JP5327739B2 - Test substance measurement method - Google Patents

Test substance measurement method Download PDF

Info

Publication number
JP5327739B2
JP5327739B2 JP2008124527A JP2008124527A JP5327739B2 JP 5327739 B2 JP5327739 B2 JP 5327739B2 JP 2008124527 A JP2008124527 A JP 2008124527A JP 2008124527 A JP2008124527 A JP 2008124527A JP 5327739 B2 JP5327739 B2 JP 5327739B2
Authority
JP
Japan
Prior art keywords
metal
substance
working electrode
labeled
labeling substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008124527A
Other languages
Japanese (ja)
Other versions
JP2009276064A (en
Inventor
公太郎 井手上
みゆき 近江
禅 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2008124527A priority Critical patent/JP5327739B2/en
Publication of JP2009276064A publication Critical patent/JP2009276064A/en
Application granted granted Critical
Publication of JP5327739B2 publication Critical patent/JP5327739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a test material capable of improving greatly detection sensitivity. <P>SOLUTION: A catalyst metal 10 of the amount corresponding to the amount of the test material 4 in sample solution is deposited on the surface of a working electrode 2, and then a reduction current caused by a catalyst activity of the catalyst metal 10 is measured, and existence or the concentration of the test material 4 is examined based on the measured reduction current value. In order to deposit the catalyst metal 10 of the amount corresponding to the amount of the test material 4 on the surface of the working electrode 2, for example, the test material 4 labeled by labeling metal particles 7 is captured onto the surface of the working electrode 2, and the labeling metal particles 7 are oxidized electrochemically and dissolved, and then reduced electrochemically to be thereby deposited on the surface of the working electrode 2, and the catalyst metal 10 is deposited on the surface of the deposited labeling metal 8. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電気化学的手法を用いた被検物質の測定方法に関するものであり、特に、触媒効果を利用した新規な測定方法に関する。   The present invention relates to a method for measuring a test substance using an electrochemical technique, and particularly relates to a novel measurement method using a catalytic effect.

試験溶液中の微量物質を簡便且つ高感度に測定する方法の1つとして、抗原抗体反応を利用した免疫測定法が知られている。免疫測定法としては、酵素で標識した抗体を用い、酵素反応に由来する発色や発光等の信号を得ることにより被検物質の検知や濃度測定を行うELISA法が知られ、幅広い分野で採用されている。しかしながら、ELISA法では、発色や発光等の信号検出時に光学系を必要とするため、大型の測定機が必要となる。また、正確な定量を行う場合には、発色等の測定結果を電気的な信号に変換する作業が必要となる等、複雑な処理を行う必要がある。   An immunoassay method using an antigen-antibody reaction is known as one method for measuring trace substances in a test solution easily and with high sensitivity. As an immunoassay, an ELISA method is known, which uses an antibody labeled with an enzyme to detect a color or luminescence signal derived from an enzyme reaction, thereby detecting a test substance or measuring its concentration, and has been adopted in a wide range of fields. ing. However, since the ELISA method requires an optical system when detecting signals such as color development and light emission, a large measuring instrument is required. In addition, when accurate quantification is performed, it is necessary to perform complicated processing such as work for converting measurement results such as color development into electrical signals.

そこで、発色標識や蛍光標識のような汎用の標識物質を用いた免疫測定法等において、検出に際して電気化学的測定法を利用する方法が提案されている(例えば、特許文献1等を参照)。電気化学的測定に用いる装置は、ELISA等に用いられる機器に比べて小型化が可能であることから、測定機器の小型化と検出感度の向上との両立が期待されている。例えば、特許文献1においては、金属微粒子を化学的処理によって溶解した後、電気化学的測定を行い、得られた金属微粒子の酸化に伴うピーク電流に基づいて被検物質の定性分析又は定量分析を行っており、小型の装置で高感度な分析が可能であることが利点として挙げられている。   In view of this, a method using an electrochemical measurement method for detection in an immunoassay method using a general-purpose labeling substance such as a chromogenic label or a fluorescent label has been proposed (see, for example, Patent Document 1). Since an apparatus used for electrochemical measurement can be downsized as compared with an apparatus used for ELISA or the like, it is expected that the measurement apparatus can be downsized and detection sensitivity can be improved. For example, in Patent Document 1, after dissolving metal fine particles by chemical treatment, electrochemical measurement is performed, and qualitative analysis or quantitative analysis of a test substance is performed based on the peak current accompanying oxidation of the obtained metal fine particles. The advantage is that high-sensitivity analysis is possible with a small device.

しかしながら、特許文献1においては、溶液等を用いた化学的処理により金属微粒子を完全に溶解する工程が電気化学的測定に先立って必要となるため、測定操作が煩雑になるといった不都合があること、電気化学的測定により金属微粒子の酸化に伴う電流値を測定しているが、得られる酸化電流値には目的とする金属微粒子に由来する電流の他、測定溶液中の夾雑物に由来する電流のようなノイズも比較的多く含まれているため、誤検出を起こす場合もあること、溶液中の被検物質の定量等を行うことについては記載されていないこと等、解決すべき課題も多い。   However, in patent document 1, since the process which melt | dissolves a metal microparticle completely by chemical treatment using a solution etc. is required prior to electrochemical measurement, there exists a problem that measurement operation becomes complicated, The current value associated with the oxidation of the metal fine particles is measured by electrochemical measurement. The obtained oxidation current value includes the current derived from the target metal fine particles and the current derived from impurities in the measurement solution. Since such a noise is contained in a relatively large amount, there are many problems to be solved, such as a case where erroneous detection may occur, and that there is no description about quantifying a test substance in a solution.

このような状況から、本願出願人らは、特許文献2において、測定操作を煩雑なものとすることがなく、高感度且つ正確な測定が可能な被検物質の測定方法を提案している。特許文献2記載の発明では、試料溶液中の被検物質に応じた量の金属微粒子を作用電極の表面近傍に集め、金属微粒子を電気化学的に酸化した後、酸化した金属を電気化学的に還元する際に生じる電流値を測定し、当該電流値に基づいて被検物質の有無又は濃度を測定するようにしている。
特表2004−512496号公報 WO 2007/116811 A1
Under such circumstances, the applicants of the present application have proposed a method for measuring a test substance capable of highly sensitive and accurate measurement in Patent Document 2 without making the measurement operation complicated. In the invention described in Patent Document 2, an amount of metal fine particles corresponding to a test substance in a sample solution is collected near the surface of the working electrode, the metal fine particles are electrochemically oxidized, and then the oxidized metal is electrochemically converted. The current value generated during reduction is measured, and the presence or concentration of the test substance is measured based on the current value.
Japanese translation of PCT publication No. 2004-512696 WO 2007/1168111 A1

ところで、前述の特許文献2記載の測定方法は、金属コロイドを溶解後、析出したときの還元電流ピークを測定することにより被検物質の定量を行うというのが基本的な考えであり、その検出感度は金コロイドの量にのみ依存する。例えば、酵素反応のように増幅効果が得られることはない。したがって、特許文献2記載の測定方法において、さらなる高感度化を実現するためには、被検物質に対する標識物質である金コロイドをできる限り作用電極表面に集めること、及び十分に酸化還元反応を起こさせることが必要となる。   By the way, the measurement method described in Patent Document 2 described above is based on the basic idea that the test substance is quantified by measuring the reduction current peak when the metal colloid is dissolved and then deposited. Sensitivity depends only on the amount of colloidal gold. For example, an amplification effect is not obtained unlike an enzyme reaction. Therefore, in the measurement method described in Patent Document 2, in order to achieve further higher sensitivity, gold colloid as a labeling substance for the test substance is collected on the working electrode surface as much as possible, and a sufficient redox reaction is caused. It is necessary to make it.

しかしながら、例えばプレナー型印刷電極を用いた測定の場合、作用電極の表面上だけで抗原抗体反応等の検出のための反応を起こさせ、それから電気化学検出を行うことになるが、作用電極の面積はデバイス(測定装置)の大きさによって制限されるため、感度向上のためにサンプル量(前記金コロイド量)を増やすことも制限されてしまい、結果として高感度化が難しいという問題がある。また、対極及び作用電極の全面で抗原抗体反応をさせ、それから完全に金コロイドを溶かして作用電極上に析出させれば標識物質である金コロイド全ての検出が可能になるが、金コロイドを完全に溶かして作用電極上に析出させるには、十分に撹拌を行う必要がある。そして、前記撹拌を行うためには、撹拌のための機械的な構造が必要となり、装置構造が繁雑なものとなるという問題が生ずる。   However, for example, in the case of measurement using a planar type printed electrode, a reaction for detecting an antigen-antibody reaction or the like is caused only on the surface of the working electrode, and then electrochemical detection is performed. Is limited by the size of the device (measuring device), so that increasing the amount of sample (the amount of colloidal gold) for improving sensitivity is also limited, and as a result, there is a problem that high sensitivity is difficult. In addition, if the antigen-antibody reaction is performed on the entire surface of the counter electrode and the working electrode, and then the gold colloid is completely dissolved and deposited on the working electrode, it becomes possible to detect all the gold colloid as the labeling substance. It is necessary to sufficiently stir in order to dissolve in and deposit on the working electrode. And in order to perform the said stirring, the mechanical structure for stirring is required, and the problem that an apparatus structure will become complicated arises.

本発明は、このような従来の実情に鑑みて提案されたものであり、検出感度を飛躍的に向上することができ、例えば測定装置を小型化した場合にも高感度測定が可能で、装置構造を煩雑化することもない被検物質の測定方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and can greatly improve the detection sensitivity. For example, even when the measuring device is downsized, high sensitivity measurement is possible. It is an object of the present invention to provide a method for measuring a test substance that does not complicate the structure.

本発明の標識物質で標識された被検物質の測定方法は、標識物質で標識された被検物質の測定方法であって、触媒金属微粒子を前記標識物質として用いて、試料溶液中の前記被検物質に対応した量の前記触媒金属微粒子を作用電極近傍に局在化させ、作用電極近傍に局在化させた前記触媒金属微粒子を電気化学的に酸化し前記作用電極表面で溶解し、さらに電気化学的に還元することで溶解した触媒金属を前記作用電極表面に析出させ、析出した前記触媒金属の触媒作用による電流を測定し、測定された電流値に基づいて被検物質の有無又は濃度を調べることを特徴とする。
本発明は、前記作用電極表面に、被検物質と結合する結合物質を、予め固定しておき、当該結合物質により前記標識物質で標識された被検物質を捕捉することを特徴とする。本発明は、前記被検物質を、抗原抗体反応により前記標識物質で標識し、抗原抗体反応により前記結合物質と結合させることを特徴とする。
Method of measuring the analyte labeled with a labeling substance of the present invention is the method of measuring an analyte labeled with a labeling substance, by using the catalyst metal fine particles as the labeling substance, the object in the sample solution the catalytic metal particle in an amount corresponding to the test substance is localized in the working electrode vicinity, electrochemically oxidizing the catalyst metal fine particles were localized in the vicinity of the working electrode is dissolved in the surface of the working electrode, further The catalytic metal dissolved by electrochemical reduction is deposited on the surface of the working electrode, the current due to the catalytic action of the deposited catalytic metal is measured, and the presence or concentration of the test substance is determined based on the measured current value. It is characterized by examining.
The present invention is characterized in that a binding substance that binds to a test substance is immobilized in advance on the surface of the working electrode, and the test substance labeled with the labeling substance is captured by the binding substance. The present invention is characterized in that the test substance is labeled with the labeling substance by an antigen-antibody reaction and bound to the binding substance by an antigen-antibody reaction.

本発明の標識物質で標識された被検物質の測定方法は、標識物質で標識された被検物質の測定方法であって、金属微粒子を前記標識物質として用いて、試料溶液中の前記被検物質に対応した量の前記金属微粒子を作用電極近傍に局在化させ、前記作用電極近傍に局在化させた前記金属微粒子電気化学的に酸化し前記作用電極表面で溶解し、さらに電気化学的に還元することで溶解した金属を前記作用電極表面に析出させた後、触媒金属を作用電極近傍に存在させて析出した前記金属の表面に前記触媒金属を析出させ、析出した前記触媒金属の触媒作用による電流を測定し、測定された電流値に基づいて被検物質の有無又は濃度を調べることを特徴とする。
本発明は、前記触媒金属は、前記標識物質として用いられる金属と標準電極電位が近似、若しくは前記標識物質として用いられる金属よりも標準電極電位が高いことを特徴とする。本発明は、前記触媒金属が白金であり、前記標識物質が金であることを特徴とする。本発明は、前記触媒金属が白金であり、前記標識物質が金であって、前記標識物質としての金が析出された作用電極に塩化白金溶液を滴下し、前記触媒金属としての白金を前記標識物質としての金の表面に析出させることを特徴とする。本発明は、前記触媒金属としての白金を前記標識物質としての金の表面に析出させた後、前記作用電極において、塩酸溶液中で水素の還元電流を測定することを特徴とする。
Method of measuring the analyte labeled with a labeling substance of the present invention is the method of measuring an analyte labeled with a labeling substance, by using the metal fine particles as the labeling substance, the test of the sample solution the fine metal particles in an amount corresponding to the material to localize the working electrode vicinity, the said metal particles were localized in the working electrode near electrochemically oxidized and dissolved in the working electrode surface, further electrochemical after the metal was dissolved by reductively precipitated in the surface of the working electrode, the catalytic metal precipitate the catalyst metal on the surface of the metal precipitated be present in the working electrode vicinity, it precipitated the catalyst metal It is characterized in that the current due to the catalytic action is measured, and the presence or concentration of the test substance is examined based on the measured current value.
The present invention is characterized in that the catalyst metal has a standard electrode potential that is close to that of the metal used as the labeling substance or higher than that of the metal used as the labeling substance. The present invention is characterized in that the catalytic metal is platinum and the labeling substance is gold. In the present invention, the catalyst metal is platinum, the labeling substance is gold, a platinum chloride solution is dropped on the working electrode on which gold as the labeling substance is deposited, and platinum as the catalyst metal is labeled with the labeling It is characterized by being deposited on the surface of gold as a substance. The present invention is characterized in that after the platinum as the catalyst metal is deposited on the surface of gold as the labeling substance, the reduction current of hydrogen is measured in a hydrochloric acid solution at the working electrode.

本発明は、標識物質である金属材料の触媒機能に注目し、微量な被検物質量でも大きな電流値が得られるように改良したものである。単に金属が析出する際の電流を測定するよりも、触媒金属の触媒作用による電流を測定することで、感度が大幅に向上する。すなわち、本発明の測定方法は、触媒金属の特徴を活かした信号増幅方法ということができる。   The present invention focuses on the catalytic function of a metal material as a labeling substance and is improved so that a large current value can be obtained even with a small amount of a test substance. Rather than simply measuring the current when the metal is deposited, the sensitivity is greatly improved by measuring the current due to the catalytic action of the catalytic metal. That is, the measurement method of the present invention can be said to be a signal amplification method that makes use of the characteristics of the catalytic metal.

本発明の測定方法によれば、触媒機能による増幅効果により検出感度の大幅な向上を図ることができ、被検物質が微量であっても正確な測定が可能である。また、前記の通り、サンプル量が少なくても正確な測定が可能であるので、電極面積を大きくする必要がなく、測定装置の小型化を実現することができる。さらに、検出感度が高いことから、撹拌を行わなくとも十分な感度を得ることができ、装置構造を繁雑なものとする必要もない。   According to the measurement method of the present invention, the detection sensitivity can be greatly improved by the amplification effect by the catalytic function, and accurate measurement is possible even if the amount of the test substance is very small. In addition, as described above, accurate measurement is possible even with a small amount of sample, so there is no need to increase the electrode area, and the measurement apparatus can be downsized. Furthermore, since the detection sensitivity is high, sufficient sensitivity can be obtained without stirring, and the apparatus structure does not need to be complicated.

以下、本発明を適用した被検物質の測定方法について、図面を参照しながら詳細に説明する。   Hereinafter, a method for measuring a test substance to which the present invention is applied will be described in detail with reference to the drawings.

前述の通り、本発明の被検物質の測定方法は、試料溶液中の被検物質量に応じた量の触媒金属を作用電極の表面に析出させた後、触媒金属の触媒作用による電流を測定し、測定された電流値に基づいて被検物質の有無又は濃度を調べるというのが基本的な操作である。ここで、触媒金属自体を抗原抗体反応等を用いて作用電極表面に集め、作用電極表面に析出させることも可能であるが、以下においては、標識金属を抗原抗体反応を用いて作用電極表面に集め、集められた標識金属の量に応じて触媒金属を析出される方法を例にして本発明の測定方法を説明する。   As described above, the method for measuring a test substance according to the present invention measures the current due to the catalytic action of the catalytic metal after depositing a catalytic metal in an amount corresponding to the quantity of the test substance in the sample solution on the surface of the working electrode. The basic operation is to check the presence or concentration of the test substance based on the measured current value. Here, it is possible to collect the catalytic metal itself on the surface of the working electrode using an antigen-antibody reaction or the like and deposit it on the surface of the working electrode. In the following, the labeled metal is applied to the surface of the working electrode using an antigen-antibody reaction. The measurement method of the present invention will be described with reference to an example of a method in which catalyst metal is deposited according to the amount of labeled metal collected and collected.

以下、本実施形態の測定方法について説明すると、本実施形態では、標識物質として用いられる金属(標識金属)で標識された被検物質を作用電極表面に捕捉し、捕捉された被検物質に結合されている標識金属を電気化学的に酸化した後、電気化学的に還元することにより作用電極表面に析出させ、析出した標識金属の表面に前記触媒金属を析出させる。この時、作用電極表面には、被検物質と結合する結合物質を固定しておけば、当該結合物質により標識金属により標識された被検物質を捕捉することができる。   Hereinafter, the measurement method of the present embodiment will be described. In this embodiment, a test substance labeled with a metal (labeled metal) used as a labeling substance is captured on the surface of the working electrode and bound to the captured test substance. The labeled metal is electrochemically oxidized and then electrochemically reduced to deposit it on the surface of the working electrode, and the catalyst metal is deposited on the surface of the deposited labeled metal. At this time, if a binding substance that binds to the test substance is immobilized on the surface of the working electrode, the test substance labeled with the labeling metal by the binding substance can be captured.

図1は、本実施形態の測定方法における測定手順を示すものである。測定に際しては、絶縁基板1上に作用電極2及び対極3を形成した電極デバイスを用いる。電極デバイスとしては、任意の構成のものを用いることができるが、小型で取り扱いが容易な電極デバイスとして、例えばプレーナ型の印刷電極デバイスを挙げることができる。   FIG. 1 shows a measurement procedure in the measurement method of the present embodiment. In the measurement, an electrode device in which the working electrode 2 and the counter electrode 3 are formed on the insulating substrate 1 is used. An electrode device having an arbitrary configuration can be used as the electrode device. For example, a planar type printed electrode device can be given as a small and easy-to-handle electrode device.

図2に、プレーナ型の印刷電極デバイスの一例を示す。図2に示すプレーナ型の印刷電極デバイス11は、レジストからなる絶縁被膜12に設けられた略円形の開口部12aに露出した作用電極13と、作用電極13の外周の少なくとも一部を取り囲むように配された対極14と、参照極15とが短冊状の絶縁基板16上に印刷形成されたものである。絶縁被膜12上には絶縁被膜12より疎水性の高い表面を有する帯状のダム構造部材17が印刷電極デバイス11のほぼ全幅に亘って積層形成され、作用電極13等に滴下された溶液がコネクタとの接続部分へ到達することを防いでいる。   FIG. 2 shows an example of a planar type print electrode device. The planar type print electrode device 11 shown in FIG. 2 surrounds at least a part of the outer periphery of the working electrode 13 and the working electrode 13 exposed in the substantially circular opening 12a provided in the insulating coating 12 made of resist. The counter electrode 14 and the reference electrode 15 are printed on a strip-shaped insulating substrate 16. A strip-shaped dam structure member 17 having a surface having a hydrophobicity higher than that of the insulating coating 12 is laminated on the insulating coating 12 over almost the entire width of the printed electrode device 11, and the solution dropped on the working electrode 13 or the like is connected to the connector. To prevent the connection part of

本実施形態の測定方法では、前記電極デバイスの作用電極2の表面に標識金属を集める必要があり、これを実現するために、被検物質に対する2種類の特異的結合物質を用意し、一方(第1の結合物質)を作用電極の表面に固定化しておくとともに、他方(第2の結合物質)は標識金属微粒子で標識し、標識体とする。   In the measurement method of the present embodiment, it is necessary to collect the labeled metal on the surface of the working electrode 2 of the electrode device. In order to realize this, two types of specific binding substances for the test substance are prepared, The first binding substance) is immobilized on the surface of the working electrode, and the other (second binding substance) is labeled with labeled metal fine particles to form a labeled body.

具体的には、先ず、電気化学的測定において用いる作用電極2の表面に、被検物質4に対する第1の結合物質として一次抗体5を固定しておく。また、被検物質4上の異なる部位を認識する第2の結合物質として二次抗体6を用意し、これを標識金属微粒子7で標識することにより標識体を用意しておく。そして、前記標識体及び未知量の被検物質4を含む試験溶液を作用電極2の表面に供給し、一次抗体5と接触させ、作用電極2上で抗原抗体反応を行う。すると、図1(a)に示すように、標識体が被検物質4を介して一次抗体5に結合することにより、被検物質4の濃度に対応した量の標識金属微粒子7が作用電極2の近傍に集められた状態となる。   Specifically, first, the primary antibody 5 is immobilized on the surface of the working electrode 2 used in the electrochemical measurement as a first binding substance for the test substance 4. In addition, a secondary antibody 6 is prepared as a second binding substance that recognizes different sites on the test substance 4, and a labeled body is prepared by labeling it with the labeled metal fine particles 7. Then, a test solution containing the labeled body and an unknown amount of the test substance 4 is supplied to the surface of the working electrode 2, brought into contact with the primary antibody 5, and an antigen-antibody reaction is performed on the working electrode 2. Then, as shown in FIG. 1 (a), the labeled body binds to the primary antibody 5 through the test substance 4, so that the amount of labeled metal fine particles 7 corresponding to the concentration of the test substance 4 is changed to the working electrode 2. It will be in the state gathered in the vicinity of.

ここで、被検物質4としては、生体物質や合成物質等、あらゆる物質を対象とすることができる。被検物質4に特異的に結合する結合物質(第1の結合物質、第2の結合物質)を選択することで、前記作用電極2の表面に捕捉することが可能である。なお、本実施形態においては、試験溶液中の被検物質4に応じた量の標識金属微粒子7を集めるために、抗原と抗体との特異的結合を利用しているが、物質間で特異的に結合するものであればこの組合せに限定されるわけではなく、例えば、核酸−核酸、核酸−核酸結合タンパク質、レクチン−糖鎖、又はレセプター−リガンド等の特異的結合を利用してもよい。   Here, the test substance 4 can be any substance such as a biological substance or a synthetic substance. By selecting a binding substance (first binding substance, second binding substance) that specifically binds to the test substance 4, it is possible to capture on the surface of the working electrode 2. In this embodiment, specific binding between an antigen and an antibody is used to collect labeled metal fine particles 7 in an amount corresponding to the test substance 4 in the test solution. The combination is not limited to this as long as it binds to a nucleic acid, and for example, a specific bond such as a nucleic acid-nucleic acid, a nucleic acid-nucleic acid binding protein, a lectin-sugar chain, or a receptor-ligand may be used.

前記標識金属微粒子5として用いる金属微粒子は、特に制限されないが、後述の触媒金属と標準電極電位が近似(例えば標準電極電位の差が0.2V以下程度)しているか、あるいは触媒金属よりも標準電極電位が低い(すなわちイオン化傾向の高い)金属の微粒子を用いることが好ましい。具体的には、金、銀、銅等の微粒子やそれらのコロイド粒子、量子ドット等を挙げることができる。   The metal fine particles used as the labeling metal fine particles 5 are not particularly limited, but the standard metal potential is close to the catalyst metal described later (for example, the difference between the standard electrode potentials is about 0.2 V or less), or the standard is more standard than the catalytic metal. It is preferable to use fine metal particles having a low electrode potential (that is, a high ionization tendency). Specific examples include fine particles such as gold, silver, and copper, colloidal particles thereof, and quantum dots.

前述の抗原抗体反応を行い、作用電極2の表面を必要に応じて洗浄した後、標識金属部微粒子7を溶解析出させるために、作用電極2表面に溶液を滴下する。使用する溶液は、標識金属微粒子7の種類に応じて適宜選択すればよいが、酸化された標識金属を溶解し得る溶液を用いる。例えば、塩酸、硝酸、酢酸、リン酸、クエン酸、硫酸等を含む水溶液を用いることができ、標識金属微粒子7が金コロイド粒子である場合には、塩酸0.05N〜1N程度の濃度の塩酸水溶液を用いる。   After the antigen-antibody reaction described above is performed and the surface of the working electrode 2 is washed as necessary, the solution is dropped on the surface of the working electrode 2 in order to dissolve and precipitate the labeled metal part fine particles 7. The solution to be used may be appropriately selected according to the type of the labeled metal fine particles 7, but a solution capable of dissolving the oxidized labeled metal is used. For example, an aqueous solution containing hydrochloric acid, nitric acid, acetic acid, phosphoric acid, citric acid, sulfuric acid and the like can be used. When the labeled metal fine particles 7 are gold colloid particles, hydrochloric acid having a concentration of about 0.05N to 1N hydrochloric acid. Use an aqueous solution.

次に、標識金属微粒子7を一度溶解し、その後、還元することで作用電極2の表面に析出させる。ここで、前記溶解は、標識金属微粒子7を電気化学的に酸化させることで行う。例えば、参照電極に対する作用電極2の電位を、標識金属微粒子7が電気化学的に酸化する電位に所定時間保持する。これにより、作用電極2の表面近傍に集めた標識金属微粒子7が酸化され、前記溶液中に溶解する。例えば、前記標識金属粒子7が金コロイド粒子である場合には、酸化によりHAuClとなって塩酸水溶液中に溶解する。 Next, the labeled metal fine particles 7 are dissolved once and then reduced to be deposited on the surface of the working electrode 2. Here, the dissolution is performed by electrochemically oxidizing the labeled metal fine particles 7. For example, the potential of the working electrode 2 with respect to the reference electrode is held at a potential at which the labeled metal fine particles 7 are electrochemically oxidized for a predetermined time. Thereby, the labeled metal fine particles 7 collected near the surface of the working electrode 2 are oxidized and dissolved in the solution. For example, when the labeled metal particle 7 is a gold colloid particle, it becomes HAuCl 4 by oxidation and is dissolved in an aqueous hydrochloric acid solution.

標識金属微粒子7を酸化させるに際して、作用電極2の電位は、標識金属微粒子7が酸化可能な電位に設定すればよい。酸化可能な電位は、使用する標識金属微粒子7の種類によっても若干異なり、標識金属微粒子7の種類に応じて適宜最適な値に設定することが好ましいが、例えば、銀塩化銀参照電極に対して+0.8V〜+2.0Vとすることが好ましい。作用電極2の電位を前記範囲内にすることにより、作用電極2の表面近傍に集めた標識金属微粒子7を完全に酸化溶出させることができ、被検物質4の検出感度を確実に向上させることができる。   When oxidizing the labeled metal fine particles 7, the potential of the working electrode 2 may be set to a potential at which the labeled metal fine particles 7 can be oxidized. The oxidizable potential is slightly different depending on the type of the labeled metal fine particle 7 to be used, and is preferably set to an optimal value as appropriate depending on the type of the labeled metal fine particle 7. It is preferably + 0.8V to + 2.0V. By setting the potential of the working electrode 2 within the above range, the labeled metal fine particles 7 collected in the vicinity of the surface of the working electrode 2 can be completely oxidized and eluted, and the detection sensitivity of the test substance 4 is reliably improved. Can do.

標識金属微粒子7の溶解の後、今度は還元側への電位操作を行い、溶解した標識金属を作用電極2の表面へ析出させる。還元側への電位操作により、図1(b)に示すように、作用電極2の表面には、溶液中に溶解した標識金属が析出標識金属8として再析出する。析出標識金属8の量は、作用電極2の表面に集められた標識金属微粒子7の量に対応しており、これは被検物質4の量によって決まる。例えば試験溶液中に含まれる被検物質量が多ければ、作用電極2の表面に集められる標識金属微粒子7の量も多くなり、その結果、析出標識金属8の量も多くなる。   After dissolution of the labeled metal fine particles 7, the potential operation to the reduction side is performed next, and the dissolved labeled metal is deposited on the surface of the working electrode 2. By the potential operation to the reduction side, the labeled metal dissolved in the solution is re-deposited as the deposited labeled metal 8 on the surface of the working electrode 2 as shown in FIG. The amount of the labeled marker metal 8 corresponds to the amount of the labeled metal fine particles 7 collected on the surface of the working electrode 2, which is determined by the amount of the test substance 4. For example, if the amount of the test substance contained in the test solution is large, the amount of the labeled metal fine particles 7 collected on the surface of the working electrode 2 increases, and as a result, the amount of the deposited labeled metal 8 also increases.

前述の標識金属微粒子7の溶解・析出は、酸化側への電位操作、及びそれに続く還元側への電位操作によって行うが、係る電位の印加は、例えば微分パルスボルタンメトリー(DVP)により行うのが好適である。   The above-described dissolution / precipitation of the labeled metal fine particles 7 is performed by the potential operation on the oxidation side and the subsequent potential operation on the reduction side. The application of the potential is preferably performed by, for example, differential pulse voltammetry (DVP). It is.

次いで、前記析出標識金属8の表面に触媒金属を析出させる。触媒金属としては、触媒作用を有する金属を使用する。具体的には、白金(Pt)やルテニウム(Ru)、銀(Ag)、等を挙げることができる。例えば白金は、水素還元を促進する触媒作用を有する。   Next, a catalytic metal is deposited on the surface of the deposition labeled metal 8. A metal having a catalytic action is used as the catalyst metal. Specifically, platinum (Pt), ruthenium (Ru), silver (Ag), etc. can be mentioned. For example, platinum has a catalytic action that promotes hydrogen reduction.

触媒金属10は、図1(c)に示すように、触媒金属の塩を含む溶液9を作用電極2の表面に滴下することで、簡単に析出標識金属8の表面に析出する。例えば、析出標識金属8が金の場合、塩化白金溶液を滴下し静置すれば、金(析出標識金属8)の表面に白金が触媒金属10として析出する。触媒金属10の析出量は、析出標識金属8の量に依存し、したがって、試験溶液に含まれる被検物質4の量によって決まることになる。   As shown in FIG. 1 (c), the catalyst metal 10 is easily deposited on the surface of the deposition-labeled metal 8 by dropping a solution 9 containing a catalyst metal salt onto the surface of the working electrode 2. For example, in the case where the deposition marker metal 8 is gold, platinum is deposited as the catalyst metal 10 on the surface of the gold (deposition marker metal 8) if a platinum chloride solution is dropped and allowed to stand. The amount of the catalyst metal 10 deposited depends on the amount of the deposition labeled metal 8 and therefore depends on the amount of the test substance 4 contained in the test solution.

触媒金属10を析出させた後、作用電極2の表面を洗浄し、触媒金属10の触媒作用を利用して電気化学的な測定を行う。例えば、白金を触媒金属10として析出させた場合には、塩酸水溶液を滴下し、水素の還元電流を測定する。酸性溶液中で負の電位を印加すると、白金の触媒作用により水素(気体)が発生する。この水素発生に依存した電流値を検出することによって被検物質量を測定することができる。すなわち、測定される還元電流のピーク値は、触媒として作用する触媒金属(白金)の量によって決まり、したがって、前記還元電流を測定することで、被検物質量を算出することが可能である。なお、前記還元電流の測定は、微分パルスボルタンメトリー、サイクリックボルタンメトリー等のボルタンメトリー、アンペロメトリー、クロノメトリー等により測定可能であるが、例えばサイクリックボルタンメトリー(CV)により行うことが好ましい。   After depositing the catalytic metal 10, the surface of the working electrode 2 is washed, and electrochemical measurement is performed using the catalytic action of the catalytic metal 10. For example, when platinum is deposited as the catalyst metal 10, an aqueous hydrochloric acid solution is dropped and the reduction current of hydrogen is measured. When a negative potential is applied in an acidic solution, hydrogen (gas) is generated by the catalytic action of platinum. The amount of the test substance can be measured by detecting the current value depending on the hydrogen generation. That is, the peak value of the measured reduction current is determined by the amount of the catalytic metal (platinum) acting as a catalyst, and therefore the amount of the test substance can be calculated by measuring the reduction current. The reduction current can be measured by voltammetry such as differential pulse voltammetry and cyclic voltammetry, amperometry, chronometry, etc., but preferably by, for example, cyclic voltammetry (CV).

前述のような構成を有する本実施形態の被検物質の測定方法によれば、触媒金属の触媒作用によって、いわば信号増幅が行われることになり、例えば標識金属の還元電流を直接測定する場合に比べて、大幅な高感度化を実現することができる。また、前記大幅な高感度化は、測定装置の小型化や簡略化の点でも有利である。例えば、高感度化により測定に供する試験溶液の量も少なくて済むようになり、電極面積を小さくしても正確な測定が可能になるので、測定装置の小型化が可能である。さらに、撹拌等も不要であるので、測定装置の構造を繁雑化することもない。   According to the method for measuring a test substance of the present embodiment having the above-described configuration, signal amplification is performed by the catalytic action of the catalytic metal. For example, when the reduction current of the labeled metal is directly measured. Compared to this, a significant increase in sensitivity can be realized. The significant increase in sensitivity is also advantageous in terms of downsizing and simplification of the measuring apparatus. For example, since the amount of the test solution used for the measurement can be reduced by increasing the sensitivity, accurate measurement is possible even if the electrode area is reduced, and the measurement apparatus can be downsized. Furthermore, since stirring and the like are unnecessary, the structure of the measuring device is not complicated.

以上、本発明を適用した実施形態について説明してきたが、本発明が前述の実施形態に限定されるものでないことは言うまでもない。例えば、試験溶液中の被検物質4に応じた量の標識金属微粒子7を作用電極2の表面に集める方法として、被検物質4に対する2種類の結合物質を用意し、一方(第1の結合物質)を磁性微粒子の表面に固定化しておくとともに、他方(第2の結合物質)を標識金属微粒子7で標識して標識体を形成しておき、標識体と反応させた後の磁性微粒子を作用電極の表面に集めることでこれを実現することも可能である。   As mentioned above, although embodiment which applied this invention has been described, it cannot be overemphasized that this invention is not what is limited to the above-mentioned embodiment. For example, as a method of collecting the labeled metal fine particles 7 in an amount corresponding to the test substance 4 in the test solution on the surface of the working electrode 2, two kinds of binding substances for the test substance 4 are prepared, and one (first binding (Substance) is immobilized on the surface of the magnetic fine particles, and the other (second binding substance) is labeled with the labeled metal fine particles 7 to form a labeled body, and the magnetic fine particles after reacting with the labeled body It is also possible to achieve this by collecting on the surface of the working electrode.

あるいは、イムノクロマトグラフを利用して試験溶液中の被検物質4に応じた量の標識金属微粒子7を集め、これを作用電極2の表面に転写することも可能である。この場合には、被検物質4に対する2種類の特異的結合物質を用意し、一方(第1の結合物質)をイムノクロマトグラフ用ストリップの所定の位置に固定化しておくとともに、他方(第2の結合物質)を標識金属微粒子7で標識して標識体を形成しておき、試験溶液及び標識体をストリップ上に展開した後、ストリップと作用電極2の表面とを対向させて、ストリップに捕捉された標識金属微粒子7を作用電極2の表面に写し取ればよい。   Alternatively, an amount of labeled metal fine particles 7 corresponding to the test substance 4 in the test solution can be collected using an immunochromatograph and transferred to the surface of the working electrode 2. In this case, two types of specific binding substances for the test substance 4 are prepared, and one (first binding substance) is immobilized at a predetermined position on the immunochromatographic strip and the other (second binding substance). The binding substance) is labeled with the labeled metal fine particles 7 to form a labeled body. After the test solution and the labeled body are spread on the strip, the strip and the surface of the working electrode 2 are opposed to each other and captured by the strip. The labeled metal fine particles 7 may be copied on the surface of the working electrode 2.

さらに、先にも述べたように、触媒金属の微粒子を標識物質とし、抗原抗体反応等を用いて作用電極表面に集め、作用電極表面に析出させることも可能である。この場合には、標識物質として触媒金属微粒子を用い、当該触媒金属微粒子により被検出物質を標識する。次に、作用電極表面に被検物質と結合する結合物質を固定しておき、当該結合物質により触媒金属微粒子で標識された被検物質を捕捉し、前記作用電極表面に触媒金属微粒子を局在化させる。そして、作用電極近傍に局在化させた触媒金属微粒子を酸化し、電気化学的に還元することにより、作用電極表面に触媒金属を析出させ、その析出した触媒金属の触媒作用による電流を測定し、測定された電流値に基づいて被検物質の有無又は濃度を調べる。例えば、標識金属として使用される金(Au)は、グルコースの還元反応において触媒として作用する。したがって、前述の実施形態において、白金を析出することなく、標識金属として析出される金の触媒作用を利用して、前記測定を行うことも可能である。この場合には、標識金属=触媒金属(=金)ということになる。   Furthermore, as described above, catalytic metal fine particles can be used as a labeling substance, collected on the surface of the working electrode using an antigen-antibody reaction, and deposited on the surface of the working electrode. In this case, catalytic metal fine particles are used as the labeling substance, and the target substance is labeled with the catalytic metal fine particles. Next, a binding substance that binds to the test substance is immobilized on the surface of the working electrode, the test substance labeled with the catalytic metal fine particles is captured by the binding substance, and the catalytic metal fine particles are localized on the surface of the working electrode. Make it. Then, catalytic metal fine particles localized in the vicinity of the working electrode are oxidized and electrochemically reduced to deposit the catalytic metal on the surface of the working electrode, and the current due to the catalytic action of the deposited catalytic metal is measured. Then, the presence or concentration of the test substance is examined based on the measured current value. For example, gold (Au) used as a labeling metal acts as a catalyst in the glucose reduction reaction. Therefore, in the above-described embodiment, it is possible to perform the measurement by utilizing the catalytic action of gold deposited as a labeling metal without depositing platinum. In this case, label metal = catalyst metal (= gold).

以下、本発明について、具体的な実験結果に基づいて説明する。以下の実験においては、塩化金の還元電流測定(DPVによる検出)と、白金触媒による水素の還元電流測定における感度を比較した。   Hereinafter, the present invention will be described based on specific experimental results. In the following experiment, the sensitivity in the measurement of the reduction current of gold chloride (detection by DPV) and the measurement of the reduction current of hydrogen by a platinum catalyst were compared.

塩化金の還元電流の測定(実験1)
本実験は、標識金属を作用電極に集め、これを電気化学的に酸化した後、酸化した金属を電気化学的に還元する際に生じる電流を測定する方法(従来法)に対応するものであり、塩化金を用いて簡易的に還元電流の測定を行った。すなわち、従来法では、抗原抗体反応を行った後、作用電極表面に集めた金コロイド粒子を酸化して塩化金溶液とし、その還元電流を測定するが、ここでは任意の濃度の塩化金溶液を利用し、還元電流を測定した。塩化金濃度が被検物質量に対応することになる。
Measurement of reduction current of gold chloride (Experiment 1)
This experiment corresponds to a method (conventional method) that measures the current generated when electrochemically reducing the oxidized metal after collecting the labeled metal on the working electrode and electrochemically oxidizing it. The reduction current was simply measured using gold chloride. That is, in the conventional method, after the antigen-antibody reaction, the colloidal gold particles collected on the surface of the working electrode are oxidized to form a gold chloride solution, and the reduction current is measured. Here, a gold chloride solution of an arbitrary concentration is used. The reduction current was measured. The gold chloride concentration corresponds to the amount of the test substance.

測定に際しては、濃度62.5nM〜1μMの塩化金溶液を用意し、各濃度の塩化金溶液20μLを作用電極上に滴下した。そして、微分パルスボルタンメトリー(DVP)で0.8V〜0.1Vまで電位を掃引し、金を析出させ、その時の還元電流値を測定した。結果を図3に示す。   In the measurement, a gold chloride solution having a concentration of 62.5 nM to 1 μM was prepared, and 20 μL of the gold chloride solution having each concentration was dropped onto the working electrode. Then, the potential was swept from 0.8 V to 0.1 V by differential pulse voltammetry (DVP) to deposit gold, and the reduction current value at that time was measured. The results are shown in FIG.

図3から明らかなように、塩化金の還元電流を測定した場合、塩化金溶液の濃度が1μMの場合に電流値にピークが見られるが、それ以下の濃度ではピークが見られず、例えば500nMと250nM、125nM、62.5nMの塩化金溶液については、区別がつなかい。この結果から、塩化金の還元電流を測定した場合には、検出可能な塩化金濃度の下限は1μMということになる。   As is clear from FIG. 3, when the reduction current of gold chloride is measured, a peak is observed in the current value when the concentration of the gold chloride solution is 1 μM, but no peak is observed at a concentration lower than that, for example, 500 nM. And 250 nM, 125 nM and 62.5 nM gold chloride solutions are indistinguishable. From this result, when the reduction current of gold chloride is measured, the lower limit of the detectable gold chloride concentration is 1 μM.

水素発生の還元電流の測定(実験2)
本実験は、析出した金の表面に触媒金属である白金を析出させ、水素発生の際の還元電流を測定する方法(本発明方法)に対応するものであり、塩化金を用いて簡易的に金の析出を行い、その後、白金を析出させて水素発生の際の還元電流の測定を行った。
Measurement of reduction current for hydrogen evolution (Experiment 2)
This experiment corresponds to a method (method of the present invention) in which platinum, which is a catalytic metal, is deposited on the surface of the deposited gold, and the reduction current at the time of hydrogen generation is measured (the method of the present invention). Gold was deposited, and then platinum was deposited to measure the reduction current during hydrogen generation.

すなわち、各濃度の塩化金溶液について、実験1の測定の後、作用電極を洗浄し、塩化白金溶液を滴下して析出した金微粒子表面に白金を析出させた。滴下した塩化白金溶液の濃度は50μMである。また、塩化白金溶液を滴下後、1分間静置して金微粒子表面に白金を析出させた。洗浄後、0.1N・HCl溶液を滴下し、0.1V〜−1.0Vの範囲でサイクリックボルタンメトリー(CV)測定を行って、−1.0Vでの電流値を測定した。結果を図4に示す。   That is, for each concentration of gold chloride solution, after the measurement in Experiment 1, the working electrode was washed, and platinum was deposited on the surface of the gold fine particles deposited by dropping the platinum chloride solution. The concentration of the dropped platinum chloride solution is 50 μM. Further, after dropping the platinum chloride solution, the solution was allowed to stand for 1 minute to deposit platinum on the surface of the gold fine particles. After washing, a 0.1N · HCl solution was dropped, and cyclic voltammetry (CV) measurement was performed in the range of 0.1V to -1.0V to measure a current value at -1.0V. The results are shown in FIG.

図4から明らかなように、125nMまでの濃度において電流値に明確な差異があり、検出が可能であることがわかる。したがって、実験1(金の還元電流を測定する方法)と比べて、約8倍程度の感度向上が実現されたことになる。   As is apparent from FIG. 4, it can be seen that there is a clear difference in current value at concentrations up to 125 nM, and detection is possible. Therefore, compared with Experiment 1 (method for measuring the reduction current of gold), the sensitivity is improved by about 8 times.

グルコースの還元電流の測定(実験3)
本実験は、標識金属として触媒金属(金)を用い、これを作用電極に集めて溶解、析出させ、金の触媒作用によるグルコースの還元電流を測定する方法(本発明方法)に対応するものであり、塩化金を用いて簡易的に金の析出を行い、グルコースの還元電流の測定を行った。
Measurement of glucose reduction current (Experiment 3)
This experiment corresponds to a method (the method of the present invention) in which a catalytic metal (gold) is used as a labeling metal, collected on a working electrode, dissolved and deposited, and the reduction current of glucose due to the catalytic action of gold is measured. Yes, gold chloride was simply deposited using gold chloride, and the reduction current of glucose was measured.

実験に際しては、各濃度のHAuCl溶液を電極上に滴下し、DPVの測定(0.8→−0.1V)を行って電極表面に金を析出させた。この時の塩化金の還元ピーク測定の結果を図5に示す。次いで、電極を洗浄した後、グルコースの還元電流測定に使用し、グルコースの還元ピーク測定を行った。グルコースの還元ピーク測定においては、グルコース10mg/mLを滴下し、1Vで1分間酸化した後、DPV測定(0.7V→−0.2V)を行った。結果を図6に示す。 In the experiment, each concentration of HAuCl 4 solution was dropped on the electrode, and DPV was measured (0.8 → −0.1 V) to deposit gold on the electrode surface. The result of the reduction peak measurement of gold chloride at this time is shown in FIG. Next, after the electrode was washed, it was used to measure the reduction current of glucose, and the reduction peak of glucose was measured. In the glucose reduction peak measurement, glucose 10 mg / mL was added dropwise and oxidized at 1 V for 1 minute, and then DPV measurement (0.7 V → −0.2 V) was performed. The results are shown in FIG.

図5から明らかなように、塩化金の還元ピーク測定では、ピークが見られるのは840nMまでである。これに対して、図6に示すグルコースの還元ピーク測定では、420nMまでピークが得られている。このことから、金触媒によるグルコースの還元反応のピークを測定することで、塩化金の還元ピークを測定する場合に比べて、感度が少なくとも2倍程度向上することがわかった。   As is clear from FIG. 5, in the reduction peak measurement of gold chloride, the peak is observed up to 840 nM. On the other hand, in the reduction peak measurement of glucose shown in FIG. 6, a peak up to 420 nM is obtained. From this, it was found that measuring the peak of the glucose reduction reaction by the gold catalyst improved the sensitivity by at least about 2 times compared to the case of measuring the reduction peak of gold chloride.

本発明の測定方法における測定手順を示す模式図であり、(a)は被検物質の捕捉状態、(b)は標識金属の析出状態、(c)は触媒金属の析出状態をそれぞれ示す。It is a schematic diagram which shows the measurement procedure in the measuring method of this invention, (a) shows the capture | acquisition state of a to-be-tested substance, (b) shows the precipitation state of a labeled metal, (c) shows the precipitation state of a catalyst metal, respectively. プレーナ型の印刷電極デバイスの一例を示す平面図である。It is a top view which shows an example of a planar type printed electrode device. 塩化金溶液のDVPによる還元電流測定の結果を示す特性図である。It is a characteristic view which shows the result of the reduction | restoration current measurement by DVP of a gold chloride solution. 水素発生の還元電流のCV測定の結果を示す特性図である。It is a characteristic view which shows the result of CV measurement of the reduction current of hydrogen generation. 塩化金の還元ピーク測定の結果を示す特性図である。It is a characteristic view which shows the result of the reduction | restoration peak measurement of gold chloride. グルコースの還元ピーク測定の結果を示す特性図である。It is a characteristic view which shows the result of the reduction peak measurement of glucose.

符号の説明Explanation of symbols

1 絶縁基板、2 作用電極、3 対極、4 被検物質、5 一次抗体、6 二次抗体、7 標識金属微粒子、8 析出標識金属、9 溶液、10 触媒金属、11 印刷電極デバイス、12 絶縁被膜、12a 開口部、13 作用電極、14 対極、15 参照極、16 絶縁基板、17 ダム構造部材   DESCRIPTION OF SYMBOLS 1 Insulating substrate, 2 Working electrode, 3 Counter electrode, 4 Test substance, 5 Primary antibody, 6 Secondary antibody, 7 Labeled metal microparticle, 8 Precipitated label metal, 9 Solution, 10 Catalyst metal, 11 Printed electrode device, 12 Insulation coating , 12a opening, 13 working electrode, 14 counter electrode, 15 reference electrode, 16 insulating substrate, 17 dam structural member

Claims (8)

標識物質で標識された被検物質の測定方法であって、触媒金属微粒子を前記標識物質として用いて、試料溶液中の前記被検物質に対応した量の前記触媒金属微粒子を作用電極近傍に局在化させ、作用電極近傍に局在化させた前記触媒金属微粒子電気化学的に酸化し前記作用電極表面で溶解し、さらに電気化学的に還元することで溶解した触媒金属を前記作用電極表面に析出させ、析出した前記触媒金属の触媒作用による電流を測定し、測定された電流値に基づいて被検物質の有無又は濃度を調べることを特徴とする標識物質で標識された被検物質の測定方法。 A method of measuring the analyte labeled with a labeling substance station, using a catalyst metal fine particles as the labeling substance, the working electrode near the catalytic metal particle in an amount corresponding the to the analyte in the sample solution The catalytic metal fine particles that have been localized and localized in the vicinity of the working electrode are electrochemically oxidized and dissolved on the surface of the working electrode, and further, the catalyst metal dissolved by electrochemical reduction is removed from the surface of the working electrode. Of the test substance labeled with a labeling substance, characterized in that the current due to the catalytic action of the catalyst metal deposited is measured, and the presence or concentration of the test substance is examined based on the measured current value Measuring method. 標識物質で標識された被検物質の測定方法であって、金属微粒子を前記標識物質として用いて、試料溶液中の前記被検物質に対応した量の前記金属微粒子を作用電極近傍に局在化させ、前記作用電極近傍に局在化させた前記金属微粒子電気化学的に酸化し前記作用電極表面で溶解し、さらに電気化学的に還元することで溶解した金属を前記作用電極表面に析出させた後、触媒金属を作用電極近傍に存在させて析出した前記金属の表面に前記触媒金属を析出させ、析出した前記触媒金属の触媒作用による電流を測定し、測定された電流値に基づいて被検物質の有無又は濃度を調べることを特徴とする標識物質で標識された被検物質の測定方法。 A method of measuring the analyte labeled with a labeling substance, by using the metal fine particles as the labeling substance, the localization in the working electrode near the fine metal particles in an amount corresponding to the analyte in the sample solution The fine metal particles localized in the vicinity of the working electrode are electrochemically oxidized and dissolved on the surface of the working electrode, and further, the metal is dissolved by electrochemical reduction to precipitate the dissolved metal on the surface of the working electrode. and then, the the surface of the metal precipitated in the presence of a catalytic metal to the working electrode vicinity allowed catalytic metal precipitate, the current due to the catalytic action of the catalytic metal deposited was measured, the based on the measured current value A method for measuring a test substance labeled with a labeling substance, characterized by examining the presence or concentration of the test substance. 前記作用電極表面に、被検物質と結合する結合物質を、予め固定しておき、当該結合物質により前記標識物質で標識された被検物質を捕捉することを特徴とする請求項1または2記載の標識物質で標識された被検出物質の測定方法。 3. A binding substance that binds to a test substance is immobilized in advance on the surface of the working electrode, and the test substance labeled with the labeling substance is captured by the binding substance. Of measuring a substance to be detected labeled with a labeling substance . 前記被検物質を、抗原抗体反応により前記標識物質で標識し、抗原抗体反応により前記結合物質と結合させることを特徴とする請求項3記載の標識物質で標識された被検物質の測定方法。 4. The method for measuring a test substance labeled with a labeling substance according to claim 3, wherein the test substance is labeled with the labeling substance by an antigen-antibody reaction and bound to the binding substance by an antigen-antibody reaction. 前記触媒金属は、前記標識物質として用いられる金属と標準電極電位が近似、若しくは前記標識物質として用いられる金属よりも標準電極電位が高いことを特徴とする請求項2記載の標識物質で標識された被検出物質の測定方法。 3. The labeling substance according to claim 2, wherein the catalytic metal has a standard electrode potential that is close to that of the metal used as the labeling substance or higher than that of the metal used as the labeling substance. Method for measuring the substance to be detected. 前記触媒金属が白金であり、前記標識物質が金であることを特徴とする請求項2記載の標識物質で標識された被検物質の測定方法。 The method for measuring a test substance labeled with a labeling substance according to claim 2, wherein the catalyst metal is platinum and the labeling substance is gold. 前記触媒金属が白金であり、前記標識物質が金であって、前記標識物質としての金が析出された作用電極に塩化白金溶液を滴下し、前記触媒金属としての白金を前記標識物質としての金の表面に析出させることを特徴とする請求項2記載の標識物質で標識された被検物質の測定方法。 The catalyst metal is platinum, the labeling substance is gold, a platinum chloride solution is dropped on the working electrode on which gold as the labeling substance is deposited, and platinum as the catalyst metal is gold as the labeling substance. The method for measuring a test substance labeled with a labeling substance according to claim 2, wherein the test substance is deposited on the surface of the test substance. 前記触媒金属としての白金を前記標識物質としての金の表面に析出させた後、前記作用電極において、塩酸溶液中で水素の還元電流を測定することを特徴とする請求項7記載の標識物質で標識された被検物質の検出方法。 After the platinum as the catalytic metal is deposited on the gold surface of the said labeling substance in the working electrode, with a labeling substance according to claim 7, wherein the measuring the reduction current of hydrogen with hydrochloric acid solution A method for detecting a labeled test substance.
JP2008124527A 2008-05-12 2008-05-12 Test substance measurement method Expired - Fee Related JP5327739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124527A JP5327739B2 (en) 2008-05-12 2008-05-12 Test substance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124527A JP5327739B2 (en) 2008-05-12 2008-05-12 Test substance measurement method

Publications (2)

Publication Number Publication Date
JP2009276064A JP2009276064A (en) 2009-11-26
JP5327739B2 true JP5327739B2 (en) 2013-10-30

Family

ID=41441652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124527A Expired - Fee Related JP5327739B2 (en) 2008-05-12 2008-05-12 Test substance measurement method

Country Status (1)

Country Link
JP (1) JP5327739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473382B2 (en) * 2008-04-17 2014-04-16 キヤノン株式会社 Immunoassay method
JP6318125B2 (en) * 2015-09-16 2018-04-25 株式会社Lsiメディエンス Electrical analysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2810739B1 (en) * 2000-06-26 2007-01-26 Centre Nat Rech Scient ELECTROCHEMICAL IMMUNODOSIS USING COLLOIDAL METAL MARKERS
US20060134657A1 (en) * 2004-05-28 2006-06-22 Nanogen, Inc. Nanoscale electronic detection system and methods for their manufacture
JP5187759B2 (en) * 2006-04-07 2013-04-24 国立大学法人北陸先端科学技術大学院大学 Test substance measurement method
JP4102887B2 (en) * 2006-10-20 2008-06-18 国立大学法人北陸先端科学技術大学院大学 Method for measuring protein kinase activity
JP4969236B2 (en) * 2006-12-22 2012-07-04 ローム株式会社 Method for measuring biomolecules or related substances

Also Published As

Publication number Publication date
JP2009276064A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5187759B2 (en) Test substance measurement method
Escamilla-Gómez et al. Simultaneous detection of free and total prostate specific antigen on a screen-printed electrochemical dual sensor
US8617907B2 (en) Determining the presence or amount of a metal-labelled species
US8926822B2 (en) Systems and methods for integrated electrochemical and electrical detection
Arvas et al. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly (vinyl chloride) coated pencil graphite electrode
JP4915740B2 (en) Silver ion measurement method and test substance measurement method
Martín-Yerga et al. Biosensor array based on the in situ detection of quantum dots as electrochemical label
US20090270266A1 (en) Method for Electrocatalytic Protein Detection
CN108802390B (en) Preparation of pancreatic cancer tumor marker immunosensor based on graphene-gold-palladium nanocomposite
Kerr et al. A comparison of commercially available screen-printed electrodes for electrogenerated chemiluminescence applications
Hosseini et al. Development of sandwich electrochemiluminescence immunosensor for COVID-19 diagnosis by SARS-CoV-2 spike protein detection based on Au@ BSA-luminol nanocomposites
Weiß et al. Prototype digital lateral flow sensor using impact electrochemistry in a competitive binding assay
Liu et al. Dual-signal sandwich-type electrochemical immunoassay of galectin-3 using methylene blue and gold nanoparticles biolabels
Wang et al. A novel ratiometric electrochemical cupric ion sensing strategy based on unmodified electrode
JP6053781B2 (en) Apparatus and method for lateral flow affinity assay
JP5327739B2 (en) Test substance measurement method
Szymanski et al. Electrochemical dissolution of silver nanoparticles and its application in metalloimmunoassay
Farshchi et al. An innovative Immunoanalysis strategy towards sensitive recognition of PSA biomarker in human plasma samples using flexible and portable paper based biosensor: a new platform towards POC detection of cancer biomarkers using integration of pen-on paper technology with immunoassays methods
Deng et al. A novel potentiometric immunoassay for carcinoma antigen 15-3 by coupling enzymatic biocatalytic precipitation with a nanogold labelling strategy
US20230221311A1 (en) Method for detecting an analyte with the help of metal nanoparticles on an electrode
López-Marzo et al. AuNPs/methylene blue dual-signal nanoimmunoconjugates and electrode activation for electrochemical biosensors
Kamal et al. Electrodeposited gold nanoparticle (AuNP)-film as a nanoplatform for a label-free electrochemical strongyloidiasis immunosensor
Lv et al. Target-induced click conjugation for attomolar electronic monitoring of Cu (II) using horseradish peroxidase as indicator and nanogold particles as enhancer
JP4915741B2 (en) Test substance measurement method
JP6664737B2 (en) Metal ion detection method, analyte detection method, electrode substrate and detection kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees