JP5314464B2 - Engine misfire determination system and method - Google Patents

Engine misfire determination system and method Download PDF

Info

Publication number
JP5314464B2
JP5314464B2 JP2009060090A JP2009060090A JP5314464B2 JP 5314464 B2 JP5314464 B2 JP 5314464B2 JP 2009060090 A JP2009060090 A JP 2009060090A JP 2009060090 A JP2009060090 A JP 2009060090A JP 5314464 B2 JP5314464 B2 JP 5314464B2
Authority
JP
Japan
Prior art keywords
cylinder
pressure
load
misfire
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009060090A
Other languages
Japanese (ja)
Other versions
JP2010209892A (en
Inventor
昭二 村上
芳信 森
大 橋本
聡 森田
智彦 杉本
司 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2009060090A priority Critical patent/JP5314464B2/en
Priority to PCT/JP2010/001589 priority patent/WO2010103778A1/en
Publication of JP2010209892A publication Critical patent/JP2010209892A/en
Application granted granted Critical
Publication of JP5314464B2 publication Critical patent/JP5314464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • F02B19/1019Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber
    • F02B19/1023Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber pre-combustion chamber and cylinder being fed with fuel-air mixture(s)
    • F02B19/1071Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber pre-combustion chamber and cylinder being fed with fuel-air mixture(s) pre-combustion chamber having only one orifice,(i.e. an orifice by means of which it communicates with the cylinder); the intake system comprising two distinct intake conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0284Arrangement of multiple injectors or fuel-air mixers per combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、発電機を駆動するエンジンの失火を判定するためのエンジン失火判定システム及び方法に関するものである。   The present invention relates to an engine misfire determination system and method for determining misfire of an engine driving a generator.

近年、工場等において、電力会社から供給される系統電力と、工場内に定置されたガスエンジンで発電機を駆動して得られる発電電力とを連係させて使用する電力システムが提供されている。ガスエンジンは、リーン状態で燃焼が行われるとエネルギー効率が良好であり、一定負荷で運転する発電設備に用いるのに適している。このガスエンジンの運転においては、圧縮行程から爆発行程に移行する際に混合気が着火されない失火が発生すると望ましくないため、失火発生を正しく把握してそれに対処する必要がある。   2. Description of the Related Art In recent years, power systems that use grid power supplied from an electric power company and generated power obtained by driving a generator with a gas engine installed in the factory in a factory are provided. Gas engines have good energy efficiency when burned in a lean state, and are suitable for use in power generation equipment that operates at a constant load. In the operation of this gas engine, it is not desirable to cause misfire that does not ignite the air-fuel mixture when shifting from the compression stroke to the explosion stroke. Therefore, it is necessary to correctly grasp the misfire occurrence and deal with it.

エンジンの失火を判定するための技術としては、正常燃焼時と失火発生時とで気筒内の圧力波形が異なることを利用し、エンジンの気筒内圧力から失火の発生を判定する装置が知られている(例えば、特許文献1,2参照)。正常燃焼時には、着火された混合気の燃焼によって気筒内で圧力増加が生じるため、気筒内のピストンが上死点に達した後に気筒内圧力が増加することとなる。これに対して、失火発生時には、燃料による圧力増加が発生しないため、上死点において気筒内圧力が最大となり、その後は気筒内圧力が減少する。よって、前記装置は、圧縮行程での気筒内圧力と、上死点以降の爆発行程での気筒内圧力とを検出し、これら気筒内圧力の比を所定の閾値と比較して失火の発生を判定するようにしている。   As a technique for judging misfire of an engine, there is known a device for judging the occurrence of misfire from the cylinder pressure of an engine by utilizing the fact that the pressure waveform in the cylinder is different between normal combustion and when a misfire occurs. (For example, see Patent Documents 1 and 2). During normal combustion, the pressure in the cylinder increases due to combustion of the ignited air-fuel mixture, so that the cylinder pressure increases after the piston in the cylinder reaches top dead center. On the other hand, when a misfire occurs, the pressure increase due to fuel does not occur, so the cylinder pressure becomes maximum at the top dead center, and thereafter the cylinder pressure decreases. Therefore, the device detects the in-cylinder pressure in the compression stroke and the in-cylinder pressure in the explosion stroke after the top dead center, and compares the ratio of these in-cylinder pressures with a predetermined threshold value to generate a misfire. Judgment is made.

特開昭57−80538号公報JP 57-80538 A 特開2003−13793号公報JP 2003-13793 A

ところで、発電用エンジンでは、起動時において失火の有無を判定し、失火が発生すれば運転を停止して再び起動をやり直すようにしている。その場合、起動時の低負荷運転では、正常燃焼時における上死点以降の気筒内圧力と、失火発生時における上死点以降の気筒内圧力との差が小さいため、閾値を十分に小さな値に設定しないと、正常燃焼時を失火であると誤判定する可能性がある。一方、高負荷運転時(定格運転時)には、閾値を小さくし過ぎると、失火と判定すべき燃焼状態の悪い状態が発生しても、失火が発生したと判定されない可能性がある。また、高負荷運転時において、気筒内圧力を検出するセンサに誤差が生じた場合にも、閾値を小さくし過ぎると、正しく失火が判定されない可能性がある。   By the way, in the engine for power generation, the presence or absence of misfire is determined at the time of start-up, and if a misfire occurs, the operation is stopped and restarted again. In that case, in low load operation at start-up, the threshold value is sufficiently small because the difference between the cylinder pressure after top dead center during normal combustion and the cylinder pressure after top dead center when misfire occurs is small. Otherwise, there is a possibility of misjudging that the normal combustion is a misfire. On the other hand, if the threshold value is too small during high load operation (rated operation), it may not be determined that misfire has occurred even if a bad combustion state that should be determined as misfire occurs. Further, even when an error occurs in the sensor that detects the in-cylinder pressure during high load operation, misfire may not be correctly determined if the threshold value is too small.

そこで本発明は、発電用エンジンにおける失火の発生を正確に判定することを目的としている。   Therefore, an object of the present invention is to accurately determine the occurrence of misfire in a power generation engine.

本発明は前記事情に鑑みてなされたものであり、本発明に係るエンジン失火判定システムは、発電機を駆動するエンジンの失火を判定するシステムであって、前記エンジンの気筒の内部圧力である気筒内圧力を検出可能な圧力検出手段と、前記気筒が圧縮行程にあるときに前記圧力検出手段で検出される第1気筒内圧力と、前記気筒が爆発行程にあるときに前記圧力検出手段で検出される第2気筒内圧力との差又は比を閾値と比較することにより、前記気筒の失火を判定する失火判定手段と、記発電機の負荷に相関関係のある値を検出可能な負荷情報検出手段と、前記気筒が圧縮行程にあるときの気筒内圧力と前記負荷とが相関関係を有するように前記気筒に供給される混合気の空燃比を制御する空燃比制御手段と、を備え、前記圧力検出手段は、前記負荷情報検出手段を兼ねており、前記負荷情報検出手段は、前記負荷に相関関係のある値として前記気筒が圧縮行程にあるときの気筒内圧力を検出し、前記失火判定手段は、前記負荷情報検出手段で前記負荷に相関関係のある値として検出される気筒内圧力と、前記空燃比制御手段により制御されている空燃比に対応するデータとに応じて前記閾値を変更し、前記気筒内圧力が大きくなるにつれて前記閾値を大きくすると共に前記空燃比が小さくなるにつれて前記閾値を大きくするように構成されていることを特徴とする。 The present invention has been made in view of the above circumstances, and an engine misfire determination system according to the present invention is a system for determining misfire of an engine that drives a generator, and is a cylinder that is an internal pressure of a cylinder of the engine. Pressure detection means capable of detecting internal pressure, first cylinder internal pressure detected by the pressure detection means when the cylinder is in the compression stroke, and pressure detection means detected when the cylinder is in the explosion stroke the second Samata the cylinder pressure by comparing the ratio with a threshold value, and determining misfire judging means misfire of the cylinder, detectable load information values that are correlated with the load of the prior Symbol generator is Detection means, and air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied to the cylinder so that the cylinder pressure when the cylinder is in the compression stroke and the load have a correlation , The pressure detection Stage also serves the load information detecting means, said load information detecting means, said cylinder as a value which is correlated to the load detected in-cylinder pressure when in the compression stroke, the misfire determining means The threshold value is changed according to the cylinder pressure detected as a value correlated with the load by the load information detection means and the data corresponding to the air-fuel ratio controlled by the air-fuel ratio control means , the cylinder pressure, characterized that you have been configured to increase the threshold value as the air-fuel ratio becomes smaller with increasing the threshold as large.

前記構成によれば、発電機の負荷に応じて閾値が適宜変更されることになるので、負荷に関係なく閾値を一定とした場合に比べて、エンジンでの失火の発生を正確に判定することが可能となる。   According to the above configuration, since the threshold value is appropriately changed according to the load of the generator, it is possible to accurately determine the occurrence of misfire in the engine as compared with the case where the threshold value is constant regardless of the load. Is possible.

また、発電機の負荷が小さいときには閾値が小さく設定されるので、起動時等の低負荷運転のように、正常燃焼時における爆発行程での気筒内圧力と、失火発生時における爆発行程での気筒内圧力との差が小さい場合において、正常燃焼時を失火であると誤判定することを防止することができる。かつ、発電機の負荷が大きいときには閾値が大きく設定されるので、高負荷運転時において、失火と判定すべき燃焼状態の悪い状態が発生しても、失火が発生していないと誤判定することを防止することができる。 In addition , since the threshold is set small when the load on the generator is small, the cylinder pressure in the explosion stroke at the time of normal combustion and the cylinder in the explosion stroke at the time of misfiring occur, as in low load operation such as startup. When the difference from the internal pressure is small, it can be prevented that the normal combustion is erroneously determined as misfire. And when the load on the generator is large, the threshold value is set to be large, so that it is misjudged that no misfire has occurred even if a bad combustion state that should be judged as misfire occurs during high load operation. Can be prevented.

また、圧縮行程の気筒内圧力と発電機の負荷とが相関関係を有するように空燃比を制御されている場合(例えば、空燃比が一定の場合等)には、気筒内圧力に応じて閾値を変更し、負荷情報検出手段を圧力検出手段と別個に設ける必要がなくなるので、システムを簡素化することができる。 In addition , when the air-fuel ratio is controlled so that the cylinder pressure in the compression stroke and the load on the generator have a correlation (for example, when the air-fuel ratio is constant), the threshold value depends on the cylinder pressure. Since the load information detecting means need not be provided separately from the pressure detecting means, the system can be simplified.

また本発明のエンジン失火判定方法は、発電機を駆動するエンジンの失火を判定する方法であって、前記エンジンの気筒が圧縮行程にあるときに第1気筒内圧力を検出し、前記エンジンの気筒が爆発行程にあるときに第2気筒内圧力を検出し、前記第1気筒内圧力と前記第2気筒内圧力との差又は比を閾値と比較することにより、前記気筒の失火を判定しており該判定の前に、前記発電機の負荷に相関関係のある値として、前記気筒が圧縮行程にあるときの気筒内圧力を検出し、前記負荷に相関関係のある値として検出される気筒内圧力と、前記気筒が圧縮行程にあるときの気筒内圧力と負荷とが相関関係を有するように制御されている空燃比に対応するデータとに応じて前記閾値を変更しており、当該変更において、前記気筒内圧力が大きくなるにつれて前記閾値を大きくすると共に前記空燃比が小さくなるにつれて前記閾値を大きくすることを特徴とする。 The engine misfire determination method of the present invention is a method for determining misfire of an engine that drives a generator, detecting a first cylinder internal pressure when the cylinder of the engine is in a compression stroke, and there was detected a second cylinder pressure when in the explosion stroke, Samata of the first cylinder pressure and said second cylinder pressure by comparing the ratio with a threshold value, to determine the misfire of the cylinder cage, before the determination, as a value correlated to a load before Symbol generator, detects the in-cylinder pressure when said cylinder is in the compression stroke is detected as a value correlated to the load a cylinder pressure, the cylinder has changed the threshold value in accordance with the data and the load cylinder pressure when in the compression stroke corresponds to the air-fuel ratio is controlled so as to have a correlation, the In the change, the cylinder pressure is large. The air-fuel ratio with increasing the threshold as Kunar is characterized by increasing the said thresholds as decreases.

前記方法によれば、発電機の負荷に応じて閾値が適宜変更されることになるので、負荷に関係なく閾値を一定とした場合に比べて、エンジンでの失火の発生を正確に判定することが可能となる。   According to the above method, since the threshold value is appropriately changed according to the load of the generator, it is possible to accurately determine the occurrence of misfire in the engine as compared with the case where the threshold value is constant regardless of the load. Is possible.

以上の説明から明らかなように、本発明によれば、発電用エンジンにおける失火の発生を正確に判定することができる。   As is clear from the above description, according to the present invention, it is possible to accurately determine the occurrence of misfire in the power generation engine.

本発明の実施形態に係るガスエンジンの失火判定システムを示した構成図である。It is the block diagram which showed the misfire determination system of the gas engine which concerns on embodiment of this invention. 正常燃焼時及び失火発生時における気筒内圧力とクランク角との関係を表したグラフである。It is a graph showing the relationship between the cylinder pressure and the crank angle at the time of normal combustion and misfire occurrence. 失火判定装置における失火判定の流れを説明する図面である。It is drawing explaining the flow of misfire determination in a misfire determination apparatus. 負荷と第1気筒内圧力との対応データを表したグラフである。It is a graph showing the correspondence data of load and the pressure in the 1st cylinder. 閾値と負荷との対応データを表したグラフである。It is a graph showing the correspondence data of a threshold value and load. 変形例における負荷と第1気筒内圧力との対応データを表したグラフである。It is a graph showing the correspondence data of the load and the 1st cylinder pressure in a modification.

以下、本発明に係る実施形態を図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は本発明の実施形態に係るガスエンジンの失火判定システム1を示した構成図である。図1に示すように、ガスエンジン2は、天然ガスや都市ガス等のガス燃料を主燃料とするレシプロ型の多気筒4ストロークエンジンであり、発電機30を駆動する原動機として使用されている。図1ではガスエンジン2の気筒3の1つを代表して示しているが、図示しない他の気筒も同様の構成となっている。   FIG. 1 is a configuration diagram showing a misfire determination system 1 for a gas engine according to an embodiment of the present invention. As shown in FIG. 1, the gas engine 2 is a reciprocating multi-cylinder four-stroke engine that uses gas fuel such as natural gas or city gas as a main fuel, and is used as a prime mover for driving a generator 30. In FIG. 1, one of the cylinders 3 of the gas engine 2 is shown as a representative, but other cylinders (not shown) have the same configuration.

気筒3にはピストン4が往復動可能に挿入されており、ピストン4は出力軸であるクランク軸29と連結されている。このクランク軸29は、発電機30の入力軸に駆動力を伝達するように接続されている。気筒3内におけるピストン4の上方は主燃焼室5をなしてある。主燃焼室5には、給気弁6を介して給気ポート7が接続されるとともに、排気弁8を介して排気ポート9が接続されている。給気ポート7内にはガス燃料を噴射する主燃料ガス供給弁10が設けられている。また、主燃焼室5には副燃焼室11が隣接している。副燃焼室11は、隔壁12を介して主燃焼室5と区画され、隔壁12に形成された連通孔13を介して主燃焼室5と連通している。この副燃焼室11にはガス燃料を噴射する副燃料ガス供給弁14と、混合気を燃焼させるための点火プラグ15とが設けられている。   A piston 4 is inserted into the cylinder 3 so as to be able to reciprocate. The piston 4 is connected to a crankshaft 29 that is an output shaft. This crankshaft 29 is connected to the input shaft of the generator 30 so as to transmit a driving force. A main combustion chamber 5 is formed above the piston 4 in the cylinder 3. An air supply port 7 is connected to the main combustion chamber 5 via an air supply valve 6, and an exhaust port 9 is connected via an exhaust valve 8. A main fuel gas supply valve 10 for injecting gas fuel is provided in the air supply port 7. Further, a sub-combustion chamber 11 is adjacent to the main combustion chamber 5. The sub-combustion chamber 11 is partitioned from the main combustion chamber 5 via a partition wall 12 and communicates with the main combustion chamber 5 via a communication hole 13 formed in the partition wall 12. The auxiliary combustion chamber 11 is provided with an auxiliary fuel gas supply valve 14 for injecting gaseous fuel and an ignition plug 15 for burning the air-fuel mixture.

このガスエンジン2によれば、給気行程において、主燃焼室5には給気ポート7から空気と主燃料ガス供給弁10が噴射するガス燃料とを含む混合気が供給され、副燃焼室11には副燃料ガス供給弁14が噴射するガス燃料を含む混合気が供給される。圧縮行程において主燃焼室5及び副燃焼室11内の混合気が圧縮された後、点火プラグ15が所定のタイミングで動作して副燃焼室11内の混合気が着火される。副燃焼室11内で発生した火炎は連通孔13を通じて主燃焼室5内に伝播し、主燃焼室5内の混合気が着火される。これによりピストン4が押し下げられる(膨張行程)。そして、排気行程において、主燃焼室5内のガスは排気ポート9を介して外部に排出される。なお、排気ポート9に接続される排気通路16は、過給機(図示せず)に接続される第1排気通路17と、外部に開放される第2排気通路18とに分岐されており、第2排気通路18には給気圧を調整するための調整弁19が設けられている。   According to the gas engine 2, during the air supply stroke, the main combustion chamber 5 is supplied with an air-fuel mixture containing air and gas fuel injected by the main fuel gas supply valve 10 from the air supply port 7, and the sub-combustion chamber 11. Is supplied with an air-fuel mixture containing gas fuel injected by the auxiliary fuel gas supply valve 14. After the air-fuel mixture in the main combustion chamber 5 and the sub-combustion chamber 11 is compressed in the compression stroke, the spark plug 15 operates at a predetermined timing to ignite the air-fuel mixture in the sub-combustion chamber 11. The flame generated in the sub-combustion chamber 11 propagates into the main combustion chamber 5 through the communication hole 13, and the air-fuel mixture in the main combustion chamber 5 is ignited. Thereby, the piston 4 is pushed down (expansion stroke). In the exhaust stroke, the gas in the main combustion chamber 5 is discharged to the outside through the exhaust port 9. The exhaust passage 16 connected to the exhaust port 9 is branched into a first exhaust passage 17 connected to a supercharger (not shown) and a second exhaust passage 18 opened to the outside. The second exhaust passage 18 is provided with an adjustment valve 19 for adjusting the supply air pressure.

失火判定システム1は、CPU、記憶装置及び入出力インターフェース等を有する主制御装置20を備えている。主制御装置20は、主燃料ガス供給弁10及び副燃料ガス供給弁14を駆動するガス弁制御装置21に接続され、このガス弁制御装置21に指令信号を出力して各燃料ガス供給弁10,14を駆動制御する。また、主制御装置20は、点火プラグ15を駆動する点火プラグドライバ22に接続されている。主制御装置20は、このドライバ22に指令信号を出力して点火プラグ15を駆動制御し、これにより混合気の着火タイミングを制御する。また、主制御装置20には、給気圧、給気温度などが入力されるようになっている。主制御装置20は、空燃比が略一定となるように給気圧を制御するために調整弁19の開度を調節する機能を有する。即ち、主制御装置20が、空燃比制御手段を構成している。   The misfire determination system 1 includes a main control device 20 having a CPU, a storage device, an input / output interface, and the like. The main controller 20 is connected to a gas valve controller 21 that drives the main fuel gas supply valve 10 and the auxiliary fuel gas supply valve 14, and outputs a command signal to the gas valve controller 21 to output each fuel gas supply valve 10. , 14 is controlled. The main controller 20 is connected to a spark plug driver 22 that drives the spark plug 15. Main controller 20 outputs a command signal to driver 22 to drive and control spark plug 15, thereby controlling the ignition timing of the air-fuel mixture. Further, the main control device 20 is supplied with an air supply pressure, an air supply temperature, and the like. The main controller 20 has a function of adjusting the opening of the adjustment valve 19 in order to control the supply air pressure so that the air-fuel ratio becomes substantially constant. That is, the main control device 20 constitutes an air-fuel ratio control means.

失火判定システム1は、ガスエンジン2のクランク角を検知するためのクランク角検知装置23を備え、主制御装置20にはクランク角検知装置23からのクランク角情報が入力されるようになっている。クランク角検知装置23には、例えば、ロータリーエンコーダ等が用いられ、その場合にはエンコーダパルス信号(回転数パルス信号)及びリセット信号(1サイクルに一度出力される信号)によりクランク角が検知されることとなる。   The misfire determination system 1 includes a crank angle detection device 23 for detecting the crank angle of the gas engine 2, and crank angle information from the crank angle detection device 23 is input to the main control device 20. . For example, a rotary encoder or the like is used for the crank angle detection device 23. In this case, the crank angle is detected by an encoder pulse signal (rotation speed pulse signal) and a reset signal (signal output once per cycle). It will be.

失火判定システム1は、圧縮行程から爆発行程に移行する際に気筒3にて混合気が正常に燃焼されない現象である失火の発生を判定する失火判定装置24(失火判定手段)を備えている。この失火判定装置24には、クランク角検知装置23と、気筒3の内部圧力である気筒内圧力を検出する筒内圧センサ25(圧力検出手段)とが接続されている。失火判定装置24は、クランク角検知装置23で検知されたクランク角と、筒内圧センサ25で検出された気筒内圧力とに基づいて気筒3での失火の発生を判定する。   The misfire determination system 1 includes a misfire determination device 24 (misfire determination means) that determines the occurrence of misfire, which is a phenomenon in which the air-fuel mixture is not normally burned in the cylinder 3 when shifting from the compression stroke to the explosion stroke. The misfire determination device 24 is connected to a crank angle detection device 23 and an in-cylinder pressure sensor 25 (pressure detection means) that detects an in-cylinder pressure that is an internal pressure of the cylinder 3. The misfire determination device 24 determines the occurrence of misfire in the cylinder 3 based on the crank angle detected by the crank angle detection device 23 and the cylinder pressure detected by the cylinder pressure sensor 25.

次に、失火判定装置24による失火判定の原理を説明する。図2は正常燃焼時及び失火発生時における気筒内圧力とクランク角との関係を表したグラフである。図2に示すように、ガスエンジン2の正常燃焼時には、圧縮行程から爆発行程に移行する際においてピストン4が上死点に達した後も、燃焼により気筒内圧力は上昇する。一方、ガスエンジン2で失火が発生した時には、燃焼による圧力上昇が生じないため、気筒3内の容積が最小なる上死点で圧力がピークとなり、上死点の後は圧力が減少する。つまり、失火発生時における気筒内圧力の波形は上死点を中心として略対称となる。   Next, the principle of misfire determination by the misfire determination device 24 will be described. FIG. 2 is a graph showing the relationship between the in-cylinder pressure and the crank angle during normal combustion and misfire occurrence. As shown in FIG. 2, during normal combustion of the gas engine 2, the in-cylinder pressure rises due to combustion even after the piston 4 reaches top dead center when shifting from the compression stroke to the explosion stroke. On the other hand, when a misfire occurs in the gas engine 2, the pressure does not increase due to combustion. Therefore, the pressure peaks at the top dead center where the volume in the cylinder 3 is minimized, and the pressure decreases after the top dead center. That is, the waveform of the cylinder pressure at the time of misfire is substantially symmetrical about the top dead center.

このため、上死点に達する前の圧縮行程における所定のクランク角θ1での気筒内圧力をP1(以下、P1を第1気筒内圧力と称す)とし、上死点に達した後の爆発行程における所定のクランク角θ2での気筒内圧力をP2(以下、P2を第2気筒内圧力と称す)としたときの、第2気筒内圧力P2と第1気筒内圧力P1との圧力差ΔPの値を閾値αと比較することによって、失火の発生を判定することができる。   Therefore, the cylinder internal pressure at a predetermined crank angle θ1 in the compression stroke before reaching the top dead center is P1 (hereinafter, P1 is referred to as the first cylinder internal pressure), and the explosion stroke after reaching the top dead center. Of the pressure difference ΔP between the second cylinder internal pressure P2 and the first cylinder internal pressure P1 when the cylinder internal pressure at a predetermined crank angle θ2 is P2 (hereinafter, P2 is referred to as the second cylinder internal pressure). The occurrence of misfire can be determined by comparing the value with the threshold value α.

具体的には、上死点のクランク角θTDCとクランク角θ1との差が、クランク角θ2と上死点のクランク角θTDCとの差に等しくなるようにθ1及びθ2を設定する。なお、θTDCとθ1との差(すなわちθTDCとθ2との差)は、5°〜45°の範囲内にあることが望ましい。θTDCとθ1との差が小さすぎると、燃焼遅れが発生した場合に、P1とP2との差が小さくなって、失火と燃焼との区別ができない可能性がある一方、θTDCとθ1との差が大きすぎると、燃焼の影響がP2に現れずにP1とP2との差が小さくなって、失火と燃焼との区別ができない可能性があるためである。なお、5°〜45°との具体的な数値は、実験結果から得られたものである。 Specifically, the difference between the crank angle theta TDC and the crank angle θ1 of top dead center, to set the manner θ1 and θ2 equal to the difference between the crank angle theta TDC crank angle θ2 and the top dead center. The difference between θ TDC and θ1 (that is, the difference between θ TDC and θ2) is preferably in the range of 5 ° to 45 °. If the difference between θ TDC and θ1 is too small, if a combustion delay occurs, the difference between P1 and P2 may be small, and it may not be possible to distinguish between misfire and combustion, while θ TDC and θ1 If the difference is too large, the influence of combustion does not appear in P2 and the difference between P1 and P2 becomes small, and there is a possibility that misfire and combustion cannot be distinguished. The specific numerical values of 5 ° to 45 ° are obtained from experimental results.

そして、数式1を満たすときには正常燃焼であると判定し、数式2を満たすときには失火発生と判定する。この際の閾値αは、後述するように発電機30の負荷に応じて変更される。   And when it satisfy | fills numerical formula 1, it determines with it being normal combustion, and when numerical formula 2 is satisfy | filled, it determines with misfire generation | occurrence | production. The threshold value α at this time is changed according to the load of the generator 30 as will be described later.

[数1]
ΔP=P2−P1>α
[数2]
ΔP=P2−P1≦α
[Equation 1]
ΔP = P2−P1> α
[Equation 2]
ΔP = P2−P1 ≦ α

図3は失火判定装置24における失火判定の流れを説明する図面である。図3に示すように、失火判定装置24は、筒内圧センサ25から気筒内圧力を受信するとともに、クランク角検知装置23からクランク角を受信し、図2に示すような気筒内圧力とクランク角との関係を示すデータを取得する(S1)。次いで、そのデータからΔP(=P2−P1)を計算する(S2)。また、ΔPの計算と並行して、発電機30の負荷(発電機出力)を推定する(S3)。   FIG. 3 is a drawing for explaining the flow of misfire determination in the misfire determination device 24. As shown in FIG. 3, the misfire determination device 24 receives the in-cylinder pressure from the in-cylinder pressure sensor 25 and the crank angle from the crank angle detection device 23, and the in-cylinder pressure and the crank angle as shown in FIG. Data indicating the relationship is acquired (S1). Next, ΔP (= P2−P1) is calculated from the data (S2). In parallel with the calculation of ΔP, the load (generator output) of the generator 30 is estimated (S3).

負荷の推定は、次のような原理で行われる。気筒3に供給される混合気の空燃比(=燃焼に必要な空気重量/投入する燃料重量)は、圧縮行程にあるときの第1気筒内圧力P1と発電機30の負荷とが相関関係を有するように主制御装置20により制御されている。具体的には、空燃比は略一定に保たれるよう制御されており、低負荷では気筒3に供給される燃料量及び空気量は少なく、高負荷では気筒3に供給される燃料量及び空気量は多くなる。よって、点火プラグ15により着火されるまでの圧縮行程における第1気筒内圧力P1は、低負荷では低く、高負荷では高くなるという関係が成立する。   The load is estimated based on the following principle. The air-fuel ratio of the air-fuel mixture supplied to the cylinder 3 (= weight of air necessary for combustion / weight of fuel to be injected) has a correlation between the pressure in the first cylinder P1 during the compression stroke and the load of the generator 30. It is controlled by the main controller 20 so as to have. Specifically, the air-fuel ratio is controlled to be kept substantially constant, the amount of fuel and air supplied to the cylinder 3 are small at a low load, and the amount of fuel and air supplied to the cylinder 3 at a high load. The amount increases. Therefore, the relationship that the first cylinder pressure P1 in the compression stroke until ignition by the spark plug 15 is low at a low load and high at a high load is established.

そこで、図4に示すように、ガスエンジン2により実際に発電を行うときと同一条件において第1気筒内圧力P1と負荷との相関関係を予め実験や計算等から求めておき、失火判定装置24に当該相関関係から得られる高次の近似関数やテーブル関数等を記憶させている。これにより、失火判定装置24は、第1気筒内圧力P1から負荷を推定できるようになっている。よって、図3のS3では、図4に示すような関係を利用して、筒内圧センサ25で検出された第1気筒内圧力P1から発電機30の負荷を推定する。よって、筒内圧センサ25は、負荷情報検出手段を兼ねており、第1気筒内圧力P1を負荷に相関関係のある値として検出する役目も果たしている。   Therefore, as shown in FIG. 4, the correlation between the first cylinder pressure P1 and the load is obtained in advance by experiments, calculations, and the like under the same conditions as when the gas engine 2 actually generates power, and the misfire determination device 24. Are stored high-order approximation functions and table functions obtained from the correlation. Thereby, the misfire determination apparatus 24 can estimate the load from the first cylinder pressure P1. Therefore, in S3 of FIG. 3, the load of the generator 30 is estimated from the first cylinder pressure P1 detected by the cylinder pressure sensor 25 using the relationship shown in FIG. Accordingly, the in-cylinder pressure sensor 25 also serves as load information detection means, and also serves to detect the first cylinder pressure P1 as a value correlated with the load.

次いで、失火判定装置24は、推定された負荷に応じて閾値αを決定する(S4)。具体的には、失火判定装置24は、図5に示すような負荷と閾値αとの対応関係を記憶しており、この対応関係は負荷が大きくなるにつれて閾値αが大きくなるように設定されている。   Next, the misfire determination device 24 determines the threshold value α according to the estimated load (S4). Specifically, the misfire determination device 24 stores a correspondence relationship between the load and the threshold value α as shown in FIG. 5, and this correspondence relationship is set so that the threshold value α increases as the load increases. Yes.

次いで、失火判定装置24は、決定された閾値αとΔP(=P2−P1)との比較を行い、前述した数式1を満たすときには正常燃焼であると判定し、数式2を満たすときには失火発生と判定する(S5)。   Next, the misfire determination device 24 compares the determined threshold value α with ΔP (= P2−P1), determines that the combustion is normal when the above-described equation 1 is satisfied, and indicates that a misfire has occurred when the equation 2 is satisfied. Determine (S5).

以上に説明した構成によれば、発電機30の負荷に応じて閾値αが適宜変更されることになるので、負荷に関係なく閾値αを一定とした場合に比べて、ガスエンジン2での失火の発生を正確に判定することが可能となる。また、発電機30の負荷が小さいときには閾値αが小さく設定されるので、起動時等の低負荷運転のように、正常燃焼時における爆発行程での第2気筒内圧力P2と、失火発生時における爆発行程での第2気筒内圧力P2との差が小さい場合において、正常燃焼時を失火であると誤判定することを防止することができる。かつ、発電機30の負荷が大きいときには閾値αが大きく設定されるので、高負荷運転時において、失火と判定すべき燃焼状態の悪い状態が発生しても、失火が発生していないと誤判定することを防止することができる。さらに、発電機30の負荷に相関関係のある値として圧縮行程での第1気筒内圧力P1を用い、その第1気筒内圧力P1に応じて閾値αを変更しているため、発電機30の負荷を直接検出して失火判定装置24に入力する必要がなくなり、システムを簡素化することができる。   According to the configuration described above, the threshold value α is appropriately changed according to the load of the generator 30, and therefore misfire in the gas engine 2 compared to the case where the threshold value α is constant regardless of the load. It is possible to accurately determine the occurrence of. Further, since the threshold value α is set small when the load on the generator 30 is small, the second cylinder internal pressure P2 in the explosion stroke at the time of normal combustion, and at the time of misfire occurrence, as in the low load operation at the time of startup or the like. When the difference from the second cylinder pressure P2 in the explosion stroke is small, it is possible to prevent erroneous determination that the normal combustion is misfire. In addition, since the threshold value α is set to be large when the load on the generator 30 is large, it is erroneously determined that no misfire has occurred even when a bad combustion state that should be determined as misfire occurs during high load operation. Can be prevented. Furthermore, since the first cylinder pressure P1 in the compression stroke is used as a value correlated with the load of the generator 30, and the threshold value α is changed according to the first cylinder pressure P1, the generator 30 It is not necessary to detect the load directly and input it to the misfire determination device 24, and the system can be simplified.

なお、前述した実施形態では、ガスエンジン2の空燃比を略一定に制御しているが、変形例として、空燃比を変化させるように制御してもよい。その場合には、図4のような対応データの代わりに、図6のような対応データを利用する。図6に示すように、負荷に対して燃料量はほぼ一意に決まるため、空燃比が大きいと空気量が多いことになり、圧縮行程の第1気筒内圧力P1の値は大きくなる。一方、空燃比が小さいと、空気量が少ないことになり、圧縮行程の第1気筒内圧力P1の値は小さくなる。   In the above-described embodiment, the air-fuel ratio of the gas engine 2 is controlled to be substantially constant. However, as a modified example, the air-fuel ratio may be changed. In that case, the correspondence data as shown in FIG. 6 is used instead of the correspondence data as shown in FIG. As shown in FIG. 6, since the fuel amount is almost uniquely determined with respect to the load, the air amount increases as the air-fuel ratio increases, and the value of the first cylinder pressure P1 in the compression stroke increases. On the other hand, when the air-fuel ratio is small, the amount of air is small, and the value of the first cylinder pressure P1 in the compression stroke is small.

図6に示す第1気筒内圧力P1と負荷との相関関係は、空燃比ごとに実験や計算等を行うことで予め求めておき、失火判定装置24に当該相関関係から得られる高次の近似関数やテーブル関数等を記憶させている。これにより、失火判定装置24は、図6のうち現在の空燃比に対応するデータを参照し、第1気筒内圧力P1から負荷を推定することができる。   The correlation between the first in-cylinder pressure P1 and the load shown in FIG. 6 is obtained in advance by performing experiments, calculations, and the like for each air-fuel ratio, and the misfire determination device 24 obtains a high-order approximation obtained from the correlation. Functions and table functions are stored. Thereby, the misfire determination apparatus 24 can estimate the load from the first cylinder pressure P1 with reference to the data corresponding to the current air-fuel ratio in FIG.

また、前述した実施形態では、図4(又は図6)により第1気筒内圧力P1から負荷を求め、その負荷から閾値αを求めているが、第1気筒内圧力P1から直接的に閾値αを求めるようにしてもよい。また、前述した実施形態では、第2気筒内圧力P2と第1気筒内圧力P1との差を閾値αと比較しているが、第2気筒内圧力P2と第1気筒内圧力P1との比を閾値と比較するようにしてもよい。また、前述した実施形態では、第1気筒内圧力P1から負荷を推定しているが、負荷検出センサにより発電機30から直接計測した負荷を失火判定装置24に入力するようにしてもよい。   In the above-described embodiment, the load is obtained from the first cylinder pressure P1 according to FIG. 4 (or FIG. 6), and the threshold value α is obtained from the load, but the threshold value α is directly obtained from the first cylinder pressure P1. May be requested. In the above-described embodiment, the difference between the second cylinder pressure P2 and the first cylinder pressure P1 is compared with the threshold value α, but the ratio between the second cylinder pressure P2 and the first cylinder pressure P1 is compared. May be compared with a threshold value. In the above-described embodiment, the load is estimated from the first cylinder pressure P1, but the load measured directly from the generator 30 by the load detection sensor may be input to the misfire determination device 24.

以上のように、本発明に係るエンジン失火判定システム及び方法は、発電用エンジンにおける失火の発生を正確に判定できる優れた効果を有し、この効果の意義を発揮できる発電用ガスエンジン等に広く適用すると有益である。   As described above, the engine misfire determination system and method according to the present invention have an excellent effect of accurately determining the occurrence of misfire in a power generation engine, and are widely applied to power generation gas engines and the like that can demonstrate the significance of this effect. It is beneficial to apply.

1 失火判定システム
2 ガスエンジン
3 気筒
22 主制御装置(空燃比制御手段)
24 失火判定装置(失火判定手段)
25 筒内圧センサ(圧力検出手段,負荷情報検出手段)
30 発電機
DESCRIPTION OF SYMBOLS 1 Misfire determination system 2 Gas engine 3 Cylinder 22 Main controller (air-fuel ratio control means)
24 Misfire determination device (misfire determination means)
25 In-cylinder pressure sensor (pressure detection means, load information detection means)
30 Generator

Claims (2)

発電機を駆動するエンジンの失火を判定するシステムであって、
前記エンジンの気筒の内部圧力である気筒内圧力を検出可能な圧力検出手段と、
前記気筒が圧縮行程にあるときに前記圧力検出手段で検出される第1気筒内圧力と、前記気筒が爆発行程にあるときに前記圧力検出手段で検出される第2気筒内圧力との差又は比を閾値と比較することにより、前記気筒の失火を判定する失火判定手段と、
記発電機の負荷に相関関係のある値を検出可能な負荷情報検出手段と、
前記気筒が圧縮行程にあるときの気筒内圧力と前記負荷とが相関関係を有するように前記気筒に供給される混合気の空燃比を制御する空燃比制御手段と、を備え、
前記圧力検出手段は、前記負荷情報検出手段を兼ねており、前記負荷情報検出手段は、前記負荷に相関関係のある値として前記気筒が圧縮行程にあるときの気筒内圧力を検出し、
前記失火判定手段は、前記負荷情報検出手段で前記負荷に相関関係のある値として検出される気筒内圧力と、前記空燃比制御手段により制御されている空燃比に対応するデータとに応じて前記閾値を変更し、前記気筒内圧力が大きくなるにつれて前記閾値を大きくすると共に前記空燃比が小さくなるにつれて前記閾値を大きくするように構成されていることを特徴とするエンジン失火判定システム。
A system for determining misfire of an engine driving a generator,
Pressure detecting means capable of detecting an in-cylinder pressure that is an internal pressure of a cylinder of the engine;
The difference between the first cylinder pressure detected by the pressure detection means when the cylinder is in the compression stroke and the second cylinder pressure detected by the pressure detection means when the cylinder is in the explosion stroke, or Misfire determination means for determining misfire of the cylinder by comparing the ratio with a threshold;
And detectable load information detecting means a value that is correlated to the load before Symbol generator,
Air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied to the cylinder so that the cylinder pressure when the cylinder is in the compression stroke and the load have a correlation , and
The pressure detection means also serves as the load information detection means, and the load information detection means detects an in-cylinder pressure when the cylinder is in a compression stroke as a value correlated with the load,
The misfire determination means is responsive to the in-cylinder pressure detected as a value correlated with the load by the load information detection means and the data corresponding to the air-fuel ratio controlled by the air-fuel ratio control means. the threshold value is changed, the engine misfire identification system characterized that you have been configured to increase the threshold value as the air-fuel ratio becomes smaller with the cylinder pressure is increased the threshold as large.
発電機を駆動するエンジンの失火を判定する方法であって、
前記エンジンの気筒が圧縮行程にあるときに第1気筒内圧力を検出し、
前記エンジンの気筒が爆発行程にあるときに第2気筒内圧力を検出し、
前記第1気筒内圧力と前記第2気筒内圧力との差又は比を閾値と比較することにより、前記気筒の失火を判定しており当該判定の前に、
記発電機の負荷に相関関係のある値として、前記気筒が圧縮行程にあるときの気筒内圧力を検出し、
前記負荷に相関関係のある値として検出される気筒内圧力と、前記気筒が圧縮行程にあるときの気筒内圧力と負荷とが相関関係を有するように制御されている空燃比に対応するデータとに応じて前記閾値を変更しており、
当該変更において、前記気筒内圧力が大きくなるにつれて前記閾値を大きくすると共に前記空燃比が小さくなるにつれて前記閾値を大きくすることを特徴とするエンジン失火判定方法。
A method for determining misfire of an engine driving a generator,
Detecting the pressure in the first cylinder when the cylinder of the engine is in the compression stroke;
Detecting the pressure in the second cylinder when the cylinder of the engine is in an explosion stroke;
Samata of the first cylinder pressure and said second cylinder pressure by comparing the ratio with a threshold value, and determines a misfire of the cylinder, prior to the determination,
As a value correlated to a load before Symbol generator, detects the in-cylinder pressure when said cylinder is in the compression stroke,
Cylinder pressure detected as a value correlated with the load, and data corresponding to the air-fuel ratio controlled so that the cylinder pressure and the load when the cylinder is in the compression stroke are correlated with each other; and it changed the threshold according to,
In this modification, the threshold value is increased as the cylinder pressure increases, and the threshold value is increased as the air-fuel ratio decreases .
JP2009060090A 2009-03-12 2009-03-12 Engine misfire determination system and method Active JP5314464B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009060090A JP5314464B2 (en) 2009-03-12 2009-03-12 Engine misfire determination system and method
PCT/JP2010/001589 WO2010103778A1 (en) 2009-03-12 2010-03-08 System and method for determining engine misfire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060090A JP5314464B2 (en) 2009-03-12 2009-03-12 Engine misfire determination system and method

Publications (2)

Publication Number Publication Date
JP2010209892A JP2010209892A (en) 2010-09-24
JP5314464B2 true JP5314464B2 (en) 2013-10-16

Family

ID=42728074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060090A Active JP5314464B2 (en) 2009-03-12 2009-03-12 Engine misfire determination system and method

Country Status (2)

Country Link
JP (1) JP5314464B2 (en)
WO (1) WO2010103778A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511734B1 (en) * 2011-07-20 2016-02-15 Ge Jenbacher Gmbh & Co Ohg METHOD FOR OPERATING A STATIONARY POWER PLANT
US9316565B2 (en) * 2013-01-14 2016-04-19 Cummins Inc. Exhaust manifold pressure based misfire detection for internal combustion engines
JP6032136B2 (en) * 2013-06-05 2016-11-24 トヨタ自動車株式会社 Misfire detection system for internal combustion engine
CN108644034B (en) * 2018-05-18 2019-08-09 山东大学 High-power lean burn natural gas engine combustion system and method based on ozone to support combustion
EP3726036A1 (en) * 2019-04-15 2020-10-21 Winterthur Gas & Diesel AG Large motor and method for operating a large motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202000A (en) * 2000-12-28 2002-07-19 Fuji Heavy Ind Ltd Misfire detecting device for engine
EP1375890A4 (en) * 2001-03-30 2011-04-27 Mitsubishi Heavy Ind Ltd Internal combustion engine combustion diagnosis/control apparatus and combustion diagnosis/control method
JP4340219B2 (en) * 2004-11-29 2009-10-07 本田技研工業株式会社 Misfire detection device
JP4631725B2 (en) * 2006-01-30 2011-02-16 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4462283B2 (en) * 2007-03-14 2010-05-12 日産自動車株式会社 ENGINE LOAD ESTIMATION DEVICE AND ENGINE LOAD ESTIMATION METHOD

Also Published As

Publication number Publication date
JP2010209892A (en) 2010-09-24
WO2010103778A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
EP2700804B1 (en) Gas engine, gas engine control apparatus, and gas engine control method
US9140229B2 (en) Knocking control system for gas engine
US7461633B2 (en) Method of controlling the combustion phase of an internal-combustion engine, notably a gasoline type direct-injection supercharged engine
RU2423618C2 (en) Sensor of actual fuel quality
US7854218B2 (en) Method to recognize and avoid premature combustion events
CN107709956B (en) Detecting and mitigating abnormal combustion characteristics
US8374772B2 (en) Misfire detection through combustion pressure sensor
US5351528A (en) Apparatus and method for detecting misfiring in an internal combustion engine
WO2005119034A1 (en) Method of determining cetane number of fuel in internal combustion engine
JP5314464B2 (en) Engine misfire determination system and method
EP3054134B1 (en) Method and system of diagnosing a knock sensor
CN112682241A (en) Method and device for controlling ignition timing of engine
EP3371436A1 (en) Engine control method and engine control device
JP4096942B2 (en) Fuel injection control device for internal combustion engine
US20170191439A1 (en) System for monitoring a prechamber of an engine
JP2013104371A (en) Internal combustion engine control device
JP6020061B2 (en) Control device for internal combustion engine
US10393609B2 (en) System and method for detection of changes to compression ratio and peak firing pressure of an engine
US20150192497A1 (en) System and method for detecting fault in ignition system
JP2008196409A (en) Combustion control device for internal combustion engine
WO2013150373A1 (en) Control apparatus for internal combustion engine
EP4050199A1 (en) Internal combustion engine control device
JP2011157852A (en) Control device of internal combustion engine
WO2015033371A1 (en) Abnormal combustion detection device for engine and abnormal combustion detection method for engine
JP2012219757A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250