項に記載された集電部材からなる
ことを特徴とする固体酸化物形燃料電池。
A single cell; an interconnector that accommodates the single cell and supplies fuel gas and oxidant gas to the single cell; and a current collecting member that is disposed between the single cell and the interconnector. A solid oxide fuel cell,
The said current collection member consists of a current collection member as described in any one of Claims 1 thru | or 5. The solid oxide fuel cell characterized by the above-mentioned.
JP2009064080A 2009-03-17 2009-03-17 Current collecting member and solid oxide fuel cell Expired - Fee Related JP5330042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064080A JP5330042B2 (en) 2009-03-17 2009-03-17 Current collecting member and solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064080A JP5330042B2 (en) 2009-03-17 2009-03-17 Current collecting member and solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2010218874A JP2010218874A (en) 2010-09-30
JP5330042B2 true JP5330042B2 (en) 2013-10-30

Family

ID=42977479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064080A Expired - Fee Related JP5330042B2 (en) 2009-03-17 2009-03-17 Current collecting member and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5330042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376575B1 (en) * 2017-03-16 2020-04-29 Hexis AG Method for producing a metallic interconnector for a fuel cell stack, and metallic interconnector made using the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304889B2 (en) * 2001-06-25 2009-07-29 三菱マテリアル株式会社 Solid oxide fuel cell
JP2008117737A (en) * 2006-11-08 2008-05-22 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell

Also Published As

Publication number Publication date
JP2010218874A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4621815B2 (en) Fuel cell stack
JP2012123949A (en) Fuel battery cell
JP5118301B2 (en) Direct liquid fuel cell and portable electronic device with direct liquid fuel cell
US20080138695A1 (en) Fuel Cell
JP5470232B2 (en) Flat type solid electrolyte fuel cell
CA2414003C (en) Device for electrically contacting electrodes in high-temperature fuel cells
JP2014038823A (en) Current collector for solid oxide fuel cell, and solid oxide fuel cell employing the same
JP5330042B2 (en) Current collecting member and solid oxide fuel cell
US20090274945A1 (en) Fuel Cell and Manufacturing Method of the Same
JP2007273433A (en) Cell unit, cell connection method, and fuel cell
JP5401438B2 (en) Flat type solid electrolyte fuel cell
TWI699037B (en) Electrode separator structure and fuel cell applied with the same
JP6423210B2 (en) Gas channel structure and fuel cell
JP5846936B2 (en) Fuel cell
KR100704437B1 (en) Electrochemical unit cell and electrochemical cell assembly with non-conductive separator
JP5667100B2 (en) Method for producing solid oxide fuel cell
JP2010192432A (en) Fuel cell
US8697307B2 (en) Solid oxide fuel cell stack
JP6773526B2 (en) Interconnector-electrochemical reaction single cell complex and electrochemical reaction cell stack
JP2013054954A (en) Solid oxide fuel cell stack and interconnector
JP5638418B2 (en) Fuel cell
JP3134764U (en) Fuel cell
KR20120075232A (en) Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same
KR101544405B1 (en) fuel cell
JP2019096457A (en) Electrochemical reaction unit and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees