JP5320685B2 - Method for producing polymer electrolyte membrane-electrode assembly - Google Patents

Method for producing polymer electrolyte membrane-electrode assembly Download PDF

Info

Publication number
JP5320685B2
JP5320685B2 JP2007102357A JP2007102357A JP5320685B2 JP 5320685 B2 JP5320685 B2 JP 5320685B2 JP 2007102357 A JP2007102357 A JP 2007102357A JP 2007102357 A JP2007102357 A JP 2007102357A JP 5320685 B2 JP5320685 B2 JP 5320685B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
electrode assembly
carbon
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102357A
Other languages
Japanese (ja)
Other versions
JP2008262716A5 (en
JP2008262716A (en
Inventor
義明 前田
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2007102357A priority Critical patent/JP5320685B2/en
Publication of JP2008262716A publication Critical patent/JP2008262716A/en
Publication of JP2008262716A5 publication Critical patent/JP2008262716A5/ja
Application granted granted Critical
Publication of JP5320685B2 publication Critical patent/JP5320685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高分子電解質膜-電極接合体(MEA)の製造方法に関する。さらに詳しくは、高分子電解質膜の両側に燃料極と空気極とを熱圧縮して形成させた燃料電池用高分子電解質膜-電極接合体の製造方法に関する。   The present invention relates to a method for producing a polymer electrolyte membrane-electrode assembly (MEA). More specifically, the present invention relates to a method for producing a polymer electrolyte membrane-electrode assembly for a fuel cell, which is formed by thermally compressing a fuel electrode and an air electrode on both sides of a polymer electrolyte membrane.

また、燃料電池用のセルは、高分子電解質膜の両側の面に燃料極と空気極とを熱圧縮して、膜・電極接合体(MEA)として一般に作製されている。実際には、電極触媒層をシート状に膜成形し、同時にこれを高分子電解質膜にホットプレスする方法も一般的に行われているが、燃料電池の触媒層には、高いガス供給・排出性、水素イオン伝導性、触媒の活性が必要となる。高いガス供給・排出性の向上のため、触媒層を多孔質化する方法が提案されている。
特開2005−11582号公報 特開2005−108550号公報
Further, a cell for a fuel cell is generally manufactured as a membrane / electrode assembly (MEA) by thermally compressing a fuel electrode and an air electrode on both sides of a polymer electrolyte membrane. In practice, a method of forming an electrode catalyst layer into a sheet and simultaneously hot pressing it onto a polymer electrolyte membrane is generally performed. , Hydrogen ion conductivity, and catalytic activity are required. A method for making the catalyst layer porous has been proposed in order to improve gas supply / exhaust performance.
JP 2005-11582 A JP 2005-108550 A

これらの提案された方法は、従来の触媒担持カーボンとイオン導電性樹脂とを含む高分子電解質膜に塗布もしくは転写する方法と比べて、ガス供給・排出性にはすぐれているものの、電子伝導性については十分ではないという問題がみられる。   Although these proposed methods are superior in gas supply / discharge properties compared to the conventional method of applying or transferring to a polymer electrolyte membrane containing catalyst-carrying carbon and ion conductive resin, the electron conductivity There is a problem that is not enough.

電子伝導性を高める多孔質化の方法として、カーボンナノチューブ等の気相成長法炭素繊維を触媒層に添加する方法も提案されているが、カーボンナノチューブは一般に分散性に乏しく、均一な触媒層の形成を困難なものとしている。
特開2003−115302号公報
As a method for increasing the electron conductivity, a method of adding vapor grown carbon fibers such as carbon nanotubes to the catalyst layer has also been proposed. However, carbon nanotubes generally have poor dispersibility and have a uniform catalyst layer. It is difficult to form.
JP 2003-115302 A

本出願人は先に、塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面に炭素材料表面上に炭素材料薄膜を形成させる炭素材料薄膜の製膜方法を提案している。
特開2006−63436号公報
The applicant previously dispersed a carbon material in a hydrocarbon solvent to which a basic polymer type dispersant was added, applied a voltage in this solvent with the coating material as an anode, and applied the carbon material to the surface of the anode material. A carbon material thin film forming method for forming a carbon material thin film on the surface has been proposed.
JP 2006-63436 A

被被覆材としての陽極材としては、ガス拡散層を形成し得る炭素繊維系不織布等の多孔質炭素材料が用いられ、この表面上にカーボンナノチューブ(CNT)を均質に担持させ、このCNT担持表面にさらに触媒を担持させ、これを高分子電解質膜と一体化させてMEAを構成した場合には、初期には発電が起こるが、時間の経過と共に発電量が低下することが新たに判明した。その原因としては、触媒の拡散または脱離など高分子電解質膜との触媒の接触密度の低下が影響していると考えられる。 As the anode material as the coating material, a porous carbon material such as a carbon fiber non-woven fabric capable of forming a gas diffusion layer is used, and carbon nanotubes (CNT) are uniformly supported on this surface, and this CNT supporting surface In addition, it was newly found that when MEA is constructed by further supporting a catalyst and integrating it with a polymer electrolyte membrane, power generation occurs initially , but the power generation amount decreases with time. The cause is considered to be the decrease in the contact density of the catalyst with the polymer electrolyte membrane, such as the diffusion or desorption of the catalyst.

本発明の目的は、高分子電解質膜の両側に燃料極および空気極を熱圧縮して形成させた燃料電池用MEAであって、経時的電圧低下の少ないものの製造方法を提供することにある。   An object of the present invention is to provide a method for producing a MEA for a fuel cell in which a fuel electrode and an air electrode are formed on both sides of a polymer electrolyte membrane by thermal compression, and the voltage drop with time is small.

かかる本発明の目的は、塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中でその片面側にPTFEディスパージョンとカーボンブラックとの混合物を320〜400℃で加熱処理して、平均空孔径50〜1000nmの緻密な撥水層を形成させたガス拡散電極を陽極として電圧を印加し、陽極材撥水層上に炭素材料薄膜を形成せしめ、次いで該炭素材料薄膜中に触媒層を形成させ、得られた積層体2枚を用いて、これら積層体の触媒層側が高分子電解質膜に接するように高分子電解質膜を挟み込み、ホットプレスして高分子電解質膜-電極接合体を製造する方法によって達成される。 The object of the present invention is to disperse a carbon material in a hydrocarbon solvent to which a basic polymer type dispersant is added, and in this solvent, a mixture of PTFE dispersion and carbon black is applied to 320 to 400 on one side thereof. A voltage was applied using a gas diffusion electrode formed with a dense water-repellent layer having an average pore diameter of 50 to 1000 nm as an anode by forming a carbon material thin film on the anode material water-repellent layer, A catalyst layer is formed in a carbon material thin film, and using the obtained two laminates, the polymer electrolyte membrane is sandwiched so that the catalyst layer side of these laminates is in contact with the polymer electrolyte membrane, and hot-pressed to form a polymer This is achieved by a method of manufacturing an electrolyte membrane-electrode assembly.

CNT等の炭素材料を、ガス拡散層上に設けた撥水層に電着させると、その形態から空隙を有するチューブにネックワークを形成させる。電着法では、CNTを分散させた溶液を塗布する手法とは異なり、均一な膜厚を有する薄膜を形成させることが可能であり、すなわちこの均一な空隙に触媒層を形成させることにより、触媒層にとって必要な高いガス供給・排出性が得られる。   When a carbon material such as CNT is electrodeposited on the water-repellent layer provided on the gas diffusion layer, a neckwork is formed on the tube having voids from its form. In the electrodeposition method, unlike a method of applying a solution in which CNTs are dispersed, it is possible to form a thin film having a uniform film thickness, that is, by forming a catalyst layer in this uniform void, High gas supply and exhaust properties required for the strata can be obtained.

特に、撥水層を設けたことで、触媒の担持状態が結果的に保持され、経時的な発電量の低下を抑制することができる。さらに、CNT等の炭素材料は高い導電性を有するため、カーボン粒子間における電子伝導の損失を低減することができ、高い電子伝導性が得られる。   In particular, by providing the water repellent layer, the supported state of the catalyst can be maintained as a result, and the decrease in power generation over time can be suppressed. Furthermore, since carbon materials such as CNT have high conductivity, loss of electron conduction between carbon particles can be reduced, and high electron conductivity can be obtained.

まず、塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中でその片面側に撥水層を形成させたガス拡散電極を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめる方法について説明する。   First, a carbon material is dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added, and a voltage is applied using a gas diffusion electrode in which a water repellent layer is formed on one side of the solvent in the solvent as an anode, A method for forming a carbon material thin film on the anode material surface will be described.

炭素材料としては、カーボンナノチューブ、カーボンブラック、黒鉛、カーボンファイバー、フラーレンなどが挙げられるが、好ましくは、優れた電気伝導性と熱伝導性の観点からカーボンナノチューブが、電気特性および嵩密度の観点からカーボンブラックまたは黒鉛が用いられる。これらは、溶液分散するものであれば特に制限なく使用することができ、カーボンナノチューブとしては単層カーボンナノチューブまたは多層カーボンナノチューブなどが、カーボンブラックとしては、ケッチェンブラック、アセチレンブラックなどが、また黒鉛としては、人造黒鉛、天然黒鉛のいずれかが用いられる。   Examples of the carbon material include carbon nanotube, carbon black, graphite, carbon fiber, fullerene, and the like. Preferably, from the viewpoint of excellent electrical conductivity and thermal conductivity, the carbon nanotube is from the viewpoint of electrical characteristics and bulk density. Carbon black or graphite is used. These can be used without particular limitation as long as they are dispersed in a solution, such as single-walled carbon nanotubes or multi-walled carbon nanotubes as carbon nanotubes, ketjen black, acetylene black, etc. as carbon black, and graphite. As such, either artificial graphite or natural graphite is used.

塩基性高分子型分散剤としては、分子量が数千〜数万であり、エステルを有する構造のものであれば特に制限なく使用することができ、脂肪酸エステルなど、好ましくはポリエステル酸アマイドアミン塩が用いられる。実際には、市販品、例えば楠本化成製品ディスパロンDA-703-50、DA-705、DA-725、DA-234等が用いられる。この他、ポリエーテルリン酸エステルのアミン塩である同社製品ディスパロンDA-325等も用いられる。これらは、1〜20重量%、好ましくは3〜10重量%の割合で、炭化水素系溶媒中に添加されて用いられる。この使用割合がこれ以下では、本発明の目的が達成されず、一方これ以上の割合で用いられると、形成した薄膜中に塩基性高分子型分散剤が多量に付着することとなり、好ましくない。   As the basic polymer type dispersant, a molecular weight of several thousand to several tens of thousands can be used without particular limitation as long as it has an ester structure, and a fatty acid ester or the like, preferably a polyester acid amide amine salt is used. Used. In practice, commercially available products such as Enomoto Kasei products Disparon DA-703-50, DA-705, DA-725, DA-234 and the like are used. In addition, the company's product Disparon DA-325, which is an amine salt of polyether phosphate, is also used. These are used by being added to a hydrocarbon solvent in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight. If the use ratio is less than this, the object of the present invention is not achieved. On the other hand, if the use ratio is more than this, a large amount of the basic polymer type dispersant is adhered to the formed thin film, which is not preferable.

塩基性高分子型分散剤を添加した炭化水素系溶媒中に分散させた炭素材料、好ましくはカーボンナノチューブの平均粒子径(湿式でのレーザー散乱法による50%粒子径)は、100〜1000nm、好ましくは500〜800nmに設定されることが好ましい。このような平均粒子径への調整は、ボールミルなどを用いても行われるが、好ましくは超音波ホモジナイザを用いて行われる。超音波ホモジナイザの代りに、超音波洗浄器を用いると、分散液中のカーボンナノチューブ凝集塊の平均粒子径は1000nm以上となり、またポット型ボールミルを用いると、カーボンナノチューブの破断などがみられることもある。   The average particle diameter of carbon materials, preferably carbon nanotubes (50% particle diameter by wet laser scattering method) dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added is preferably 100 to 1000 nm, preferably Is preferably set to 500 to 800 nm. Such adjustment to the average particle diameter is also performed using a ball mill or the like, but is preferably performed using an ultrasonic homogenizer. If an ultrasonic cleaner is used instead of an ultrasonic homogenizer, the average particle diameter of the carbon nanotube aggregates in the dispersion will be 1000 nm or more, and if a pot-type ball mill is used, the carbon nanotubes may break. is there.

また、塩基性高分子型分散剤を添加した炭化水素系溶媒中に分散させた炭素材料、特にカーボンナノチューブの平均粒子径を100〜1000nmの範囲に設定した場合には、上記カーボンシートを用いた場合と同様に、吸着量および吸着層中のカーボンナノチューブ重量割合をいずれも増加させることができる。このことは、吸着中に同時に吸着される塩基性高分子型分散剤の重量割合が減少し、その結果としてカーボンナノチューブの重量割合が増加することを意味し、カーボンナノチューブ吸着層の機能として求められる導電性が十分に得られ、電気抵抗を減少させるという効果を奏する。   In addition, when the average particle diameter of the carbon material dispersed in the hydrocarbon solvent to which the basic polymer type dispersant was added, particularly the carbon nanotube, was set in the range of 100 to 1000 nm, the carbon sheet was used. As in the case, both the adsorption amount and the weight ratio of carbon nanotubes in the adsorption layer can be increased. This means that the weight ratio of the basic polymer dispersant adsorbed simultaneously during the adsorption decreases, and as a result, the weight ratio of the carbon nanotubes increases, and is required as a function of the carbon nanotube adsorption layer. Conductivity is sufficiently obtained, and the effect of reducing electric resistance is achieved.

炭化水素系溶媒としては、芳香族炭化水素溶媒などが挙げられるが、好ましくはキシレンまたはトルエンが用いられる。これらの炭化水素系溶媒は、炭素材料に対して一般に約100〜1000倍量程度用いられる。   Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents, and preferably xylene or toluene is used. These hydrocarbon solvents are generally used in an amount of about 100 to 1000 times the carbon material.

被被覆材となるその片面側に撥水層を形成させるためのガス拡散電極は、カーボンペーパー、カーボン不織布、カーボン織布等のカーボンシートよりなる多孔質炭素体が基材として用いられる。このような多孔質炭素体基材には、高い導電性と大きな比表面積が求められている。特に、燃料電池のガス拡散体としての使用に際しては、ガス拡散体片面側の電解質で発電した電気を、その反対側の面のセパレータに通電する必要があるため導電性にすぐれていることが求められており、ガス拡散体とセパレータとの接触面積が大きい程、接触抵抗が小さくなるので好ましいとされる。実際には、市販品例えば東レ製品TGP-H-060等をそのまま用いることができる。   A porous carbon body made of a carbon sheet such as carbon paper, carbon non-woven fabric, or carbon woven fabric is used as a base material for a gas diffusion electrode for forming a water-repellent layer on one side of the material to be coated. Such a porous carbon body base material is required to have high conductivity and a large specific surface area. In particular, when the fuel cell is used as a gas diffuser, the electricity generated by the electrolyte on one side of the gas diffuser needs to be supplied to the separator on the opposite side, so that it must have excellent conductivity. The larger the contact area between the gas diffuser and the separator, the smaller the contact resistance. Actually, commercially available products such as Toray products TGP-H-060 can be used as they are.

かかるガス拡散電極の片面側への撥水層の形成は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)等の撥水性樹脂とアセチレンブラック、ファーネスブラック、ケッチエンブラック等であって、好ましくはその平均粒子径が約1〜100nm程度であるカーボンブラックとの分散液、例えばPTFEディスパージョン(固形分濃度約50〜70重量%)とアセチレンブラック等のカーボンブラックとを、PTFEとカーボンブラックとの固形分量比が10:90〜60:40になるように調整した溶液を塗布し、約80〜150℃、約0.5〜5時間程度乾燥させた後、さらに約320〜400℃で約0.5〜5時間程度加熱処理することにより行われる。形成された撥水層の平均空孔径は約50〜1000nm程度であり、約数10μm程度の空隙を有するガス拡散層に対し、緻密な層として形成される。また、その層は、約10〜100μm程度の膜厚で形成される。 Formation of a water-repellent layer on one side of such a gas diffusion electrode is made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene. A dispersion of a water repellent resin such as a copolymer (ETFE) and carbon black having an average particle size of about 1 to 100 nm, such as acetylene black, furnace black, ketchen black, etc., such as PTFE disperser John (solid concentration of about 50-70 wt%) and carbon black such as acetylene black, solid weight ratio of PTFE and carbon black are 10: 90-60: applying the adjusted solution to a 40 Then, after drying at about 80 to 150 ° C. for about 0.5 to 5 hours, the mixture is further heated at about 320 to 400 ° C. for about 0.5 to 5 hours. The formed water-repellent layer has an average pore diameter of about 50 to 1000 nm, and is formed as a dense layer with respect to the gas diffusion layer having a gap of about several tens of μm. The layer is formed with a film thickness of about 10 to 100 μm.

このようにして得られる陽極材撥水層上への炭素材料薄膜の形成は、炭素材料を塩基性高分子型分散剤を添加した炭化水素系溶媒中で、上記陽極に電圧を印加することにより陽極材上に付着(吸着)することにより行われる。ここで、印加される電圧は、1〜1000V、好ましくは5〜500Vであり、印加電圧がこれより低い場合には、炭素材料の付着量が少なくなってしまい、一方これより大きい場合には、炭素材料の付着膜が不均一となり、かつ電力効率が悪化するため好ましくない。また、印加時間は必要とする製膜量により異なるが、例えば1〜3000秒、好ましくは30〜1000秒あるいは周期的に印加することも可能である。このとき、炭素材料の沈降を防ぐべく、分散溶液を攪拌しながら製膜することも行われる。また、製膜時にマスキングを行うことで、導電性が必要な部分にのみ炭素材料を付着させることができる。   Formation of the carbon material thin film on the water-repellent layer of the anode material thus obtained is performed by applying a voltage to the anode in a hydrocarbon solvent to which the carbon material is added a basic polymer type dispersant. It is performed by adhering (adsorbing) on the anode material. Here, the applied voltage is 1 to 1000 V, preferably 5 to 500 V. When the applied voltage is lower than this, the amount of adhesion of the carbon material decreases, whereas when larger than this, The adhesion film of the carbon material is not uniform, and the power efficiency is deteriorated, which is not preferable. The application time varies depending on the amount of film formation required, but it can be applied, for example, for 1 to 3000 seconds, preferably 30 to 1000 seconds, or periodically. At this time, in order to prevent sedimentation of the carbon material, a film is also formed while stirring the dispersion solution. Further, by performing masking at the time of film formation, the carbon material can be attached only to a portion requiring conductivity.

表面に炭素材料薄膜が製膜された陽極材は、分散溶液中から取り出した後、表面に製膜された炭素材料以外を取り除くように洗浄され、乾燥される。 Anode material in which the carbon material thin film is a film on the surface after removal from the dispersion solution, washed to exclude taken other than carbon material formed as a film on the surface and dried.

以上の工程を繰り返し行うことで、陽極材表面上に製膜される炭素材料の膜厚を厚くしていくことができる。すなわち、上記工程の繰り返し回数を設定することによって、製膜される炭素材料の膜厚を所望の厚み、例えば約1〜50μm程度の厚みに制御することが可能となる。   By repeating the above steps, the film thickness of the carbon material formed on the anode material surface can be increased. That is, by setting the number of repetitions of the above steps, the film thickness of the carbon material to be formed can be controlled to a desired thickness, for example, about 1 to 50 μm.

このようにして陽極材撥水層上に炭素材料薄膜を形成させたものについて、次いで炭素材料薄膜中に触媒層を形成させることが行われる。触媒層の形成は、白金触媒、白金-ルテニウム合金触媒等が用いられ、白金触媒はカソード触媒として、また白金-ルテニウム合金触媒はこれをカーボン微粒子に担持させたアノード触媒として、それらをイオン交換樹脂含有溶液等に分散させた触媒ペーストとして塗布され、室温条件下で乾燥させることにより行われる。その触媒ペースト塗布量は、一般に乾燥重量として約0.1〜10mg/cm2程度である。 Thus, about what formed the carbon material thin film on the anode material water repellent layer, forming a catalyst layer in a carbon material thin film is performed next. For the formation of the catalyst layer, a platinum catalyst, a platinum-ruthenium alloy catalyst or the like is used. The platinum catalyst is used as a cathode catalyst, and the platinum-ruthenium alloy catalyst is used as an anode catalyst in which the carbon fine particles are supported. It is performed by applying as a catalyst paste dispersed in a contained solution or the like and drying it at room temperature. The coating amount of the catalyst paste is generally about 0.1 to 10 mg / cm 2 as a dry weight.

陽極材撥水層上に炭素材料薄膜を形成せしめ、次いでこの炭素材料薄膜中に触媒層を形成させた得られた積層体は、それぞれ燃料電池の燃料極および空気極として作用する2枚の積層体として用いられ、これら2枚の積層体の触媒層側が高分子電解質膜に接するように高分子電解質膜を挟み込み、ホットプレスされる。 A laminate obtained by forming a carbon material thin film on the anode material water-repellent layer and then forming a catalyst layer in the carbon material thin film is a laminate of two sheets each acting as a fuel electrode and an air electrode of a fuel cell. The polymer electrolyte membrane is sandwiched so that the catalyst layer side of these two laminates is in contact with the polymer electrolyte membrane and hot pressed.

高分子電解質膜は、水素イオンに対するイオン交換基としてスルホン酸基(-SO3H)やカルボン酸基(-COOH)の如き酸性基を有し、水中で導電性を有する高分子膜であって、一般にはパーフルオロ系主鎖にスルホン酸基を置換したポリマーが用いられる。その膜厚は、約25〜500μm、好ましくは約50〜300μmのものが使用される。実際には、市販品であるデュポン社製品Nafion等が用いられる。また、薄膜の膜強度を補強するために、PTFE繊維やPTFE多孔質膜で補強したものなども用いられる。 The polymer electrolyte membrane is a polymer membrane having an acidic group such as a sulfonic acid group (-SO 3 H) or a carboxylic acid group (-COOH) as an ion exchange group for hydrogen ions, and having conductivity in water. Generally, a polymer having a perfluoro main chain substituted with a sulfonic acid group is used. The film thickness is about 25 to 500 μm, preferably about 50 to 300 μm. In practice, commercially available products such as Nafion manufactured by DuPont are used. Further, in order to reinforce the film strength of the thin film, those reinforced with PTFE fiber or PTFE porous film are also used.

ホットプレスは、加圧条件下(約0.1〜5MPa程度)で約100〜180℃の温度で行われる。このようにしてMEAが得られ、その両面にガス流路の溝を有するカーボン樹脂セパレータ、集電極およびエンドプレートを配し、ボルトによる締結を行って、単セルが作製される。   Hot pressing is performed at a temperature of about 100 to 180 ° C. under pressure (about 0.1 to 5 MPa). An MEA is thus obtained, and a carbon resin separator having gas flow channel grooves, a collector electrode and an end plate are arranged on both sides thereof, and fastening with bolts is performed to produce a single cell.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
(1)ガス拡散電極(東レ製品TGP-H-060)を用い、それの片面側にPTFEディスパージョン(ダイキン製品POLYFLON D-1E)とアセチレンブラック(電化工業製品デンカブラック)とをPTFE:アセチレンブラック重量比が40:60になるように調整した溶液を塗布し、90℃で1時間乾燥させた後、360℃、1時間の加熱条件下で加熱処理を行い、撥水層を形成させた。形成させた撥水層の平均空孔径は約100nmであり、厚さ約数10μmのガス拡散層上に緻密な層として形成された。
Example
(1) Using a gas diffusion electrode (Toray product TGP-H-060), PTFE dispersion (Daikin product POLYFLON D-1E) and acetylene black (Denka Black), PTFE: Acetylene black A solution adjusted to a weight ratio of 40:60 was applied, dried at 90 ° C. for 1 hour, and then heat-treated at 360 ° C. for 1 hour to form a water repellent layer. The formed water-repellent layer had an average pore diameter of about 100 nm, and was formed as a dense layer on a gas diffusion layer having a thickness of about several tens of μm.

(2)キシレン90mlに、ポリエステル酸アマイドアミン塩の50%キシレン溶液(楠本化成製品ディスパロンDA-703-50)10mlを加え、この溶液に気相成長法多層カーボンナノチューブ(日機装製品;繊維径10〜30nm、繊維長1〜100μm)500mgを添加し、超音波ホモジナイザ(BRANSON製 SONIFIER450)による出力300Wでの照射を12時間行い、多層カーボンナノチューブ分散液を得た。この分散液中の多層カーボンナノチューブの湿式でのレーザー散乱による平均粒子径は600nmであった。   (2) To 90 ml of xylene, add 10 ml of 50% xylene solution of polyester acid amide amine salt (Enomoto Kasei product Disparon DA-703-50), and to this solution multi-phase carbon nanotubes (Nikkiso product; fiber diameter 10 ~ 500 nm (30 nm, fiber length: 1 to 100 μm) was added, and irradiation with an output of 300 W was performed with an ultrasonic homogenizer (SONIFIER450 manufactured by BRANSON) for 12 hours to obtain a multi-walled carbon nanotube dispersion. The average particle diameter of the multi-walled carbon nanotubes in this dispersion by wet laser scattering was 600 nm.

次に、陽極として上記(1)で得られた撥水層形成ガス拡散電極を、また陰極としてSUS304を用い、ミニクランプを用いて電極間が2cmとなるように設置し、200Vの電圧を3分間印加することにより、陽極材撥水層上への製膜処理(製膜面積25cm2)を行った。製膜後、ガス拡散電極を室温条件下で乾燥させた。作製したカーボンナノチューブ薄膜の走査型電子顕微鏡による観察を行った結果、吸着層の膜厚は約25μmで、均一なカーボンナノチューブ薄膜が形成されていることが確認された。 Next, the water repellent layer-forming gas diffusion electrode obtained in (1) above was used as the anode, SUS304 was used as the cathode, and the electrodes were installed using a mini clamp so that the distance between the electrodes was 2 cm. By applying for a minute, a film forming process (film forming area 25 cm 2 ) on the anode material water-repellent layer was performed. After film formation, the gas diffusion electrode was dried at room temperature. As a result of observing the produced carbon nanotube thin film with a scanning electron microscope, it was confirmed that the adsorption layer had a thickness of about 25 μm and a uniform carbon nanotube thin film was formed.

(3)白金触媒担持カーボン(田中貴金属製品TECIOE50E;白金含有量50重量%)2g、電解質材料としてのNafion 5重量%溶液(デュポン社製品52,708-4;水45重量%、有機溶媒50重量%)16gおよび純水4gを、ホモジナイザ(アズワン製AUTO CELL MASTER CM-200)を用いて1時間攪拌し、均一な触媒ペーストを得た。   (3) Platinum catalyst supported carbon (Tanaka Kikinzoku product TECIOE50E; platinum content 50 wt%) 2g, Nafion 5 wt% solution as electrolyte material (DuPont 52,708-4; water 45 wt%, organic solvent 50 wt%) 16 g and 4 g of pure water were stirred for 1 hour using a homogenizer (AUTO CELL MASTER CM-200 manufactured by ASONE) to obtain a uniform catalyst paste.

(4)上記(2)で得られた撥水層形成ガス拡散電極のカーボンナノチューブ薄膜両面上に、上記(3)で得られた白金触媒ペーストを乾燥重量が1mg/cm2となる塗布量で塗布し、室温条件下で乾燥させ、積層体を得た。乾燥させた積層体2枚を用いて、高分子電解質膜(デュポン社製品Nafion 1135;膜厚89μm)を挟み込み、2MPaの加圧条件下に120℃でホットプレスすることにより、電解質膜電極接合体(MEA)を得た。得られたMEAの両面それぞれに、ガス流路溝を有するカーボン樹脂セパレータ、集電極およびエンドプレートを配し、ボルトによる締結を行い、単セルを作製した。 (4) On the both surfaces of the carbon nanotube thin film of the water-repellent layer-forming gas diffusion electrode obtained in (2) above, the platinum catalyst paste obtained in (3) above is applied in a coating amount such that the dry weight is 1 mg / cm 2. It apply | coated and dried under room temperature conditions, and the laminated body was obtained. Using two dried laminates, a polymer electrolyte membrane (DuPont's product Nafion 1135; film thickness 89μm) is sandwiched and hot-pressed at 120 ° C under 2MPa pressure condition, so that the membrane electrode assembly (MEA) was obtained. A carbon resin separator having a gas channel groove, a collector electrode, and an end plate were arranged on both surfaces of the obtained MEA, and fastening with bolts was performed to produce a single cell.

比較例1
実施例において、カーボンナノチューブ薄膜を形成させない撥水層形成ガス拡散電極の撥水層に直接触媒ペーストを塗布した。
Comparative Example 1
In the examples, the catalyst paste was directly applied to the water repellent layer of the gas diffusion electrode on which the carbon nanotube thin film was not formed.

比較例2
触媒担持カーボン(TECIOE50E)2g、Nafion 5重量%溶液16g、純水4gおよび気相成長法多層カーボンナノチューブ(前記日機装製品)0.5gを、ホモジナイザ(前記アズワン製)を用いて、1時間攪拌を行い、触媒ペーストを調製した。得られた触媒ペーストを、比較例1と同様に、カーボンナノチューブ薄膜を形成させない撥水層形成ガス拡散電極の撥水層に直接塗布したが、塗布時に触媒ペースト中のカーボンナノチューブの凝集塊がみられ、分散状態が不十分であった。
Comparative Example 2
2g of catalyst-supported carbon (TECIOE50E), 16g of Nafion 5wt% solution, 4g of pure water and 0.5g of vapor grown multi-walled carbon nanotube (Nikkiso product) are stirred for 1 hour using a homogenizer (manufactured by ASONE). A catalyst paste was prepared. The obtained catalyst paste was directly applied to the water-repellent layer of the gas-diffusion electrode in which the carbon nanotube thin film was not formed, as in Comparative Example 1. And the dispersion state was insufficient.

比較例3
実施例において、撥水層を形成させないガス拡散電極を用い、そこに直接カーボンナノチューブの電着を行うと、ガス拡散電極を形成する炭素繊維の周囲にカーボンナノチューブが電着された。このガス拡散電極上に、触媒ペーストの塗布が行われた。
Comparative Example 3
In Examples, when a gas diffusion electrode without forming a water-repellent layer was used and carbon nanotubes were directly electrodeposited thereon, carbon nanotubes were electrodeposited around the carbon fibers forming the gas diffusion electrode. A catalyst paste was applied onto the gas diffusion electrode.

(発電評価)
アノード極に加湿した水素(露点70℃)を、またカソード極に加湿した酸素(露点70℃)をそれぞれ供給し、水素、酸素共大気圧条件下で、水素を300ml/分、酸素を200ml/分の供給速度で供給し、セル温度を75℃一定とし、発電開始24時間経過後をスタートとし、それから1000時間後の電流密度0.5A/cm2における電圧降下値を測定した。得られた結果は、次の表に示される。

電圧降下値 (V)
実施例 0.02
比較例1 0.08
比較例2 0.05
比較例3 −
(Power generation evaluation)
Humidified hydrogen (dew point 70 ° C) is supplied to the anode electrode and humidified oxygen (dew point 70 ° C) is supplied to the cathode electrode, respectively. Under hydrogen and oxygen co-atmospheric pressure conditions, hydrogen is 300 ml / min, oxygen is 200 ml / The cell temperature was kept constant at 75 ° C., 24 hours after the start of power generation was started, and the voltage drop value at a current density of 0.5 A / cm 2 after 1000 hours was measured. The results obtained are shown in the following table.
table
Example Voltage drop value (V)
Example 0.02
Comparative Example 1 0.08
Comparative Example 2 0.05
Comparative Example 3

以上の結果から、次のようなことがいえる。
(1)実施例−比較例1から、触媒層中にカーボンナノチューブ薄膜を含む実施例の方が電圧降下が低いことを示している。
(2)実施例−比較例2から、均一なカーボンナノチューブ薄膜が形成できた実施例の方が、分散が十分に行われなかった比較例2よりも電圧降下が低いことを示している。
(3)比較例3では電圧降下が著しく、1000時間までの評価は行えなかった。これは、緻密な撥水層を形成させなかったため、触媒反応に有効な触媒の数が減少したため、発電性能が低下したものと考えられる。
From the above results, the following can be said.
(1) Example—Comparative Example 1 shows that the example in which the catalyst layer includes a carbon nanotube thin film has a lower voltage drop.
(2) Example—From Comparative Example 2, it is shown that the Example in which a uniform carbon nanotube thin film was formed has a lower voltage drop than Comparative Example 2 in which the dispersion was not sufficiently performed.
(3) In Comparative Example 3, the voltage drop was significant, and evaluation up to 1000 hours could not be performed. This is thought to be due to the fact that a dense water-repellent layer was not formed, and therefore the number of catalysts effective for the catalytic reaction was reduced, resulting in a decrease in power generation performance.

Claims (9)

塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中でその片面側にPTFEディスパージョンとカーボンブラックとの混合物を320〜400℃で加熱処理して、平均空孔径50〜1000nmの緻密な撥水層を形成させたガス拡散電極を陽極として電圧を印加し、陽極材撥水層上に炭素材料薄膜を形成せしめ、次いで該炭素材料薄膜中に触媒層を形成させ、得られた積層体2枚を用いて、これら積層体の触媒層側が高分子電解質膜に接するように高分子電解質膜を挟み込み、ホットプレスすることを特徴とする高分子電解質膜-電極接合体の製造方法。 A carbon material is dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added, and a mixture of PTFE dispersion and carbon black is heated at 320 to 400 ° C. on one side in the solvent , A voltage is applied by using a gas diffusion electrode having a dense water-repellent layer with an average pore diameter of 50 to 1000 nm as an anode to form a carbon material thin film on the anode material water-repellent layer, and then a catalyst layer in the carbon material thin film A polymer electrolyte membrane characterized in that, using two obtained laminates, the polymer electrolyte membrane is sandwiched and hot pressed so that the catalyst layer side of these laminates is in contact with the polymer electrolyte membrane- Manufacturing method of electrode assembly. 固形分重量比が10:90〜60:40であるPTFEディスパージョンとカーボンブラックとの混合物から撥水層が形成された請求項1記載の高分子電解質膜-電極接合体の製造方法。 The method for producing a polymer electrolyte membrane-electrode assembly according to claim 1, wherein the water repellent layer is formed from a mixture of PTFE dispersion having a solid content weight ratio of 10:90 to 60:40 and carbon black. 2枚の積層体がそれぞれ燃料電池の燃料極および空気極として作用する積層体である請求項1記載の高分子電解質膜-電極接合体の製造方法。   2. The method for producing a polymer electrolyte membrane-electrode assembly according to claim 1, wherein the two laminates are laminates that respectively function as a fuel electrode and an air electrode of a fuel cell. 炭素材料がカーボンナノチューブ、カーボンブラックまたは黒鉛である請求項1記載の高分子電解質膜-電極接合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode assembly according to claim 1, wherein the carbon material is carbon nanotube, carbon black or graphite. 塩基性高分子型分散剤が、ポリエステル酸アマイドアミン塩である請求項1記載の高分子電解質膜-電極接合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode assembly according to claim 1, wherein the basic polymer dispersant is a polyester acid amide amine salt. 炭化水素系溶媒が芳香族炭化水素溶媒である請求項1記載の高分子電解質膜-電極接合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode assembly according to claim 1, wherein the hydrocarbon solvent is an aromatic hydrocarbon solvent. 塩素性高分子型分散剤を添加した炭化水素系溶媒中に分散させた炭素材料が100〜1000nmの平均粒子径(湿式でのレーザー散乱法による50%粒子径)を有する請求項1記載の高分子電解質膜-電極接合体の製造方法。   The high carbon material according to claim 1, wherein the carbon material dispersed in the hydrocarbon solvent to which the chlorinated polymer type dispersant is added has an average particle size of 100 to 1000 nm (50% particle size by wet laser scattering method). A method for producing a molecular electrolyte membrane-electrode assembly. 炭素材料がカーボンナノチューブである請求項7記載の高分子電解質膜-電極接合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode assembly according to claim 7, wherein the carbon material is a carbon nanotube. 100〜1000nmへの炭素材料の平均粒子径の調整が超音波ホモジナイザを用いて行われる請求項7または8記載の高分子電解質膜-電極接合体の製造方法。   The method for producing a polymer electrolyte membrane-electrode assembly according to claim 7 or 8, wherein the adjustment of the average particle diameter of the carbon material to 100 to 1000 nm is performed using an ultrasonic homogenizer.
JP2007102357A 2007-04-10 2007-04-10 Method for producing polymer electrolyte membrane-electrode assembly Expired - Fee Related JP5320685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102357A JP5320685B2 (en) 2007-04-10 2007-04-10 Method for producing polymer electrolyte membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102357A JP5320685B2 (en) 2007-04-10 2007-04-10 Method for producing polymer electrolyte membrane-electrode assembly

Publications (3)

Publication Number Publication Date
JP2008262716A JP2008262716A (en) 2008-10-30
JP2008262716A5 JP2008262716A5 (en) 2011-05-12
JP5320685B2 true JP5320685B2 (en) 2013-10-23

Family

ID=39985046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102357A Expired - Fee Related JP5320685B2 (en) 2007-04-10 2007-04-10 Method for producing polymer electrolyte membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP5320685B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228781A (en) * 1993-02-04 1994-08-16 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode and production thereof
JP2002025566A (en) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd High polymer molecule electrolyte fuel cell and its manufacturing method
JP2005032569A (en) * 2003-07-14 2005-02-03 Toagosei Co Ltd Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell
JP4766829B2 (en) * 2003-08-07 2011-09-07 株式会社豊田中央研究所 Solid polymer electrolyte membrane and solid polymer fuel cell
JP2005197064A (en) * 2004-01-07 2005-07-21 Yamanashi Tlo:Kk Electrode structure for fuel cell, gas diffusion electrode, and fuel cell
JP4581663B2 (en) * 2004-07-27 2010-11-17 Nok株式会社 Method for forming carbon material thin film
JP2006100056A (en) * 2004-09-29 2006-04-13 Super Technology Innovators Co Ltd Fuel cell electrode and solid polymer fuel cell

Also Published As

Publication number Publication date
JP2008262716A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP3608053B2 (en) Battery catalyst composition, gas diffusion layer, and fuel cell including these
JP5269919B2 (en) Catalyst composition for fuel cell and use thereof
JP2008204945A (en) Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP2011198520A (en) Gas diffusion layer of solid polymer fuel cell
KR20110122915A (en) Membrane electrode assembly using catalyst layer forming powder, process for preparing the same, and fuel cell comprising the same
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
KR101162472B1 (en) Fuel cell electrode and method of fabricating thereof
JPWO2002027844A1 (en) Fuel cell and method of manufacturing the same
JP3960973B2 (en) Battery catalyst composition, gas diffusion layer, and fuel cell including these
JP2004185901A (en) Electrode for fuel cell and fuel cell
JP2004296176A (en) Solid polymer fuel cell
JP2007317435A (en) Solid polymer fuel cell and manufacturing method therefor
JP2012074280A (en) Gas diffusion layer for fuel cell
EP4131519A1 (en) Method for producing gas diffusion electrode substrate
KR101995830B1 (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
JP2006216385A (en) Electrode catalyst layer for fuel cell and fuel cell using it
US8273230B2 (en) Method for making membrane fuel cell electrodes by low-voltage electrophoretic deposition of carbon nanomaterial-supported catalysts
EP3416221B1 (en) Method for preparing membrane-electrode assembly
Tang et al. Carbon nanotube free-standing membrane as gas diffusion layer in hydrogen fuel cells
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP5320685B2 (en) Method for producing polymer electrolyte membrane-electrode assembly
JP5167664B2 (en) Method for producing polymer electrolyte membrane-electrode assembly
KR101561101B1 (en) Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA
US10388966B2 (en) Electrode catalyst material, and fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees