JP5324967B2 - Thermoplastic resin expanded particles and method for producing the same - Google Patents

Thermoplastic resin expanded particles and method for producing the same Download PDF

Info

Publication number
JP5324967B2
JP5324967B2 JP2009053808A JP2009053808A JP5324967B2 JP 5324967 B2 JP5324967 B2 JP 5324967B2 JP 2009053808 A JP2009053808 A JP 2009053808A JP 2009053808 A JP2009053808 A JP 2009053808A JP 5324967 B2 JP5324967 B2 JP 5324967B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
particles
weight
foaming
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009053808A
Other languages
Japanese (ja)
Other versions
JP2010059393A (en
Inventor
淳 福澤
貴正 今井
清 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009053808A priority Critical patent/JP5324967B2/en
Publication of JP2010059393A publication Critical patent/JP2010059393A/en
Application granted granted Critical
Publication of JP5324967B2 publication Critical patent/JP5324967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide thermoplastic resin foaming particles, which does not provide uneveness or miniaturization of bubbles of the foaming particles in a method for preparing thermoplastic resin foaming particles using water as a foaming agent, wherein, with the particles, an in-mold foamed mold having a high accuracy of dimension, which exhibits a good surface performance, and a good fusion performance during in-mold foaming molding. <P>SOLUTION: In a method for preparing thermoplastic resin particles, in which the thermoplastic resin particles are dispersed into a water-based dispersion medium, the thermoplastic resin particles are heated to a temperature of the softening temperature or above, and then the water as the dispersion medium is discharged as a foaming agent to a pressure range lower than the inner pressure of a sealed container, a thermoplastic resin composition as the thermoplastic resin particles, comprising 0.05 pt.wt. to 2 pts.wt. of a polyhydric alcohol having 3-6C and 3 or more of hydroxyl groups, based on 100 pts.wt. of the thermoplastic resin; and a foaming agent, is used. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、緩衝包材、通い箱、自動車内装部材、自動車バンパー用芯材、断熱材などに用いられる型内発泡成形体の原料として好適に使用し得る熱可塑性樹脂発泡粒子、およびその製造方法に関する。   The present invention relates to a thermoplastic resin foam particle that can be suitably used as a raw material for an in-mold foam molded article used for a buffer packaging material, a return box, an automobile interior member, an automobile bumper core, a heat insulating material, and the like, and a method for producing the same. About.

熱可塑性樹脂発泡粒子を金型内に充填し、水蒸気等で加熱成形して得られる型内発泡成形体は、形状の任意性、軽量性、断熱性などの特徴を持つ。   An in-mold foam-molded product obtained by filling thermoplastic resin foam particles in a mold and heat-molding with steam or the like has characteristics such as arbitrary shape, lightness, and heat insulation.

従来、熱可塑性樹脂粒子を発泡剤とともに水系分散媒に分散させ、昇温して一定圧力、一定温度として樹脂粒子中に発泡剤を含浸させたのち、低圧雰囲気下に放出して発泡粒子を得る除圧発泡方法が知られている。発泡剤としては、プロパン、ブタンといった揮発性有機発泡剤を使用する方法(例えば、特許文献1)、炭酸ガス、窒素、空気などの無機ガスを使用する方法(例えば、特許文献2,3)が開示されている。   Conventionally, thermoplastic resin particles are dispersed in an aqueous dispersion medium together with a foaming agent, and the temperature is raised and the resin particles are impregnated with the foaming agent at a constant pressure and constant temperature, and then released into a low-pressure atmosphere to obtain foamed particles. A decompression foaming method is known. Examples of the blowing agent include a method using a volatile organic blowing agent such as propane and butane (for example, Patent Document 1) and a method using an inorganic gas such as carbon dioxide, nitrogen, and air (for example, Patent Documents 2 and 3). It is disclosed.

しかしながら、揮発性有機発泡剤は、地球温暖化係数が炭酸ガスよりも大きい物質であり、また、プロパン、ブタンなどの揮発性有機発泡剤は、水への溶解性が乏しい為に、水中に分散させたポリオレフィン系樹脂粒子に均一に含浸させることが難しく、発泡粒子の発泡倍率および結晶状態のコントロールが難しい。また、可燃性物質であるため、設備の防爆化が必要となるために、設備コスト高となる欠点を有している。   However, volatile organic blowing agents are substances that have a greater global warming potential than carbon dioxide, and volatile organic blowing agents such as propane and butane are poorly soluble in water, so they are dispersed in water. It is difficult to uniformly impregnate the polyolefin-based resin particles, and it is difficult to control the expansion ratio and crystal state of the expanded particles. In addition, since it is a flammable substance, it is necessary to make the equipment explosion-proof, which has the disadvantage of increasing the equipment cost.

一方、窒素、空気などの無機ガスを使用する場合は、熱可塑性樹脂への含浸能が非常に低く、高い圧力としても高発泡化に充分な含浸量が得られない問題があった。   On the other hand, when an inorganic gas such as nitrogen or air is used, the impregnation ability into the thermoplastic resin is very low, and there is a problem that a sufficient impregnation amount for high foaming cannot be obtained even at high pressure.

これらの欠点を解決し、型内発泡成形体の製造に好適に使用しうるポリオレフィン系樹脂発泡粒子を経済的に製造する方法として、分散媒に使用する水を発泡剤として利用する方法が提案されている。   As a method for solving these drawbacks and economically producing polyolefin resin expanded particles that can be suitably used for the production of in-mold foam molded articles, a method using water used as a dispersion medium as a blowing agent has been proposed. ing.

水を発泡剤とする方法として、無機充填剤を10重量%以上70重量%以下含有する結晶性ポリオレフィン重合体粒子を密閉容器で分散媒である水に分散させ、この分散液の飽和蒸気圧以上の圧力および結晶性ポリオレフィン重合体粒子の融点以下で、かつこの重合体粒子の結晶化が進行する温度条件下にある高圧域に保持して、分散媒である水を含浸させ、ついでこの分散液を低圧域に放出させて結晶性ポリオレフィン重合体発泡粒子を製造する方法が提案されている(例えば、特許文献4)。しかし、この方法で得られる発泡粒子は、大量の無機充填剤を含有しているため、気泡径が微細であり、また連泡率が高くなる傾向となり、型内発泡成形体とした時の融着、表面外観、圧縮強度等の機械的物性が十分でない。この様に、吸水性鉱物、水溶性無機物などを熱可塑性樹脂に添加し、水を発泡剤として作用させることも試みられてきているが、親水性ポリマーに比較して多量の添加が必要であり、またそれ自体が発泡核剤の機能も持つために気泡の小さい発泡粒子となる傾向にあり、成形性が不良となっていた。   As a method using water as a foaming agent, crystalline polyolefin polymer particles containing 10 wt% or more and 70 wt% or less of an inorganic filler are dispersed in water as a dispersion medium in a sealed container, and the saturated vapor pressure or higher of this dispersion is exceeded. The dispersion is maintained in a high pressure region under a pressure of 5 ° C. and a melting point of the crystalline polyolefin polymer particles and under a temperature condition where the crystallization of the polymer particles proceeds, and then impregnated with water as a dispersion medium. Has been proposed for producing crystalline polyolefin polymer foamed particles by releasing the polymer into a low pressure region (for example, Patent Document 4). However, since the expanded particles obtained by this method contain a large amount of inorganic filler, the cell diameter tends to be fine and the open cell ratio tends to be high. Mechanical properties such as wear, surface appearance and compressive strength are not sufficient. In this way, attempts have been made to add water-absorbing minerals, water-soluble inorganic substances, etc. to the thermoplastic resin and to allow water to act as a foaming agent, but a large amount of addition is required compared to hydrophilic polymers. Also, since it itself has the function of a foam nucleating agent, it tends to be foamed particles with small bubbles, and the moldability is poor.

密閉容器内で親水性ポリマーおよび無機充填剤を含有するポリオレフィン系樹脂粒子を水に分散させ、この樹脂粒子の軟化温度以上に加熱して含水ポリオレフィン系樹脂粒子とした後、この分散液を低圧域に放出させてポリオレフィン系樹脂発泡粒子を製造する方法が提案されている(例えば、特許文献5〜7)。この方法では、環境に優しい水を発泡剤として使用しながら、低い容器内圧で高発泡倍率のポリオレフィン系樹脂発泡粒子を得ることができる。しかしながら、得られる発泡粒子の気泡が微細化したり、不均一化し易い傾向があり、そこで得た発泡粒子を用いた型内発泡成形においては、低倍率の型内発泡成形体では特に問題の無い型内発泡成形体が得られるものの、高発泡倍率の型内発泡成形体の成形条件を、近年の生産コストの追及から、成形サイクルを短く、また成形後の養生時間を短くした場合、型内発泡成形体の表面にしわが発生したり、型内発泡成形体の寸法収縮が大きく、型内発泡成形体の形状が歪むなどの問題が見られ、型内発泡成形体の商品価値の低下や型内発泡成形体の生産性の悪化をもたらしている。   In a closed container, polyolefin resin particles containing a hydrophilic polymer and an inorganic filler are dispersed in water, heated to a temperature equal to or higher than the softening temperature of the resin particles to obtain water-containing polyolefin resin particles, and then the dispersion is reduced to a low pressure region. A method for producing a polyolefin resin foamed particle by releasing it into a resin has been proposed (for example, Patent Documents 5 to 7). In this method, polyolefin-based resin expanded particles having a high expansion ratio can be obtained at a low container internal pressure while using environmentally friendly water as a foaming agent. However, the foamed particles obtained tend to be fine or non-uniform, and in-mold foam molding using the foamed particles obtained there is no particular problem in the low-magnification in-mold foam molding. In-mold foaming can be obtained if the molding conditions of the in-mold foam molding with a high foaming ratio are obtained, but the molding cycle is shortened and the curing time after molding is shortened. There are problems such as wrinkles on the surface of the molded body, large dimensional shrinkage of the in-mold foam molded body, and distortion of the shape of the in-mold foam molded body. This has led to a deterioration in the productivity of foamed molded products.

さらに、前記、親水性ポリマーおよび無機充填剤を含有するポリオレフィン系樹脂粒子より製造したポリオレフィン系樹脂発泡粒子は、水を発泡剤として利用するために親水性ポリマーを添加するが、一般に親水性ポリマーがポリオレフィン系樹脂中での分散性に乏しいことから、発泡粒子の倍率バラツキが発生したり、型内発泡成形体としたときの発泡粒子どうしの融着が不良となり易い欠点も見られている。   Further, the polyolefin resin foam particles produced from the polyolefin resin particles containing the hydrophilic polymer and the inorganic filler are added with a hydrophilic polymer in order to use water as a foaming agent. Since the dispersibility in the polyolefin resin is poor, there are also disadvantages that the magnification variation of the expanded particles occurs and the fusion between the expanded particles when the in-mold expanded molded product is likely to be defective.

そして、特定の親水性ポリマーであるアイオノマー樹脂を、発泡剤に水と炭酸ガスを使用して、ポリオレフィン系樹脂発泡粒子を得る製造方法が提案されている(例えば、特許文献8)。この方法にて発泡粒子の気泡の均一性を高め、成形性を改良させる試みがされているが、気泡のバラツキが大きく、型内発泡成形体を得た際の成形体重量にもバラツキが生じたり、色むらが酷いこと、また、アイオノマー樹脂の含水率が低いために高倍率を得ようとすると多量添加が必要となり、型内発泡成形体の強度低下や型内発泡成形体の表面シワが発生し寸法収縮があること、高コストのため工業的に不向きといった問題があった。   And the manufacturing method which obtains the polyolefin-type resin expanded particle using the ionomer resin which is a specific hydrophilic polymer using water and a carbon dioxide gas as a foaming agent is proposed (for example, patent document 8). Attempts have been made to improve the foam uniformity of foamed particles and improve moldability by this method. However, there is a large variation in the bubbles, resulting in variations in the weight of the molded product when an in-mold foam molded product is obtained. In addition, the color unevenness is severe, and because the water content of the ionomer resin is low, it is necessary to add a large amount when trying to obtain a high magnification, resulting in a decrease in the strength of the in-mold foam molding and surface wrinkles of the in-mold foam molding. There were problems such as the occurrence of dimensional shrinkage and the unsuitability for industrial use due to high cost.

この様に、環境に優しい水を発泡剤とする方法では、ポリオレフィン系樹脂粒子に親水性の添加剤を含有させたり、無機物を多量に含有させることで、高い発泡倍率を得ることが試みられているが、添加剤の種類によっては、得られる発泡粒子の気泡が微細化したり、不均一となったりし易く、型内発泡成形体とした際の発泡粒子どうしの融着、寸法精度、外観、強度特性の悪化を招くことがあった。   As described above, in the method using environment-friendly water as a foaming agent, attempts have been made to obtain a high foaming ratio by adding a hydrophilic additive to the polyolefin resin particles or a large amount of an inorganic substance. However, depending on the type of additive, the foamed foam bubbles are likely to become finer or non-uniform, and the foamed particles are fused with each other when formed into an in-mold foam molded product. The strength characteristics may be deteriorated.

一方、界面活性剤や、グリセリンなどの親水性液体を親水性付与剤として含有させた発泡樹脂粒子からなる連通した空隙を有する発泡成形体が提案されている(例えば、特許文献9)。この発泡成形体は、親水性付与剤により水濡れ性を良好にし、通水性を向上させたものである。しかし、このような水濡れ性や通水性を高めるためには、多量の親水性付与剤を添加する必要があり、その結果、発泡成形体表面への親水性付与剤のブリード量が多くなってしまい、通水材としての使用には問題が無いとしても、緩衝包材、通い箱、緩衝材あるいは自動車部材など、運搬物や人と接触するような状況で使用される場合は、運搬物や人がブリード物により汚染される、あるいは手で触れたときにべとつき感があるといった問題がある。   On the other hand, there has been proposed a foamed molded article having a continuous void composed of foamed resin particles containing a surfactant or a hydrophilic liquid such as glycerin as a hydrophilicity imparting agent (for example, Patent Document 9). This foamed molded article has improved water permeability and improved water permeability with a hydrophilicity imparting agent. However, in order to improve such water wettability and water permeability, it is necessary to add a large amount of hydrophilicity imparting agent, and as a result, the amount of bleeding of the hydrophilicity imparting agent to the surface of the foamed molded product increases. Even if there is no problem in the use as a water-permeable material, if it is used in a situation where it is in contact with a transported item or a person such as a buffer wrapping material, a returnable box, a cushioning material or an automobile member, There is a problem that a person is contaminated by a bleed material or has a sticky feeling when touched by hand.

特公昭56−1344号公報Japanese Patent Publication No.56-1344 特公平4−64332号公報Japanese Patent Publication No. 4-64332 特公平4−64334号公報Japanese Examined Patent Publication No. 4-64334 特公昭49−2183号公報Japanese Patent Publication No.49-2183 特開平10−298338号公報JP-A-10-298338 特開平10−306179号公報Japanese Patent Laid-Open No. 10-306179 特開平11−106576号公報JP-A-11-106576 特開平10−152574号公報Japanese Patent Laid-Open No. 10-152574 特開平8−59875号公報Japanese Patent Laid-Open No. 8-59875

本発明は、水を発泡剤として用いる、熱可塑性樹脂がポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂発泡粒子の製造方法において、発泡粒子の気泡の不均一化や気泡の微細化を起こさず、また型内発泡成形を行った際に、融着性が良好で、かつ表面性が良好で、寸法精度の高い、触ったときのべとつき感のない型内発泡成形体が得られる熱可塑性発泡粒子を提供すること、さらに製造時の環境負荷を小さいものとすることを目的とする。
The present invention relates to a method for producing foamed thermoplastic resin particles in which water is used as a foaming agent and the thermoplastic resin is a polypropylene resin or a polyethylene resin. In addition, when performing in-mold foam molding, a thermoplastic foam that provides an in-mold foam molded article with good fusion, good surface properties, high dimensional accuracy, and no stickiness when touched. The object is to provide particles and to reduce the environmental load during production.

本発明者らは、鋭意検討の結果、ポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂に所定量の炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールと発泡核剤を含んでなる熱可塑性樹脂組成物からなる熱可塑性樹脂粒子を使用することで、上記課題が解決することを見出し、本発明の完成に至った。
The present inventors have intensive studies results, the thermoplastic resin is a polypropylene resin or polyethylene resin, a polyhydric alcohol having three or more predetermined amount having 3 to 6 or less and a hydroxyl carbon foam nucleating agent It has been found that the above-mentioned problems can be solved by using thermoplastic resin particles comprising the thermoplastic resin composition, and the present invention has been completed.

すなわち、本発明の第1は、
密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出する、水系分散媒に含まれる水を発泡剤とする、熱可塑性樹脂がポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂発泡粒子の製造方法において、前記熱可塑性樹脂粒子が、熱可塑性樹脂100重量部に対し、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物からなることを特徴とする熱可塑性樹脂発泡粒子の製造方法に関する。
That is, the first of the present invention is
An aqueous dispersion medium in which thermoplastic resin particles are dispersed in an aqueous dispersion medium in an airtight container, heated and pressurized to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles, and then released to a pressure range lower than the internal pressure of the airtight container. In the method for producing thermoplastic resin foamed particles, wherein the thermoplastic resin is a polypropylene resin or a polyethylene resin , wherein the thermoplastic resin particles are carbon based on 100 parts by weight of the thermoplastic resin. A thermoplastic resin composition comprising 0.05 to 2 parts by weight of a polyhydric alcohol having a number of 3 to 6 and 3 or more hydroxyl groups, and a foaming nucleating agent , The present invention relates to a method for producing foamed plastic resin particles.

好ましい態様としては、
)炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールが、グリセリン、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、D−マンニトールから選ばれる1種以上である、
)炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールが、グリセリンである、
)グリセリンの添加量が、熱可塑性樹脂100重量部に対し、0.05重量部以上0.5重量部以下である、
)発泡剤として炭酸ガスを併用する、
前記記載の熱可塑性樹脂発泡粒子の製造方法に関する。
As a preferred embodiment,
( 1 ) The polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups is at least one selected from glycerin, diglycerin, pentaerythritol, trimethylolpropane, sorbitol, and D-mannitol.
( 2 ) The polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups is glycerin.
( 3 ) The amount of glycerin added is 0.05 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
( 4 ) Use carbon dioxide as a foaming agent.
The present invention relates to a method for producing the thermoplastic resin expanded particles described above.

本発明の第2は、前記記載の熱可塑性樹脂がポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂発泡粒子の製造方法によって得られる熱可塑性樹脂発泡粒子であって、
炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量%以上2重量%以下含み、発泡倍率が10倍以上45倍以下、平均気泡径が50μm以上800μm以下、示差走査熱量測定によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線において、2つ以上の融点を示す結晶構造を有する熱可塑性樹脂発泡粒子に関し、本発明の第3は、前記記載の熱可塑性樹脂発泡粒子を、型内発泡成形してなる型内発泡成形体に関する。
The second of the present invention, the thermoplastic resin of the described a thermoplastic resin foamed particles obtained by the method for producing a thermoplastic resin foamed particles is a polypropylene resin or polyethylene resin,
Contains 0.05% to 2% by weight of a polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups, an expansion ratio of 10 to 45 times, an average cell diameter of 50 to 800 μm, and a differential The present invention relates to foamed thermoplastic resin particles having a crystal structure showing two or more melting points in a DSC curve obtained when the temperature is raised from 40 ° C. to 220 ° C. at a rate of temperature increase of 10 ° C./min by scanning calorimetry. The third of the present invention relates to an in-mold foam-molded product obtained by foam-molding the thermoplastic resin foam particles described above.

本発明によると、水を発泡剤として用いる、熱可塑性樹脂がポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂発泡粒子の製造方法においても、発泡粒子の気泡の不均一化や気泡の微細化が起こりにくい熱可塑性樹脂発泡粒子を得ることができ、製造時の環境負荷も小さくすることができる。また、本発明の製造方法によって得られた熱可塑性樹脂発泡粒子を用いて型内発泡成形を行うと、融着性が良好で、かつ表面性が良好で、寸法精度の高い、触ったときのべとつき感のない型内発泡成形体が得られる。特に本発明の熱可塑性樹脂発泡粒子を二段発泡によって高倍化させたのち、型内発泡成形する場合において、従来の水を発泡剤として使用した場合と比べて良好な型内発泡成形体を得ることが可能である。
According to the present invention, even in the method for producing thermoplastic resin foam particles in which water is used as a foaming agent and the thermoplastic resin is a polypropylene resin or a polyethylene resin, the foam particles have non-uniform bubbles and the fine bubbles. It is possible to obtain foamed thermoplastic resin particles that are unlikely to occur, and to reduce the environmental load during production. Moreover, when in-mold foam molding is performed using the thermoplastic resin foam particles obtained by the production method of the present invention, the fusion property is good, the surface property is good, the dimensional accuracy is high, and when touched An in-mold foam-molded product without stickiness is obtained. In particular, after the thermoplastic resin foamed particles of the present invention are doubled by two-stage foaming, in-mold foam molding, a better in-mold foam molded body is obtained compared to the case where conventional water is used as a foaming agent. It is possible.

本発明の熱可塑性樹脂発泡粒子の製造方法は、密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、水系分散媒に含まれる水を発泡剤として密閉容器の内圧よりも低い圧力域に放出するものであり、前記熱可塑性樹脂粒子が、熱可塑性樹脂100重量部に対し、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物からなることを特徴とするものである。   The method for producing foamed thermoplastic resin particles of the present invention comprises dispersing thermoplastic resin particles in an aqueous dispersion medium in an airtight container, heating and pressurizing to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles, and then aqueous dispersion medium. Water as a foaming agent is released into a pressure range lower than the internal pressure of the sealed container, and the thermoplastic resin particles have 3 to 6 carbon atoms and a hydroxyl group with respect to 100 parts by weight of the thermoplastic resin. It consists of a thermoplastic resin composition comprising 0.05 to 2 parts by weight of a polyhydric alcohol having 3 or more and a foaming nucleating agent.

本発明で使用する炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールは、熱可塑性樹脂に少量含有させるだけで、含水率を高め、高発泡倍率の発泡粒子を得ることが可能となるものである。具体的に、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールとしては、グリセリン、1,2,4−ブタントリオール、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、D−マンニトール、エリスリトール、ヘキサントリオール、キシリトール、D−キシロース、イノシトール、フルクトース、ガラクトース、グルコース、マンノース等が挙げられる。中でも、グリセリン、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、D−マンニトールから選ばれる1種以上であることが好ましく、より好ましくは、グリセリンである。グリセリンは、強吸湿性で、食品添加剤としても使用される人体に対して極めて安全な物質であり、本発明の熱可塑性樹脂発泡粒子を、食品との接触がある用途に用いられる型内発泡成形体の原料として用いることも可能である。また製造中にグリセリンが排水中へ溶出した場合においても易分解性を示すことから環境影響が小さい特徴も有する。一般に入手し易く、安価な点でも好適である。   The polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups used in the present invention can increase the moisture content and obtain expanded particles with a high expansion ratio by simply adding a small amount to the thermoplastic resin. It will be. Specifically, examples of the polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups include glycerin, 1,2,4-butanetriol, diglycerin, pentaerythritol, trimethylolpropane, sorbitol, and D-mannitol. Erythritol, hexanetriol, xylitol, D-xylose, inositol, fructose, galactose, glucose, mannose and the like. Especially, it is preferable that it is 1 or more types chosen from glycerol, diglycerol, pentaerythritol, a trimethylol propane, sorbitol, and D-mannitol, More preferably, it is glycerol. Glycerin is a highly hygroscopic substance that is extremely safe for the human body, which is also used as a food additive. The foamed thermoplastic resin particles of the present invention are used for in-mold foaming that is in contact with food. It is also possible to use it as a raw material for a molded body. In addition, even when glycerin elutes into the wastewater during production, it also has a feature that it has a small environmental impact because it exhibits easy degradability. In general, it is easy to obtain and inexpensive, which is preferable.

一般に親水性物質は熱可塑性樹脂への相溶性にやや劣る特性があるが、本発明で使用する炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールであれば、熱可塑性樹脂にブレンド後、押出機にて混練、ストランドカット法にて熱可塑性樹脂粒子を作製する工程においても比較的良好に分散するためストランド切れの発生や、溶融樹脂の送り不安定などのトラブルの発生が少ない傾向がある。さらに均一な気泡で倍率バラツキが小さい熱可塑性樹脂発泡粒子が得られる。該熱可塑性樹脂発泡粒子を用いて型内発泡成形して得られた型内発泡成形体は融着率が高く、表面が美麗であり、寸法収縮率も小さい。   In general, hydrophilic substances have characteristics that are slightly inferior in compatibility with thermoplastic resins. However, any polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups used in the present invention can be used as a thermoplastic resin. After blending, kneading with an extruder, and the process of producing thermoplastic resin particles by the strand cut method is relatively well dispersed, so there are few troubles such as strand breakage and unstable feeding of molten resin. Tend. Further, expanded thermoplastic resin particles having uniform bubbles and small variation in magnification can be obtained. An in-mold foam molded article obtained by in-mold foam molding using the thermoplastic resin foam particles has a high fusion rate, a beautiful surface, and a small dimensional shrinkage rate.

炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールの添加量は、熱可塑性樹脂100重量部に対して0.05重量部以上2重量部以下であり、好ましくは0.07重量部以上0.5重量部重量部であり、更に好ましくは0.1重量部以上0.3重量部以下である。ここで、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールの添加量とは、吸水していない状態での重量を指す。   The addition amount of the polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups is 0.05 to 2 parts by weight, preferably 0.07 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Part by weight or more and 0.5 part by weight or more, more preferably 0.1 part by weight or more and 0.3 part by weight or less. Here, the addition amount of the polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups refers to the weight in the state of not absorbing water.

炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールの添加量が0.05重量部より少ないと、熱可塑性樹脂発泡粒子の発泡倍率を向上させることができなかったり、気泡の均一化効果が低減する。添加量が2重量部を超えては、熱可塑性樹脂発泡粒子の収縮が生じ易くなったり、熱可塑性樹脂粒子中への分散が不十分となる。更には、熱可塑性樹脂発泡粒子から得た型内発泡成形体において、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールのブリードが多くなり、接触物品の汚染やべとつき感が発生する傾向にある。   If the addition amount of the polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups is less than 0.05 parts by weight, the expansion ratio of the thermoplastic resin expanded particles cannot be improved, or the bubbles are uniform. The reduction effect is reduced. When the addition amount exceeds 2 parts by weight, shrinkage of the thermoplastic resin expanded particles is likely to occur, or dispersion in the thermoplastic resin particles becomes insufficient. Furthermore, in-mold foam molded products obtained from thermoplastic resin foam particles, the bleed of polyhydric alcohol having 3 or more and 6 or less carbon atoms and 3 or more hydroxyl groups is increased, causing contact articles to become contaminated or sticky. Tend to.

炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールとして、グリセリンを使用する場合、その添加量は、熱可塑性樹脂100重量部に対して、0.05重量部以上0.5重量部以下であることが好ましい。より好ましくは0.05重量部以上0.3重量部以下であり、最も好ましくは0.05重量部以上0.2重量部以下である。   When glycerin is used as the polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups, the amount added is 0.05 to 0.5 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Part or less. More preferably, they are 0.05 weight part or more and 0.3 weight part or less, Most preferably, they are 0.05 weight part or more and 0.2 weight part or less.

ここで、熱可塑性樹脂粒子、および熱可塑性樹脂発泡粒子中の炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールの含有量は、ELSD(エバポレート光散乱)を検出器とするHPLC装置(例えば、島津製作所製高速液体クロマトグラフ:プロミネンス高圧グラジエントシステム)を用いて定量することができる。   Here, the content of the polyhydric alcohol having 3 or more and 6 or less carbon atoms and 3 or more hydroxyl groups in the thermoplastic resin particles and the expanded thermoplastic resin particles is HPLC using ELSD (evaporation light scattering) as a detector. It can be quantified using an apparatus (for example, a high performance liquid chromatograph manufactured by Shimadzu Corporation: Prominence High Pressure Gradient System).

また、本発明の目的を損なわない程度に他の親水性物質を併用することも可能である。親水性物質とは、発泡粒子を製造する際に、樹脂中の含浸水分量を増加させる物質であり、具体例として、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、ホウ砂、ホウ酸カルシウム、ホウ酸亜鉛等の水溶性無機物;メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物等の吸水性有機物;ポリエチレングリコール、およびセチルアルコール、ステアリルアルコールといった炭素数12以上18以下の脂肪アルコール類、等の親水性重合体が挙げられる。中でも、ポリエチレングリコール、メラミンが好適である。   Further, it is possible to use other hydrophilic substances in combination so as not to impair the object of the present invention. A hydrophilic substance is a substance that increases the amount of water impregnated in a resin when producing expanded particles. Specific examples include sodium chloride, calcium chloride, magnesium chloride, borax, calcium borate, and zinc borate. Water-soluble inorganic substances such as melamine, isocyanuric acid, water-absorbing organic substances such as melamine / isocyanuric acid condensate, etc .; hydrophilic polymers such as polyethylene glycol and fatty alcohols having 12 to 18 carbon atoms such as cetyl alcohol and stearyl alcohol Is mentioned. Of these, polyethylene glycol and melamine are preferred.

本発明で使用する発泡核剤は、発泡の時に気泡核の形成を促す物質をいい、たとえば、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、ゼオライト等の無機物質、ステアリン酸カルシウム、ステアリン酸バリウムなどの脂肪酸金属塩などが挙げられる。これらの発泡核剤は、単独で用いてもよく、2種以上を併用しても良い。これらの中でも、タルク、炭酸カルシウム、ステアリン酸カルシウムが好ましい。更に粒径分布がシャープであることが望ましい。   The foam nucleating agent used in the present invention refers to a substance that promotes the formation of cell nuclei during foaming. For example, talc, calcium carbonate, silica, kaolin, barium sulfate, calcium hydroxide, aluminum hydroxide, aluminum oxide, titanium oxide And inorganic substances such as zeolite, and fatty acid metal salts such as calcium stearate and barium stearate. These foam nucleating agents may be used alone or in combination of two or more. Among these, talc, calcium carbonate, and calcium stearate are preferable. Further, it is desirable that the particle size distribution is sharp.

発泡核剤の添加量は使用する発泡核剤によって異なり、一概には決めることが出来ないが、熱可塑性樹脂100重量部に対して、0.005重量部以上2重量部以下であることが好ましく、0.01重量部以上1重量部以下であることがより好ましい。また、発泡核剤としてタルクを使用する場合、熱可塑性樹脂100重量部に対して、0.005重量部以上1重量部以下であることが好ましく、さらに好ましくは0.01重量部以上0.5重量部以下、より好ましくは0.02重量部以上0.2重量部以下である。   The amount of the foam nucleating agent varies depending on the foam nucleating agent to be used and cannot be generally determined, but is preferably 0.005 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. More preferably, the content is 0.01 parts by weight or more and 1 part by weight or less. When talc is used as the foam nucleating agent, it is preferably 0.005 parts by weight or more and 1 part by weight or less, more preferably 0.01 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. Parts by weight or less, more preferably 0.02 parts by weight or more and 0.2 parts by weight or less.

発泡核剤の添加量が0.005重量部より少ない場合は、熱可塑性樹脂発泡粒子の発泡倍率を大きくすることができなかったり、気泡の均一性が低下してしまう場合がある。発泡核剤の添加量が2重量部より多い場合は熱可塑性樹脂発泡粒子の平均気泡径が小さくなり過ぎ、型内発泡成形性が不良となる傾向にある。   When the addition amount of the foam nucleating agent is less than 0.005 parts by weight, the foaming ratio of the thermoplastic resin foam particles may not be increased or the uniformity of the bubbles may be deteriorated. When the amount of the foam nucleating agent added is more than 2 parts by weight, the average cell diameter of the thermoplastic resin expanded particles tends to be too small, and the in-mold foam moldability tends to be poor.

また、相溶化剤、帯電防止剤、着色剤、安定剤、耐候剤、難燃剤などの各種添加剤は本発明の効果を損なわない程度に適宜添加可能である。   Various additives such as a compatibilizer, an antistatic agent, a colorant, a stabilizer, a weathering agent, and a flame retardant can be appropriately added to such an extent that the effects of the present invention are not impaired.

本発明に用いられる熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリメチルメタクリレート樹脂、ポリエステル系樹脂、ポリ乳酸系樹脂、マレイミド系共重合体樹脂などが挙げられる。中でもポリプロピレン系樹脂、ポリエチレン系樹脂などのポリオレフィン系樹脂が好ましい。   Examples of the thermoplastic resin used in the present invention include polyolefin resins, polystyrene resins, polymethyl methacrylate resins, polyester resins, polylactic acid resins, maleimide copolymer resins, and the like. Of these, polyolefin resins such as polypropylene resins and polyethylene resins are preferred.

ポリエチレン系樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、等が挙げられる。   Examples of the polyethylene resin include high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene.

ポリプロピレン系樹脂としては、プロピレンホモポリマー、α−オレフィン/プロピレンランダム共重合体、α−オレフィン/プロピレンブロック共重合体などが挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。特に、エチレン/プロピレンランダム共重合体、エチレン/プロピレン/ブテン−1ランダム共重合体、プロピレン/ブテン−1ランダム共重合体が低発泡倍率から高発泡倍率まで発泡倍率のコントロールが容易であり、好適に使用し得る。   Examples of the polypropylene resin include propylene homopolymer, α-olefin / propylene random copolymer, α-olefin / propylene block copolymer, and the like. These may be used alone or in combination of two or more. In particular, ethylene / propylene random copolymer, ethylene / propylene / butene-1 random copolymer, and propylene / butene-1 random copolymer are suitable for easy control of the expansion ratio from low expansion ratio to high expansion ratio. Can be used for

ポリオレフィン系樹脂の中でも、ポリプロピレン系樹脂であることがより好ましい。   Among polyolefin resins, polypropylene resins are more preferable.

本発明で用いることが出来るポリプロピレン系樹脂の融点は、130℃以上165℃以下であることが好ましく、更には135℃以上155℃以下のものが好ましい。融点が130℃未満の場合、耐熱性、機械的強度が十分でない傾向がある。また、融点が165℃を超える場合、型内発泡成形時の融着を確保することが難しくなる傾向がある。ここで、前記融点とは、示差走査熱量計によってポリプロピレン系樹脂1mg以上10mg以下を40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   The melting point of the polypropylene resin that can be used in the present invention is preferably 130 ° C. or higher and 165 ° C. or lower, and more preferably 135 ° C. or higher and 155 ° C. or lower. When the melting point is less than 130 ° C., heat resistance and mechanical strength tend to be insufficient. Moreover, when melting | fusing point exceeds 165 degreeC, there exists a tendency for it to become difficult to ensure the melt | fusion at the time of in-mold foam molding. Here, the melting point refers to a temperature of 10 to 10 mg of polypropylene-based resin raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, and then cooled to 40 ° C. at a rate of 10 ° C./min. The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is increased again to 220 ° C. at a rate of 10 ° C./min.

本発明で用いることが出来るポリプロピレン系樹脂のメルトインデックス(以下、MI値)は、0.5g/10分以上30g/10分以下であることが好ましく、より好ましくは2g/10分以上20g/10分以下、さらに好ましくは5g/10分以上10g/10分以下である。   The melt index (hereinafter referred to as MI value) of the polypropylene resin that can be used in the present invention is preferably 0.5 g / 10 min or more and 30 g / 10 min or less, more preferably 2 g / 10 min or more and 20 g / 10. Min. Or less, more preferably 5 g / 10 min or more and 10 g / 10 min or less.

MI値が0.5g/10分未満の場合、高発泡倍率の熱可塑性樹脂発泡粒子が得られにくく、30g/10分を超える場合、熱可塑性樹脂発泡粒子の気泡が破泡し易く、熱可塑性樹脂発泡粒子の連泡率が高くなる傾向にある。   When the MI value is less than 0.5 g / 10 minutes, it is difficult to obtain thermoplastic resin expanded particles having a high expansion ratio. When the MI value exceeds 30 g / 10 minutes, the bubbles of the thermoplastic resin expanded particles are likely to break, and the thermoplasticity The open cell ratio of the resin foam particles tends to increase.

なお、本発明において、MI値とはJIS K7210に準拠し、温度230℃、荷重2.16kgで測定した値である。   In the present invention, the MI value is a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.

また、融点、MI値が異なるポリプロピレン系樹脂を2種以上混合して、前記の範囲としても良い。   Further, two or more types of polypropylene resins having different melting points and MI values may be mixed to obtain the above range.

本発明において、熱可塑性樹脂100重量部に対し、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物を熱可塑性樹脂粒子とするには、例えば、ペレット状の熱可塑性樹脂に炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを予めブレンドしたものを押出機にて溶融混練し、ダイスより押出し、冷却したのち、カッターにて細断することで粒子形状とすることが出来る。あるいは、押出機の途中で、溶融させた熱可塑性樹脂に液体状で添加し、混練しても良い。また押出機に熱可塑性樹脂を投入するホッパー部分において炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを液体状で定量供給してもよい。その際、蒸散を少なくするため、押出機のシリンダー、ダイス部の温度を250℃以下の低めにすることが望ましい。   In the present invention, it comprises 0.05 to 2 parts by weight of a polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups with respect to 100 parts by weight of the thermoplastic resin, and a foam nucleating agent. In order to make the thermoplastic resin composition into thermoplastic resin particles, for example, a pellet-shaped thermoplastic resin previously blended with a polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups is used as an extruder. After being melt-kneaded, extruded from a die, cooled, and then chopped with a cutter, it can be made into a particle shape. Alternatively, in the middle of the extruder, the molten thermoplastic resin may be added in a liquid state and kneaded. Further, a polyhydric alcohol having 3 to 6 carbon atoms and having 3 or more hydroxyl groups may be quantitatively supplied in a liquid form in a hopper portion where the thermoplastic resin is charged into the extruder. At that time, in order to reduce transpiration, it is desirable to lower the temperature of the cylinder and the die part of the extruder to 250 ° C. or lower.

本発明においては、発泡剤として水を使用する。本発明において、「水を発泡剤として用いる」とは、後述する含水率を測定することにより判別することが出来る。また他の方法として、発泡直後の発泡粒子をポリマー用水分計、あるいはカールフィッシャー水分計などで測定することも可能である。   In the present invention, water is used as the foaming agent. In the present invention, “use water as a blowing agent” can be determined by measuring the moisture content described later. As another method, it is also possible to measure the expanded particles immediately after expansion with a polymer moisture meter or a Karl Fischer moisture meter.

水を発泡剤として使用していれば、他の物理発泡剤を併用してもよい。他の物理発泡剤としては、プロパン、ブタン、ペンタン等の飽和炭化水素類、ジメチルエーテル等のエーテル類、メタノール、エタノール等のアルコール類、空気、窒素、炭酸ガス等の無機ガスが挙げられる。中でも特に環境負荷が小さく、燃焼危険性も無いことから、炭酸ガスを併用することが望ましい。水と炭酸ガスを併用することで、発泡力を大きくし易いことから、高発泡倍率を得る際においても、発泡核剤の添加量を少なくすることができ、結果として平均気泡径が大きい発泡粒子が得られ、2次発泡性も良好なものとなる傾向がある。   If water is used as a foaming agent, other physical foaming agents may be used in combination. Examples of other physical foaming agents include saturated hydrocarbons such as propane, butane and pentane, ethers such as dimethyl ether, alcohols such as methanol and ethanol, and inorganic gases such as air, nitrogen and carbon dioxide. Among them, it is desirable to use carbon dioxide gas in combination because it has a particularly low environmental load and no danger of combustion. By using water and carbon dioxide gas in combination, it is easy to increase the foaming power, so even when obtaining a high expansion ratio, the amount of foam nucleating agent added can be reduced, resulting in expanded particles having a large average cell diameter. And secondary foamability tends to be good.

熱可塑性樹脂100重量部に対し、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂粒子を、密閉容器内の水系分散媒に分散させ、熱可塑性樹脂の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出して熱可塑性樹脂発泡粒子を製造するに際し、水系分散媒に含まれる水が発泡剤となり、低圧域に放出する前に窒素もしくは空気を圧入することで密閉容器内の内圧を高め、発泡時の圧力開放速度を調節し、発泡倍率や平均気泡径の調整を行うことができる。また炭酸ガスなどの常温で気体の物理発泡剤を併用する場合は、熱可塑性樹脂粒子と水を密閉容器に投入したのち、炭酸ガスなどの物理発泡剤を密閉容器内に導入すれば良い。   Thermoplastic resin particles comprising 0.05 to 2 parts by weight of a polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups with respect to 100 parts by weight of the thermoplastic resin, and a foam nucleating agent Is dispersed in an aqueous dispersion medium in a sealed container, heated and pressurized to a temperature equal to or higher than the softening temperature of the thermoplastic resin, and then released into a pressure range lower than the internal pressure of the sealed container to produce thermoplastic resin expanded particles. In doing so, the water contained in the aqueous dispersion medium becomes the foaming agent, and before releasing into the low-pressure range, nitrogen or air is injected to increase the internal pressure in the sealed container, and the pressure release speed during foaming is adjusted, and the foaming ratio And the average bubble diameter can be adjusted. When a gaseous physical foaming agent such as carbon dioxide is used at room temperature, the thermoplastic resin particles and water are introduced into a sealed container, and then the physical foaming agent such as carbon dioxide is introduced into the sealed container.

具体的には、例えば以下の手順で行うことが出来る。   Specifically, for example, the following procedure can be used.

密閉容器に熱可塑性樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、1MPa以上2MPa以下(ゲージ圧)程度の炭酸ガスを導入し、熱可塑性樹脂の軟化温度以上の温度まで加熱する。加熱することによって密閉容器内の圧力が約1.5MPa以上5MPa以下(ゲージ圧)程度まで上がる。発泡温度付近にてさらに炭酸ガスを追加して所望の発泡圧力に調整、さらに温度調整を行った後、密閉容器の内圧よりも低い圧力域に放出して熱可塑性樹脂発泡粒子を得る。   Carbon dioxide gas of about 1 MPa to 2 MPa (gauge pressure) after vacuuming the inside of the sealed container as necessary after charging thermoplastic resin particles, an aqueous dispersion medium, and a dispersant as required in the sealed container And heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin. By heating, the pressure in the sealed container rises to about 1.5 MPa to 5 MPa (gauge pressure). Carbon dioxide gas is further added near the foaming temperature to adjust to a desired foaming pressure, and further the temperature is adjusted, and then released into a pressure range lower than the internal pressure of the sealed container to obtain thermoplastic resin foam particles.

或いは、密閉容器に熱可塑性樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて密閉容器内を真空引きした後、熱可塑性樹脂の軟化温度以上の温度まで加熱しながら炭酸ガスを導入してもよい。   Alternatively, after preparing thermoplastic resin particles, an aqueous dispersion medium, and a dispersant as required in a sealed container, the inside of the sealed container is evacuated as necessary, and then heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin. Carbon dioxide gas may be introduced while being introduced.

また、密閉容器に熱可塑性樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱した後、さらに空気や窒素等を導入した後、発泡温度とし、密閉容器の内圧よりも低い圧力域に放出して熱可塑性樹脂発泡粒子を得る。   In addition, after preparing thermoplastic resin particles, an aqueous dispersion medium, and a dispersant as necessary in a sealed container, heating to near the foaming temperature, introducing air, nitrogen, etc., and then setting the foaming temperature, the sealed container The foamed thermoplastic resin particles are obtained by discharging into a pressure range lower than the internal pressure.

熱可塑性樹脂粒子を分散させる密閉容器には特に制限はなく、発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよいが、例えばオートクレーブ型の耐圧容器があげられる。   There are no particular limitations on the sealed container in which the thermoplastic resin particles are dispersed, and any container that can withstand the pressure in the container and the temperature in the container at the time of producing the foamed particles can be used. For example, an autoclave-type pressure-resistant container can be used.

前記水系分散媒としては水が好ましい。メタノール、エタノール、エチレングリコール、グリセリン等を水に添加した分散媒も使用できる。   Water is preferable as the aqueous dispersion medium. A dispersion medium in which methanol, ethanol, ethylene glycol, glycerin or the like is added to water can also be used.

水系分散媒中、ポリプロピレン系樹脂粒子同士の合着を防止するために、分散剤を使用することが好ましい。分散剤として、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が例示できる。   In order to prevent coalescence of polypropylene resin particles in the aqueous dispersion medium, it is preferable to use a dispersant. Examples of the dispersant include inorganic dispersants such as tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay.

また、分散剤と共に分散助剤を使用することが好ましい。分散助剤の例としては、N−アシルアミノ酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド等のカルボン酸塩型、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩等のスルホン酸塩型、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアミド硫酸塩等の硫酸エステル型、アルキルリン酸塩、ポリオキシエチレンリン酸塩、アルキルアリルエーテル硫酸塩等のリン酸エステル型等の陰イオン界面活性剤をあげることができる。また、マレイン酸共重合体塩、ポリアクリル酸塩等のポリカルボン酸型高分子界面活性剤、ポリスチレンスルホン酸塩、ナフタルスルホン酸ホルマリン縮合物塩などの多価陰イオン高分子界面活性剤も使用することができる。   Further, it is preferable to use a dispersion aid together with the dispersant. Examples of dispersing aids include N-acyl amino acid salts, alkyl ether carboxylates, carboxylate types such as acylated peptides, alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, sulfosuccinates, etc. Sulfate type, sulfate oil, alkyl sulfate, alkyl ether sulfate, sulfate ester type such as alkylamide sulfate, phosphoric acid such as alkyl phosphate, polyoxyethylene phosphate, alkyl allyl ether sulfate An anionic surfactant such as an ester type can be exemplified. Also, polycarboxylic acid type polymer surfactants such as maleic acid copolymer salts and polyacrylates, polyvalent anionic polymer surfactants such as polystyrene sulfonates and naphthalsulfonic acid formalin condensate salts, etc. Can be used.

分散助剤として、スルホン酸塩型の陰イオン界面活性剤を使用することが好ましく、さらには、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩から選ばれた1種もしくは2種以上の混合物を用いるのが好ましく、アルキルスルホン酸塩を使用することがより好ましく、疎水基として炭素数10以上18以下の直鎖状の炭素鎖を持つアルキルスルホン酸塩を使用することが、熱可塑性樹脂発泡粒子に付着する分散剤を低減できるため特に好ましい。   As the dispersion aid, it is preferable to use a sulfonate type anionic surfactant, and it is also preferable to use one or a mixture of two or more selected from alkyl sulfonates and alkylbenzene sulfonates. Preferably, an alkyl sulfonate is more preferably used, and use of an alkyl sulfonate having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group adheres to the foamed thermoplastic resin particles. Since a dispersing agent can be reduced, it is especially preferable.

これらの中でも、分散剤として第三リン酸カルシウム、第三リン酸マグネシウム、硫酸バリウムまたはカオリンから選ばれる一種以上と、分散助剤としてn−パラフィンスルホン酸ソーダを併用することが好ましい。   Among these, it is preferable to use one or more selected from tricalcium phosphate, tribasic magnesium phosphate, barium sulfate or kaolin as a dispersant and n-paraffin sulfonic acid soda as a dispersion aid.

分散剤や分散助剤の使用量は、その種類や、用いる熱可塑性樹脂の種類と使用量によって異なるが、通常、水系分散媒100重量部に対して、分散剤0.2重量部以上3重量部以下を配合することが好ましく、分散助剤0.001重量部以上0.1重量部以下を配合することが好ましい。また、熱可塑性樹脂粒子は、水系分散媒中での分散性を良好なものにするために、通常、水系分散媒100重量部に対して、20重量部以上100重量部以下使用するのが好ましい。   The amount of the dispersant or dispersion aid used varies depending on the type, the type of thermoplastic resin used and the amount used, but usually 0.2 parts by weight or more and 3 parts by weight of the dispersant with respect to 100 parts by weight of the aqueous dispersion medium It is preferable to mix 0.001 part by weight or more and 0.1 part by weight or less of the dispersion aid. The thermoplastic resin particles are usually preferably used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium in order to improve the dispersibility in the aqueous dispersion medium. .

以上のようにして、得られる本発明の熱可塑性樹脂発泡粒子は、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量%以上2重量%以下含むことが好ましい。   As described above, the obtained thermoplastic resin expanded particles of the present invention preferably contain 0.05% by weight or more and 2% by weight or less of a polyhydric alcohol having 3 to 6 carbon atoms and having 3 or more hydroxyl groups. .

本発明の製造方法により得られる熱可塑性樹脂発泡粒子の発泡倍率に特に制限は無く、1倍を超えて10倍未満の発泡粒子の製造も可能であるが、10倍以上45倍以下であることが好ましく、さらに好ましくは10倍以上20倍以下であり、より好ましくは10倍以上17倍以下である。   There is no restriction | limiting in particular in the expansion ratio of the thermoplastic resin expanded particle obtained by the manufacturing method of this invention, Although it is possible to manufacture the expanded particle exceeding 1 time and less than 10 times, it is 10 times or more and 45 times or less. It is preferably 10 times or more and 20 times or less, more preferably 10 times or more and 17 times or less.

前記発泡倍率とするために、上述の方法によって得られた熱可塑性樹脂発泡粒子を耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させ、さらに高倍化してもよい。   In order to obtain the expansion ratio, the thermoplastic resin foam particles obtained by the above-described method are pressurized with an inorganic gas such as air in a pressure-resistant container to give an internal pressure, and further foamed by steam heating. And higher magnification may be used.

本発明においては、熱可塑性樹脂粒子を密閉容器内の水系分散媒に分散させ、高温、高圧下にて発泡剤を含浸させ、密閉容器の内圧よりも低い圧力域に放出させて発泡させることを「一段発泡」と称し、一段発泡により得られる発泡粒子を「一段発泡粒子」と呼ぶ場合がある。   In the present invention, the thermoplastic resin particles are dispersed in an aqueous dispersion medium in a sealed container, impregnated with a foaming agent at high temperature and high pressure, and released into a pressure range lower than the internal pressure of the sealed container for foaming. This is referred to as “one-stage foaming”, and the foamed particles obtained by one-stage foaming may be referred to as “one-stage foamed particles”.

さらに、一段発泡粒子を耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させることを「二段発泡」と称し、二段発泡によって得られた発泡粒子を「二段発泡粒子」と呼ぶ場合がある。   Furthermore, pressurizing the first-stage foamed particles with an inorganic gas such as air in a pressure-resistant container, applying internal pressure, and then further foaming by steam heating is called “two-stage foaming”. The obtained expanded particles may be referred to as “two-stage expanded particles”.

本発明においては、発泡倍率20倍以上の熱可塑性樹脂発泡粒子を得ようとする際は、一段発泡にて得られた一段発泡粒子をさらに二段発泡を行うことが出来る。   In the present invention, when obtaining thermoplastic resin expanded particles having an expansion ratio of 20 times or more, the first-stage expanded particles obtained by the first-stage expansion can be further subjected to two-stage expansion.

発泡倍率が10倍未満の場合は、軽量化のメリットが得られず、また得られる型内発泡成形体の柔軟性、緩衝特性などが不充分となる傾向があり、45倍を越える場合は得られる型内発泡成形体の寸法精度、機械的強度、耐熱性などが不充分となる傾向がある。   If the expansion ratio is less than 10 times, the advantages of weight reduction cannot be obtained, and the flexibility and buffering properties of the obtained in-mold foam molded product tend to be insufficient. There is a tendency that the dimensional accuracy, mechanical strength, heat resistance and the like of the in-mold foam-molded product are insufficient.

なお本発明において、熱可塑性樹脂発泡粒子の発泡倍率とは、熱可塑性樹脂発泡粒子の重量w(g)を測定後、水没法にて体積v(cm3)を測定し、熱可塑性樹脂発泡粒子の真比重ρb=w/vを求め、発泡前の熱可塑性樹脂粒子の密度ρrとの比である。 In the present invention, the expansion ratio of the foamed thermoplastic resin particles means that after measuring the weight w (g) of the foamed thermoplastic resin particles, the volume v (cm 3 ) is measured by a submerging method, and the foamed thermoplastic resin particles The true specific gravity ρb = w / v is obtained and is a ratio with the density ρr of the thermoplastic resin particles before foaming.

本発明の熱可塑性樹脂発泡粒子の平均気泡径は50μm以上800μm以下であることが好ましく、より好ましくは100μm以上600μm以下、さらに好ましくは200μm以上500μm以下である。平均気泡径が50μm未満の場合、得られる型内発泡成形体の形状が歪む、表面にしわが発生するなどの問題が生じる場合があり、800μmを越える場合、得られる型内発泡成形体の緩衝特性が低下する場合がある。   The average cell diameter of the thermoplastic resin expanded particles of the present invention is preferably 50 μm or more and 800 μm or less, more preferably 100 μm or more and 600 μm or less, and further preferably 200 μm or more and 500 μm or less. When the average cell diameter is less than 50 μm, there are cases where the shape of the obtained in-mold foam molded product is distorted and the surface is wrinkled. When the average cell diameter exceeds 800 μm, the buffer properties of the in-mold foam molded product to be obtained May decrease.

なお平均気泡径は、熱可塑性樹脂発泡粒子の切断面について、表層部を除く部分についてASTM D3576の理論に従い測定する。   The average cell diameter is measured according to the theory of ASTM D3576 with respect to the cut surface of the thermoplastic resin foamed particles, except for the surface layer portion.

本発明の熱可塑性樹脂発泡粒子の連泡率は0%以上12%以下であることが好ましく、より好ましくは0%以上8%以下、さらに好ましくは0%以上5%以下である。連泡率が12%を超えては、型内発泡成形に用いた際に熱可塑性樹脂発泡粒子の型内での蒸気加熱時の発泡性に劣り、得られた型内発泡成形体の空隙が大きくなり、収縮してしまう傾向にある。   The open cell ratio of the thermoplastic resin expanded particles of the present invention is preferably 0% or more and 12% or less, more preferably 0% or more and 8% or less, and further preferably 0% or more and 5% or less. When the open-cell ratio exceeds 12%, the foamability of the foamed thermoplastic resin particles is inferior to the foamability of the foamed thermoplastic resin particles when used for in-mold foam molding. It tends to grow and shrink.

本発明の熱可塑性樹脂発泡粒子の含水率は0.7%以上10%以下であることが好ましく、より好ましくは1%以上8%以下、さらに好ましくは1%以上5%以下である。含水率が0.7%未満の場合、発泡倍率が低い熱可塑性樹脂発泡粒子しか得られない場合があり、10%を越える場合においては発泡後の熱可塑性樹脂発泡粒子内が低内圧となるために発泡粒子が収縮し易く、発泡後にオーブン養生させても収縮が残ってしまうことがある。   The moisture content of the thermoplastic resin expanded particles of the present invention is preferably 0.7% or more and 10% or less, more preferably 1% or more and 8% or less, and further preferably 1% or more and 5% or less. When the water content is less than 0.7%, only thermoplastic resin foam particles having a low expansion ratio may be obtained. When the water content exceeds 10%, the foamed thermoplastic resin foam particles have a low internal pressure. The foamed particles tend to shrink, and the shrinkage may remain even if the oven curing is performed after foaming.

本発明の熱可塑性樹脂発泡粒子は、示差走査熱量測定によって得られるDSC曲線において、2つ以上の融点を示す結晶構造を有することが好ましい。具体的には示差走査熱量測定によって得られるDSC曲線において2つ以上の融解ピークを有することが好ましい。2つ以上の融解ピークを有する熱可塑性樹脂発泡粒子の場合、型内発泡成形性が良く、機械的強度や耐熱性の良好な型内発泡成形体が得られる傾向にある。   The thermoplastic resin expanded particles of the present invention preferably have a crystal structure exhibiting two or more melting points in a DSC curve obtained by differential scanning calorimetry. Specifically, the DSC curve obtained by differential scanning calorimetry preferably has two or more melting peaks. In the case of thermoplastic resin foam particles having two or more melting peaks, in-mold foam moldability is good, and in-mold foam molded articles with good mechanical strength and heat resistance tend to be obtained.

ここで、熱可塑性樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線とは、熱可塑性樹脂発泡粒子1mg以上10mg以下を示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。   Here, the DSC curve obtained by differential scanning calorimetry of the thermoplastic resin foam particles is 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min with a differential scanning calorimeter of 1 mg to 10 mg of the thermoplastic resin foam particles. DSC curve obtained when the temperature is raised to.

前記のごとく2つ以上の融解ピークを有する熱可塑性樹脂発泡粒子は、発泡時の密閉容器内温度を適切な値に設定することにより容易に得られる。熱可塑性樹脂がポリオレフィン系樹脂の場合、発泡剤を含浸したポリオレフィン系樹脂粒子の軟化温度は、通常、基材となるポリオレフィン系樹脂の融点以上、好ましくは融点+3℃以上、融解終了温度未満、好ましくは融解終了温度−2℃以下の温度から選定される。   As described above, the thermoplastic resin expanded particles having two or more melting peaks can be easily obtained by setting the temperature in the closed container at the time of expansion to an appropriate value. When the thermoplastic resin is a polyolefin-based resin, the softening temperature of the polyolefin-based resin particles impregnated with the foaming agent is usually at least the melting point of the polyolefin-based resin that is the base material, preferably the melting point + 3 ° C. or more, preferably less than the melting end temperature. Is selected from a melting end temperature of −2 ° C. or lower.

ここで、前記融解終了温度とは、示差走査熱量計によってポリオレフィン系樹脂1mg以上10mg以下を40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線の融解ピークのすそが高温側でベースラインの位置に戻ったときの温度である。   Here, the melting end temperature is a temperature of 10 to 10 mg of polyolefin resin from 40 ° C. to 220 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter, and then a rate of 10 ° C./min to 40 ° C. This is the temperature at which the bottom of the melting peak of the DSC curve obtained when the temperature is cooled again to 220 ° C. at a rate of 10 ° C./min returns to the baseline position on the high temperature side.

以上のようにして得た熱可塑性樹脂発泡粒子は、従来から知られている型内発泡成形により、型内発泡成形体にすることができる。例えば、イ)熱可塑性樹脂発泡粒子を無機ガス、例えば空気や窒素等で加圧処理して発泡粒子内に無機ガスを含浸させ所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、ロ)熱可塑性樹脂発泡粒子をガス圧力で圧縮して金型に充填し、発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、ハ)特に前処理することなく熱可塑性樹脂発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、などの方法が利用し得る。   The foamed thermoplastic resin particles obtained as described above can be formed into an in-mold foam molded body by a conventionally known in-mold foam molding. For example, a) The thermoplastic resin foam particles are pressurized with an inorganic gas, for example, air or nitrogen, impregnated with the inorganic gas in the foam particles to give a predetermined foam particle internal pressure, and then filled into a mold, B) Method of heat-sealing with thermoplastics, b) Method of compressing foamed thermoplastic resin particles with gas pressure, filling the mold, and heat-sealing with steam using the recovery power of the foamed particles, c) Pretreatment A method such as a method of filling thermoplastic resin foam particles in a mold without heating and heat-sealing with water vapor can be used.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、実施例および比較例における評価は、つぎの方法により行なった。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples. In addition, evaluation in Examples and Comparative Examples was performed by the following method.

(発泡倍率)
発泡粒子3g以上10g以下程度を取り、60℃で6時間乾燥したのち、23℃、湿度50%の室内で状態調節し、重量w(g)を測定後、水没法にて体積v(cm3)を測定し、発泡粒子の真比重ρb=w/vを求め、発泡前の熱可塑性樹脂粒子の密度ρrとの比から発泡倍率K=ρr/ρbを求めた。
(Foaming ratio)
After taking 3 g or more and 10 g or less of the expanded particles, drying at 60 ° C. for 6 hours, adjusting the condition in a room at 23 ° C. and 50% humidity, measuring the weight w (g), and then subtracting the volume v (cm 3 ) To determine the true specific gravity ρb = w / v of the expanded particles, and the expansion ratio K = ρr / ρb was determined from the ratio to the density ρr of the thermoplastic resin particles before expansion.

(連泡率)
空気比較式比重計(東京サイエンス(株)製、1000型)を用い、得られた発泡粒子の独立気泡体積を求め、これを別途水没法により求めた見かけの体積で除してえられた独立気泡率(%)を、100から引くことにより求めた。
(Open cell rate)
Using an air comparative hydrometer (manufactured by Tokyo Science Co., Ltd., 1000 type), the closed cell volume of the obtained foamed particles was obtained, and this was obtained by dividing this by the apparent volume obtained separately by the submerged method. The bubble rate (%) was determined by subtracting from 100.

(気泡の均一性、平均気泡径)
気泡膜が破壊されないように充分注意して発泡粒子をほぼ中央で切断し、その切断面をマイクロスコープで拡大し、発泡粒子の表面から発泡粒子の直径の5%に相当する厚さの表層部を除く部分(A)に関して次の測定をおこなった。ある任意の方向をx方向とし、それに直交する方向をy方向とした時に、ある1個のセルのx、y方向のフェレ径dx、dyを測定し、次式によりその1個の気泡径diを求める。
di=(dx+dy)/(2×0.785)
部分(A)内で半径方向に偏りのない様に、連続して隣り合う40個以上の気泡についてdiを測定する。1個の発泡粒子の平均気泡径d、及び気泡径の変動係数uを次式により算出する。但し、nはdiを測定した気泡の個数、σは気泡径の標準偏差である。
d=Σ(di)/n
u=σ/d×100
3個以上の発泡粒子についてuを求め、その平均をUとする。気泡の均一性を次の基準により評価した。
◎:Uが30以下
〇:Uが30を越えて35以下
×:Uが35超
(Bubble uniformity, average bubble diameter)
The foamed particles are cut almost at the center with great care so that the bubble film is not broken, and the cut surface is enlarged with a microscope, and the surface layer part having a thickness corresponding to 5% of the diameter of the foamed particles from the surface of the foamed particles The following measurement was performed on the portion (A) excluding. When an arbitrary direction is an x direction and a direction orthogonal to the x direction is a y direction, the ferret diameters dx and dy of a cell are measured in the x and y directions. Ask for.
di = (dx + dy) / (2 × 0.785)
The di is measured for 40 or more consecutively adjacent bubbles so that there is no deviation in the radial direction in the portion (A). The average bubble diameter d of one expanded particle and the variation coefficient u of the bubble diameter are calculated by the following equations. Here, n is the number of bubbles measured for di, and σ is the standard deviation of the bubble diameter.
d = Σ (di) / n
u = σ / d × 100
U is obtained for three or more foamed particles, and the average is U. Bubble uniformity was evaluated according to the following criteria.
◎: U is 30 or less ○: U exceeds 30 and 35 or less ×: U is more than 35

(含水率)
他の発泡剤を併用した場合についても、水のみを発泡剤として使用して同じ発泡温度、発泡圧力にて発泡させた直後の発泡粒子を使用し、その粒子表面に付着した水を、空気気流で脱水させたのち、その重量(W1)を測定し、さらにその発泡粒子を80℃のオーブン中で12時間乾燥させた時の重量(W2)を測定し、次式により算出し、その値を使用した。
含水率(%)=(W1−W2)/W2×100
(Moisture content)
Even when other foaming agents are used in combination, the foamed particles immediately after foaming at the same foaming temperature and foaming pressure using only water as the foaming agent are used. After the dehydration, the weight (W1) is measured, the weight (W2) when the foamed particles are dried in an oven at 80 ° C. for 12 hours is measured and calculated by the following formula. used.
Moisture content (%) = (W1-W2) / W2 × 100

(成形性)
成形評価では、成形体設計外形寸法が400mm×300mm×20mmの金型を用いた。
(Formability)
In the molding evaluation, a mold having a molded body design outer dimension of 400 mm × 300 mm × 20 mm was used.

(成形体融着率)
型内発泡成形体の表面にナイフで約5mmの深さのクラックを入れたのち、このクラックに沿って型内発泡成形体を割り、破断面を観察し、破断面の全粒子数に対する破壊粒子数の割合を求め、成形体融着率とした。
(Molded product fusion rate)
After a crack with a depth of about 5 mm is made with a knife on the surface of the in-mold foam molded body, the in-mold foam molded body is divided along the crack, the fracture surface is observed, and the fracture particles for the total number of particles in the fracture surface The ratio of the number was determined and used as the compact fusion rate.

(成形体の表面性)
型内発泡成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体の表面について以下の基準で評価した。
◎:しわ、粒間少なく、美麗
〇:僅かなしわ、粒間あるが良好
×:しわ、ヒケがあり外観不良
(Surface properties of molded products)
After the in-mold foam molding, the surface of the in-mold foam-molded body obtained by allowing to stand at 23 ° C. for 2 hours, then curing at 65 ° C. for 6 hours, and then standing in a 23 ° C. room for 4 hours is as follows. It was evaluated with.
◎: Wrinkles, less intergranular, beautiful ○: Slight wrinkles, intergranular but good x: Wrinkles, sink marks and poor appearance

(成形体の寸法収縮率)
型内発泡成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体の長手寸法を測定し、対応する金型寸法に対する、金型寸法と型内発泡成形体の寸法との差の割合を対金型寸法収縮率とし、以下の基準で評価した。
◎:対金型寸法収縮率が4%以下
〇:対金型寸法収縮率が4%を超えて7%以下
×:対金型寸法収縮率が7%より大きい
(Dimension shrinkage of molded product)
After in-mold foam molding, left at 23 ° C. for 2 hours, then cured at 65 ° C. for 6 hours, and then left in a 23 ° C. room for 4 hours to measure the longitudinal dimension of the in-mold foam molded product. The ratio of the difference between the mold dimension and the dimension of the in-mold foam molded body with respect to the corresponding mold dimension was defined as the mold dimension shrinkage rate, and evaluated according to the following criteria.
◎: Dimensional shrinkage ratio against mold is 4% or less ○: Dimensional shrinkage ratio against mold exceeds 4% and 7% or less ×: Dimensional shrinkage ratio against mold is larger than 7%

(成形体のべとつき感)
型内発泡成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体表面を手で触り、以下の基準で評価した。
○:べとつき感が無い
×:べとつき感が有る
(Feeling of the molded product)
After foam molding in the mold, it was allowed to stand at 23 ° C. for 2 hours, then cured at 65 ° C. for 6 hours, and then left in the room at 23 ° C. for 4 hours to touch the surface of the foam molded body in the mold by hand. Evaluation was made according to the following criteria.
○: No sticky feeling ×: There is a sticky feeling

(実施例1)
ポリプロピレン系樹脂(プロピレン/エチレンランダム共重合体:エチレン含有率3.0%、MI=6g/10分、融点143℃)100重量部に対し、グリセリン(ライオン(株)製、精製グリセリンD)を0.1重量部プリブレンドし、次に発泡核剤としてタルク(林化成(株)製、タルカンパウダーPK−S)0.1重量部を加えブレンドした。押出機に供給し、溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリオレフィン系樹脂粒子(1.2mg/粒)を得た。
Example 1
To 100 parts by weight of a polypropylene resin (propylene / ethylene random copolymer: ethylene content 3.0%, MI = 6 g / 10 min, melting point 143 ° C.), glycerin (manufactured by Lion Corporation, purified glycerin D) Next, 0.1 part by weight of the blend was added, and then 0.1 part by weight of talc (manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-S) was added and blended. After supplying to an extruder and melt-kneading, it was extruded from a cylindrical die having a diameter of 1.8 mm, cooled with water, and then cut with a cutter to obtain cylindrical polyolefin resin particles (1.2 mg / particle).

得られたポリオレフィン系樹脂粒子100重量部を、純水200重量部、第3リン酸カルシウム1.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス6重量部を密閉容器内に入れ、148℃に加熱した。このときの圧力は3MPa(ゲージ圧)であった。すぐに密閉容器下部のバルブを開いて、水分散物(樹脂粒子および水系分散媒)を直径4mmのオリフィスを通じて大気圧下に放出して発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   100 parts by weight of the polyolefin resin particles obtained were put into a sealed container together with 200 parts by weight of pure water, 1.0 part by weight of tricalcium phosphate and 0.05 part by weight of sodium dodecylbenzenesulfonate, and then deaerated and stirred. Then, 6 parts by weight of carbon dioxide gas was put in a sealed container and heated to 148 ° C. The pressure at this time was 3 MPa (gauge pressure). Immediately after opening the valve at the bottom of the sealed container, the aqueous dispersion (resin particles and aqueous dispersion medium) was discharged under atmospheric pressure through an orifice having a diameter of 4 mm to obtain expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量計測定において、138℃と157℃に2つの融点を示し、発泡倍率、連泡率、平均気泡径を測定した結果、発泡倍率15倍、連泡率0.9%、気泡の均一性に優れ、平均気泡径239μmであった。含水率は、密閉容器内温度を上記と同じ148℃にして水発泡させて測定したところ1.8重量%であった。   The obtained single-stage expanded particles showed two melting points at 138 ° C. and 157 ° C. in differential scanning calorimetry, and the expansion ratio, the open cell ratio, and the average cell diameter were measured. As a result, the expansion ratio was 15 times and the open cell ratio was 0. 0.9%, excellent bubble uniformity, and an average bubble diameter of 239 μm. The water content was 1.8% by weight when measured by foaming with water at 148 ° C., the same as above, in the sealed container.

ここで得た一段発泡粒子を60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPa(絶対圧)にしたのち、約0.08MPa(ゲージ圧)の蒸気と接触させることで二段発泡させ、発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.4%、平均気泡径300μmで気泡の均一性に優れていた。次に、二段発泡させた発泡粒子を再度、耐圧容器内にて空気で加圧し、約0.19MPa(絶対圧)の空気内圧とし、型内発泡成形を行った。得られた型内発泡成形体の表面は僅かなしわや粒間があったが平滑性に優れ、型内発泡成形体の寸法収縮率が比較的小さく、型内発泡成形体の歪が少なく、発泡粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。   The single-stage expanded particles obtained here were dried at 60 ° C. for 6 hours and then impregnated with pressurized air in a pressure-resistant container to adjust the internal pressure to about 0.4 MPa (absolute pressure). Two-stage foaming was performed by contacting with steam of 08 MPa (gauge pressure) to obtain two-stage foamed particles having a foaming ratio of 30 times. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.4% and an average cell diameter of 300 μm. Next, the two-stage foamed particles were again pressurized with air in a pressure-resistant container to obtain an air pressure of about 0.19 MPa (absolute pressure), and in-mold foam molding was performed. The surface of the obtained in-mold foam molded article had slight wrinkles and intergranularity, but was excellent in smoothness, the dimensional shrinkage rate of the in-mold foam molded article was relatively small, and the distortion of the in-mold foam molded article was small, It was an excellent in-mold foam molded article with excellent fusion between the foam particles. The results are shown in Table 1.

Figure 0005324967
Figure 0005324967

(実施例2)
添加剤のグリセリンを0.15重量部、タルクを0.05重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡粒子は2つの融点を示し、発泡倍率18倍、連泡率1.2%、気泡の均一性に優れ、平均気泡径250μmであった。含水率は2.4重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.3%、平均気泡径290μmで気泡の均一性に優れていた。型内発泡成形した結果、得られた型内発泡成形体の表面は僅かなしわや粒間があったが平滑性に優れ、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
(Example 2)
Foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 0.15 parts by weight of glycerin as an additive and 0.05 parts by weight of talc were used. The first-stage expanded particles had two melting points, the expansion ratio was 18 times, the open cell ratio was 1.2%, the bubble uniformity was excellent, and the average cell diameter was 250 μm. The water content was 2.4% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.3% and an average cell diameter of 290 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded body had slight wrinkles and intergranularity, but it had excellent smoothness, small dimensional shrinkage of the in-mold foam molded body, It was a beautiful in-mold foam molded article with little distortion, excellent fusion between particles. The results are shown in Table 1.

(実施例3)
添加剤のグリセリンを0.2重量部、タルク0.02重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率17倍、連泡率0.7%、気泡の均一性は実施例1に比較するとやや劣るもののほぼ均一であり、平均気泡径271μmであった。含水率は2.9重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.0%、平均気泡径330μmで気泡の均一性に優れていた。型内発泡成形した結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
(Example 3)
Foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that the additive glycerin was 0.2 parts by weight and talc was 0.02 parts by weight. The single-stage expanded particles obtained by the single-stage expansion have two melting points, the expansion ratio is 17 times, the open cell ratio is 0.7%, and the uniformity of the bubbles is almost uniform, although it is slightly inferior to that of Example 1, the average The bubble diameter was 271 μm. The water content was 2.9% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.0% and an average cell diameter of 330 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion in the in-mold foam molded article is small, It was a beautiful in-mold foam molded article with excellent fusion between particles. The results are shown in Table 1.

(実施例4)
添加剤のグリセリンを0.05重量部、タルク0.05重量部、炭酸ガス3重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率7倍、連泡率0.7%、気泡の均一性は実施例1に比較するとやや劣るもののほぼ均一であり、平均気泡径210μmであった。含水率は0.9重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.0%、平均気泡径280μmで気泡の均一性は良好であった。型内発泡成形した結果、得られた型内発泡成形体の表面は僅かなしわや粒間はあるが平滑性に優れ、型内発泡成形体の寸法収縮が比較的小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
Example 4
Foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 0.05 part by weight of glycerin as an additive, 0.05 part by weight of talc, and 3 parts by weight of carbon dioxide gas were used. The single-stage expanded particles obtained by the single-stage expansion have two melting points, the expansion ratio is 7 times, the open cell ratio is 0.7%, and the uniformity of the bubbles is almost uniform, although it is slightly inferior to that of Example 1, the average The bubble diameter was 210 μm. The water content was 0.9% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and the bubble uniformity was good with a continuous bubble ratio of 1.0% and an average bubble diameter of 280 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded body has slight wrinkles and intergranularity, but has excellent smoothness, and the in-mold foam molded body has relatively small dimensional shrinkage, and the in-mold foam molded body It was a beautiful in-mold foam-molded article with less distortion and excellent fusion between particles. The results are shown in Table 1.

(実施例5)
添加剤のグリセリン0.2重量部に加えて、ポリエチレングリコール(平均分子量300、ライオン(株)製)を0.1重量部、タルク0.05重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率17倍、連泡率1.1%、平均気泡径304μmであった。気泡の均一性は実施例1〜3に比較しても特に優れていた。含水率は3.3重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.5%、平均気泡径365μmで気泡の均一性に優れていた。型内発泡成形した結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、型内発泡成形体の寸法収縮が小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
(Example 5)
In addition to 0.2 parts by weight of the additive glycerin, foaming was carried out in the same manner as in Example 1 except that polyethylene glycol (average molecular weight 300, manufactured by Lion Corporation) was 0.1 parts by weight and talc was 0.05 parts by weight. Two-stage foaming and in-mold foam molding were performed. The single-stage expanded particles obtained by the single-stage expansion showed two melting points, the expansion ratio was 17 times, the open cell ratio was 1.1%, and the average cell diameter was 304 μm. The uniformity of the bubbles was particularly excellent as compared with Examples 1-3. The water content was 3.3% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.5% and an average cell diameter of 365 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the in-mold foam molded article is small, and distortion in the in-mold foam molded article is small, It was a beautiful in-mold foam molded article with excellent fusion between particles. The results are shown in Table 1.

(実施例6)
添加剤のグリセリンを0.2重量部に加えて、メラミン0.05重量部(微粉メラミン、日産化学(株)製)、タルク0.02重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率16倍、連泡率1.0%、平均気泡径260μmであった。気泡の均一性は実施例1に比較するとやや劣るもののほぼ均一であり、含水率は3.3重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.5%、平均気泡径320μmで気泡の均一性に優れていた。型内発泡成形した結果、得られた型内発泡成形体の表面は僅かなしわや粒間があるが平滑性に優れ、型内発泡成形体の寸法収縮が比較的小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
(Example 6)
Addition of glycerin as an additive to 0.2 parts by weight, foaming in the same manner as in Example 1, except that 0.05 part by weight of melamine (fine melamine, manufactured by Nissan Chemical Co., Ltd.), 0.02 part by weight of talc, Two-stage foaming and in-mold foam molding were performed. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 16 times, the open cell ratio was 1.0%, and the average cell diameter was 260 μm. Although the uniformity of the bubbles was slightly inferior to that of Example 1, it was almost uniform, and the water content was 3.3% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.5% and an average cell diameter of 320 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded body has slight wrinkles and intergranularity, but has excellent smoothness and relatively small dimensional shrinkage of the in-mold foam molded body. It was a beautiful in-mold foam-molded article with less distortion and excellent fusion between particles. The results are shown in Table 1.

(実施例7)
添加剤をジグリセリン0.2重量部、タルク0.05重量部とした他は実施例1と同様に発泡、二段発泡、型内発泡成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率15倍、連泡率1.4%、平均気泡径250μmであった。気泡の均一性は実施例1に比較するとやや劣るもののほぼ均一であり、含水率は2.0重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.5%、平均気泡径305μmで気泡の均一性に優れていた。型内発泡成形した結果、得られた型内発泡成形体の表面は僅かなしわや粒間があるが平滑性に優れ、型内発泡成形体の寸法収縮が比較的小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
(Example 7)
Foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that the additive was 0.2 part by weight of diglycerin and 0.05 part by weight of talc. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 15 times, the open cell ratio was 1.4%, and the average cell diameter was 250 μm. Although the bubble uniformity was slightly inferior to that of Example 1, it was almost uniform, and the water content was 2.0% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.5% and an average cell diameter of 305 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded body has slight wrinkles and intergranularity, but has excellent smoothness and relatively small dimensional shrinkage of the in-mold foam molded body. It was a beautiful in-mold foam-molded article with less distortion and excellent fusion between particles. The results are shown in Table 1.

(実施例8)
添加剤のグリセリンを0.2重量部、タルク0.02重量部とし、発泡剤の炭酸ガスは使用せず、窒素ガスを導入し、151℃に加熱した。その他は実施例1と同様に一段発泡、二段発泡、型内発泡成形評価した。一段発泡の密閉容器内圧は3.0MPa(ゲージ圧)とした。一段発泡にて得られた発泡粒子は2つの融点を示し、発泡倍率13倍、連泡率1.5%、平均気泡径190μmであった。気泡の均一性は実施例1に比較するとやや劣るもののほぼ均一であった。含水率は2.9重量%であった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率2.3%、平均気泡径250μmで気泡の均一性に優れていた。型内発泡成形した結果、得られた型内発泡成形体の表面は僅かなしわや粒間があるが平滑性に優れ、型内発泡成形体の寸法収縮が比較的小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。
(Example 8)
The additive glycerin was 0.2 parts by weight and talc 0.02 parts by weight. Carbon dioxide gas as a blowing agent was not used, nitrogen gas was introduced, and the mixture was heated to 151 ° C. Others were evaluated in the same manner as in Example 1, one-stage foaming, two-stage foaming, and in-mold foam molding. The internal pressure of the one-stage foamed sealed container was 3.0 MPa (gauge pressure). The expanded particles obtained by the single-stage expansion had two melting points, the expansion ratio was 13 times, the open cell ratio was 1.5%, and the average cell diameter was 190 μm. The uniformity of the bubbles was almost uniform although it was slightly inferior to that of Example 1. The water content was 2.9% by weight. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 2.3% and an average cell diameter of 250 μm. As a result of in-mold foam molding, the surface of the obtained in-mold foam molded body has slight wrinkles and intergranularity, but has excellent smoothness and relatively small dimensional shrinkage of the in-mold foam molded body. It was a beautiful in-mold foam-molded article with less distortion and excellent fusion between particles. The results are shown in Table 1.

(実施例9)
直鎖状低密度ポリエチレン系樹脂(MI=2.0g/10分、融点122℃)100重量部に対し、グリセリン(ライオン(株)製、精製グリセリンD)を0.2重量部プリブレンドし、次に発泡核剤としてタルク(林化成(株)製、タルカンパウダーPK−S)0.1重量部を加えブレンドした。50φ単軸押出機に供給し、溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状の直鎖状低密度ポリエチレン系樹脂粒子(1.2mg/粒)を得た。
Example 9
To 100 parts by weight of a linear low-density polyethylene resin (MI = 2.0 g / 10 min, melting point 122 ° C.), 0.2 part by weight of glycerin (manufactured by Lion Corporation, purified glycerin D) is pre-blended. Next, 0.1 part by weight of talc (manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-S) was added and blended as a foam nucleating agent. After feeding to a 50φ single screw extruder, melt kneading, extrusion from a cylindrical die having a diameter of 1.8 mm, water cooling, cutting with a cutter, and cylindrical linear low density polyethylene resin particles (1.2 mg / particle) )

得られた直鎖低密度ポリエチレン系樹脂粒子100重量部を、純水200重量部、第3リン酸カルシウム1.0重量部およびドデシルベンゼンスルホン酸ソーダ0.05重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス12重量部を耐圧密閉容器内に入れ、123℃に加熱した。この時の耐圧密閉容器内の圧力は4.5MPa(ゲージ圧)であった。すぐに密閉容器下部のバルブを開いて、水分散物(樹脂粒子および水系分散媒)を直径3.6mmのオリフィスを通じて大気圧下に放出して発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   After 100 parts by weight of the obtained linear low density polyethylene resin particles were put into a pressure-resistant sealed container together with 200 parts by weight of pure water, 1.0 part by weight of tricalcium phosphate and 0.05 part by weight of sodium dodecylbenzenesulfonate, While degassing and stirring, 12 parts by weight of carbon dioxide gas was placed in a pressure-resistant sealed container and heated to 123 ° C. The pressure in the pressure-resistant airtight container at this time was 4.5 MPa (gauge pressure). Immediately after opening the valve at the bottom of the sealed container, the aqueous dispersion (resin particles and aqueous dispersion medium) was discharged under atmospheric pressure through an orifice having a diameter of 3.6 mm to obtain expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量測定において、117℃と128℃に2つの融点を示し、発泡倍率、連泡率、平均気泡径を測定した結果、発泡倍率6倍、連泡率0.6%、気泡の均一性に優れ、平均気泡径170μmであった。含水率は、密閉容器内温度を上記と同じ123℃にして水発泡させて測定したところ2.4%であった。   The obtained single-stage expanded particles showed two melting points at 117 ° C. and 128 ° C. in differential scanning calorimetry, and the expansion ratio, open cell ratio, and average cell diameter were measured. The uniformity of the bubbles was 6%, and the average bubble diameter was 170 μm. The moisture content was 2.4% when measured by foaming with water at the same internal temperature of 123 ° C. as described above.

ここで得た一段発泡粒子を60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPa(絶対圧)にしたのち、約0.03MPa(ゲージ圧)の蒸気と接触させることで二段発泡させ、発泡倍率20倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量測定において2つの融点を示し、連泡率1.3%、平均気泡径270μmで気泡の均一性に優れていた。二段発泡させた発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがなく、発泡粒子表面膜の厚みが薄い部分も少ない発泡粒子であった。次に、この二段発泡させた発泡粒子を用いて型内発泡成形を行った。得られた型内発泡成形体の表面は僅かなしわや粒間はあるが平滑性に優れ、型内発泡成形体の寸法収縮が比較的小さく、型内発泡成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。結果を表1に示す。   The single-stage expanded particles obtained here were dried at 60 ° C. for 6 hours and then impregnated with pressurized air in a pressure-resistant container to adjust the internal pressure to about 0.4 MPa (absolute pressure). Two-stage foaming was performed by contacting with steam of 03 MPa (gauge pressure) to obtain two-stage foamed particles having an expansion ratio of 20 times. The two-stage expanded particles showed two melting points in the differential scanning calorimetry, and had excellent bubble uniformity with an open cell ratio of 1.3% and an average cell diameter of 270 μm. As a result of observing the surface of the two-stage expanded foam particles with an electron microscope, it was found that the foam diameter of the surface portion was uniform, the surface was not rough, and the thickness of the foam particle surface film was small. . Next, in-mold foam molding was performed using the foamed particles obtained by two-stage foaming. The surface of the obtained in-mold foam molding has slight wrinkles and intergranularity but is excellent in smoothness, the dimensional shrinkage of the in-mold foam molding is relatively small, the distortion of the in-mold foam molding is small, and the particles are It was a beautiful in-mold foam molded product with excellent fusion. The results are shown in Table 1.

(比較例1)
グリセリンを使用せず、表に示す条件にて実施例1と同様に発泡させた。発泡倍率6倍と低い倍率しか得られず、平均気泡径150μmと小さいものであった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ得られた型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。結果を表2に示す。
(Comparative Example 1)
Foaming was performed in the same manner as in Example 1 without using glycerin under the conditions shown in the table. Only a low expansion ratio of 6 times was obtained, and the average bubble diameter was as small as 150 μm. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which the foamed particles adhere are observed. When the two-stage foamed particles were used and subjected to in-mold foam molding, the resulting in-mold foam molded article had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor. The results are shown in Table 2.

Figure 0005324967
Figure 0005324967

(比較例2)
グリセリンの代わりにポリエチレングリコールジメチルエーテルを0.5重量部、タルク0.1重量部を使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の倍率は7倍と低く、二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ得られた型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。結果を表2に示す。
(比較例3)
グリセリンの代わりに架橋ポリアルキレンオキサイドを1重量部、タルク0.05重量部を使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。得られた型内発泡成形体の寸法収縮が大きく、粒子どうしの融着が劣る特徴があった。結果を表2に示す。
(Comparative Example 2)
Single-stage foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 0.5 parts by weight of polyethylene glycol dimethyl ether and 0.1 parts by weight of talc were used instead of glycerin. The magnification of the first-stage expanded particles was as low as 7 times. In the second-stage expansion, a high vapor pressure was required to increase the expansion ratio to 30 times, and many sticks to which the expanded particles adhered were observed. When the two-stage foamed particles were used and subjected to in-mold foam molding, the resulting in-mold foam molded article had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor. The results are shown in Table 2.
(Comparative Example 3)
One-stage foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that 1 part by weight of the crosslinked polyalkylene oxide and 0.05 part by weight of talc were used instead of glycerin. The obtained in-mold foam molded article was characterized by large dimensional shrinkage and inferior fusion between particles. The results are shown in Table 2.

(比較例4)
グリセリンの代わりにポリアクリル酸ナトリウムを0.5重量部、タルク0.05重量部を使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の気泡は大気泡と小気泡が混在しており、均一性に劣った。その二段発泡粒子を使用し、型内発泡成形体を得たところ、型内発泡成形体の表面にしわの発生が見られ、寸法収縮が大きく、粒子どうしの融着に関しても劣るものであった。結果を表2に示す。
(Comparative Example 4)
One-stage foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 0.5 parts by weight of sodium polyacrylate and 0.05 parts by weight of talc were used instead of glycerin. The bubbles of the first-stage expanded particles were inferior in uniformity because large bubbles and small bubbles were mixed. When the two-stage expanded particles were used to obtain an in-mold foam molded product, wrinkles were observed on the surface of the in-mold foam molded product, the dimensional shrinkage was large, and the fusion between the particles was inferior. It was. The results are shown in Table 2.

(比較例5)
グリセリンの代わりに添加剤にカルボキシメチルセルロースナトリウム0.3重量部を使用し、タルクを0.1重量部とした他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の気泡は大気泡と小気泡が混在しており、均一性に劣った。その二段発泡粒子を使用し、型内発泡成形体を得たところ、型内発泡成形体の表面にしわの発生が見られ、寸法収縮が大きく、粒子どうしの融着に関しても劣るものであった。結果を表2に示す。
(Comparative Example 5)
One-stage foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 0.3 parts by weight of sodium carboxymethylcellulose was used as an additive instead of glycerin and talc was 0.1 parts by weight. It was. The bubbles of the first-stage expanded particles were inferior in uniformity because large bubbles and small bubbles were mixed. When the two-stage expanded particles were used to obtain an in-mold foam molded product, wrinkles were observed on the surface of the in-mold foam molded product, the dimensional shrinkage was large, and the fusion between the particles was inferior. It was. The results are shown in Table 2.

(比較例6)
グリセリンの代わりにゼオライトA型1.0重量部を使用し、タルクは使用しなかったこと以外は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。一段発泡粒子の気泡は粗大な気泡と小気泡が混在するもので均一性に劣った。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしの付着が少し見られた。その二段発泡粒子を使用し、型内発泡成形体を得たところ、型内発泡成形体の表面にしわの発生が顕著であり、寸法収縮が大きいものであった。結果を表2に示す。
(Comparative Example 6)
One-stage foaming, two-stage foaming, and in-mold foaming were performed in the same manner as in Example 1 except that 1.0 part by weight of zeolite A type was used instead of glycerin and talc was not used. The air bubbles of the first-stage expanded particles are a mixture of coarse and small bubbles, and are inferior in uniformity. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and a slight amount of adhesion between the expanded particles was observed. When the two-stage expanded particles were used to obtain an in-mold foam molded article, wrinkles were conspicuous on the surface of the in-mold foam molded article, and the dimensional shrinkage was large. The results are shown in Table 2.

(比較例7)
添加剤にポリプロピレングリコール(平均分子量2000)0.2重量部、タルク0.1重量部を使用した他は、実施例1と同様に一段発泡、二段発泡、型内発泡成形を行った。発泡倍率9倍と低い倍率しか得られず、平均気泡径160μmと小さいものであった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、発泡粒子どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ、型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。結果を表2に示す。
(Comparative Example 7)
One-stage foaming, two-stage foaming, and in-mold foam molding were performed in the same manner as in Example 1 except that 0.2 parts by weight of polypropylene glycol (average molecular weight 2000) and 0.1 parts by weight of talc were used as additives. Only a low expansion ratio of 9 times was obtained, and the average bubble diameter was as small as 160 μm. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which the foamed particles adhere are observed. When the two-stage expanded particles were used and in-mold foam molding was performed, the dimensional shrinkage ratio of the in-mold foam molded article was large, wrinkles were observed, and the appearance was inferior. The results are shown in Table 2.

Claims (7)

密閉容器内に熱可塑性樹脂粒子を水系分散媒に分散させ、熱可塑性樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出する、水系分散媒に含まれる水を発泡剤とする、熱可塑性樹脂がポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂発泡粒子の製造方法において、
前記熱可塑性樹脂粒子が、熱可塑性樹脂100重量部に対し、炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量部以上2重量部以下、および発泡核剤を含んでなる熱可塑性樹脂組成物からなることを特徴とする熱可塑性樹脂発泡粒子の製造方法。
An aqueous dispersion medium in which thermoplastic resin particles are dispersed in an aqueous dispersion medium in an airtight container, heated and pressurized to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles, and then released to a pressure range lower than the internal pressure of the airtight container. In the method for producing foamed thermoplastic resin particles, wherein the thermoplastic resin is a polypropylene resin or a polyethylene resin, the water contained in
The thermoplastic resin particles are 0.05 to 2 parts by weight of a polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups with respect to 100 parts by weight of the thermoplastic resin, and a foam nucleating agent. comprising characterized by comprising a thermoplastic resin composition which, method for producing a thermoplastic resin foamed particles.
炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールが、グリセリン、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、D−マンニトールから選ばれる1種以上であることを特徴とする、請求項1記載の熱可塑性樹脂発泡粒子の製造方法。 The polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups is one or more selected from glycerin, diglycerin, pentaerythritol, trimethylolpropane, sorbitol, and D-mannitol , The method for producing foamed thermoplastic resin particles according to claim 1. 炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールが、グリセリンであることを特徴とする、請求項1または2に記載の熱可塑性樹脂発泡粒子の製造方法。 Polyhydric alcohols having 3 or more 6 or less and 3 or more hydroxyl groups carbons, characterized in that it is a glycerine, method for producing a thermoplastic resin foamed particles according to claim 1 or 2. グリセリンの添加量が、熱可塑性樹脂100重量部に対し、0.05重量部以上0.5重量部以下であることを特徴とする、請求項記載の熱可塑性樹脂発泡粒子の製造方法。 The method for producing expanded thermoplastic resin particles according to claim 3 , wherein the amount of glycerin added is 0.05 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. 発泡剤として炭酸ガスを併用することを特徴とする、請求項1〜何れか一項に記載の熱可塑性樹脂発泡粒子の製造方法。 Carbon dioxide gas is used together as a foaming agent, The manufacturing method of the thermoplastic resin expanded particle as described in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜何れか一項に記載の熱可塑性樹脂がポリプロピレン系樹脂またはポリエチレン系樹脂である熱可塑性樹脂発泡粒子の製造方法によって得られる熱可塑性樹脂発泡粒子であって、
炭素数3以上6以下でかつ水酸基を3個以上有する多価アルコールを0.05重量%以上2重量%以下含み、発泡倍率が10倍以上45倍以下、平均気泡径が50μm以上800μm以下、示差走査熱量測定によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線において、2つ以上の融点を示す結晶構造を有することを特徴とする、熱可塑性樹脂発泡粒子。
Thermoplastic resin foam particles obtained by a method for producing thermoplastic resin foam particles, wherein the thermoplastic resin according to any one of claims 1 to 5 is a polypropylene resin or a polyethylene resin ,
Contains 0.05% to 2% by weight of a polyhydric alcohol having 3 to 6 carbon atoms and 3 or more hydroxyl groups, an expansion ratio of 10 to 45 times, an average cell diameter of 50 to 800 μm, and a differential Thermoplastic resin characterized by having a crystal structure showing two or more melting points in a DSC curve obtained when the temperature is raised from 40 ° C. to 220 ° C. at a temperature raising rate of 10 ° C./min by scanning calorimetry. Expanded particles.
請求項記載の熱可塑性樹脂発泡粒子を、型内発泡成形してなる型内発泡成形体。 An in-mold foam-molded article obtained by foam-molding the thermoplastic resin foam particles according to claim 6 .
JP2009053808A 2008-08-05 2009-03-06 Thermoplastic resin expanded particles and method for producing the same Active JP5324967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053808A JP5324967B2 (en) 2008-08-05 2009-03-06 Thermoplastic resin expanded particles and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008201859 2008-08-05
JP2008201859 2008-08-05
JP2009053808A JP5324967B2 (en) 2008-08-05 2009-03-06 Thermoplastic resin expanded particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010059393A JP2010059393A (en) 2010-03-18
JP5324967B2 true JP5324967B2 (en) 2013-10-23

Family

ID=42186559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053808A Active JP5324967B2 (en) 2008-08-05 2009-03-06 Thermoplastic resin expanded particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5324967B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688828B2 (en) 2011-07-15 2017-06-27 Kaneka Corporation Antistatic non-crosslinked foamed polyethylene resin particles and molded non-crosslinked foamed polyethylene resin body
WO2013031745A1 (en) * 2011-08-29 2013-03-07 株式会社カネカ Polyethylene resin foamed particles and molded articles thereof
US10351688B2 (en) 2013-11-20 2019-07-16 Kaneka Corporation Polyethylene resin foamed particles, polyethylene resin in-mold foam-molded article, and production methods thereof
WO2016158686A1 (en) 2015-03-27 2016-10-06 株式会社カネカ Method for manufacturing polyethylene resin foam molded article
CN112969745B (en) * 2018-11-13 2022-09-30 帝斯曼知识产权资产管理有限公司 Foaming composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245650A (en) * 1984-05-21 1985-12-05 Japan Styrene Paper Co Ltd Preparation of foamed particle of noncrosslinked polypropylene resin
JP3358886B2 (en) * 1994-08-23 2002-12-24 株式会社ジエイエスピー Water-permeable foam molding having voids
JPH1192599A (en) * 1997-09-25 1999-04-06 Kanegafuchi Chem Ind Co Ltd Polyolefin resin composition, prefoamed particle comprising this and its preparation method

Also Published As

Publication number Publication date
JP2010059393A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5689819B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
JP5813749B2 (en) Polyethylene resin foam particles, polyethylene resin in-mold foam molding, and method for producing polyethylene resin foam particles
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
WO2015098619A1 (en) Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP7227526B1 (en) Expanded polyethylene resin particles and method for producing the same
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
WO2013137411A1 (en) Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP6084046B2 (en) Polyethylene resin foamed particles, polyethylene resin in-mold foam molded product, and method for producing the same
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP6701174B2 (en) Method for producing polyethylene-based resin foam molding
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JP5566634B2 (en) Polyolefin resin multistage expanded particles with excellent mold filling
JP6868003B2 (en) A method for producing polyethylene-based resin foam particles and a method for producing a polyethylene-based resin in-mold foam molded product.
JP5410157B2 (en) Polypropylene resin in-mold foam molding
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
JP5165521B2 (en) Process for producing expanded polyolefin resin particles with excellent mold filling
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5364289B2 (en) Method for producing expanded polypropylene resin particles
JPWO2017090432A1 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles and in-mold expanded molded body
JP6847584B2 (en) Polyethylene resin foam particles and polyethylene resin foam molded products with antistatic performance and their manufacturing methods
JP2019156872A (en) Polyethylene-based resin foamed particle, and method for producing polyethylene-based resin in-mold foamed molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5324967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250