JP5320897B2 - Detection device of ground fault in DC equipment - Google Patents

Detection device of ground fault in DC equipment Download PDF

Info

Publication number
JP5320897B2
JP5320897B2 JP2008205091A JP2008205091A JP5320897B2 JP 5320897 B2 JP5320897 B2 JP 5320897B2 JP 2008205091 A JP2008205091 A JP 2008205091A JP 2008205091 A JP2008205091 A JP 2008205091A JP 5320897 B2 JP5320897 B2 JP 5320897B2
Authority
JP
Japan
Prior art keywords
ground fault
ground
circuit breaker
speed circuit
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008205091A
Other languages
Japanese (ja)
Other versions
JP2010041892A (en
Inventor
正 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008205091A priority Critical patent/JP5320897B2/en
Publication of JP2010041892A publication Critical patent/JP2010041892A/en
Application granted granted Critical
Publication of JP5320897B2 publication Critical patent/JP5320897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)

Description

本発明は、直流式電気鉄道のき電系統において、変電所内の直流機器の地絡検出に関するものである。   The present invention relates to ground fault detection of a DC device in a substation in a feeding system of a DC electric railway.

はじめに、直流電気鉄道用変電所(以下、変電所と称す)での地絡事故の例を図2を用いて説明する。図2はき電系統を表しており、整流器用変圧器101、整流器102、直流高速度遮断器(HSCB)103a(54P),103b(54F),103c(54F)および直流地絡過電圧継電器106(64P)は変電所内に配置されている。また、整流器用変圧器101により、発電所から送電された交流高電圧を降圧し、整流器102により、この降圧された交流電圧を直流電圧に変換し、直流高速度遮断器103a,103cを介してき電線104に送電され、電気車107に所定の電圧が印加される。また、直流地絡過電圧継電器106は、地絡により生じる電圧を検出するためのものである。   First, an example of a ground fault in a DC electric railway substation (hereinafter referred to as a substation) will be described with reference to FIG. FIG. 2 shows a feeder system, including a rectifier transformer 101, a rectifier 102, DC high-speed circuit breakers (HSCB) 103a (54P), 103b (54F), 103c (54F), and a DC ground fault overvoltage relay 106 ( 64P) is located in the substation. Also, the AC high voltage transmitted from the power plant is stepped down by the rectifier transformer 101, and the stepped-down AC voltage is converted into a DC voltage by the rectifier 102, and is passed through the DC high speed circuit breakers 103a and 103c. Electric power is transmitted to the electric wire 104 and a predetermined voltage is applied to the electric vehicle 107. The DC ground fault overvoltage relay 106 is for detecting a voltage caused by the ground fault.

ここで、直流高速度遮断器103aは整流器102用のものであり、直流高速度遮断器103b,103cはき電線用のものである。なお、直流高速度遮断器103bについては他のセクションのき電線に接続されているが、図示を省略している。   Here, the DC high speed circuit breaker 103a is for the rectifier 102, and the DC high speed circuit breakers 103b and 103c are for the feeder line. The DC high-speed circuit breaker 103b is connected to the feeders in other sections, but is not shown.

この変電所で用いられる機器の一つである直流高速度遮断器は、可動部が多いこと、電流遮断によりアークが発生してアークにより地絡にいたること、および小電流遮断ができない場合があること等により、変電所内での地絡故障の原因となる事が多い。   The DC high-speed circuit breaker, one of the equipment used in this substation, has many moving parts, an arc is generated due to current interruption, and it may cause a ground fault due to the arc, and a small current interruption may not be possible. This often causes ground faults in substations.

図2において、直流高速度遮断器103cの1次側で地絡事故が発生すると、整流器102→直流高速度遮断器103a→地絡点→接地抵抗→レール105→整流器102の回路を地絡電流が流れる。また、この接地抵抗の値は変電所A種接地抵抗の値であり、5Ω以下が一般的である。このため、一般的な1500Vのき電系統では、地絡電流は1500V/5Ω=300A程度となる。直流高速度遮断器103aおよび故障選択継電器の過電流検出は数千Aとなっているため、上記の電流では過電流検出が行われないことがある。   In FIG. 2, when a ground fault occurs on the primary side of the DC high speed circuit breaker 103c, the circuit of the rectifier 102 → DC high speed circuit breaker 103a → ground fault → ground resistance → rail 105 → rectifier 102 is connected to the ground fault current. Flows. Moreover, the value of this grounding resistance is the value of the substation A class grounding resistance, and is generally 5Ω or less. For this reason, in a general 1500V feeding system, the ground fault current is about 1500V / 5Ω = 300A. Since the overcurrent detection of the DC high speed circuit breaker 103a and the failure selection relay is several thousand A, the above current may not be detected.

なお、直流高速度遮断器103aの過電流保護の設定は整流器102の容量により決まり、整流器102の容量が3000kWの場合、直流高速度遮断器103aの設定は6000Aが一般的である。   The setting of the overcurrent protection of the DC high speed circuit breaker 103a is determined by the capacity of the rectifier 102. When the capacity of the rectifier 102 is 3000 kW, the setting of the DC high speed circuit breaker 103a is generally 6000A.

このため、変電所での地絡事故検出は、直流地絡過電圧継電器(64P)を用いて、レールと大地間との電圧を検出する過電圧検出方式が採用されている。   For this reason, the ground fault accident detection in the substation employ | adopts the overvoltage detection system which detects the voltage between a rail and the earth using a DC ground fault overvoltage relay (64P).

この過電圧検出方式による問題点を、図2と図2における地絡事故時の等価回路である図3とを用いて説明する。
<1.地絡事故点抵抗が大きいと、直流地絡過電圧継電器で電圧を検出できない場合がある>
図3を用いて説明する。直流地絡過電圧継電器106が検出する電圧は、変電所構内ではA種接地抵抗111と地絡電流Isとにより決定される。一般に1500Vのき電系統では直流地絡過電圧継電器は500Vに設定されている。今、高抵抗地絡が発生し、地絡点抵抗110を20Ω、A種接地抵抗111を5Ωとすると、地絡電流Is=1500/(5+20)=60A、直流地絡過電圧継電器106の検知電圧=5×60=300Vとなり、直流地絡過電圧継電器106が動作しないこととなる。
<2.地絡事故が発生した際、変電所構内か構外かの区別がつかない場合がある>
過電圧検出方式では、変電所構外の事故はフィーダ遮断器で選択遮断を行うことで影響を受ける負荷への送電を停止させ、変電所構内の事故は地絡を検出した直流地絡過電圧継電器の信号に基づいて変電所を停止させる。しかし、変電所構外の事故でも直流地絡過電圧継電器が動作し変電所停止となることがある。これについて図2を用いて説明する。
Problems with this overvoltage detection method will be described with reference to FIG. 2 and FIG. 3 which is an equivalent circuit in the event of a ground fault in FIG.
<1. If the ground fault point resistance is large, the DC ground fault overvoltage relay may not be able to detect the voltage>
This will be described with reference to FIG. The voltage detected by the DC ground fault overvoltage relay 106 is determined by the class A grounding resistor 111 and the ground fault current Is in the substation. In general, in a 1500V feeding system, the DC ground fault overvoltage relay is set to 500V. Now, if a high-resistance ground fault occurs, the ground fault point resistance 110 is 20Ω, and the class A grounding resistor 111 is 5Ω, the ground fault current Is = 1500 / (5 + 20) = 60 A, the detection voltage of the DC ground fault overvoltage relay 106 = 5 × 60 = 300V, and the DC ground fault overvoltage relay 106 does not operate.
<2. When a ground fault occurs, it may not be possible to distinguish between substation and off-site>
In the overvoltage detection method, if an accident outside the substation premises, the feeder circuit breaker selectively cuts off the power to the affected load, and the fault inside the substation premises detects a ground fault overvoltage relay signal. The substation is stopped based on However, even if an accident occurs outside the substation, the DC ground fault overvoltage relay may operate and the substation may stop. This will be described with reference to FIG.

図2において、外線側(直流高速度遮断器103cよりき電線104側)で地絡事故が発生した場合には、図3のA種接地抵抗はレールと大地間の抵抗となる。この場合は地絡電流が大きいため、直流高速度遮断器103cを流れる過電流で事故検出を行い、直流高速度遮断器103cを遮断する必要があるが、その地絡電流は、直流地絡過電圧継電器106に電圧を検出させることになるため、状況によっては直流地絡過電圧継電器106も動作する。したがって、変電所構外の事故時に直流地絡過電圧継電器106も動作すると、地絡事故の発生場所が変電所構内なのか構外なのかの区別がつかなくなってしまう。   In FIG. 2, when a ground fault occurs on the outer line side (the DC high speed circuit breaker 103 c side of the electric wire 104), the class A grounding resistance in FIG. 3 is a resistance between the rail and the ground. In this case, since the ground fault current is large, it is necessary to detect the accident with the overcurrent flowing through the DC high-speed circuit breaker 103c, and to shut off the DC high-speed circuit breaker 103c. Since the relay 106 detects the voltage, the DC ground fault overvoltage relay 106 is also operated depending on the situation. Therefore, if the DC ground fault overvoltage relay 106 is also operated at the time of an accident outside the substation, it becomes impossible to distinguish whether the ground fault occurs at the substation or off-site.

このような問題点のある過電圧検出方式に対し、過電流検出により地絡事故を検出するものが、例えば特許文献1に開示されている。   For example, Patent Document 1 discloses a method of detecting a ground fault by detecting overcurrent in contrast to such a problematic overvoltage detection method.

なお、従来の一般的なHSCBの構造を図4に示す。図4のものは、配電盤1、その前面扉2および背面扉3、直流高速度遮断器4、引出装置5、接地導体6、接地金具7、引出装置取付ボルト8、接地バー9、配電盤接地線10、ならびに専用配線11を備えている。   FIG. 4 shows a conventional general HSCB structure. The thing of FIG. 4 is the switchboard 1, its front door 2 and back door 3, DC high-speed circuit breaker 4, drawer device 5, grounding conductor 6, grounding metal fitting 7, drawer device mounting bolt 8, grounding bar 9, switchboard grounding wire 10 and a dedicated wiring 11 are provided.

配電盤1は大地上に配設され、前面扉2および背面扉3を備え、直流高速度遮断器4および図示しない直流断路器等を収納している。   The switchboard 1 is disposed on the ground and includes a front door 2 and a back door 3 and houses a DC high-speed circuit breaker 4 and a DC disconnector (not shown).

直流高速度遮断器4は、主回路の地絡時には高速で地絡電流を遮断するものであり、例えば、保持電源を必要としないため直流電源の容量を軽減できる、直流電源の変動で目盛りが変化しない、等の特徴を有する機械保持式のものが用いられる。通常、遮断電流は数千Aである。なお、直流高速度遮断器4を流れた電流は、例えば図2のき電線104を含む主回路導体へ流れる。   The DC high-speed circuit breaker 4 interrupts the ground fault current at high speed when the main circuit is grounded. For example, since the holding power source is not required, the capacity of the DC power source can be reduced. A machine-holding type having characteristics such as not changing is used. Usually, the breaking current is several thousand A. Note that the current flowing through the DC high-speed circuit breaker 4 flows to the main circuit conductor including the feeder 104 in FIG. 2, for example.

引出装置5は、収納される引出形の直流高速度遮断器4の挿入・引出し操作を行うための装置であり、導電性のものである。   The drawing device 5 is a device for performing insertion / drawing operation of the drawer type DC high-speed circuit breaker 4 to be housed, and is conductive.

接地導体6は、引出装置5の台座の上面に設けられ、接地金具7に接触するようになっている。   The ground conductor 6 is provided on the upper surface of the pedestal of the drawing device 5 and comes into contact with the ground metal fitting 7.

接地金具7は、直流高速度遮断器4の外筺に取り付けられ、接地導体6と接触するようになっている。   The grounding metal 7 is attached to the outer casing of the DC high speed circuit breaker 4 and comes into contact with the grounding conductor 6.

引出装置取付ボルト8は、大地上に設置された配電盤1と引出装置5とを固定するためのものである。   The drawing device mounting bolt 8 is for fixing the switchboard 1 and the drawing device 5 installed on the ground.

接地バー9の一端は、大地と接触しており、他端に接続される機器を接地させるためのものである。   One end of the ground bar 9 is in contact with the ground, and is for grounding a device connected to the other end.

配電盤接地線10は、配電盤1と接地バー9との間を接続し、配電盤1を接地させるためのものである。   The switchboard ground line 10 is for connecting the switchboard 1 and the ground bar 9 to ground the switchboard 1.

専用配線11は、接地導体6と接地バー9との間を接続し、接地導体6および接地金具7を介して直流高速度遮断器4(HSCB本体)を接地させるためのものである。ただし、図4のものにおいては必ず取り付けられているわけではない。   The dedicated wiring 11 connects the ground conductor 6 and the ground bar 9 and grounds the DC high-speed circuit breaker 4 (HSCB main body) via the ground conductor 6 and the ground fitting 7. However, in the thing of FIG. 4, it is not necessarily attached.

このように、直流高速度遮断器4の外筺には接地金具7が取り付けられており、この接地金具7が導電性の引出装置5に設けた接地導体6と接触し、引出装置5が引出装置取付ボルト8により配電盤1に固定され、配電盤接地線10(または専用配線11)および接地バー9を介することで、直流高速度遮断器4の外筺は接地されている。
特開2004−194471号公報(段落[0017]〜[0020]、図4等)。
In this way, the grounding metal fitting 7 is attached to the outer casing of the DC high-speed circuit breaker 4, and this grounding metal fitting 7 comes into contact with the ground conductor 6 provided in the conductive drawing device 5, and the drawing device 5 is drawn out. The outer casing of the DC high speed circuit breaker 4 is grounded by being fixed to the switchboard 1 by the device mounting bolts 8 and via the switchboard grounding wire 10 (or the dedicated wiring 11) and the grounding bar 9.
JP 2004-194471 A (paragraphs [0017] to [0020], FIG. 4 and the like).

この特許文献1のものは、実施形態3に記載されているように、筺体を遮断器単位で電気的に分離することで各遮断器も電気的に分離している。そして、筺体ごとに接地線を個別に敷設し、電気的に分離された遮断器ごとに接地線に流れる地絡電流を検出するようになっている。   As described in the third embodiment, in Patent Document 1, each circuit breaker is also electrically separated by electrically separating the casing in circuit breaker units. A ground wire is individually laid for each housing, and a ground fault current flowing in the ground wire is detected for each electrically separated circuit breaker.

しかし、地絡電流は遮断器ごとに接地線に流れる以外に、アンカーボルトから大地へ流れる経路等、筺体とアース間の様々な経路を流れる。したがって、接地線に流れる電流が小さくなり電流検出計の整定値も小さくする必要があるが、整定値を小さくすると誤動作が起こりやすくなるという問題がある。   However, the ground fault current flows through various paths between the frame and the ground, such as a path from the anchor bolt to the ground, in addition to flowing to the ground line for each breaker. Therefore, it is necessary to reduce the current flowing through the ground line and to reduce the settling value of the current detector.

本発明は、前記課題に基づいてなされたものであり、地絡の検出が確実に行われ、高抵抗地絡時にも確実な地絡検出が可能となる直流機器における地絡事故の検出装置を提供することにある。   The present invention has been made based on the above problems, and provides a detection device for a ground fault in a DC device in which a ground fault is reliably detected and a reliable ground fault can be detected even at the time of a high resistance ground fault. It is to provide.

本発明は、前記課題の解決を図るために、接地された筺体と、前記筺体と絶縁するように前記筺体内に配設され、外筺を有した直流回路用の直流高速度遮断器と、前記直流高速度遮断器の外筺と大地との間を結ぶ接地線と、前記接地線を流れる地絡電流を検知する電流検知手段と、を備えたことを特徴とする。 In order to solve the above problems, the present invention provides a grounded casing, a DC high-speed circuit breaker for a DC circuit that is disposed in the casing so as to be insulated from the casing, and has an outer casing. A grounding line connecting the outer casing of the DC high-speed circuit breaker and the ground, and current detection means for detecting a ground fault current flowing through the grounding line are provided.

また、前記直流高速度遮断器は、絶縁物を介して前記筺体と絶縁されたことを特徴とする。 The DC high-speed circuit breaker is insulated from the housing through an insulator.

また、前記接地線は、一の接地線のみからなることを特徴とする。   Further, the ground line is composed of only one ground line.

上記構成によれば、筺体から絶縁された直流高速度遮断器の外筺から接地線を介して流れる地絡電流を検知することで、地絡電流が接地線以外を流れないので、地絡の検出が確実に行われ、高抵抗地絡時にも確実な地絡検出が可能となり、変電所構外の事故で誤動作を生じることがない。 According to the above configuration, since the ground fault current does not flow except the ground line by detecting the ground fault current flowing through the ground line from the outer casing of the DC high speed circuit breaker insulated from the casing, Detection is performed reliably, and reliable ground fault detection is possible even in the case of a high resistance ground fault, and no malfunction occurs due to an accident outside the substation.

また、1次側、2次側のいずれにおいても地絡電流が接地線以外を流れないので、地絡の検出が確実に行われる。 In addition, since the ground fault current does not flow except for the ground line on either the primary side or the secondary side, the ground fault is reliably detected.

請求項1〜3の発明によれば、筺体から絶縁された直流高速度遮断器の外筺から接地線を介して流れる地絡電流を検知することで、地絡電流が接地線以外を流れないので、地絡の検出が確実に行われ、高抵抗地絡時にも確実な地絡検出が可能となり、変電所構外の事故で誤動作を生じることがない。また、構外地絡時の影響を受けず、誤動作を生じることがない。 According to the first to third aspects of the present invention, the ground fault current does not flow except the ground line by detecting the ground fault current flowing through the ground line from the outer casing of the DC high speed circuit breaker insulated from the casing. Therefore, the ground fault is reliably detected, and the ground fault can be reliably detected even in the case of a high resistance ground fault, so that no malfunction is caused by an accident outside the substation. In addition, it is not affected by the ground fault and no malfunction occurs.

また、1次側、2次側のいずれにおいても地絡電流が接地線以外を流れないので、地絡の検出が確実に行われる。 In addition, since the ground fault current does not flow except for the ground line on either the primary side or the secondary side, the ground fault is reliably detected.

以下、本発明の実施の形態の直流機器における地絡事故の検出装置を図面等に基づいて詳細に説明する。   Hereinafter, a ground fault detection device for a DC device according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態における構成図である。図4のものと同一のものには同一の符号を付し説明を省略する。図4のものとの相違点は、配電盤1と引出装置5との間に絶縁物12を設けていること、前記引出装置取付ボルト8に代えて引出装置取付絶縁ボルト13により、引出装置5および絶縁物12を配電盤1に対して固定していること、直流高速度遮断器4の外筺が専用接地線21のみによって接地されていること、ならびに専用接地線21に地絡電流検出用CT14が設けられていることである。   FIG. 1 is a configuration diagram according to an embodiment of the present invention. The same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted. 4 differs from that of FIG. 4 in that an insulator 12 is provided between the switchboard 1 and the drawing device 5 and that the drawing device mounting insulating bolt 13 replaces the drawing device mounting bolt 8 so that the drawing device 5 and The insulator 12 is fixed to the switchboard 1, the outer casing of the DC high speed circuit breaker 4 is grounded only by the dedicated ground wire 21, and the ground fault current detection CT 14 is connected to the dedicated ground wire 21. It is provided.

ここで、絶縁物12は、引出装置5の底面部と略同一の形状をしており、配電盤1と引出装置5とに当接しているが、必ずしも引出装置5の底面部と略同一の形状である必要はない。また、絶縁物12は、エポキシ樹脂等の合成樹脂により形成される。   Here, the insulator 12 has substantially the same shape as the bottom surface portion of the drawing device 5 and is in contact with the switchboard 1 and the drawing device 5, but is not necessarily the same shape as the bottom surface portion of the drawing device 5. Need not be. The insulator 12 is formed of a synthetic resin such as an epoxy resin.

引出装置取付絶縁ボルト13は、エポキシ樹脂等の合成樹脂によりコーティングされたボルト等が用いられる。   As the drawing device mounting insulating bolt 13, a bolt coated with a synthetic resin such as an epoxy resin is used.

地絡電流検出用CT14は、専用接地線21に設けられており、通常は専用接地線21に電流が流れないため、検出電流は零電流であるが、地絡が発生した場合に、専用接地線21を地絡電流が流れることで電流を検出し地絡事故の発生を検知する。   The ground fault current detection CT 14 is provided on the dedicated ground line 21, and normally no current flows through the dedicated ground line 21, so the detected current is zero current, but when a ground fault occurs, the dedicated ground line When a ground fault current flows through the wire 21, the current is detected and the occurrence of a ground fault is detected.

なお、専用接地線21は、直流高速度遮断器4専用のものであり、一本のみで構成されることが好ましい。   The dedicated ground line 21 is dedicated to the DC high-speed circuit breaker 4 and is preferably composed of only one.

このように、直流高速度遮断器4の外筺は、電気的に接続している引出装置5が配電盤1から絶縁され、専用接地線21のみで接地されることにより、地絡電流は様々な経路を流れることなく専用接地線21のみを流れることになる。したがって、地絡電流検出用CT14による地絡電流の検出が確実なものとなる。また、高抵抗地絡時にも確実な地絡検出が可能となり、変電所構外の事故で誤動作を生じることもない。   In this way, the outer casing of the DC high-speed circuit breaker 4 is isolated from the switchboard 1 by the electrically connected drawing device 5 and grounded only by the dedicated grounding wire 21, so that the ground fault current varies. Only the dedicated ground line 21 flows without flowing through the route. Therefore, the ground fault current can be reliably detected by the ground fault current detection CT 14. In addition, reliable ground fault detection is possible even in the case of a high resistance ground fault, and no malfunction occurs due to an accident outside the substation.

すなわち、構外地絡事故や隣接変電所で地絡事故が発生した場合、その地絡電流は事故地点から大地を介して構内に設置された本発明のHSCBの専用接地線に流れるが、その電流方向が反対であるため地絡電流検出用CT14の検出電流が逆方向となり、当該HSCBが誤動作することはない。したがって、構外地絡時の影響を受けず、誤動作を生じることがない。   That is, when an off-ground ground fault or a ground fault occurs at an adjacent substation, the ground fault current flows from the point of the accident through the ground to the dedicated ground line of the HSCB of the present invention. Since the directions are opposite, the detection current of the ground fault current detection CT 14 is in the reverse direction, and the HSCB does not malfunction. Therefore, it is not affected by an off-ground ground fault and does not cause a malfunction.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、図1の配電盤1全体を大地と絶縁し、配電盤1に専用接地線21を設けてこの専用接地線21の電流検出を行うようにすることも可能である。   For example, it is possible to insulate the entire distribution board 1 of FIG. 1 from the ground, and provide a dedicated ground line 21 on the distribution board 1 to detect the current of the dedicated ground line 21.

また、例えば図1の絶縁物12を配電盤1と引出装置5との間に配置する代わりに、引出装置5そのものを、所定の絶縁材料で覆う等して直流高速度遮断器4を配電盤1から絶縁するようにしてもよい。   For example, instead of disposing the insulator 12 in FIG. 1 between the switchboard 1 and the drawer device 5, the DC high-speed circuit breaker 4 is connected to the switchboard 1 by covering the drawer device 5 itself with a predetermined insulating material. It may be insulated.

なお、本発明の実施の形態では、直流機器として直流高速度遮断器を用いているが、これに限定されることはなく、他の直流機器、例えば、シリコン整流器、インバータ等に適用することも可能である。その場合も、前記実施形態例と同様の作用、効果を奏する。   In the embodiment of the present invention, a DC high-speed circuit breaker is used as a DC device, but the present invention is not limited to this, and it can be applied to other DC devices such as a silicon rectifier and an inverter. Is possible. Even in that case, the same operations and effects as the above-described embodiment are achieved.

本実施の形態の直流高速度遮断器(HSCB)における地絡事故の検出装置の構成図。The block diagram of the detection apparatus of the ground fault in the DC high-speed circuit breaker (HSCB) of this Embodiment. 直流き電回路における1次地絡時の過電圧検出の概略図。Schematic of the overvoltage detection at the time of the primary ground fault in a DC feeding circuit. 図2における地絡事故時の等価回路図。The equivalent circuit figure at the time of the ground fault accident in FIG. 従来の直流高速度遮断器(HSCB)の取付状況を示す構成図。The block diagram which shows the attachment condition of the conventional DC high-speed circuit breaker (HSCB).

符号の説明Explanation of symbols

1…配電盤(筺体)
2…前面扉
3…背面扉
4,103a〜103c…直流高速度遮断器(直流機器)
5…引出装置
6…接地導体
7…接地金具
8…引出装置取付ボルト
9…接地バー
10…配電盤接地線
11…専用配線
12…絶縁物
13…引出装置取付絶縁ボルト
14…地絡電流検出用CT(電流検出手段)
21…専用接地線
101…整流器用変圧器
102…整流器
104…き電線
105…レール
106…直流地絡過電圧継電器
107…電気車
110…地絡点抵抗
111…A種接地抵抗
1 ... switchboard (frame)
2 ... Front door 3 ... Back door 4,103a-103c ... DC high speed circuit breaker (DC equipment)
DESCRIPTION OF SYMBOLS 5 ... Leading device 6 ... Grounding conductor 7 ... Grounding metal fitting 8 ... Leading device mounting bolt 9 ... Grounding bar 10 ... Switchboard grounding wire 11 ... Dedicated wiring 12 ... Insulator 13 ... Leading device mounting insulating bolt 14 ... CT for ground fault current detection (Current detection means)
21 ... Dedicated grounding wire 101 ... Rectifier transformer 102 ... Rectifier 104 ... Feed wire 105 ... Rail 106 ... DC ground fault overvoltage relay 107 ... Electric car 110 ... Ground fault resistance 111 ... Class A grounding resistance

Claims (3)

接地された筺体と、
前記筺体と絶縁するように前記筺体内に配設され、外筺を有した直流回路用の直流高速度遮断器と、
前記直流高速度遮断器の外筺と大地との間を結ぶ接地線と、
前記接地線を流れる地絡電流を検知する電流検知手段と、を備えたことを特徴とする直流機器における地絡事故の検出装置。
A grounded enclosure,
A DC high-speed circuit breaker for a DC circuit disposed in the housing so as to be insulated from the housing, and having an outer sheath;
A grounding wire connecting the outer casing of the DC high-speed circuit breaker and the ground,
An apparatus for detecting a ground fault in a DC device, comprising: a current detection unit configured to detect a ground fault current flowing through the ground line.
前記直流高速度遮断器は、絶縁物を介して前記筺体と絶縁されたことを特徴とする請求項1に記載の直流機器における地絡事故の検出装置。 2. The apparatus for detecting a ground fault in a DC device according to claim 1, wherein the DC high-speed circuit breaker is insulated from the housing through an insulator. 前記接地線は、一の接地線のみからなることを特徴とする請求項1または2に記載の直流機器における地絡事故の検出装置。   The said grounding wire consists of only one grounding wire, The detection apparatus of the ground fault in DC apparatus of Claim 1 or 2 characterized by the above-mentioned.
JP2008205091A 2008-08-08 2008-08-08 Detection device of ground fault in DC equipment Active JP5320897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205091A JP5320897B2 (en) 2008-08-08 2008-08-08 Detection device of ground fault in DC equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205091A JP5320897B2 (en) 2008-08-08 2008-08-08 Detection device of ground fault in DC equipment

Publications (2)

Publication Number Publication Date
JP2010041892A JP2010041892A (en) 2010-02-18
JP5320897B2 true JP5320897B2 (en) 2013-10-23

Family

ID=42013849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205091A Active JP5320897B2 (en) 2008-08-08 2008-08-08 Detection device of ground fault in DC equipment

Country Status (1)

Country Link
JP (1) JP5320897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5951237B2 (en) * 2011-11-21 2016-07-13 株式会社東芝 DC feeder protection relay device
JP2018036054A (en) * 2016-08-29 2018-03-08 永楽電気株式会社 Earth detector, ground fault protection device, and method for detecting ground fault

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621074A (en) * 1979-07-28 1981-02-27 Mitsubishi Electric Corp Dc leak current measuring device
JPS63249063A (en) * 1987-04-06 1988-10-17 Fuji Electric Co Ltd Flashover order discrimination apparatus of composite device built-in machinery
JPH0984254A (en) * 1995-09-14 1997-03-28 Omron Corp Power supply system, inverter equipment, and distributed power supply system
JP3541992B2 (en) * 1996-02-08 2004-07-14 日本原子力研究所 Electrical structure insulation measuring device
JP2000333359A (en) * 1999-05-21 2000-11-30 Meidensha Corp Grounding fault-detecting device for mechanically/ electrically integrated system
JP2004194471A (en) * 2002-12-13 2004-07-08 Mitsubishi Electric Corp Protector which detects ground fault inside dc machine

Also Published As

Publication number Publication date
JP2010041892A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US6295190B1 (en) Circuit breaker arrangement with integrated protection, control and monitoring
US8502416B2 (en) Method and circuit arrangement for connecting at least one string of a photovoltaic system to an inverter
EP3614513B1 (en) Dc ground fault detection system and dc ground fault detection method for dc electric railway
JP2011091995A (en) String and system using direct-current power module and lots of string protection apparatuses
EP3203249B1 (en) Insulation deterioration monitor device
US20140043714A1 (en) Switchgear including a circuit breaker having a trip unit with an interface to a number of arc fault sensors
JPS60255012A (en) Protecting relay
JP5320897B2 (en) Detection device of ground fault in DC equipment
JP2017013547A (en) Ground fault protection device and ground fault protection system
KR101054386B1 (en) Integrated DC Protection Relay System for Electric Railways
JP2004239863A (en) Grounding method for transformer
JP2018036054A (en) Earth detector, ground fault protection device, and method for detecting ground fault
JP3157691B2 (en) Feeding equipment protection device
JP2008043181A (en) Opening/closing device for power distribution
KR100437446B1 (en) Sub-system connecting device in power supply system
Bapat et al. Advanced concepts in high resistance grounding
US20140160612A1 (en) Integral current transforming electric circuit interrupter
Hartung et al. Limitation of short circuit current by an I S-limiter
JPS6355297B2 (en)
KR101602060B1 (en) Apparatus and method for detecting fault point using protection relay
JP2004194471A (en) Protector which detects ground fault inside dc machine
Sattari et al. High reliability electrical distribution system for industrial facilities
JPS608491Y2 (en) Vacuum breaker with terminal for voltage detection
KR101307939B1 (en) Incoming panel for protecting current transformer
JP2891695B1 (en) Failure detection device for switching switches for AC electric railways

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5320897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150