JP5326983B2 - Driving support device - Google Patents

Driving support device Download PDF

Info

Publication number
JP5326983B2
JP5326983B2 JP2009236477A JP2009236477A JP5326983B2 JP 5326983 B2 JP5326983 B2 JP 5326983B2 JP 2009236477 A JP2009236477 A JP 2009236477A JP 2009236477 A JP2009236477 A JP 2009236477A JP 5326983 B2 JP5326983 B2 JP 5326983B2
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
inter
deceleration
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009236477A
Other languages
Japanese (ja)
Other versions
JP2011084105A (en
Inventor
俊宏 高木
光彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009236477A priority Critical patent/JP5326983B2/en
Publication of JP2011084105A publication Critical patent/JP2011084105A/en
Application granted granted Critical
Publication of JP5326983B2 publication Critical patent/JP5326983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the useless acceleration/deceleration of an own vehicle in follow-up traveling control, and to improve fuel economy. <P>SOLUTION: This traveling support device includes a control means (10) determining whether or not an inter-vehicle distance between a preceding vehicle and a further-preceding vehicle has an increasing tendency based on a traveling state of the preceding vehicle and a traveling state of the further-preceding vehicle, and controlling the acceleration/deceleration of the own vehicle so that a vehicle speed of the own vehicle is higher than a vehicle speed of the preceding vehicle when it is determined that an inter-vehicle distance has an increasing tendency. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、例えば自車両を先行車両等に追従させる追従走行制御を行う走行支援装置の技術分野に関する。   The present invention relates to a technical field of a travel support device that performs follow-up travel control that causes a host vehicle to follow a preceding vehicle, for example.

この種の走行支援装置として、自車両を先行車両等に追従させる追従走行制御(ACC:Adaptive Cruise Control)を行うものが知られている(例えば特許文献1から4参照)。   As this type of travel support device, one that performs follow-up travel control (ACC: Adaptive Cruise Control) that causes the host vehicle to follow a preceding vehicle or the like is known (see, for example, Patent Documents 1 to 4).

例えば特許文献1には、先行車両(直前先行車両)と、この先行車両の前方を走行する先先行車両との間の車間距離或いは衝突時間(TTC:Time to Collision)等に基づいて自車両の加減速制御を行う技術が開示されている。例えば特許文献2には、先行車両の速度が先先行車両の速度よりも予め設定した速度を超えて大きくなる場合に、予めブレーキ油圧を高める技術が開示されている。例えば特許文献3には、自車両と先行車両との間の距離、及び自車両と先先行車両との間の距離に応じて、自車両の加減速制御を行う技術が開示されている。   For example, in Patent Document 1, the vehicle's own vehicle is based on the inter-vehicle distance or the time to collision (TTC) between the preceding vehicle (immediate preceding vehicle) and the preceding preceding vehicle traveling ahead of the preceding vehicle. A technique for performing acceleration / deceleration control is disclosed. For example, Patent Document 2 discloses a technique for increasing brake hydraulic pressure in advance when the speed of the preceding vehicle exceeds the speed set in advance than the speed of the preceding preceding vehicle. For example, Patent Literature 3 discloses a technique for performing acceleration / deceleration control of the host vehicle according to the distance between the host vehicle and the preceding vehicle and the distance between the host vehicle and the preceding preceding vehicle.

特開2005−031967号公報JP 2005-031967 A 特開2004−106588号公報JP 2004-106588 A 特開2001−199257号公報JP 2001-199257 A 特開平10−181487号広報Japanese Laid-Open Patent Publication No. 10-181487

上述したような追従走行制御を行う走行支援装置では、例えば、先行車両のみ(或いは先先行車両のみ)の挙動に基づいて自車両の加減速制御を行う場合、先行車両(或いは先先行車両)の挙動によっては、不必要な加減速を行ってしまい、燃費が悪化してしまう(即ち、自車両の燃料が無駄に消費されてしまう)おそれがあるという技術的問題点がある。また、上述した特許文献1に開示された技術によれば、単に、先行車両と先先行車両との間の車間距離或いは衝突時間等に基づいて自車両の加減速制御を行うため、先行車両や先先行車両の将来の走行状態に応じた加減速制御を行うことが困難であるという技術的問題点がある。   In the travel support device that performs the following traveling control as described above, for example, when acceleration / deceleration control of the own vehicle is performed based on the behavior of only the preceding vehicle (or only the preceding preceding vehicle), the preceding vehicle (or the preceding preceding vehicle) Depending on the behavior, there is a technical problem that unnecessary acceleration / deceleration is performed, and the fuel consumption may be deteriorated (that is, the fuel of the host vehicle is consumed wastefully). Further, according to the technique disclosed in Patent Document 1 described above, the acceleration / deceleration control of the host vehicle is simply performed based on the inter-vehicle distance or the collision time between the preceding vehicle and the preceding preceding vehicle. There is a technical problem that it is difficult to perform acceleration / deceleration control according to the future traveling state of the preceding vehicle.

本発明は、例えば上述した問題点に鑑みなされたものであり、追従走行制御(ACC)を行う際、自車両の無駄な加減速を低減でき、燃費を向上させることが可能な走行支援装置を提供することを課題とする。   The present invention has been made in view of, for example, the above-described problems. A travel support device that can reduce unnecessary acceleration / deceleration of the host vehicle and improve fuel efficiency when performing follow-up travel control (ACC). The issue is to provide.

本発明に係る第1の走行支援装置は上記課題を解決するために、自車両の前方を走行する先行車両の走行状態を検出する先行車両検出手段と、前記先行車両の前方を走行する先先行車両の走行状態を検出する先先行車両検出手段と、前記先行車両の走行状態と前記先先行車両の走行状態とに基づいて、前記先行車両と前記先先行車両との間の車間距離が拡大傾向である否かを判定し、前記車間距離が拡大傾向であると判定した場合には、前記自車両の車両速度が前記先行車両の車両速度よりも高くなるように、前記自車両の加減速度を制御する制御手段とを備え、前記先行車両検出手段は、前記先行車両の走行状態として、前記先行車両の加減速状態を検出し、前記先先行車両検出手段は、前記先先行車両の走行状態として、前記先先行車両の加減速状態を検出するIn order to solve the above-described problem, a first travel support apparatus according to the present invention detects preceding vehicle detection means for detecting a traveling state of a preceding vehicle traveling in front of the host vehicle, and precedes and precedes traveling in front of the preceding vehicle. The inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle tends to increase based on the preceding preceding vehicle detection means for detecting the traveling state of the vehicle, and the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle. If the vehicle distance is determined to increase, the acceleration / deceleration of the host vehicle is set so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. Control means for controlling , the preceding vehicle detection means detects the acceleration / deceleration state of the preceding vehicle as the traveling state of the preceding vehicle, and the preceding preceding vehicle detection means as the traveling state of the preceding preceding vehicle. The preceding vehicle To detect the acceleration and deceleration state.

本発明に係る第1の走行支援装置によれば、先行車両検出手段は、例えばレーダセンサ等を含んでなり、先行車両の例えば車両速度、加減速状態等である走行状態を検出する。先先行車両検出手段は、例えばレーダセンサ等を含んでなり、先先行車両の例えば車両速度、加減速状態等である走行状態を検出する。本発明に係る第1の走行支援装置の動作時には、自車両が先行車両に追従するように、先行車両及び先先行車両の走行状態に基づいて自車両の加減速度が制御手段によって制御される。即ち、本発明に係る第1の走行支援装置によれば、自車両を先行車両に追従させる追従走行制御(ACC)が、先行車両及び先先行車両の走行状態に基づいて行われる。   According to the first travel support apparatus of the present invention, the preceding vehicle detection means includes, for example, a radar sensor, and detects a traveling state of the preceding vehicle such as a vehicle speed, an acceleration / deceleration state, and the like. The preceding preceding vehicle detection means includes, for example, a radar sensor, and detects a traveling state of the preceding preceding vehicle such as a vehicle speed, an acceleration / deceleration state, or the like. During operation of the first travel support apparatus according to the present invention, the acceleration / deceleration of the host vehicle is controlled by the control means based on the traveling state of the preceding vehicle and the preceding preceding vehicle so that the host vehicle follows the preceding vehicle. That is, according to the first travel support apparatus of the present invention, the follow-up travel control (ACC) for causing the host vehicle to follow the preceding vehicle is performed based on the traveling state of the preceding vehicle and the preceding preceding vehicle.

本発明では特に、制御手段は、先行車両の走行状態と先先行車両の走行状態とに基づいて、先行車両と先先行車両との間の車間距離が拡大傾向であるか否かを判定し、車間距離が拡大傾向であると判定した場合には、自車両の車両速度が先行車両の車両速度よりも高くなるように、自車両の加減速度を制御する。即ち、制御手段は、先ず、先行車両検出手段によって検出された先行車両の走行状態(例えば車両速度、加減速状態等)と、先先行車両検出手段によって検出された先先行車両の走行状態とに基づいて、先行車両と先先行車両との間の車間距離が拡大しつつあるか否か(即ち、先行車両と先先行車両との車間が現在広がりつつあるか或いは伸びつつあるか否か)を判定する。例えば、先先行車両検出手段によって先先行車両が加速状態であることが検出され、先行車両検出手段によって先行車両が減速状態であることが検出された場合には、制御手段は、先行車両と先先行車両との間の車間距離が拡大傾向であると判定する。制御手段は、車間距離が拡大傾向であると判定した場合には、自車両の車両速度が先行車両の車両速度よりも高くなるように、自車両の加減速度を制御する(言い換えれば、自車両の車両速度が先行車両の車両速度よりも高くなるように、自車両の速度を制御する)。例えば、上述したような、先先行車両が加速状態であり、先行車両が減速状態であることに基づいて、先行車両と先先行車両との車間距離が拡大傾向であると判定した場合には、制御手段は、自車両の車両速度が先行車両の車両速度よりも高くなるように、自車両を加速させる。   In the present invention, in particular, the control means determines whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is increasing based on the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle. When it is determined that the inter-vehicle distance is increasing, the acceleration / deceleration of the host vehicle is controlled so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. That is, the control means first determines the traveling state of the preceding vehicle detected by the preceding vehicle detecting means (for example, vehicle speed, acceleration / deceleration state, etc.) and the traveling state of the preceding preceding vehicle detected by the preceding preceding vehicle detecting means. Based on whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is increasing (that is, whether or not the distance between the preceding vehicle and the preceding preceding vehicle is currently widening or increasing). judge. For example, when the preceding preceding vehicle detecting means detects that the preceding preceding vehicle is in an acceleration state and the preceding vehicle detecting means detects that the preceding vehicle is in a decelerating state, the control means detects the preceding vehicle and the preceding vehicle. It is determined that the inter-vehicle distance from the preceding vehicle is in an increasing tendency. When it is determined that the inter-vehicle distance is increasing, the control means controls the acceleration / deceleration of the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle (in other words, the host vehicle The vehicle speed is controlled so that the vehicle speed of the vehicle is higher than the vehicle speed of the preceding vehicle). For example, as described above, when it is determined that the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is increasing based on the preceding preceding vehicle being in an acceleration state and the preceding vehicle being in a deceleration state, The control means accelerates the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle.

ここで、一般的に、例えば先先行車両が加速状態であり、先行車両が減速状態である場合など、先行車両と先先行車両との間の車間距離が拡大しつつある場合、先行車両が現在は減速状態であっても、わずかな期間の後に先行車両は加速状態となると予測される。仮に、何らの対策も施さず、例えば、先行車両の走行状態(例えば車両速度、加減速状態等)のみに応じて、自車両の加減速度を制御する場合には、先行車両の走行状態の変化が頻繁であればあるほど、自車両の加減速度を頻繁に変更する(言い換えれば、自車両の加速状態及び減速状態を頻繁に切り替える)ことになり、自車両の無駄な加減速が増大してしまうおそれがある。   Here, in general, when the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is increasing, for example, when the preceding preceding vehicle is in an acceleration state and the preceding vehicle is in a deceleration state, the preceding vehicle is currently Even if the vehicle is in a deceleration state, it is predicted that the preceding vehicle will be in an acceleration state after a short period of time. If no measures are taken, for example, when the acceleration / deceleration of the host vehicle is controlled only in accordance with the traveling state (for example, vehicle speed, acceleration / deceleration state, etc.) of the preceding vehicle, the change in the traveling state of the preceding vehicle The more frequently the vehicle is, the more frequently the acceleration / deceleration of the host vehicle is changed (in other words, the acceleration and deceleration states of the host vehicle are frequently switched). There is a risk that.

しかるに本発明では特に、制御手段は、先行車両と先先行車両との車間距離が拡大傾向であると判定した場合には、自車両の車両速度が先行車両の車両速度よりも高くなるように、自車両の加減速度を制御する。言い換えれば、制御手段は、先行車両と先先行車両との車間距離が拡大傾向であることから、先行車両が、例えば現在減速状態であっても、わずかな期間の後に加速状態となると予測して、自車両を加速させる。   However, in the present invention, in particular, when the control means determines that the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is increasing, the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. Controls the acceleration / deceleration of the vehicle. In other words, since the inter-vehicle distance between the preceding vehicle and the preceding vehicle tends to increase, the control means predicts that the preceding vehicle will enter an acceleration state after a short period even if it is currently in a deceleration state, for example. Accelerate your vehicle.

よって、本発明によれば、自車両を先行車両に追従させる追従走行制御を行う際、自車両の無駄な加減速を低減できる。従って、自車両の無駄な加減速に伴う燃料の無駄な消費を抑制でき、自車両の燃費を向上させることができる。   Therefore, according to the present invention, it is possible to reduce unnecessary acceleration / deceleration of the host vehicle when performing follow-up running control in which the host vehicle follows the preceding vehicle. Therefore, wasteful consumption of fuel accompanying the wasteful acceleration / deceleration of the host vehicle can be suppressed, and the fuel consumption of the host vehicle can be improved.

以上説明したように、本発明に係る第1の走行支援装置によれば、追従走行制御(ACC)を行う際、自車両の無駄な加減速を低減でき、燃費を向上させることができる。   As described above, according to the first travel support device of the present invention, when following traveling control (ACC) is performed, useless acceleration / deceleration of the host vehicle can be reduced, and fuel consumption can be improved.

本発明に係る第1の走行支援装置の一態様では、前記先行車両検出手段は、前記先行車両の走行状態として、前記先行車両の加減速状態を検出し、前記先先行車両検出手段は、前記先先行車両の走行状態として、前記先先行車両の加減速状態を検出する。   In one aspect of the first travel support apparatus according to the present invention, the preceding vehicle detection means detects an acceleration / deceleration state of the preceding vehicle as the traveling state of the preceding vehicle, and the preceding preceding vehicle detection means The acceleration / deceleration state of the preceding preceding vehicle is detected as the traveling state of the preceding preceding vehicle.

この態様によれば、先行車両と先先行車両との間の車間距離が拡大傾向であるか否かを確実に判定することができる。   According to this aspect, it can be reliably determined whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle tends to increase.

本発明に係る第2の走行支援装置は上記課題を解決するために、自車両の前方を走行する先行車両の走行状態を検出する先行車両検出手段と、前記先行車両の前方を走行する先先行車両の走行状態を検出する先先行車両検出手段と、前記先行車両の走行状態と前記先先行車両の走行状態とに基づいて、前記先行車両と前記先先行車両との間の車間距離が縮小傾向であるか否かを判定し、前記車間距離が縮小傾向であると判定した場合には、前記自車両の車両速度が前記先行車両の車両速度よりも低くなるように、前記自車両の加減速度を制御する制御手段とを備える。   In order to solve the above-described problem, a second travel support apparatus according to the present invention detects preceding vehicle detection means for detecting a traveling state of a preceding vehicle that travels ahead of the host vehicle, and a preceding vehicle that travels ahead of the preceding vehicle. The inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle tends to decrease based on the preceding preceding vehicle detection means for detecting the traveling state of the vehicle, and the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle. And if it is determined that the inter-vehicle distance is decreasing, the acceleration / deceleration of the host vehicle is such that the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle. And control means for controlling.

本発明に係る第2の走行支援装置によれば、その動作時には、上述した本発明に係る第1の走行支援装置と概ね同様に、自車両を先行車両に追従させる追従走行制御が、先行車両及び先先行車両の走行状態に基づいて行われる。   According to the second travel support device of the present invention, during the operation, the follow-up travel control for causing the host vehicle to follow the preceding vehicle is substantially similar to the above-described first travel support device according to the present invention. And based on the traveling state of the preceding vehicle.

本発明では特に、制御手段は、先行車両の走行状態と先先行車両の走行状態とに基づいて、先行車両と先先行車両との間の車間距離が縮小傾向であるか否かを判定し、車間距離が縮小傾向であると判定した場合には、自車両の車両速度が先行車両の車両速度よりも低くなるように、自車両の加減速度を制御する。即ち、制御手段は、先ず、先行車両検出手段によって検出された先行車両の走行状態(例えば車両速度、加減速状態等)と、先先行車両検出手段によって検出された先先行車両の走行状態とに基づいて、先行車両と先先行車両との間の車間距離が縮小しつつあるか否か(即ち、先行車両と先先行車両との車間が現在詰まりつつあるか否か)を判定する。例えば、先先行車両検出手段によって先先行車両が減速状態であることが検出され、先行車両検出手段によって先行車両が加速状態であることが検出された場合には、制御手段は、先行車両と先先行車両との間の車間距離が縮小傾向であると判定する。制御手段は、車間距離が縮小傾向であると判定した場合には、自車両の車両速度が先行車両の車両速度よりも低くなるように、自車両の加減速度を制御する(言い換えれば、自車両の車両速度が先行車両の車両速度よりも低くなるように、自車両の車両速度を制御する)。例えば、上述したような、先先行車両が減速状態であり、先行車両が加速状態であることに基づいて、先行車両と先先行車両との車間距離が縮小傾向であると判定した場合には、制御手段は、自車両の車両速度が先行車両の車両速度よりも低くなるように、自車両を減速させる。   Particularly in the present invention, the control means determines whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing based on the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle, When it is determined that the inter-vehicle distance is decreasing, the acceleration / deceleration of the host vehicle is controlled so that the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle. That is, the control means first determines the traveling state of the preceding vehicle detected by the preceding vehicle detecting means (for example, vehicle speed, acceleration / deceleration state, etc.) and the traveling state of the preceding preceding vehicle detected by the preceding preceding vehicle detecting means. Based on this, it is determined whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing (that is, whether or not the distance between the preceding vehicle and the preceding preceding vehicle is currently clogged). For example, when the preceding preceding vehicle detecting means detects that the preceding preceding vehicle is in a decelerating state and the preceding vehicle detecting means detects that the preceding preceding vehicle is in an accelerated state, the controlling means It is determined that the inter-vehicle distance with the preceding vehicle is decreasing. When it is determined that the inter-vehicle distance is decreasing, the control means controls the acceleration / deceleration of the own vehicle so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle (in other words, the own vehicle The vehicle speed of the host vehicle is controlled so that the vehicle speed of the vehicle is lower than the vehicle speed of the preceding vehicle). For example, when it is determined that the distance between the preceding vehicle and the preceding preceding vehicle is decreasing based on the fact that the preceding preceding vehicle is in a decelerating state and the preceding vehicle is in an accelerating state as described above, The control means decelerates the host vehicle so that the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle.

ここで、一般的に、例えば先先行車両が減速状態であり、先行車両が加速状態である場合など、先行車両と先先行車両との間の車間距離が縮小しつつある場合、先行車両が現在は加速状態であっても、わずかな期間の後に先行車両は減速状態となると予測される。仮に、何らの対策も施さず、例えば、先行車両の走行状態(例えば車両速度、加減速状態等)のみに応じて、自車両の加減速度を制御する場合には、先行車両の走行状態の変化が頻繁であればあるほど、自車両の加減速度を頻繁に変更することになり、自車両の無駄な加減速が増大してしまうおそれがある。   Here, in general, when the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing, for example, when the preceding preceding vehicle is in a decelerating state and the preceding vehicle is in an accelerating state, Even in the acceleration state, it is predicted that the preceding vehicle will be decelerated after a short period of time. If no measures are taken, for example, when the acceleration / deceleration of the host vehicle is controlled only in accordance with the traveling state (for example, vehicle speed, acceleration / deceleration state, etc.) of the preceding vehicle, the change in the traveling state of the preceding vehicle The more frequently there is, the more frequently the acceleration / deceleration of the own vehicle is changed, and there is a possibility that the useless acceleration / deceleration of the own vehicle will increase.

しかるに本発明では特に、制御手段は、先行車両と先先行車両との車間距離が縮小傾向であると判定した場合には、自車両の車両速度が先行車両の車両速度よりも低くなるように、自車両の加減速度を制御する。言い換えれば、制御手段は、先行車両と先先行車両との車間距離が縮小傾向であることから、先行車両が、例えば現在加速状態であっても、わずかな期間の後に減速状態となると予測して、自車両を減速させる。   However, in the present invention, in particular, when the control unit determines that the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing, the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle. Controls the acceleration / deceleration of the vehicle. In other words, the control means predicts that the preceding vehicle will be in a deceleration state after a short period even if it is in the current acceleration state, for example, because the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing. Decelerate the vehicle.

よって、本発明によれば、自車両を先行車両に追従させる追従走行制御を行う際、自車両の無駄な加減速を低減できる。従って、自車両の無駄な加減速に伴う燃料の無駄な消費を抑制でき、自車両の燃費を向上させることができる。   Therefore, according to the present invention, it is possible to reduce unnecessary acceleration / deceleration of the host vehicle when performing follow-up running control in which the host vehicle follows the preceding vehicle. Therefore, wasteful consumption of fuel accompanying the wasteful acceleration / deceleration of the host vehicle can be suppressed, and the fuel consumption of the host vehicle can be improved.

以上説明したように、本発明に係る第2の走行支援装置によれば、追従走行制御(ACC)を行う際、自車両の無駄な加減速を低減でき、燃費を向上させることができる。   As described above, according to the second travel support device of the present invention, when following travel control (ACC) is performed, useless acceleration / deceleration of the host vehicle can be reduced, and fuel consumption can be improved.

本発明の作用及び他の利得は次に説明する発明を実施するための形態から明らかにされる。   The effect | action and other gain of this invention are clarified from the form for implementing invention demonstrated below.

第1実施形態に係る走行支援装置の構成を示すブロック図である。It is a block diagram which shows the structure of the driving assistance apparatus which concerns on 1st Embodiment. 第1実施形態におけるレーダセンサによる先先行車の走行状態の検出方法を説明するための模式図である。It is a schematic diagram for demonstrating the detection method of the driving state of the preceding vehicle by the radar sensor in 1st Embodiment. 第1実施形態に係る走行支援装置による追従走行制御を説明するための表である。It is a table | surface for demonstrating the following driving | running | working control by the driving assistance device which concerns on 1st Embodiment. 第1実施形態に係る走行支援装置による追従走行制御の流れを示すフローチャート(その1)である。It is a flowchart (the 1) which shows the flow of follow-up driving control by the driving assistance device concerning a 1st embodiment. 第1実施形態に係る走行支援装置による追従走行制御の流れを示すフローチャート(その2)である。It is a flowchart (the 2) which shows the flow of the follow driving | running | working control by the driving assistance device which concerns on 1st Embodiment. 第1実施形態に係る走行支援装置による追従走行制御の流れを示すフローチャート(その3)である。It is a flowchart (the 3) which shows the flow of the follow driving | running | working control by the driving assistance device which concerns on 1st Embodiment. 第1実施形態に係る走行支援装置による追従走行制御が行われた際の自車の挙動を説明するためのグラフである。It is a graph for demonstrating the behavior of the own vehicle at the time of follow-up driving control by the driving assistance device concerning a 1st embodiment.

以下では、本発明の実施形態について図を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
第1実施形態に係る走行支援装置について、図1から図7を参照して説明する。
<First Embodiment>
A travel support apparatus according to a first embodiment will be described with reference to FIGS.

先ず、本実施形態に係る走行支援装置の構成について、図1を参照して説明する。   First, the structure of the driving assistance apparatus which concerns on this embodiment is demonstrated with reference to FIG.

図1は、本実施形態に係る走行支援装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing the configuration of the driving support apparatus according to this embodiment.

図1において、本実施形態に係る走行支援装置1は、図示しない自車両に搭載されており、自車両の走行支援として、自車両を先行車両に追従させる追従走行制御(ACC)を行う装置である。追従走行制御では、例えば、先行車両が走行している場合には、先行車両に対して自車両が一定の距離又は一定の速度関係を維持するように、自車両の加減速度(即ち、加速度或いは減速度)が制御される。また、追従走行制御では、先行車両が存在しない場合には、例えば運転者(ドライバ)によって設定された設定速度で自車両が定速走行を行うように、自車両の車両速度が制御される。   In FIG. 1, a travel support device 1 according to the present embodiment is mounted on a host vehicle (not shown), and performs follow-up travel control (ACC) that causes the host vehicle to follow a preceding vehicle as a travel support of the host vehicle. is there. In the follow-up running control, for example, when the preceding vehicle is running, the acceleration / deceleration (that is, acceleration or (Deceleration) is controlled. In the follow-up running control, when there is no preceding vehicle, the vehicle speed of the host vehicle is controlled such that the host vehicle runs at a constant speed, for example, at a set speed set by a driver (driver).

走行支援装置1は、追従走行制御を行う車間制御ECU(Electronic Control Unit)10を備えている。車間制御ECU10には、レーダセンサ20、ストップランプスイッチ(STPランプSW)30及びクルーズ設定スイッチ(クルーズ設定SW)40が接続されている。更に、車間制御ECU10には、CAN(Control Area Network)900を介して、エンジン・AT制御ECU50、ブレーキ制御ECU60、ステアリングセンサ70、ヨーセンサー80、横加速度センサ(Gセンサ)90及びドライバ意識・状態検出センサ100が接続されている。また、エンジン・AT制御ECU50には、オートマチックトランスミッション(AT)110及びスロットルアクチュエータ120が接続されており、ブレーキ制御ECU60には、車速センサ130及びブレーキアクチュエータ140に接続されている。   The travel support device 1 includes an inter-vehicle control ECU (Electronic Control Unit) 10 that performs follow-up travel control. A radar sensor 20, a stop lamp switch (STP lamp SW) 30, and a cruise setting switch (cruise setting SW) 40 are connected to the inter-vehicle control ECU 10. Further, the inter-vehicle control ECU 10 is connected to an engine / AT control ECU 50, a brake control ECU 60, a steering sensor 70, a yaw sensor 80, a lateral acceleration sensor (G sensor) 90, and driver awareness / status via a CAN (Control Area Network) 900. A detection sensor 100 is connected. An automatic transmission (AT) 110 and a throttle actuator 120 are connected to the engine / AT control ECU 50, and a vehicle speed sensor 130 and a brake actuator 140 are connected to the brake control ECU 60.

レーダセンサ20は、例えばミリ波レーダ等のレーダを含んでなり、自車両の前方を走行する先行車両、及び先行車両の前方を走行する先先行車両の各々の走行状態(具体的には、車両速度(即ち、車速)、加速度或いは減速度)を検出可能に構成されている。レーダセンサ20は、検出した先行車両の走行状態を示す先行車状態信号、及び検出した先先行車両の走行状態を示す先先行車状態信号を車間制御ECU10に送信する。尚、レーダセンサ20は、本発明に係る「先行車両検出手段」及び「先先行車両検出手段」の一例として機能する。   The radar sensor 20 includes a radar such as a millimeter wave radar, for example, and each traveling state of the preceding vehicle traveling ahead of the host vehicle and the preceding preceding vehicle traveling ahead of the preceding vehicle (specifically, the vehicle The speed (that is, the vehicle speed), the acceleration, or the deceleration) can be detected. The radar sensor 20 transmits a preceding preceding vehicle state signal indicating the detected traveling state of the preceding vehicle and a detected preceding preceding vehicle state signal indicating the detected traveling state of the preceding preceding vehicle to the inter-vehicle control ECU 10. The radar sensor 20 functions as an example of the “preceding vehicle detection means” and the “preceding preceding vehicle detection means” according to the present invention.

尚、以下では、自車両、先行車両及び先先行車両を、それぞれ、「自車」、「先行車」及び「先先行車」と適宜称する。   In the following description, the host vehicle, the preceding vehicle, and the preceding preceding vehicle are appropriately referred to as “own vehicle”, “preceding vehicle”, and “preceding preceding vehicle”, respectively.

レーダセンサ20は、例えばミリ波等の探知波が、路面或いはカードレールで反射することを利用して先先行車の走行状態を検出する。   The radar sensor 20 detects the traveling state of the preceding vehicle using the fact that a detection wave such as a millimeter wave is reflected by the road surface or the card rail.

図2は、本実施形態におけるレーダセンサによる先先行車の走行状態の検出方法を説明するための模式図である。図2(a)は、レーダセンサの探知波が路面で反射することを利用して先先行車の走行状態を検出する方法を模式的に示し、図2(b)は、レーダセンサの探知波がガードレールで反射することを利用して先先行車の走行状態を検出する方法を模式的に示している。   FIG. 2 is a schematic diagram for explaining a method for detecting the traveling state of the preceding vehicle by the radar sensor according to the present embodiment. FIG. 2A schematically shows a method of detecting the traveling state of the preceding vehicle using the fact that the detection wave of the radar sensor is reflected on the road surface, and FIG. 2B is the detection wave of the radar sensor. Schematically shows a method of detecting the traveling state of the preceding vehicle using the fact that the vehicle is reflected by the guardrail.

図2(a)に示すように、自車C1に搭載されたレーダセンサ20(図示省略)から出射される例えばミリ波等の探知波(矢印A1参照)は、例えば自車C1の前方を走行する先行車C2の車体の下方において路面Rで反射して、先先行車C3に到達し、先先行車C3で反射される。先先行車C3で反射された探知波は、路面Rで再び反射して自車C1に到達する。レーダセンサ20は、このように路面Rで反射され、先先行車C3で反射された探知波に基づいて、先先行車C3の走行状態を検出可能に構成されている。   As shown in FIG. 2A, a detection wave such as a millimeter wave (see arrow A1) emitted from a radar sensor 20 (not shown) mounted on the host vehicle C1 travels in front of the host vehicle C1, for example. The vehicle is reflected by the road surface R below the vehicle body of the preceding preceding vehicle C2, reaches the preceding preceding vehicle C3, and is reflected by the preceding preceding vehicle C3. The detection wave reflected by the preceding preceding vehicle C3 is reflected again by the road surface R and reaches the host vehicle C1. The radar sensor 20 is configured to be able to detect the traveling state of the preceding vehicle C3 based on the detection wave reflected by the road surface R and reflected by the preceding vehicle C3.

図2(b)に示すように、自車C1に搭載されたレーダセンサ20(図示省略)から出射される例えばミリ波等の探知波(矢印A2参照)は、例えば先行車C2の車体の側方においてガードレールGRで反射して、先先行車C3に到達し、先先行車C3で反射される。先先行車C3で反射された探知波は、ガードレールGRで再び反射して自車C1に到達する。レーダセンサ20は、このようにガードレールGRで反射され、先先行車C3で反射された探知波に基づいて、先先行車C3の走行状態を検出可能に構成されている。   As shown in FIG. 2B, a detection wave such as a millimeter wave (see arrow A2) emitted from a radar sensor 20 (not shown) mounted on the host vehicle C1 is, for example, the vehicle side of the preceding vehicle C2. On the other hand, it is reflected by the guard rail GR, reaches the preceding preceding vehicle C3, and is reflected by the preceding preceding vehicle C3. The detection wave reflected by the preceding preceding vehicle C3 is reflected again by the guardrail GR and reaches the host vehicle C1. The radar sensor 20 is configured to detect the traveling state of the preceding vehicle C3 based on the detection wave reflected by the guardrail GR and reflected by the preceding vehicle C3.

図1において、ストップランプスイッチ(STPランプSW)30は、自車の車室内におけるブレーキペダルに設けられたスイッチであり、ブレーキダルが踏み込まれたか否かを検出する。ストップランプスイッチ30は、ブレーキペダルのオン/オフ情報を車間制御ECU10に送信する。   In FIG. 1, a stop lamp switch (STP lamp SW) 30 is a switch provided on a brake pedal in the vehicle interior of the host vehicle, and detects whether or not the brake dull has been depressed. The stop lamp switch 30 transmits brake pedal on / off information to the inter-vehicle control ECU 10.

クルーズ設定スイッチ(クルーズ設定SW)40は、自車の車室内における運転者の手が届く範囲に設けられており、追従走行制御を開始したり、先行車両との車間距離や定速走行時の設定速度を設定するためのスイッチである。クルーズ設定スイッチ40は、オンとされることにより、追従走行制御を開始すべき旨の信号を車間制御ECU10に送信する。   The cruise setting switch (cruise setting SW) 40 is provided within the range of the driver's hand within the vehicle interior of the host vehicle, and starts follow-up driving control, the distance between the preceding vehicle and the constant speed driving. This is a switch for setting the set speed. When the cruise setting switch 40 is turned on, the cruise setting switch 40 transmits a signal to the effect that the following traveling control is to be started to the inter-vehicle control ECU 10.

エンジン・AT制御ECU50は、自車のエンジンにおけるスロットルアクチュエータ120及びオートマチックトランスミッション110を制御する電子制御装置であり、車間制御ECU10から送信される加速度信号或いは減速度信号に基づいて、スロットルバルブの目標開度を設定する。エンジン・AT制御ECU50は、その設定した目標開度を示すスロットル開度信号をスロットルアクチュエータ120に送信する。   The engine / AT control ECU 50 is an electronic control device that controls the throttle actuator 120 and the automatic transmission 110 in the engine of the host vehicle. Based on the acceleration signal or the deceleration signal transmitted from the inter-vehicle control ECU 10, the target valve opening of the throttle valve is controlled. Set the degree. The engine / AT control ECU 50 transmits a throttle opening signal indicating the set target opening to the throttle actuator 120.

スロットルアクチュエータ120は、スロットルバルブの開度を調整するアクチュエータである。スロットルアクチュエータ120は、エンジン・AT制御ECU50から送信されるスロットル開度信号に応じて、スロットルバルブの開度を調整する。   The throttle actuator 120 is an actuator that adjusts the opening of the throttle valve. The throttle actuator 120 adjusts the opening of the throttle valve in accordance with a throttle opening signal transmitted from the engine / AT control ECU 50.

オートマチックトランスミッション110は、エンジン・AT制御ECU50の指令に基づいて、変速比を切り替える変速機である。   The automatic transmission 110 is a transmission that switches the gear ratio based on a command from the engine / AT control ECU 50.

ブレーキ制御ECU60は、自車のブレーキを制御する制御装置であり、車間制御ECU10から送信される加速度信号或いは減速度信号に基づいて、ブレーキを制御する。ブレーキ制御ECU60は、目標減速度になるために必要な各車輪のホイールシリンダのブレーキ油圧を設定し、ブレーキ油圧を示すブレーキ油圧信号をブレーキアクチュエータ140に送信する。   The brake control ECU 60 is a control device that controls the brake of the host vehicle, and controls the brake based on the acceleration signal or the deceleration signal transmitted from the inter-vehicle control ECU 10. The brake control ECU 60 sets the brake hydraulic pressure of the wheel cylinder of each wheel necessary for achieving the target deceleration, and transmits a brake hydraulic pressure signal indicating the brake hydraulic pressure to the brake actuator 140.

ブレーキアクチュエータ140は、ホイールシリンダの油圧を制御するアクチュエータである。ブレーキアクチュエータ140は、ブレーキ制御ECU140から送信されるブレーキ油圧信号に応じて、ホイールシリンダに所定の油圧を発生させる。   The brake actuator 140 is an actuator that controls the hydraulic pressure of the wheel cylinder. The brake actuator 140 generates a predetermined hydraulic pressure in the wheel cylinder in response to a brake hydraulic pressure signal transmitted from the brake control ECU 140.

車速センサ130は、車輪に取り付けられた車輪速センサを含んでなり、自車の車速を検出する。車速センサ130は、ブレーキ制御ECU60を介して、検出した車速を示す車速信号を車間制御ECU10に送信する。   The vehicle speed sensor 130 includes a wheel speed sensor attached to the wheel, and detects the vehicle speed of the host vehicle. The vehicle speed sensor 130 transmits a vehicle speed signal indicating the detected vehicle speed to the inter-vehicle control ECU 10 via the brake control ECU 60.

ステアリングセンサ70は、自車のハンドルの操舵角を検出し、検出した操舵角を示す操舵角信号を車間制御ECU10に送信する。   The steering sensor 70 detects the steering angle of the steering wheel of the host vehicle, and transmits a steering angle signal indicating the detected steering angle to the inter-vehicle distance control ECU 10.

ヨーセンサ80は、自車のヨーレートを検出し、検出したヨーレートを示すヨーレート信号を車間制御ECU10に送信する。   The yaw sensor 80 detects the yaw rate of the own vehicle, and transmits a yaw rate signal indicating the detected yaw rate to the inter-vehicle control ECU 10.

横加速度センサ(Gセンサ)90は、自車の横加速度を検出し、検出した横加速度を示す横加速度信号を車間制御ECU10に送信する。   The lateral acceleration sensor (G sensor) 90 detects the lateral acceleration of the host vehicle, and transmits a lateral acceleration signal indicating the detected lateral acceleration to the inter-vehicle control ECU 10.

ドライバ意識・状態検出センサ100は、運転者の意識或いは状態を検出することが可能なセンサである。ドライバ意識・状態検出センサ100は、運転者の意識或いは状態として、例えば、運転者の眠気の強さ、体温、脳波、脈拍数、心拍数、呼吸数などを検出する。ドライバ意識・状態検出センサ100は、検出した運転者の意識或いは状態を示すドライバ状態信号を車間制御ECU10に送信する。   The driver awareness / state detection sensor 100 is a sensor capable of detecting a driver's awareness or state. The driver consciousness / state detection sensor 100 detects, for example, the driver's consciousness or state such as the intensity of sleepiness of the driver, body temperature, brain wave, pulse rate, heart rate, respiratory rate, and the like. The driver awareness / state detection sensor 100 transmits a driver state signal indicating the detected driver's awareness or state to the inter-vehicle distance control ECU 10.

車間制御ECU10は、本発明に係る「制御手段」の一例であり、追従走行制御を行う電子制御装置である。車間制御ECU10は、例えば、レーダセンサ20から送信される先行車状態信号及び先先行車状態信号に基づいて、自車の目標車速を算出して設定する。車間制御ECU10は、例えば、設定した目標車速と、車速センサ130から送信される車速信号が示す実車速とに基づいて、自車を加速するための目標加速度或いは自車を減速するための目標減速度を算出し、算出した目標加速度或いは目標減速度をそれぞれ示めす加速度信号或いは減速度信号をエンジン・AT制御ECU50及びブレーキ制御ECU60に送信する。   The inter-vehicle control ECU 10 is an example of a “control unit” according to the present invention, and is an electronic control device that performs follow-up traveling control. The inter-vehicle control ECU 10 calculates and sets the target vehicle speed of the host vehicle based on the preceding vehicle state signal and the preceding preceding vehicle state signal transmitted from the radar sensor 20, for example. The inter-vehicle control ECU 10, for example, based on the set target vehicle speed and the actual vehicle speed indicated by the vehicle speed signal transmitted from the vehicle speed sensor 130, the target acceleration for accelerating the host vehicle or the target reduction for decelerating the host vehicle. The speed is calculated, and an acceleration signal or a deceleration signal indicating the calculated target acceleration or target deceleration is transmitted to the engine / AT control ECU 50 and the brake control ECU 60.

本実施形態では特に、車間制御ECU10は、先行車の走行状態と先先行車の走行状態とに基づいて、先行車と先先行車との間の車間距離が拡大傾向であるか否かを判定し、車間距離が拡大傾向であると判定した場合には、自車の車速が先行車の車速よりも高くなるように、自車の加減速度を制御する(即ち、自車の車速が先行車の車速よりも高くなるように、自車の目標車速を設定して、この目標車速及び実車速に基づいて目標加減速度を算出する)。また、車間制御ECU10は、先行車の走行状態と先先行車の走行状態とに基づいて、先行車と先先行車との間の車間距離が縮小傾向であるか否かを判定し、車間距離が縮小傾向であると判定した場合には、自車の車速が先行車の車速よりも低くなるように、自車の加減速度を制御する(即ち、自車の車速が先行車の車速よりも低くなるように、自車の目標車速を設定して、この目標車速及び実車速に基づいて目標加減速度を算出する)。   Particularly in the present embodiment, the inter-vehicle control ECU 10 determines whether or not the inter-vehicle distance between the preceding vehicle and the preceding vehicle is increasing based on the traveling state of the preceding vehicle and the traveling state of the preceding vehicle. If it is determined that the inter-vehicle distance is increasing, the acceleration / deceleration of the host vehicle is controlled so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle (that is, the vehicle speed of the host vehicle is The target vehicle speed of the host vehicle is set so as to be higher than the vehicle speed of the vehicle, and the target acceleration / deceleration is calculated based on the target vehicle speed and the actual vehicle speed). Further, the inter-vehicle control ECU 10 determines whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing based on the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle. Is determined to be decreasing, the acceleration / deceleration of the host vehicle is controlled so that the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle (that is, the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle). The target vehicle speed of the host vehicle is set so as to be lower, and the target acceleration / deceleration is calculated based on the target vehicle speed and the actual vehicle speed).

次に、本実施形態に係る走行支援装置による追従走行制御について、図3から図7を参照して説明する。   Next, the following traveling control by the traveling support apparatus according to the present embodiment will be described with reference to FIGS.

図3は、本実施形態に係る走行支援装置による追従走行制御を説明するための表である。図3には、先行車の走行状態と先先行車の走行状態との組み合わせが互いに異なる複数のシーンに対する、本実施形態に係る追従走行制御時における自車の加減速制御が示されている。   FIG. 3 is a table for explaining the follow-up travel control by the travel support device according to the present embodiment. FIG. 3 shows acceleration / deceleration control of the own vehicle during follow-up travel control according to the present embodiment for a plurality of scenes in which the combination of the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle is different from each other.

以下では、先ず、図3に示したシーン1から13の各々に対する自車の加減速制御について、その概要を順に説明する。   Below, the outline | summary is first demonstrated in order about the acceleration / deceleration control of the own vehicle with respect to each of the scenes 1-13 shown in FIG.

図3において、本実施形態に係る走行支援装置1では、車間制御ECU10(図1参照)によって、先行車及び先先行車の走行状態(具体的には、車速、加速度或いは減速度)に基づいて、自車の加減速制御が行われる。   In FIG. 3, in the driving support device 1 according to the present embodiment, the inter-vehicle control ECU 10 (see FIG. 1) is based on the driving state (specifically, vehicle speed, acceleration or deceleration) of the preceding vehicle and the preceding vehicle. Then, acceleration / deceleration control of the own vehicle is performed.

車間制御ECU10は、先先行車が一定速度で走行しており、先行車が一定速度で走行している場合(シーン1)には、自車の目標車速を一定速度に設定する。   The inter-vehicle control ECU 10 sets the target vehicle speed of the own vehicle to a constant speed when the preceding preceding vehicle is traveling at a constant speed and the preceding vehicle is traveling at a constant speed (scene 1).

車間制御ECU10は、先先行車が一定速度で走行しており、先行車が加速している場合(シーン2)には、自車の目標車速を一定速度に設定する。これにより、自車と先行車との間の車間は徐々に伸びる(即ち、自車と先行車との間の車間距離は徐々に拡大する)。   The inter-vehicle control ECU 10 sets the target vehicle speed of the own vehicle to a constant speed when the preceding preceding vehicle is traveling at a constant speed and the preceding vehicle is accelerating (scene 2). Thereby, the distance between the own vehicle and the preceding vehicle gradually increases (that is, the inter-vehicle distance between the own vehicle and the preceding vehicle gradually increases).

車間制御ECU10は、先先行車が一定速度で走行しており、先行車が減速している場合(シーン3)には、自車の目標車速を一定速度に設定する。これにより、自車と先行車との間の車間は徐々に詰まる(即ち、自車と先行車との間の車間距離は徐々に縮小する)。但し、例えば、自車と先行車との間の車間距離が所定の距離よりも短くなったときには、車間制御ECU10は、自車の目標車速を低下させる(自車を減速させる減速度を設定する)。また、先行車が急ブレーキをかけた場合など、先行車の減速度が所定値よりも大きい場合には、自車と先行車との間の車間距離の大きさにかかわらず、自車の目標車速を低下させる。   The inter-vehicle control ECU 10 sets the target vehicle speed of the own vehicle to a constant speed when the preceding preceding vehicle is traveling at a constant speed and the preceding vehicle is decelerating (scene 3). As a result, the space between the host vehicle and the preceding vehicle gradually closes (that is, the distance between the host vehicle and the preceding vehicle gradually decreases). However, for example, when the inter-vehicle distance between the own vehicle and the preceding vehicle becomes shorter than a predetermined distance, the inter-vehicle control ECU 10 decreases the target vehicle speed of the own vehicle (sets a deceleration for decelerating the own vehicle). ). In addition, if the preceding vehicle has a deceleration greater than a predetermined value, such as when the preceding vehicle has suddenly braked, the target of the own vehicle is used regardless of the distance between the own vehicle and the preceding vehicle. Reduce vehicle speed.

車間制御ECU10は、先先行車が加速しており、先行車が一定速度で走行している場合(シーン4)には、自車が徐々に加速するように自車の目標車速を設定する。これにより、自車と先行車との間の車間は徐々に詰まる。但し、自車と先行車との間の車間距離が所定の距離となったときには、車間制御ECU10は、自車の目標車速を、先行車の車速と同じ一定速度に設定する。   When the preceding preceding vehicle is accelerating and the preceding vehicle is traveling at a constant speed (scene 4), the inter-vehicle control ECU 10 sets the target vehicle speed of the own vehicle so that the own vehicle gradually accelerates. Thereby, the space between the own vehicle and the preceding vehicle is gradually closed. However, when the inter-vehicle distance between the own vehicle and the preceding vehicle becomes a predetermined distance, the inter-vehicle control ECU 10 sets the target vehicle speed of the own vehicle to a constant speed that is the same as the vehicle speed of the preceding vehicle.

車間制御ECU10は、先先行車が加速しており、先行車が減速している場合(シーン5)には、自車と先行車両との車間が徐々に詰まるように、自車の加速度を制御する。即ち、車間制御ECU10は、この場合(シーン5)には、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。但し、先行車が急ブレーキをかけた場合など、先行車の減速度が所定値よりも大きい場合には、自車の目標車速を低下させる。   When the preceding vehicle is accelerating and the preceding vehicle is decelerating (scene 5), the inter-vehicle control ECU 10 controls the acceleration of the own vehicle so that the distance between the own vehicle and the preceding vehicle is gradually closed. To do. That is, in this case (scene 5), the inter-vehicle control ECU 10 sets the target vehicle speed and the target acceleration of the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. However, if the deceleration of the preceding vehicle is greater than a predetermined value, such as when the preceding vehicle suddenly brakes, the target vehicle speed of the host vehicle is decreased.

車間制御ECU10は、先先行車及び先行車の両方が加速している場合であって先先行車の加速度と先行車の加速度とが等しい場合(シーン6)には、自車が先行車の加速度と等しい加速度で加速するように、自車の目標加速度を設定する。即ち、自車の目標加速度を先行車の加速度と等しい加速度に設定する。   The inter-vehicle control ECU 10 determines that when both the preceding preceding vehicle and the preceding vehicle are accelerating and the acceleration of the preceding preceding vehicle is equal to the acceleration of the preceding vehicle (scene 6), The target acceleration of the host vehicle is set so as to accelerate at an acceleration equal to. That is, the target acceleration of the own vehicle is set to an acceleration equal to the acceleration of the preceding vehicle.

車間制御ECU10は、先先行車及び先行車の両方が加速している場合であって先先行車の加速度が先行車の加速度よりも大きい場合(シーン7)には、自車と先行車との車間が緩やかに詰まるように、自車の目標車速及び目標加速度を設定する。即ち、車間制御ECU10は、この場合(シーン7)には、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。   The inter-vehicle control ECU 10 determines that when the preceding preceding vehicle and the preceding vehicle are accelerating and the acceleration of the preceding preceding vehicle is greater than the acceleration of the preceding vehicle (scene 7), The target vehicle speed and target acceleration of the own vehicle are set so that the distance between the vehicles is gradually closed. That is, in this case (scene 7), the inter-vehicle control ECU 10 sets the target vehicle speed and the target acceleration of the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle.

車間制御ECU10は、先先行車及び先行車の両方が加速している場合であって先先行車の加速度が先行車の加速度よりも小さい場合(シーン8)には、自車と先行車との車間が緩やかに伸びるように、自車の目標車速及び目標加速度を設定する。即ち、車間制御ECU10は、この場合(シーン8)には、自車が先行車の車速よりも低い車速の範囲内で加速するように、自車の目標車速及び目標加速度を設定する。   The inter-vehicle control ECU 10 determines that when the preceding preceding vehicle and the preceding vehicle are accelerating and the acceleration of the preceding preceding vehicle is smaller than the acceleration of the preceding vehicle (scene 8), The target vehicle speed and target acceleration of the host vehicle are set so that the distance between the vehicles gradually increases. That is, in this case (scene 8), the inter-vehicle control ECU 10 sets the target vehicle speed and target acceleration of the host vehicle so that the host vehicle accelerates within a range of vehicle speeds lower than the vehicle speed of the preceding vehicle.

車間制御ECU10は、先先行車が減速しており、先行車が一定速度で走行している場合(シーン9)には、自車と先行車両との車間が徐々に伸びるように、自車の減速度を制御する。即ち、車間制御ECU10は、この場合(シーン9)には、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。   When the preceding vehicle is decelerating and the preceding vehicle is traveling at a constant speed (scene 9), the inter-vehicle control ECU 10 determines that the distance between the own vehicle and the preceding vehicle gradually increases. Control the deceleration. That is, in this case (scene 9), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle.

車間制御ECU10は、先先行車が減速しており、先行車が加速している場合(シーン10)には、自車と先行車両との車間が徐々に伸びるように、自車の減速度を制御する。即ち、車間制御ECU10は、この場合(シーン10)には、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。   When the preceding vehicle is decelerating and the preceding vehicle is accelerating (scene 10), the inter-vehicle control ECU 10 determines the deceleration of the own vehicle so that the distance between the own vehicle and the preceding vehicle gradually increases. Control. That is, in this case (scene 10), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle.

車間制御ECU10は、先先行車及び先行車の両方が減速している場合であって先先行車の減速度と先行車の減速度とが等しい場合(シーン11)には、自車が先行車の減速度と等しい減速度で減速するように、自車の目標減速度を設定する。即ち、自車の目標減速度を先行車の減速度と等しい減速度に設定する。   The inter-vehicle control ECU 10 determines that when both the preceding preceding vehicle and the preceding vehicle are decelerating and the deceleration of the preceding preceding vehicle is equal to the deceleration of the preceding vehicle (scene 11), the own vehicle is the preceding vehicle. The target deceleration of the host vehicle is set so as to decelerate at a deceleration equal to the deceleration of the vehicle. That is, the target deceleration of the own vehicle is set to a deceleration equal to the deceleration of the preceding vehicle.

車間制御ECU10は、先先行車及び先行車の両方が減速している場合であって先先行車の減速度が先行車の減速度よりも大きい場合(シーン12)には、自車と先行車との車間が緩やかに伸びるように、自車の目標車速及び目標減速度を設定する。即ち、車間制御ECU10は、この場合(シーン12)には、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。   The inter-vehicle control ECU 10 determines that when both the preceding preceding vehicle and the preceding vehicle are decelerating and the deceleration of the preceding preceding vehicle is greater than the deceleration of the preceding vehicle (scene 12), the own vehicle and the preceding vehicle The target vehicle speed and target deceleration of the own vehicle are set so that the distance between the vehicle and the vehicle gradually increases. That is, in this case (scene 12), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle.

車間制御ECU10は、先先行車及び先行車の両方が減速している場合であって先先行車の減速度が先行車の減速度よりも小さい場合(シーン13)には、自車と先行車との車間が緩やかに詰まるように、自車の目標車速及び目標減速度を設定する。即ち、車間制御ECU10は、この場合(シーン13)には、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標減速度を設定する。   The inter-vehicle control ECU 10 determines that when both the preceding preceding vehicle and the preceding vehicle are decelerating and the deceleration of the preceding preceding vehicle is smaller than the deceleration of the preceding vehicle (scene 13), the own vehicle and the preceding vehicle The target vehicle speed and target deceleration of the own vehicle are set so that the distance between the vehicle and the vehicle is gradually closed. That is, in this case (scene 13), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is higher than the vehicle speed of the preceding vehicle.

次に、本実施形態に係る走行支援装置による追従走行制御の流れについて、図4から図6を参照して説明する。   Next, the flow of follow-up travel control by the travel support device according to the present embodiment will be described with reference to FIGS.

図4から図6は、本実施形態に係る走行支援装置による追従走行制御の流れを示すフローチャートである。尚、図4は、先先行車が減速している場合における追従走行制御の流れを主に示し、図5は、先先行車が一定速度で走行している場合における追従走行制御の流れを主に示し、図6は、先先行車が加速している場合における追従走行制御の流れを主に示している。   4 to 6 are flowcharts showing the flow of follow-up travel control by the travel support device according to the present embodiment. 4 mainly shows the flow of follow-up running control when the preceding vehicle is decelerating. FIG. 5 shows the flow of follow-up running control when the preceding vehicle is running at a constant speed. FIG. 6 mainly shows the flow of follow-up running control when the preceding vehicle is accelerating.

図4において、走行支援装置1による追従走行制御(ACC)では、先行車を追従中であるか否かが車間制御ECU10によって判定される(ステップS10)。即ち、レーダセンサ20によって先行車が検出されているか否かが車間制御ECU10によって判定される。   In FIG. 4, in the follow-up running control (ACC) by the driving support device 1, it is determined by the inter-vehicle control ECU 10 whether the preceding vehicle is being followed (step S <b> 10). That is, it is determined by the inter-vehicle distance control ECU 10 whether or not the preceding vehicle is detected by the radar sensor 20.

先行車を追従中でないと判定された場合には(ステップS10:No)、所定期間後に再び、ステップS10に係る処理が行われる(即ち、先行車を追従中であるか否かが判定される)。   When it is determined that the preceding vehicle is not being followed (step S10: No), the processing according to step S10 is performed again after a predetermined period (that is, whether or not the preceding vehicle is being followed is determined). ).

先行車を追従中であると判定された場合には(ステップS10:Yes)、先先行車が存在しているか否かが判定される(ステップS20)。即ち、レーダセンサ20によって先先行車が検出されているか否かが車間制御ECU10によって判定される。   If it is determined that the preceding vehicle is being followed (step S10: Yes), it is determined whether or not the preceding preceding vehicle exists (step S20). That is, the inter-vehicle distance control ECU 10 determines whether or not a preceding vehicle is detected by the radar sensor 20.

先先行車が存在していないと判定された場合には(ステップS20:No)、先行車の走行状態に基づいて、自車を先行車に追従させる制御が車間制御ECU10によって行われる(ステップS40)。即ち、車間制御ECU10は、先行車が存在し、先先行車が存在しない場合には、先行車の走行状態に基づいて自車を先行車に追従させる追従走行制御(即ち、従来の追従走行制御)を行う。   If it is determined that the preceding preceding vehicle does not exist (step S20: No), the inter-vehicle control ECU 10 performs control for causing the host vehicle to follow the preceding vehicle based on the traveling state of the preceding vehicle (step S40). ). In other words, the inter-vehicle control ECU 10 performs the following traveling control (that is, the conventional following traveling control) that makes the own vehicle follow the preceding vehicle based on the traveling state of the preceding vehicle when the preceding vehicle exists and the preceding preceding vehicle does not exist. )I do.

先先行車が存在していると判定された場合には(ステップS20:Yes)、先先行車が減速しているか否かが車間制御ECU10によって判定される(ステップS30)。即ち、レーダセンサ20によって、先先行車の走行状態として、先先行車が減速していることが検出されているか否かが車間制御ECU10によって判定される。   When it is determined that the preceding vehicle is present (step S20: Yes), the inter-vehicle control ECU 10 determines whether the preceding vehicle is decelerating (step S30). That is, the inter-vehicle distance control ECU 10 determines whether or not the radar sensor 20 detects that the preceding preceding vehicle is decelerating as the traveling state of the preceding preceding vehicle.

先先行車が減速していないと判定された場合には(ステップS30:No)、先先行車が一定速度が走行しているか否かが車間制御ECU10によって判定される(ステップS120、図5参照)。尚、ステップS120に係る処理以降の処理については図5を参照して後述する。   If it is determined that the preceding preceding vehicle is not decelerating (step S30: No), the inter-vehicle control ECU 10 determines whether the preceding preceding vehicle is traveling at a constant speed (see step S120, FIG. 5). ). Note that the processing after step S120 will be described later with reference to FIG.

先先行車が減速していると判定された場合には(ステップS30:Yes)、先行車が加速中及び減速中のいずれであるかが車間制御ECU10によって判定される(ステップS50)。即ち、レーダセンサ20によって、先行車の走行状態として、先行車の加速及び減速のいずれが検出されているかが車間制御ECU10によって判定される。   When it is determined that the preceding preceding vehicle is decelerating (step S30: Yes), the inter-vehicle control ECU 10 determines whether the preceding vehicle is accelerating or decelerating (step S50). That is, the inter-vehicle distance control ECU 10 determines which of the acceleration and deceleration of the preceding vehicle is detected by the radar sensor 20 as the traveling state of the preceding vehicle.

先行車が加速していると判定された場合には(ステップS50:加速)、自車と先行車との間の車間距離が所定距離ΔX1よりも短いか否かが車間制御ECU10によって判定される(ステップS60)。即ち、レーダセンサ20によって検出される自車と先行車との間の車間距離が所定距離ΔX1よりも短いか否かが車間制御ECU10によって判定される。ここで、所定距離ΔX1は、自車と先行車との衝突を安全に回避可能な車間距離として予め設定される距離である。   When it is determined that the preceding vehicle is accelerating (step S50: acceleration), the inter-vehicle control ECU 10 determines whether the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1. (Step S60). That is, the inter-vehicle control ECU 10 determines whether the inter-vehicle distance between the host vehicle and the preceding vehicle detected by the radar sensor 20 is shorter than the predetermined distance ΔX1. Here, the predetermined distance ΔX1 is a distance set in advance as an inter-vehicle distance that can safely avoid a collision between the host vehicle and the preceding vehicle.

自車と先行車との間の車間距離が所定距離ΔX1よりも短いと判定された場合には(ステップS60:Yes)、自車と先行車との車間が緩やかに伸びる程度の減速度で自車が先行車両を追従するように、車間制御ECU10によって自車の目標車速及び目標減速度が設定される(ステップS80)。即ち、この場合には(ステップS60:Yes)、車間制御ECU10は、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。尚、ステップS80に係る処理は、図3を参照して上述したシーン10における自車の加減速制御である。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1 (step S60: Yes), the host vehicle is decelerated to such a degree that the distance between the host vehicle and the preceding vehicle gradually increases. The target vehicle speed and target deceleration of the host vehicle are set by the inter-vehicle control ECU 10 so that the vehicle follows the preceding vehicle (step S80). That is, in this case (step S60: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S80 is the acceleration / deceleration control of the own vehicle in the scene 10 mentioned above with reference to FIG.

即ち、本実施形態では特に、先先行車が減速状態であり、先行車が加速状態であって、自車と先行車との間の車間距離が所定距離ΔX1よりも短いと判定された場合には(ステップS60:Yes)、車間制御ECU10は、先行車と先先行車との間の車間距離が縮小傾向であると判定し、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。ここで、先先行車が減速状態であり、先行車が加速状態である場合には、先行車と先先行車との間の車間距離が徐々に縮小しているため、先行車は、現在は加速状態であっても、先先行車との間の車間を保つために、わずかな期間の後に減速状態になると予測される。よって、本実施形態のように、先先行車が減速状態であり、先行車が加速状態であって、自車と先行車との間の車間距離が所定距離ΔX1よりも短いと判定された場合には(ステップS60:Yes)、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に加速状態から減速状態に切り替わった際に、追従走行制御において自車両を無駄に減速させることを低減することができ、自車の燃費を向上させることができる)。   That is, particularly in the present embodiment, when it is determined that the preceding preceding vehicle is in a decelerating state, the preceding vehicle is in an accelerating state, and the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1. (Step S60: Yes), the inter-vehicle control ECU 10 determines that the inter-vehicle distance between the preceding vehicle and the preceding vehicle is decreasing, and the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle. Set your target vehicle speed and target deceleration. Here, when the preceding preceding vehicle is in a decelerating state and the preceding vehicle is in an accelerating state, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is gradually decreasing. Even in the acceleration state, it is predicted that the vehicle will decelerate after a short period of time in order to keep the distance between the preceding vehicle and the preceding vehicle. Therefore, as in the present embodiment, when it is determined that the preceding preceding vehicle is in a decelerating state, the preceding vehicle is in an accelerating state, and the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1. (Step S60: Yes), by setting the target vehicle speed and target deceleration of the host vehicle so that the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle, it is possible to reduce unnecessary acceleration / deceleration of the host vehicle. The fuel consumption of the host vehicle can be improved (that is, when the preceding vehicle is switched from the acceleration state to the deceleration state after a short period of time as described above, the host vehicle can be decelerated unnecessarily in the follow-up travel control. This can reduce the fuel consumption of the vehicle).

自車と先行車との間の車間距離が所定距離ΔX1よりも短くない(即ち、自車と先行車との間の車間距離が所定距離ΔX1以上である)と判定された場合には(ステップS60:No)、自車と先行車との車間距離が離れない程度の加速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS90)。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is not shorter than the predetermined distance ΔX1 (that is, the inter-vehicle distance between the host vehicle and the preceding vehicle is greater than or equal to the predetermined distance ΔX1) (step S60: No), the target vehicle speed and target acceleration of the host vehicle are set by the inter-vehicle control ECU 10 so that the host vehicle travels at an acceleration that does not leave the distance between the host vehicle and the preceding vehicle (step S90).

一方、先行車が減速していると判定された場合には(ステップS50:減速)、先行車の減速度が先先行車の減速度よりも大きいか否かが車間制御ECU10によって判定される(ステップS70)。   On the other hand, when it is determined that the preceding vehicle is decelerating (step S50: Deceleration), it is determined by the inter-vehicle control ECU 10 whether the deceleration of the preceding vehicle is larger than the deceleration of the preceding preceding vehicle ( Step S70).

先行車の減速度が先先行車の減速度よりも大きいと判定された場合には(ステップS70:Yes)、自車と先行車との車間が緩やかに詰まる程度の減速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標減速度が設定される(ステップS100)。即ち、この場合には(ステップS70:Yes)、車間制御ECU10は、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標減速度を設定する。尚、ステップS100に係る処理は、図3を参照して上述したシーン13における自車の加減速制御である。   If it is determined that the deceleration of the preceding vehicle is greater than the deceleration of the preceding preceding vehicle (step S70: Yes), the host vehicle travels at a deceleration that allows the space between the own vehicle and the preceding vehicle to be gradually blocked. Thus, the target vehicle speed and the target deceleration of the host vehicle are set by the inter-vehicle control ECU 10 (step S100). That is, in this case (step S70: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is higher than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S100 is the acceleration / deceleration control of the own vehicle in the scene 13 mentioned above with reference to FIG.

即ち、本実施形態では特に、先行車の減速度が先先行車の減速度よりも大きいと判定された場合には(ステップS70:Yes)、先行車と先先行車との間の車間距離が拡大傾向であると判定し、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標減速度を設定する。ここで、先行車の減速度が先先行車の減速度よりも大きい場合には、先行車と先先行車との間の車間距離が徐々に拡大しているため、先行車は、現在は減速状態であっても、わずかな期間の後に先先行車に追従するために、加速状態になると予測される。よって、本実施形態のように、先行車の減速度が先先行車の減速度よりも大きいと判定された場合には(ステップS70:Yes)、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標減速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に減速状態から加速状態に切り替わった際に、追従走行制御において先行車を追従するために自車を加速させるための駆動力を低減することができ、自車の燃費を向上させることができる)。   That is, in this embodiment, particularly when it is determined that the deceleration of the preceding vehicle is larger than the deceleration of the preceding preceding vehicle (step S70: Yes), the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is The target vehicle speed and the target deceleration of the own vehicle are set so that the vehicle speed of the own vehicle is higher than the vehicle speed of the preceding vehicle. Here, when the deceleration of the preceding vehicle is greater than the deceleration of the preceding preceding vehicle, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is gradually increasing, so the preceding vehicle is currently decelerating. Even in a state, it is predicted that the vehicle will be in an accelerated state in order to follow the preceding vehicle after a short period. Therefore, when it is determined that the deceleration of the preceding vehicle is larger than the deceleration of the preceding preceding vehicle as in the present embodiment (step S70: Yes), the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. Thus, by setting the target vehicle speed and target deceleration of the own vehicle, useless acceleration / deceleration of the own vehicle can be reduced, and the fuel consumption of the own vehicle can be improved (that is, the preceding vehicle is When switching from the deceleration state to the acceleration state after a short period of time, the driving force for accelerating the own vehicle can be reduced to follow the preceding vehicle in the follow-up running control, and the fuel efficiency of the own vehicle is improved. be able to).

先行車の減速度が先先行車の減速度よりも小さいと判定された場合には(ステップS70:No)、自車と先行車との車間が緩やかに伸びる程度の減速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標減速度が設定される(ステップS110)。即ち、この場合には(ステップS70:No)、車間制御ECU10は、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。尚、ステップS110に係る処理は、図3を参照して上述したシーン12における自車の加減速制御である。   If it is determined that the deceleration of the preceding vehicle is smaller than the deceleration of the preceding preceding vehicle (step S70: No), the host vehicle travels at such a deceleration that the distance between the own vehicle and the preceding vehicle gradually increases. Thus, the target vehicle speed and the target deceleration of the host vehicle are set by the inter-vehicle control ECU 10 (step S110). That is, in this case (step S70: No), the inter-vehicle control ECU 10 sets the target vehicle speed and the target deceleration of the own vehicle so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S110 is the acceleration / deceleration control of the own vehicle in the scene 12 mentioned above with reference to FIG.

即ち、本実施形態では特に、先行車の減速度が先先行車の減速度よりも小さいと判定された場合には(ステップS70:No)、車間制御ECU10は、先行車と先先行車との間の車間距離が縮小傾向であると判定し、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定する。ここで、先行車の減速度が先先行車の減速度よりも小さい場合には、先行車と先先行車との間の車間距離が徐々に縮小しているため、先行車は、先先行車との間の車間を保つために、わずかな期間の後に減速度を増大させると予測される。よって、本実施形態のように、先行車の減速度が先先行車の減速度よりも小さいと判定された場合には(ステップS70:No)、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標減速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に減速度を増大させた際に、追従走行制御において自車両を無駄に減速させることを低減することができ、自車の燃費を向上させることができる)。   That is, particularly in the present embodiment, when it is determined that the deceleration of the preceding vehicle is smaller than the deceleration of the preceding preceding vehicle (step S70: No), the inter-vehicle control ECU 10 determines whether the preceding vehicle and the preceding preceding vehicle are It is determined that the inter-vehicle distance is decreasing, and the target vehicle speed and the target deceleration of the own vehicle are set so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle. Here, when the deceleration of the preceding vehicle is smaller than the deceleration of the preceding preceding vehicle, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is gradually decreasing, so the preceding vehicle is the preceding preceding vehicle. It is expected to increase the deceleration after a short period in order to keep the distance between the two. Therefore, when it is determined that the deceleration of the preceding vehicle is smaller than the deceleration of the preceding preceding vehicle as in this embodiment (step S70: No), the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle. Thus, by setting the target vehicle speed and target deceleration of the own vehicle, useless acceleration / deceleration of the own vehicle can be reduced, and the fuel consumption of the own vehicle can be improved (that is, the preceding vehicle is When the deceleration is increased after a short period of time, it is possible to reduce unnecessary deceleration of the host vehicle in the follow-up traveling control, and to improve the fuel consumption of the host vehicle).

図4及び図5において、先先行車が減速していないと判定された場合には(ステップS30:No)、先先行車が一定速度で走行しているか否かが車間制御ECU10によって判定される(ステップS120)。   4 and 5, when it is determined that the preceding preceding vehicle is not decelerating (step S30: No), it is determined by the inter-vehicle control ECU 10 whether or not the preceding preceding vehicle is traveling at a constant speed. (Step S120).

図5において、先先行車が一定速度で走行していない(即ち、先先行車が加速している)と判定された場合には(ステップS120:No)、先行車が一定速度で走行しているか否かが車間制御ECU10によって判定される(ステップS240、図6参照)。尚、ステップS240に係る処理以降の処理については図6を参照して後述する。   In FIG. 5, when it is determined that the preceding vehicle is not traveling at a constant speed (that is, the preceding vehicle is accelerating) (step S120: No), the preceding vehicle is traveling at a constant speed. Whether or not there is is determined by the inter-vehicle distance control ECU 10 (step S240, see FIG. 6). Note that the processing after step S240 will be described later with reference to FIG.

先先行車が一定速度で走行していると判定された場合には(ステップS120:Yes)、先行車が一定速度で走行しているか否かが車間制御ECU10によって判定される(ステップS130)。   If it is determined that the preceding preceding vehicle is traveling at a constant speed (step S120: Yes), the inter-vehicle control ECU 10 determines whether the preceding vehicle is traveling at a constant speed (step S130).

先行車が一定速度で走行していると判定された場合には(ステップS130:Yes)、自車を先行車両に追従させる制御が車間制御ECU10によって行われる(ステップS140)。即ち、車間制御ECU10は、先先行車両が一定速度で走行しており、先行車両が一定速度で走行している場合には、自車が先行車両に追従するように、自車の目標速度を一定速度に設定する。尚、ステップS140に係る処理は、図3を参照して上述したシーン1における自車の加減速制御である。   When it is determined that the preceding vehicle is traveling at a constant speed (step S130: Yes), the inter-vehicle control ECU 10 performs control for causing the own vehicle to follow the preceding vehicle (step S140). That is, the inter-vehicle control ECU 10 sets the target speed of the own vehicle so that the own vehicle follows the preceding vehicle when the preceding preceding vehicle is traveling at a constant speed and the preceding vehicle is traveling at a constant speed. Set to a constant speed. In addition, the process which concerns on step S140 is the acceleration / deceleration control of the own vehicle in the scene 1 mentioned above with reference to FIG.

先行車が一定速度で走行していないと判定された場合には(ステップS130:No)、先行車が加速中及び減速中のいずれであるかが車間制御ECU10によって判定される(ステップS150)。   When it is determined that the preceding vehicle is not traveling at a constant speed (step S130: No), the inter-vehicle control ECU 10 determines whether the preceding vehicle is accelerating or decelerating (step S150).

先行車が加速していると判定された場合には(ステップS150:加速)、自車と先行車との間の車間距離が所定距離ΔX1よりも短いか否かが車間制御ECU10によって判定される(ステップS160)。   When it is determined that the preceding vehicle is accelerating (step S150: acceleration), the inter-vehicle control ECU 10 determines whether the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1. (Step S160).

自車と先行車との間の車間距離が所定距離ΔX1よりも短いと判定された場合には(ステップS160:Yes)、自車と先行車との車間が緩やかに伸びる程度の一定速度で自車が走行するように、車間制御ECU10によって自車の目標車速が設定される(ステップS190)。即ち、この場合には(ステップS160:Yes)、車間制御ECU10は、自車の目標車速を、例えば先先行車の車速に等しい一定速度に設定する。尚、ステップS190に係る処理は、図3を参照して上述したシーン2における自車の加減速制御である。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1 (step S160: Yes), the host vehicle is traveling at a constant speed such that the distance between the host vehicle and the preceding vehicle gradually increases. The target vehicle speed of the host vehicle is set by the inter-vehicle control ECU 10 so that the vehicle travels (step S190). That is, in this case (step S160: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed of the own vehicle to a constant speed equal to the vehicle speed of the preceding vehicle, for example. In addition, the process which concerns on step S190 is the acceleration / deceleration control of the own vehicle in the scene 2 mentioned above with reference to FIG.

即ち、本実施形態では、先先行車が一定速度で走行しており、先行車が加速状態であって、自車と先行車との間の車間距離が所定距離ΔX1よりも短いと判定された場合には(ステップS160:Yes)、車間制御ECU10は、先行車と先先行車との間の車間距離が縮小傾向であると判定し、自車の目標車速を、先行車の車速よりも低い一定速度(例えば先先行車両の車速に等しい一定速度)に設定する。ここで、先先行車が一定速度で走行しており、先行車が加速状態である場合には、先行車と先先行車との間の車間距離が徐々に縮小しているため、先行車が現在は加速状態であっても、先先行車との間の車間を保つために、わずかな期間の後に減速状態となると予測される。よって、本実施形態のように、先先行車が一定速度で走行しており、先行車が加速状態であって、自車と先行車との間の車間距離が所定距離ΔX1よりも短いと判定された場合には(ステップS160:Yes)、自車の目標車速を、先行車の車速よりも低い一定速度(例えば先先行車両の車速に等しい一定速度)に設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に加速状態から減速状態に切り替わった際に、追従走行制御において自車両を無駄に減速させることを低減することができ、自車の燃費を向上させることができる)。   That is, in this embodiment, it is determined that the preceding preceding vehicle is traveling at a constant speed, the preceding vehicle is in an accelerated state, and the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1. In this case (step S160: Yes), the inter-vehicle control ECU 10 determines that the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is decreasing, and the target vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle. A constant speed (for example, a constant speed equal to the vehicle speed of the preceding vehicle) is set. Here, when the preceding preceding vehicle is traveling at a constant speed and the preceding vehicle is in an acceleration state, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is gradually decreasing. Even if the vehicle is currently in an acceleration state, it is predicted that the vehicle will decelerate after a short period of time in order to maintain a distance from the preceding vehicle. Therefore, as in the present embodiment, it is determined that the preceding preceding vehicle is traveling at a constant speed, the preceding vehicle is in an accelerated state, and the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter than the predetermined distance ΔX1. If the vehicle speed has been set (step S160: Yes), the target vehicle speed of the own vehicle is set to a constant speed lower than the vehicle speed of the preceding vehicle (for example, a constant speed equal to the vehicle speed of the preceding preceding vehicle). Acceleration / deceleration can be reduced, and the fuel efficiency of the vehicle can be improved (that is, when the preceding vehicle is switched from the acceleration state to the deceleration state after a short period of time as described above, This can reduce unnecessary deceleration and improve the fuel efficiency of the vehicle).

自車と先行車との間の車間距離が所定距離ΔX1よりも短くない(即ち、自車と先行車との間の車間距離が所定距離ΔX1以上である)と判定された場合には(ステップS160:No)、自車と先行車との車間距離が離れない程度の加速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS200)。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is not shorter than the predetermined distance ΔX1 (that is, the inter-vehicle distance between the host vehicle and the preceding vehicle is greater than or equal to the predetermined distance ΔX1) (step S160: No), the target vehicle speed and target acceleration of the host vehicle are set by the inter-vehicle control ECU 10 so that the host vehicle travels at an acceleration that does not leave the distance between the host vehicle and the preceding vehicle (step S200).

一方、先行車が減速していると判定された場合には(ステップS150:減速)、先行車が急ブレーキをかけたか否かが車間制御ECU10によって判定される(ステップS170)。即ち、先行車の減速度が、急ブレーキにより発生したと予測される所定の減速度よりも大きいか否か車間制御ECU10によって判定される。   On the other hand, if it is determined that the preceding vehicle is decelerating (step S150: deceleration), it is determined by the inter-vehicle control ECU 10 whether or not the preceding vehicle has suddenly braked (step S170). That is, it is determined by the inter-vehicle control ECU 10 whether or not the deceleration of the preceding vehicle is larger than a predetermined deceleration that is predicted to have occurred due to sudden braking.

先行車が急ブレーキをかけたと判定された場合には(ステップS170:Yes)、自車が先行車に衝突しないように、車間制御ECU10によって自車の目標車速及び目標減速度が設定される(ステップS210)。   If it is determined that the preceding vehicle has suddenly braked (step S170: Yes), the target vehicle speed and the target deceleration of the own vehicle are set by the inter-vehicle control ECU 10 so that the own vehicle does not collide with the preceding vehicle ( Step S210).

先行車が急ブレーキをかけていないと判定された場合には(ステップS170:No)、自車と先行車との間の車間距離が所定距離ΔX2よりも長いか否かが車間制御ECU10によって判定される(ステップS180)。ここで、所定距離ΔX2は、自車と先行車との衝突を安全に回避可能な車間距離として予め設定される距離である。   When it is determined that the preceding vehicle is not suddenly braked (step S170: No), the inter-vehicle control ECU 10 determines whether the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than a predetermined distance ΔX2. (Step S180). Here, the predetermined distance ΔX2 is a distance set in advance as an inter-vehicle distance that can safely avoid a collision between the host vehicle and the preceding vehicle.

自車と先行車との間の車間距離が所定距離ΔX2よりも長いと判定された場合には(ステップS180:Yes)、自車と先行車との車間が緩やかに詰まる程度の一定速度で自車が走行するように、車間制御ECU10によって自車の目標車速が設定される(ステップS220)。即ち、この場合には(ステップS180:Yes)、車間制御ECU10は、自車の目標車速を、例えば先先行車の車速に等しい一定速度に設定する。尚、ステップS220に係る処理は、図3を参照して上述したシーン3における自車の加減速制御である。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than the predetermined distance ΔX2 (step S180: Yes), the host vehicle and the preceding vehicle are automatically driven at a constant speed so that the distance between the host vehicle and the preceding vehicle is gradually blocked. The target vehicle speed of the host vehicle is set by the inter-vehicle control ECU 10 so that the vehicle travels (step S220). That is, in this case (step S180: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed of the host vehicle to a constant speed equal to the vehicle speed of the preceding vehicle, for example. In addition, the process which concerns on step S220 is the acceleration / deceleration control of the own vehicle in the scene 3 mentioned above with reference to FIG.

即ち、本実施形態では、先先行車が一定速度で走行しており、先行車が減速状態であって、自車と先行車との間の車間距離が所定距離ΔX2よりも長いと判定された場合には(ステップS180:Yes)、車間制御ECU10は、先行車と先先行車との間の車間距離が拡大傾向であると判定し、自車の目標車速を、先行車の車速よりも高い一定速度(例えば先先行車両の車速に等しい一定速度)に設定する。ここで、先先行車が一定速度で走行しており、先行車が減速状態である場合には、先行車と先先行車との間の車間距離が徐々に拡大しているため、先行車が現在は減速状態であっても、わずかな期間の後に先行車は先先行車に追従するために加速状態となると予測される。よって、本実施形態のように、先先行車が一定速度で走行しており、先行車が減速状態であって、自車と先行車との間の車間距離が所定距離ΔX2よりも長いと判定された場合には(ステップS180:Yes)、自車の目標車速を、先行車の車速よりも高い一定速度(例えば先先行車両の車速に等しい一定速度)に設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に減速状態から加速状態に切り替わった際に、追従走行制御において自車両を無駄に速させることを低減することができ、追従走行制御において先行車を追従するために自車を加速させるための駆動力を低減することができ、自車の燃費を向上させることができる)。   That is, in this embodiment, it is determined that the preceding preceding vehicle is traveling at a constant speed, the preceding vehicle is in a deceleration state, and the inter-vehicle distance between the own vehicle and the preceding vehicle is longer than the predetermined distance ΔX2. In this case (step S180: Yes), the inter-vehicle control ECU 10 determines that the inter-vehicle distance between the preceding vehicle and the preceding vehicle is increasing, and the target vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. A constant speed (for example, a constant speed equal to the vehicle speed of the preceding vehicle) is set. Here, when the preceding preceding vehicle is traveling at a constant speed and the preceding vehicle is decelerating, the distance between the preceding vehicle and the preceding preceding vehicle gradually increases, so the preceding vehicle Even if the vehicle is currently decelerated, it is predicted that the preceding vehicle will be in an accelerated state after a short period of time to follow the preceding preceding vehicle. Therefore, as in the present embodiment, it is determined that the preceding preceding vehicle is traveling at a constant speed, the preceding vehicle is in a deceleration state, and the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than the predetermined distance ΔX2. If the vehicle speed has been set (step S180: Yes), the target vehicle speed of the own vehicle is set to a constant speed higher than the vehicle speed of the preceding vehicle (for example, a constant speed equal to the vehicle speed of the preceding preceding vehicle). Acceleration / deceleration can be reduced, and the fuel consumption of the vehicle can be improved (that is, when the preceding vehicle is switched from the deceleration state to the acceleration state after a short period of time as described above, (Useless speed can be reduced, the driving force for accelerating the vehicle to follow the preceding vehicle in the following traveling control can be reduced, and the fuel consumption of the vehicle can be improved) .

自車と先行車との間の車間距離が所定距離ΔX2よりも短いと判定された場合には(ステップS180:No)、自車が先行車に衝突しないで先行車に追従するように、車間制御ECU10によって自車の目標車速及び目標減速度が設定される(ステップS230)。   When it is determined that the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter than the predetermined distance ΔX2 (step S180: No), the inter-vehicle distance is set so that the own vehicle follows the preceding vehicle without colliding with the preceding vehicle. The target vehicle speed and target deceleration of the own vehicle are set by the control ECU 10 (step S230).

図5及び図6において、先先行車が一定速度で走行していない(即ち、先先行車が加速している)と判定された場合には(ステップS120:No)、先行車が一定速度で走行しているか否かが車間制御ECU10によって判定される(ステップS240)。   5 and 6, when it is determined that the preceding preceding vehicle is not traveling at a constant speed (ie, the preceding preceding vehicle is accelerating) (step S120: No), the preceding vehicle is at a constant speed. Whether or not the vehicle is traveling is determined by the inter-vehicle control ECU 10 (step S240).

先行車が一定速度で走行していると判定された場合には(ステップS240:Yes)、自車と先行車との車間が緩やかに詰まる程度の加速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS260)。即ち、この場合には(ステップS240:Yes)、車間制御ECU10は、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。尚、ステップS260に係る処理は、図3を参照して上述したシーン4における自車の加減速制御である。   When it is determined that the preceding vehicle is traveling at a constant speed (step S240: Yes), the inter-vehicle distance control is performed so that the own vehicle travels at an acceleration that can gradually close the space between the own vehicle and the preceding vehicle. The target vehicle speed and target acceleration of the host vehicle are set by the ECU 10 (step S260). That is, in this case (step S240: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed and the target acceleration of the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S260 is the acceleration / deceleration control of the own vehicle in the scene 4 mentioned above with reference to FIG.

即ち、本実施形態では特に、先先行車が加速状態であって、先行車が一定速度で走行していると判定された場合には(ステップS240:Yes)、車間制御ECU10は、先行車と先先行車との間の車間距離が拡大傾向であると判定し、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。ここで、先先行車が加速状態であって、先行車が一定速度で走行している場合には、先行車と先先行車との間の車間距離が徐々に拡大しているため、先行車は、現在は一定速度で走行中であっても、わずかな期間の後に先先行車に追従するために、加速状態になると予測される。よって、本実施形態のように、先先行車が加速状態であって、先行車が一定速度で走行していると判定された場合には(ステップS240:Yes)、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように、先行車が、一定速度で走行する定速走行状態から、わずかな期間の後に加速状態に切り替わった際に、追従走行制御において先行車を追従するために自車を加速させるための駆動力を低減することができ、自車の燃費を向上させることができる)。   That is, particularly in the present embodiment, when it is determined that the preceding preceding vehicle is in an accelerating state and the preceding vehicle is traveling at a constant speed (step S240: Yes), the inter-vehicle control ECU 10 determines that the preceding vehicle is It is determined that the inter-vehicle distance with the preceding preceding vehicle is increasing, and the target vehicle speed and the target acceleration of the own vehicle are set so that the vehicle speed of the own vehicle is higher than the vehicle speed of the preceding vehicle. Here, when the preceding preceding vehicle is in an accelerating state and the preceding vehicle is traveling at a constant speed, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle gradually increases, so the preceding vehicle Is predicted to be in an accelerated state in order to follow the preceding vehicle after a short period of time even if the vehicle is currently traveling at a constant speed. Therefore, as in the present embodiment, when it is determined that the preceding preceding vehicle is in an accelerating state and the preceding vehicle is traveling at a constant speed (step S240: Yes), the vehicle speed of the host vehicle is the preceding vehicle. By setting the target vehicle speed and target acceleration of the host vehicle so as to be higher than the vehicle speed of the vehicle, useless acceleration / deceleration of the host vehicle can be reduced, and the fuel efficiency of the host vehicle can be improved (that is, as described above) In addition, when the preceding vehicle switches from a constant speed traveling state where the vehicle travels at a constant speed to an accelerated state after a short period of time, the driving force for accelerating the own vehicle to follow the preceding vehicle in the following traveling control Can be reduced and the fuel efficiency of the vehicle can be improved).

先行車が一定速度で走行していないと判定された場合には(ステップS240:No)、先行車が加速中及び減速中のいずれであるかが車間制御ECU10によって判定される(ステップS250)。   If it is determined that the preceding vehicle is not traveling at a constant speed (step S240: No), the inter-vehicle control ECU 10 determines whether the preceding vehicle is accelerating or decelerating (step S250).

先行車が加速していると判定された場合には(ステップS250:加速)、先行車の加速度が先先行車の加速度よりも大きいか否かが車間制御ECU10によって判定される(ステップS270)。   When it is determined that the preceding vehicle is accelerating (step S250: acceleration), the inter-vehicle control ECU 10 determines whether the acceleration of the preceding vehicle is larger than the acceleration of the preceding preceding vehicle (step S270).

先行車の加速度が先先行車の加速度よりも大きいと判定された場合には(ステップS290:Yes)、自車と先行車との間の車間距離が所定距離βよりも短いか否か車間制御ECU10によって判定される(ステップS290)。ここで、所定距離βは、自車と先行車との衝突を安全に回避可能な車間距離として予め設定される距離である。   If it is determined that the acceleration of the preceding vehicle is greater than the acceleration of the preceding vehicle (step S290: Yes), whether or not the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance β. It is determined by the ECU 10 (step S290). Here, the predetermined distance β is a distance set in advance as an inter-vehicle distance that can safely avoid a collision between the host vehicle and the preceding vehicle.

自車と先行車との間の車間距離が所定距離βよりも短いと判定された場合には(ステップS290:Yes)、自車と先行車との車間が緩やかに伸びる程度の加速度で自車が先行車両を追従するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS320)。即ち、この場合には(ステップS290:Yes)、車間制御ECU10は、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標加速度を設定する。尚、ステップS90に係る処理は、図3を参照して上述したシーン8における自車の加減速制御である。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter than the predetermined distance β (step S290: Yes), the host vehicle is accelerated with such an extent that the distance between the host vehicle and the preceding vehicle gradually increases. The target vehicle speed and target acceleration of the host vehicle are set by the inter-vehicle control ECU 10 so that the vehicle follows the preceding vehicle (step S320). That is, in this case (step S290: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed and the target acceleration of the host vehicle so that the vehicle speed of the host vehicle is lower than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S90 is the acceleration / deceleration control of the own vehicle in the scene 8 mentioned above with reference to FIG.

即ち、本実施形態では特に、先行車の加速度が先先行車の加速度よりも大きいと判定された場合には(ステップS290:Yes)、車間制御ECU10は、先行車と先先行車との間の車間距離が縮小傾向であると判定し、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標加速度を設定する。ここで、先行車の加速度が先先行車の加速度よりも大きい場合には、先行車と先先行車との間の車間距離が徐々に縮小しているため、先行車が現在は加速状態であっても、先先行車との間の車間を保つために、わずかな期間の後に減速状態となると予測される。よって、本実施形態のように、先行車の加速度が先先行車の加速度よりも大きいと判定された場合には(ステップS290:Yes)、自車の車速が先行車の車速よりも低くなるように、自車の目標車速及び目標加速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に加速状態から減速状態に切り替わった際に、追従走行制御において自車両を無駄に減速させることを低減することができ、自車の燃費を向上させることができる)。   That is, particularly in the present embodiment, when it is determined that the acceleration of the preceding vehicle is larger than the acceleration of the preceding vehicle (step S290: Yes), the inter-vehicle control ECU 10 determines whether the preceding vehicle and the preceding vehicle are in between. It is determined that the inter-vehicle distance is decreasing, and the target vehicle speed and target acceleration of the own vehicle are set so that the vehicle speed of the own vehicle is lower than the vehicle speed of the preceding vehicle. Here, when the acceleration of the preceding vehicle is larger than the acceleration of the preceding preceding vehicle, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is gradually decreasing, so the preceding vehicle is currently in an accelerated state. However, it is predicted that the vehicle will be decelerated after a short period in order to keep the distance between the preceding vehicle and the preceding vehicle. Therefore, as in the present embodiment, when it is determined that the acceleration of the preceding vehicle is greater than the acceleration of the preceding vehicle (step S290: Yes), the vehicle speed of the host vehicle is made lower than the vehicle speed of the preceding vehicle. In addition, by setting the target vehicle speed and target acceleration of the own vehicle, unnecessary acceleration / deceleration of the own vehicle can be reduced, and the fuel efficiency of the own vehicle can be improved (that is, the preceding vehicle has a short period of time as described above. When the vehicle is subsequently switched from the acceleration state to the deceleration state, it is possible to reduce the useless deceleration of the host vehicle in the follow-up traveling control, and to improve the fuel consumption of the host vehicle).

自車と先行車との間の車間距離が所定距離βよりも短くない(即ち、自車と先行車との間の車間距離が所定距離β以上である)と判定された場合には(ステップ290:No)、自車と先行車との車間距離が離れない程度の加速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS330)。   When it is determined that the inter-vehicle distance between the own vehicle and the preceding vehicle is not shorter than the predetermined distance β (that is, the inter-vehicle distance between the own vehicle and the preceding vehicle is equal to or greater than the predetermined distance β) (step 290: No), the target vehicle speed and target acceleration of the host vehicle are set by the inter-vehicle control ECU 10 so that the host vehicle travels at an acceleration that does not leave the distance between the host vehicle and the preceding vehicle (step S330).

一方、先行車の加速度が先先行車の加速度よりも小さいと判定された場合には(ステップS270:No)、自車と先行車との車間が緩やかに詰まる程度の加速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS300)。即ち、この場合には(ステップS270:Yes)、車間制御ECU10は、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。尚、ステップS300に係る処理は、図3を参照して上述したシーン7における自車の加減速制御である。   On the other hand, when it is determined that the acceleration of the preceding vehicle is smaller than the acceleration of the preceding vehicle (step S270: No), the vehicle travels at an acceleration that allows the space between the own vehicle and the preceding vehicle to be gradually blocked. Thus, the target vehicle speed and target acceleration of the host vehicle are set by the inter-vehicle control ECU 10 (step S300). That is, in this case (step S270: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed and the target acceleration of the own vehicle so that the vehicle speed of the own vehicle is higher than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S300 is the acceleration / deceleration control of the own vehicle in the scene 7 mentioned above with reference to FIG.

即ち、本実施形態では特に、先行車の加速度が先先行車の加速度よりも小さいと判定された場合には(ステップS270:No)、先行車と先先行車との間の車間距離が拡大傾向であると判定し、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。ここで、先行車の加速度が先先行車の加速度よりも小さい場合には、先行車と先先行車との間の車間距離が徐々に拡大しているため、先行車は、先先行車に追従するために、わずかな期間の後に加速度を増大させると予測される。よって、本実施形態のように、先行車の加速度が先先行車の加速度よりも小さいと判定された場合には(ステップS270:Yes)、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に加速度を増大させた際に、追従走行制御において先行車を追従するために自車を加速させるための駆動力を低減することができ、自車の燃費を向上させることができる)。   That is, in this embodiment, particularly when it is determined that the acceleration of the preceding vehicle is smaller than the acceleration of the preceding vehicle (step S270: No), the inter-vehicle distance between the preceding vehicle and the preceding vehicle tends to increase. And the target vehicle speed and target acceleration of the host vehicle are set so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. Here, when the acceleration of the preceding vehicle is smaller than the acceleration of the preceding preceding vehicle, the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle gradually increases, so the preceding vehicle follows the preceding preceding vehicle. In order to increase the acceleration after a short period of time. Thus, as in the present embodiment, when it is determined that the acceleration of the preceding vehicle is smaller than the acceleration of the preceding vehicle (step S270: Yes), the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. In addition, by setting the target vehicle speed and target acceleration of the own vehicle, unnecessary acceleration / deceleration of the own vehicle can be reduced, and the fuel efficiency of the own vehicle can be improved (that is, the preceding vehicle has a short period of time as described above. When the acceleration is increased after this, the driving force for accelerating the own vehicle to follow the preceding vehicle in the follow-up running control can be reduced, and the fuel consumption of the own vehicle can be improved).

一方、先行車が減速していると判定された場合には(ステップS250:減速)、先行車が急ブレーキをかけたか否かが車間制御ECU10によって判定される(ステップS280)。即ち、先行車の減速度が、急ブレーキにより発生したと予測される所定の減速度よりも大きいか否か車間制御ECU10によって判定される。   On the other hand, when it is determined that the preceding vehicle is decelerating (Step S250: Deceleration), it is determined by the inter-vehicle control ECU 10 whether or not the preceding vehicle has suddenly braked (Step S280). That is, it is determined by the inter-vehicle control ECU 10 whether or not the deceleration of the preceding vehicle is larger than a predetermined deceleration that is predicted to have occurred due to sudden braking.

先行車が急ブレーキをかけたと判定された場合には(ステップS280:Yes)、自車が先行車に衝突しないように、車間制御ECU10によって自車の目標車速及び目標減速度が設定される(ステップS340)。   When it is determined that the preceding vehicle has suddenly braked (step S280: Yes), the target vehicle speed and the target deceleration of the own vehicle are set by the inter-vehicle control ECU 10 so that the own vehicle does not collide with the preceding vehicle ( Step S340).

先行車が急ブレーキをかけていないと判定された場合には(ステップS280:No)、自車と先行車との間の車間距離が所定距離ΔX2よりも長いか否かが車間制御ECU10によって判定される(ステップS310)。   If it is determined that the preceding vehicle is not suddenly braked (step S280: No), the inter-vehicle control ECU 10 determines whether the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than a predetermined distance ΔX2. (Step S310).

自車と先行車との間の車間距離が所定距離ΔX2よりも長いと判定された場合には(ステップS280:Yes)、自車と先行車との車間が緩やかに詰まる程度の加速度で自車が走行するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS350)。即ち、この場合には(ステップS280:Yes)、車間制御ECU10は、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。尚、ステップS350に係る処理は、図3を参照して上述したシーン5における自車の加減速制御である。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than the predetermined distance ΔX2 (step S280: Yes), the host vehicle is accelerated with such an acceleration that the distance between the host vehicle and the preceding vehicle is gradually blocked. The target vehicle speed and target acceleration of the host vehicle are set by the inter-vehicle control ECU 10 so that the vehicle travels (step S350). That is, in this case (step S280: Yes), the inter-vehicle control ECU 10 sets the target vehicle speed and the target acceleration of the own vehicle so that the vehicle speed of the own vehicle is higher than the vehicle speed of the preceding vehicle. In addition, the process which concerns on step S350 is the acceleration / deceleration control of the own vehicle in the scene 5 mentioned above with reference to FIG.

即ち、本実施形態では特に、先先行車が加速状態であり、先行車が減速状態であって、自車と先行車との間の車間距離が所定距離ΔX2よりも長いと判定された場合には(ステップS310:Yes)、車間制御ECU10は、先行車と先先行車との間の車間距離が拡大傾向であると判定し、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定する。ここで、先先行車が加速状態であり、先行車が減速状態である場合には、先行車と先先行車との間の車間距離が徐々に拡大しているため、先行車が現在は減速状態であっても、わずかな期間の後に先行車は先先行車に追従するために加速状態となると予測される。よって、本実施形態のように、先先行車が加速状態であり、先行車が減速状態であって、自車と先行車との間の車間距離が所定距離ΔX2よりも長いと判定された場合には(ステップS310:Yes)、自車の車速が先行車の車速よりも高くなるように、自車の目標車速及び目標加速度を設定することで、自車の無駄な加減速を低減でき、自車の燃費を向上させることができる(つまり、上述したように先行車がわずかな期間の後に減速状態から加速状態に切り替わった際に、追従走行制御において先行車を追従するために自車を加速させるための駆動力を低減することができ、自車の燃費を向上させることができる)。   That is, particularly in the present embodiment, when it is determined that the preceding preceding vehicle is in an accelerating state, the preceding vehicle is in a decelerating state, and the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than the predetermined distance ΔX2. (Step S310: Yes), the inter-vehicle control ECU 10 determines that the inter-vehicle distance between the preceding vehicle and the preceding vehicle is in an increasing trend, and the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle. Set the target vehicle speed and target acceleration of your vehicle. Here, if the preceding vehicle is in an acceleration state and the preceding vehicle is in a deceleration state, the preceding vehicle is currently decelerating because the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle gradually increases. Even in a state, it is predicted that the preceding vehicle will be in an accelerated state after a short period of time in order to follow the preceding preceding vehicle. Therefore, as in the present embodiment, when it is determined that the preceding preceding vehicle is in the accelerated state, the preceding vehicle is in the decelerating state, and the inter-vehicle distance between the host vehicle and the preceding vehicle is longer than the predetermined distance ΔX2. (Step S310: Yes), by setting the target vehicle speed and target acceleration of the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle, it is possible to reduce unnecessary acceleration / deceleration of the host vehicle, The fuel consumption of the vehicle can be improved (that is, when the preceding vehicle is switched from the deceleration state to the acceleration state after a short period of time as described above, the vehicle is The driving force for acceleration can be reduced, and the fuel efficiency of the vehicle can be improved).

自車と先行車との間の車間距離が所定距離ΔX2よりも長くない(即ち、自車と先行車との間の車間距離が所定距離ΔX1以下である)と判定された場合には(ステップS310:No)、自車が先行車に衝突しないで先行車に追従するように、車間制御ECU10によって自車の目標車速及び目標加速度が設定される(ステップS360)。   If it is determined that the inter-vehicle distance between the host vehicle and the preceding vehicle is not longer than the predetermined distance ΔX2 (that is, the inter-vehicle distance between the host vehicle and the preceding vehicle is equal to or less than the predetermined distance ΔX1) (step S310: No), the target vehicle speed and target acceleration of the own vehicle are set by the inter-vehicle control ECU 10 so that the own vehicle follows the preceding vehicle without colliding with the preceding vehicle (step S360).

次に、本実施形態に係る走行支援装置による追従走行制御が行われた際の自車の挙動について、図7を参照して説明する。尚、以下では、先先行車が減速し、これに応じて先行車が減速するシーンを例に挙げて説明する。   Next, the behavior of the host vehicle when the following traveling control is performed by the traveling support device according to the present embodiment will be described with reference to FIG. In the following, a scene in which the preceding preceding vehicle decelerates and the preceding vehicle decelerates accordingly will be described as an example.

図7は、本実施形態に係る走行支援装置による追従走行制御が行われた際の自車の挙動を説明するためのグラフである。尚、図7には、追従走行制御が行われる際の、先先行車、先行車及び自車の各々の車速の経時的な変化、並びに自車のエンジンにおける燃料噴射量の経時的な変化が示されている。具体的には、図7において、実線L1が先先行車の車速の変化を示し、実線L2が先行車の車速の変化を示し、実線L3が本実施形態に係る追従走行制御が行われた際の自車の車速の変化を示し、実線L4が本実施形態に係る追従走行制御が行われた際の自車の燃料噴射量の変化を示している。また、図7において、破線L3cは、比較例として、先行車の走行状態のみに基づいて追従走行制御が行われた場合の自車の車速の変化を示し、破線L4cは、比較例として、先行車の走行状態のみに基づいて追従走行制御が行われた場合の自車の燃料噴射量の変化を示している。   FIG. 7 is a graph for explaining the behavior of the host vehicle when the follow-up traveling control is performed by the traveling support device according to the present embodiment. FIG. 7 shows changes in the vehicle speeds of the preceding vehicle, the preceding vehicle, and the own vehicle with time, and changes with time in the fuel injection amount in the engine of the own vehicle when the follow-up running control is performed. It is shown. Specifically, in FIG. 7, a solid line L1 indicates a change in the vehicle speed of the preceding vehicle, a solid line L2 indicates a change in the vehicle speed of the preceding vehicle, and a solid line L3 indicates when the following traveling control according to the present embodiment is performed. The change of the vehicle speed of the own vehicle is shown, and the solid line L4 shows the change of the fuel injection amount of the own vehicle when the follow-up running control according to the present embodiment is performed. In FIG. 7, a broken line L3c shows a change in the vehicle speed of the own vehicle when the follow-up running control is performed based only on the running state of the preceding vehicle as a comparative example, and a broken line L4c shows a preceding example as a comparative example. A change in the fuel injection amount of the own vehicle when the follow-up running control is performed based only on the running state of the vehicle is shown.

図7に示すように、先先行車が時刻T1で減速を開始した場合、先先行車が減速したことを先行車が認識して減速を開始するまでには多少の遅れが発生する。即ち、先先行車が減速を開始する時刻T1と、先行車がこの先先行車の減速を認識して減速を開始する時刻T2との間に遅れ時間ΔT1が発生する。このため、実線L2に示すように、先行車は先先行車よりも強い減速を行うことが多い。   As shown in FIG. 7, when the preceding preceding vehicle starts decelerating at time T1, a slight delay occurs until the preceding vehicle recognizes that the preceding preceding vehicle has decelerated and starts decelerating. That is, a delay time ΔT1 occurs between time T1 when the preceding preceding vehicle starts to decelerate and time T2 when the preceding vehicle recognizes the deceleration of the preceding preceding vehicle and starts deceleration. For this reason, as shown by the solid line L2, the preceding vehicle often performs stronger deceleration than the preceding preceding vehicle.

仮に、何らの対策も施さずに、先行車の走行状態のみに基づく従来の追従走行制御を行う場合、先行車が減速したことを認識した後に自車の減速を行うので、先行車が減速を開始してから自車が減速を開始するまでにも更に遅れが発生する(破線L3c参照)。即ち、先行車が減速を開始する時刻T2と、自車がこの先行車の減速を認識して減速を開始する時刻T3との間に遅れ時間ΔT2が発生する。つまり、先先行車が減速を開始する時刻T1と、自車が減速を開始する時刻T3との間には、遅れ時間ΔT1に遅れ時間ΔT2が加わった遅れ時間ΔT3が発生する。このため、自車と先行車との間の車間距離を保つためには、破線L3cに示すように、自車は先行車(及び先先行車)よりも強い減速を行う必要がある。また、このような強い減速によって低下しすぎた車速を補うために、時刻T3より後の時間ΔT4に再び加速を行う必要がある。このような先行車の走行状態に基づく従来の追従走行制御では、遅れ時間ΔT3に設定速度を維持するために出力された駆動力エネルギーが、その後の減速のためのブレーキによって失われると共に、時間ΔT4に再び加速するために余分な駆動エネルギーが必要となってしまう。つまり、従来の追従走行制御では、遅れ時間ΔT3や時間ΔT4において無駄に燃料噴射が行われる。   If conventional follow-up driving control based only on the driving state of the preceding vehicle is performed without taking any measures, the host vehicle decelerates after recognizing that the preceding vehicle has decelerated. There is a further delay from when the vehicle starts to decelerate (see broken line L3c). That is, a delay time ΔT2 occurs between time T2 when the preceding vehicle starts to decelerate and time T3 when the own vehicle recognizes the deceleration of the preceding vehicle and starts decelerating. That is, a delay time ΔT3 in which the delay time ΔT2 is added to the delay time ΔT1 occurs between the time T1 when the preceding vehicle starts to decelerate and the time T3 when the host vehicle starts decelerating. For this reason, in order to maintain the inter-vehicle distance between the own vehicle and the preceding vehicle, the own vehicle needs to decelerate more strongly than the preceding vehicle (and the preceding preceding vehicle) as indicated by a broken line L3c. Further, in order to compensate for the vehicle speed that has decreased too much due to such strong deceleration, it is necessary to perform acceleration again at time ΔT4 after time T3. In the conventional following traveling control based on the traveling state of the preceding vehicle, the driving force energy output for maintaining the set speed at the delay time ΔT3 is lost by the brake for subsequent deceleration and the time ΔT4. In order to accelerate again, extra driving energy is required. That is, in the conventional follow-up running control, fuel injection is performed wastefully at the delay time ΔT3 and the time ΔT4.

しかるに、本実施形態に係る走行支援装置による追従走行制御では、先先行車の減速が検出された時点で、自車の減速が開始される。この際、自車の目標減速度は、図3から図7を参照して上述したように、先先行車及び先行車の走行状態に基づいて設定される。   However, in the follow-up travel control by the travel support device according to the present embodiment, the deceleration of the host vehicle is started when the deceleration of the preceding vehicle is detected. At this time, the target deceleration of the host vehicle is set based on the preceding preceding vehicle and the traveling state of the preceding vehicle, as described above with reference to FIGS.

よって、自車を緩やかに減速させる(言い換えれば、自車の車速をスムーズに低下させる)ことができ、上述した遅れ時間ΔT3や時間ΔT4におけるような無駄な燃料噴射を回避することができる。即ち、本実施形態によれば、例えば、遅れ時間ΔT3における無駄な燃料噴射量F1及び時間ΔT4における無駄な燃料噴射量F2を低減或いは無くすことが可能となる。従って、自車の燃費を向上させることができる。   Therefore, the host vehicle can be slowly decelerated (in other words, the vehicle speed of the host vehicle can be reduced smoothly), and unnecessary fuel injection at the delay time ΔT3 and time ΔT4 described above can be avoided. That is, according to the present embodiment, for example, the wasteful fuel injection amount F1 at the delay time ΔT3 and the wasteful fuel injection amount F2 at the time ΔT4 can be reduced or eliminated. Therefore, the fuel consumption of the own vehicle can be improved.

以上説明したように、本実施形態に係る走行支援装置1によれば、追従走行制御を行う際、自車の無駄な加減速を低減でき、燃費を向上させることができる。   As described above, according to the travel support device 1 according to the present embodiment, when the follow-up travel control is performed, useless acceleration / deceleration of the host vehicle can be reduced, and fuel consumption can be improved.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う走行支援装置もまた本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the scope or spirit of the invention that can be read from the claims and the entire specification. Is also included in the technical scope of the present invention.

1…走行支援装置、10…車間制御ECU、20…レーダセンサ、30…ストップランプスイッチ、40…クルーズ設定スイッチ、50…エンジン・AT制御ECU、60…ブレーキ制御ECU、70…ステアリングセンサ、80…ヨーセンサ、90…横加速度センサ、100…ドライバ意識・状態検出センサ、110…オートマチックトランスミッション、120…スロットルアクチュエータ、130…車速センサ、140…ブレーキアクチュエータ   DESCRIPTION OF SYMBOLS 1 ... Driving assistance device, 10 ... Inter-vehicle control ECU, 20 ... Radar sensor, 30 ... Stop lamp switch, 40 ... Cruise setting switch, 50 ... Engine / AT control ECU, 60 ... Brake control ECU, 70 ... Steering sensor, 80 ... Yaw sensor 90 ... Lateral acceleration sensor 100 ... Driver awareness / state detection sensor 110 ... Automatic transmission 120 ... Throttle actuator 130 ... Vehicle speed sensor 140 ... Brake actuator

Claims (1)

自車両の前方を走行する先行車両の走行状態を検出する先行車両検出手段と、
前記先行車両の前方を走行する先先行車両の走行状態を検出する先先行車両検出手段と、
前記先行車両の走行状態と前記先先行車両の走行状態とに基づいて、前記先行車両と前記先先行車両との間の車間距離が拡大傾向である否かを判定し、前記車間距離が拡大傾向であると判定した場合には、前記自車両の車両速度が前記先行車両の車両速度よりも高くなるように、前記自車両の加減速度を制御する制御手段と
を備え
前記先行車両検出手段は、前記先行車両の走行状態として、前記先行車両の加減速状態を検出し、
前記先先行車両検出手段は、前記先先行車両の走行状態として、前記先先行車両の加減速状態を検出する
ことを特徴とする走行支援装置。
Preceding vehicle detection means for detecting a traveling state of a preceding vehicle traveling in front of the host vehicle;
A preceding preceding vehicle detecting means for detecting a traveling state of the preceding preceding vehicle traveling in front of the preceding vehicle;
Based on the traveling state of the preceding vehicle and the traveling state of the preceding preceding vehicle, it is determined whether or not the inter-vehicle distance between the preceding vehicle and the preceding preceding vehicle is increasing, and the inter-vehicle distance is increasing. Control means for controlling the acceleration / deceleration of the host vehicle so that the vehicle speed of the host vehicle is higher than the vehicle speed of the preceding vehicle .
The preceding vehicle detection means detects an acceleration / deceleration state of the preceding vehicle as a traveling state of the preceding vehicle,
The preceding preceding vehicle detecting means detects an acceleration / deceleration state of the preceding preceding vehicle as a traveling state of the preceding preceding vehicle .
JP2009236477A 2009-10-13 2009-10-13 Driving support device Active JP5326983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236477A JP5326983B2 (en) 2009-10-13 2009-10-13 Driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236477A JP5326983B2 (en) 2009-10-13 2009-10-13 Driving support device

Publications (2)

Publication Number Publication Date
JP2011084105A JP2011084105A (en) 2011-04-28
JP5326983B2 true JP5326983B2 (en) 2013-10-30

Family

ID=44077411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236477A Active JP5326983B2 (en) 2009-10-13 2009-10-13 Driving support device

Country Status (1)

Country Link
JP (1) JP5326983B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347924B2 (en) * 2009-12-01 2013-11-20 トヨタ自動車株式会社 Driving assistance device
JP6158523B2 (en) * 2013-02-04 2017-07-05 トヨタ自動車株式会社 Inter-vehicle distance control device
JP2015123831A (en) * 2013-12-26 2015-07-06 富士重工業株式会社 Control device and control method of vehicle
JP6314721B2 (en) * 2014-07-25 2018-04-25 株式会社デンソー Vehicle control apparatus and vehicle control program
JP6410509B2 (en) 2014-08-04 2018-10-24 株式会社エフ・シー・シー Saddle riding
JP2017014934A (en) * 2015-06-29 2017-01-19 三菱自動車工業株式会社 Idling stop control device
JP7106477B2 (en) * 2019-03-20 2022-07-26 本田技研工業株式会社 vehicle controller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023059B2 (en) * 2000-01-17 2007-12-19 株式会社デンソー Vehicle travel control device
JP4600174B2 (en) * 2005-06-22 2010-12-15 日産自動車株式会社 Driving support device and driving support method
JP4905034B2 (en) * 2006-09-29 2012-03-28 トヨタ自動車株式会社 Travel control device and travel control method

Also Published As

Publication number Publication date
JP2011084105A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5326983B2 (en) Driving support device
EP1724174B1 (en) Adaptive cruise control
JP5510173B2 (en) Vehicle control device
US7099766B2 (en) Cruise control system having a stop function
US6708099B2 (en) Stop and go adaptive cruise control system
US6560525B1 (en) Integrated queue assist and adaptive cruise control
JP5552955B2 (en) Vehicle control device
JP2008504170A (en) Vehicle deceleration method and reduction device
JP2008296887A (en) Vehicular control device
US9026335B2 (en) Speed control system and method having a distance sensor, intended for a motor vehicle
JP4909849B2 (en) Vehicle travel control device
JP4926859B2 (en) Vehicle driving support device
JP2006038697A (en) Another vehicle detection device and inter-vehicle distance control device
JP2000194998A (en) Vehicle running control method and its device
EP1437254B1 (en) An adaptive cruise control system for a motor vehicle
JP2010096151A (en) Device and method for controlling vehicle speed
JP5118468B2 (en) Vehicle travel control device.
JP2007216775A (en) Cruise controller for vehicle
JP5593946B2 (en) Vehicle control device
JP7388342B2 (en) Braking force control device
JP2006248334A (en) Vehicle running control device
JP2005255087A (en) Travel control device
JP7497679B2 (en) Vehicle Driving Assistance Device
JP7471248B2 (en) Vehicle control device and vehicle control method
JP4259400B2 (en) Inter-vehicle distance control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151