JP5312095B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5312095B2
JP5312095B2 JP2009041993A JP2009041993A JP5312095B2 JP 5312095 B2 JP5312095 B2 JP 5312095B2 JP 2009041993 A JP2009041993 A JP 2009041993A JP 2009041993 A JP2009041993 A JP 2009041993A JP 5312095 B2 JP5312095 B2 JP 5312095B2
Authority
JP
Japan
Prior art keywords
sintered alloy
particles
cutting
rake face
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041993A
Other languages
Japanese (ja)
Other versions
JP2010194669A (en
Inventor
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009041993A priority Critical patent/JP5312095B2/en
Publication of JP2010194669A publication Critical patent/JP2010194669A/en
Application granted granted Critical
Publication of JP5312095B2 publication Critical patent/JP5312095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐溶着性と切屑排出性に優れる切削工具に関する。   The present invention relates to a cutting tool having excellent welding resistance and chip discharge.

焼結合金からなるスローアウェイチップにおいて、焼結合金の表面をブラスト加工して合金表面の性状を制御する方法が知られている。   In a throw-away tip made of a sintered alloy, a method is known in which the surface of the sintered alloy is blasted to control the properties of the alloy surface.

例えば、特許文献1〜3では、超硬合金製ドリルまたはスローアウェイチップに対して、被覆層を成膜する前の洗浄処理として、ドリルの表面をブラスト処理することが開示されている。また、特許文献4では、切刃に微小ホーニングをつけるために、磁気研磨法にてホーニング処理をすることが開示されている。   For example, Patent Documents 1 to 3 disclose blasting the surface of a drill as a cleaning process before forming a coating layer on a cemented carbide drill or a throw-away tip. Patent Document 4 discloses that a honing process is performed by a magnetic polishing method in order to apply fine honing to a cutting blade.

特表2002―536194号公報Special Table 2002-536194 特開2007−007780号公報JP 2007-007780 A 特開平09−241826号公報JP 09-241826 A 特開2000−52107号公報JP 2000-52107 A

しかしながら、上記特許文献1〜3に記載されるブラスト処理条件では、焼結合金の表面における洗浄効果はあるものの、それ以上の効果はなかった。また、特許文献4に記載される微小ホーニングのための研磨加工条件では、切刃の微小除去はできるもののすくい面の性状を変えるものではなかった。   However, under the blasting conditions described in Patent Documents 1 to 3 above, although there was a cleaning effect on the surface of the sintered alloy, there was no further effect. In addition, the polishing conditions for fine honing described in Patent Document 4 did not change the properties of the rake face although the cutting edge could be finely removed.

本発明の目的は、焼結合金からなる切削工具のすくい面における表面性状を改良して、優れた切削性能を発揮できる切削工具を提供することにある。   An object of the present invention is to provide a cutting tool capable of improving the surface properties on the rake face of a cutting tool made of a sintered alloy and exhibiting excellent cutting performance.

本発明の切削工具は、CoおよびNiの少なくとも1種からなる結合相と、周期表第4、5および6族金属の炭窒化物からなる硬質相と、にて構成される焼結合金からなり、前記焼結合金のすくい面側の表面に、平均粒径5μm〜100μmのアルミナ粒子または立方晶窒化硼素(cBN)粒子の少なくとも1種が5〜20面積%の割合で点在していることを特徴とする。   The cutting tool of the present invention comprises a sintered alloy composed of a binder phase composed of at least one of Co and Ni and a hard phase composed of carbonitrides of Group 4, 5, and 6 metals of the periodic table. In addition, at least one kind of alumina particles or cubic boron nitride (cBN) particles having an average particle diameter of 5 μm to 100 μm is scattered at a ratio of 5 to 20% by area on the rake face side of the sintered alloy. It is characterized by.

ここで、前記点在している粒子は高さの20〜50%の部分が前記すくい面の表面から前記焼結合金の内部に埋め込まれ、前記高さの50〜80%の部分が前記すくい面の表面から突出した形態で存在している。
Here, the dotted to have particles 20 to 50% of the portion of the height is embedded in the interior of the sintered alloy from the surface of the rake face 50 to 80% of the portion of the height of the rake that exist in such a form that it protrudes from the surface of the plane.

本発明の切削工具によれば、焼結合金の表面に点在する点在粒子が切削開始時点で切削液が充分に浸透しないときに切屑がすくい面に擦れて溶着するのを抑制できる。そして、切削が進むにつれて点在粒子が脱落してその跡がボイドとなり、このボイドにて表面積が増加し切削液による冷却効果が高められる。また切削液が保持されるので切屑の流れがスムーズになる。   According to the cutting tool of the present invention, it is possible to prevent the scattered particles scattered on the surface of the sintered alloy from being rubbed and welded to the rake face when the cutting fluid does not sufficiently penetrate at the start of cutting. As the cutting proceeds, the interspersed particles fall off and the traces become voids, and the voids increase the surface area and enhance the cooling effect by the cutting fluid. Further, since the cutting fluid is retained, the flow of chips becomes smooth.

ここで、前記点在する粒子の高さの20〜50%の部分は前記すくい面の表面から前記焼結合金の内部に埋め込まれ、高さの50〜80%の部分は前記すくい面の表面から突出した形態で存在している。このような点在する粒子は、切削開始には、耐摩耗性向上させその後所望の時間で脱粒してすくい面における切削液との接触面積を増加させることができる。
Here, 20 to 50% of the height of the scattered particles is embedded in the sintered alloy from the surface of the rake face, and 50 to 80% of the height is the surface of the rake face. It exists in the form which protruded from . Such interspersed particles, after start of cutting straight, improved wear resistance, Ru can be followed by the desired time increasing the contact area between the cutting fluid on the rake face and shedding.

本発明の切削工具の概略斜視図である。It is a schematic perspective view of the cutting tool of this invention. 図1の切削工具においてすくい面を含む断面についての模式図である。It is a schematic diagram about the cross section containing a rake face in the cutting tool of FIG.

本発明の切削工具について、その一例についての概略斜視図である図1、図1の切削工具のすくい面を含む断面についての模式図である図2を基に説明する。   The cutting tool of this invention is demonstrated based on FIG. 1 which is a schematic perspective view about the example, and FIG. 2 which is a schematic diagram about the cross section containing the rake face of the cutting tool of FIG.

図1の切削工具1は、略平板状で、主面がすくい面2と着座面(図示せず)を、側面が逃げ面4を、すくい面2と逃げ面4との交差稜線部が切刃5をなす。また、切削工具1は、図2に示すように、CoおよびNiの少なくとも1種からなる結合相と、周期表第4、5および6族金属の炭窒化物からなる硬質相と、にて構成される焼結合金6からなる。そして、焼結合金6のすくい面2側の表面には、平均粒径5μm〜100μmのアルミナ粒子または立方晶窒化硼素(cBN)粒子の少なくとも1種の点在粒子7が5〜20面積%の割合で点在している。   The cutting tool 1 in FIG. 1 has a substantially flat plate shape, the main surface cuts the rake face 2 and the seating surface (not shown), the side face cuts the flank face 4, and the cross ridge line part between the rake face 2 and the flank face 4 cuts. Make a blade 5. Further, as shown in FIG. 2, the cutting tool 1 is composed of a binder phase composed of at least one of Co and Ni and a hard phase composed of carbonitrides of Group 4, 5, and 6 metals of the periodic table. It consists of the sintered alloy 6 made. The surface of the sintered alloy 6 on the rake face 2 side contains 5 to 20 area% of at least one kind of interspersed particles 7 of alumina particles or cubic boron nitride (cBN) particles having an average particle size of 5 μm to 100 μm. Interspersed in proportion.

上記構成によって、焼結合金6の表面に点在する点在粒子7が切削中には脱落してボイド8となり、このボイド8にて切削液が保持されるので切屑の流れがスムーズになる。また、切削を開始した時点では焼結合金6の表面に点在する点在粒子7によって焼結合金6の表面の全面に切屑が擦れることを防止できるので、焼結合金6の表面に溶着が発生することを抑制して、切削工具1のすくい面2の性能が劣化することを防止できる。   With the above configuration, the scattered particles 7 scattered on the surface of the sintered alloy 6 drop off during the cutting and become voids 8, and the cutting fluid is held by the voids 8, so that the flow of chips becomes smooth. Further, when cutting is started, the scattered particles 7 scattered on the surface of the sintered alloy 6 can prevent scraping of the entire surface of the sintered alloy 6, so that the surface of the sintered alloy 6 is welded. Generation | occurrence | production can be suppressed and it can prevent that the performance of the rake face 2 of the cutting tool 1 deteriorates.

すなわち、点在粒子7の平均粒径が100μmよりも大きいと、切削を開始した直後に点在粒子7が脱落してしまう。容易に製造できることを考慮すると、点在粒子7の平均粒径は5μm〜100μmであることが望ましい。また、点在粒子7の存在割合が5面積%より少ないと点在粒子7の効果が乏しく、点在粒子7の存在割合が20面積%を超えると点在粒子が脱粒した際に自身を研磨して切削工具1の摩耗量が増加する不具合が無視できなくなる。   That is, when the average particle diameter of the interspersed particles 7 is larger than 100 μm, the interspersed particles 7 fall off immediately after the cutting is started. Considering that it can be easily manufactured, it is desirable that the average particle diameter of the interspersed particles 7 is 5 μm to 100 μm. Further, when the ratio of the scattered particles 7 is less than 5 area%, the effect of the scattered particles 7 is poor, and when the ratio of the scattered particles 7 exceeds 20 area%, the scattered particles are degrown and polished themselves. Thus, the problem that the amount of wear of the cutting tool 1 increases cannot be ignored.

ここで、点在粒子7は高さの20〜50%の部分(高さti)がすくい面2の表面から焼結合金6の内部に埋め込まれ、高さの50〜80%の部分(高さto)がすくい面2の表面から突出した形態で存在していることが、切削開始直後には点在粒子7によってすくい面2の全面に切屑が擦れることを防止できた後、点在粒子7は所望の時間で脱粒してすくい面2における切削液の保持力を高めることができる。
Here, the scattered particles 7 are embedded in the sintered alloy 6 from the surface of the rake face 2 at a portion of 20 to 50% in height (height ti), and a portion of 50 to 80% in height (high Is present in a form protruding from the surface of the rake face 2, after the start of cutting, the scattered particles 7 can prevent the chips from being rubbed over the entire surface of the rake face 2, and then the scattered particles. 7 Ru can increase the retention of the cutting fluid in the rake face 2 and shedding at the desired time.

なお、本発明においては、焼結合金6として、超硬合金またはサーメットが好適に使用可能であるが、いずれもすくい面2の表面に所定の大きさのボイドが存在すること、加えて表面に結合相の染み出しがあることが望ましい。これによって、後述するブラスト処理によって焼結合金6のすくい面2の表面に所定の大きさ、比率の点在粒子7を存在させることができる。   In the present invention, cemented carbide or cermet can be suitably used as the sintered alloy 6, but any of them has voids of a predetermined size on the surface of the rake face 2, in addition to the surface. It is desirable that the binder phase oozes out. Thereby, the scattered particles 7 having a predetermined size and ratio can be made to exist on the surface of the rake face 2 of the sintered alloy 6 by blasting described later.

また、焼結合金6を構成する硬質相の平均結晶粒径は1μm以下、特に0.5〜0.9μm、さらに0.7〜0.9μmであることが、すくい面2の表面にボイド8が存在してもさほど耐摩耗性が低下せず切削工具1の耐摩耗性が維持できる点で望ましい。また、CoおよびNiの少なくとも1種からなる結合相は総量が10〜20重量%の割合で含有されることが、すくい面2の表面にボイド8が存在してもさほど耐欠損性が低下せず切削工具1の耐欠損性が維持できる点で望ましい。   The average crystal grain size of the hard phase constituting the sintered alloy 6 is 1 μm or less, particularly 0.5 to 0.9 μm, and more preferably 0.7 to 0.9 μm. This is desirable in that the wear resistance of the cutting tool 1 can be maintained without decreasing the wear resistance. Further, the binder phase composed of at least one of Co and Ni is contained in a total amount of 10 to 20% by weight, and even if voids 8 are present on the surface of the rake face 2, the fracture resistance is greatly reduced. It is desirable in that the chipping resistance of the cutting tool 1 can be maintained.

(製造方法)
本発明の焼結合金2からなる切削工具1を製造する方法について、焼結合金2としてTi基サーメット(以下、サーメットと略す。)を用いた場合について説明する。まず原料粉末として、硬質相形成成分として、平均粒径は0.5〜2μmのTiCN粉末と、他の周期表第4、5および6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末、および平均粒径が0.3〜4μmのNiおよびCoの少なくとも1種の粉末を所定の割合で添加する。
(Production method)
A method of manufacturing the cutting tool 1 made of the sintered alloy 2 of the present invention will be described in the case where a Ti-based cermet (hereinafter abbreviated as cermet) is used as the sintered alloy 2. First, as raw material powder, the hard phase forming component is selected from the group of TiCN powder having an average particle size of 0.5 to 2 μm, and other Group 4, 5 and 6 group metal carbides, nitrides, and carbonitrides. At least one powder, and at least one powder of Ni and Co having an average particle size of 0.3 to 4 μm are added in a predetermined ratio.

そしてこれらの秤量された粉末をボールミルなどによって混合した後、プレス成形、押出成形、射出成形などの公知の成形手法によって所定の切削工具形状に成形した後、焼成する。   These weighed powders are mixed by a ball mill or the like, then formed into a predetermined cutting tool shape by a known forming method such as press molding, extrusion molding or injection molding, and then fired.

焼成にあたっては、100Pa以下の真空中で1250℃までの昇温速度Rを5〜15℃/分で昇温し、1250〜1400℃までの昇温速度Rを2〜5℃/分で昇温し、1400℃で昇温速度を切り替えて1400℃から1520〜1580℃の焼成温度までは1〜7℃/分で昇温し、焼成温度に到達した後で不活性ガスを800Pa〜2000Pa導入した雰囲気で0.5〜1.5時間の保持を行った後に冷却するパターンとする。この焼成によって、サーメットの表面に所定の大きさ、比率のボイドが形成されるとともに、結合相の主成分であるCoおよびNiの少なくとも1種を主成分とする溶出相が染み出す。 In firing, the temperature rise rate R 1 up to 1250 ° C. is raised at 5 to 15 ° C./min in a vacuum of 100 Pa or less, and the temperature rise rate R 2 up to 1250 to 1400 ° C. is 2 to 5 ° C./min. The temperature is raised and the rate of temperature rise is switched at 1400 ° C. to raise the firing temperature from 1400 ° C. to 1520 to 1580 ° C. at a rate of 1 to 7 ° C./min. The pattern is cooled after holding for 0.5 to 1.5 hours in the introduced atmosphere. By this firing, voids having a predetermined size and ratio are formed on the surface of the cermet, and an elution phase containing at least one of Co and Ni as the main components of the binder phase oozes out.

そして、上記の方法によって作製されたサーメットに対して、すくい面側からブラスト加工を行う。このとき、サーメットの表面に点在粒子として埋め込まれるようにするために、ブラスト加工の条件はブラストの砥粒として、アルミナ粒子またはcBN粒子の少なくとも1種の点在粒子を構成する成分の粉末と炭化タングステン(WC)を主成分とする超硬合金や炭窒化チタン(TiCN)を主成分とするTi基サーメット等の焼結合金粉砕粉末を混合したものを用いる。砥粒の平均粒径は点在粒子構成成分の粒子が0.05〜0.3mm、焼結合金粉砕粉末が0.05〜0.3mmであることが望ましい。そして、噴霧圧力1.5MPa〜3.0MPa、望ましくは2.0MPa〜2.5MPaで、噴霧時間5〜60秒の条件でブラスト加工を行う。さらに、この表面研磨加工に併せて、または別途切刃にホーニング加工を施して、本発明の切削工具を作製することができる。
And the cermet produced by said method is blasted from the rake face side. At this time, in order to be embedded as scattered particles on the surface of the cermet, the blasting condition is that the powder of the component constituting at least one kind of scattered particles of alumina particles or cBN particles is used as blasting abrasive grains. A mixture of pulverized sintered alloy powder such as cemented carbide containing tungsten carbide (WC) as a main component and Ti-based cermet containing titanium carbonitride (TiCN) as a main component is used. The average grain size of the abrasive grains is desirably 0.05 to 0.3 mm for the particles of the dispersed particles and 0.05 to 0.3 mm for the sintered alloy pulverized powder. Then, blasting is performed under a spraying pressure of 1.5 MPa to 3.0 MPa, desirably 2.0 MPa to 2.5 MPa, and a spraying time of 5 to 60 seconds. Further, the cutting tool of the present invention can be manufactured by performing honing on the cutting blade in combination with the surface polishing or separately.

原料粉末として、平均粒径0.5μmのTiCN粉末と、いずれも平均粒径が0.5〜2μmのTiN粉末、TaC粉末、NbC粉末、WC粉末、ZrC粉末、VC粉末、MoC粉末、MnCO粉末、および平均粒径が2μmのCo粉末、Ni粉末またはCoとNiとの合金粉末を用い、これら原料粉末を表1に示される配合組成に配合し、ボールミルで湿式混合粉砕した。なお、上記平均粒径はマイクロトラック法で測定したものである。 As the raw material powder, TiCN powder having an average particle size of 0.5 μm, TiN powder having an average particle size of 0.5 to 2 μm, TaC powder, NbC powder, WC powder, ZrC powder, VC powder, MoC powder, MnCO 3 These raw material powders were blended in the blending composition shown in Table 1 using powder and Co powder, Ni powder or Co and Ni alloy powder having an average particle diameter of 2 μm, and wet mixed and pulverized by a ball mill. The average particle diameter is measured by the microtrack method.

次に、上記混合粉末を用いて、成形圧98MPaでISO規格CNMG120408のチップ形状にプレス成形し、この成形体を100Pa以下の真空中で1250℃まで12.5℃/分で昇温し、1250〜1400℃までを表1に示す昇温速度Rで昇温し1400℃から焼成温度までは5/分で昇温し、表1の焼成温度に到達した後で1時間の保持を行い、その後冷却する焼成パターンで焼成して、CNMG120408形状のサーメットを作製した。次に、得られたサーメットに対して、表2に示す加工条件により各試料を形成し切削工具とした。 Next, the above mixed powder was press-molded into a chip shape of ISO standard CNMG120408 at a molding pressure of 98 MPa, and this molded body was heated to 1250 ° C. in a vacuum of 100 Pa or less at 12.5 ° C./min. Up to 1400 ° C. at a heating rate R 2 shown in Table 1 and from 1400 ° C. to the firing temperature, the temperature was increased at 5 / min. After reaching the firing temperature in Table 1, holding for 1 hour, Thereafter, firing was performed with a firing pattern to be cooled to produce a cermet having a shape of CNMG120408. Next, with respect to the obtained cermet, each sample was formed on the processing conditions shown in Table 2, and it was set as the cutting tool.

得られた切削工具に対して、すくい面の表面について1000倍で顕微鏡観察を行い、組織観察を行った。いずれも硬質相の平均粒径は1μm以下であった。また、表2に点在粒子の存在状態を示した。なお、点在粒子のサイズ測定については、100×100μmの観察領域2箇所を画像解析にて測定し、その平均値を算出した。   With respect to the obtained cutting tool, the surface of the rake face was observed with a microscope at 1000 times, and the structure was observed. In all cases, the average particle size of the hard phase was 1 μm or less. Table 2 shows the state of the presence of scattered particles. In addition, about the size measurement of the dotted particle, two observation regions of 100 × 100 μm were measured by image analysis, and the average value was calculated.

次に、得られた試料について以下の条件で切削性能を評価した。
被削材:SNCN439
切削速度:300m/min
送り:0.15mm/rev
切込み:1.0mm
切削環境:湿式
評価項目:切削開始20分の時点で切刃を観察して溶着の有無を確認するとともに、摩耗量が0.15mmに到達するまでの時間を評価した。
結果は表2に示した。
Next, the cutting performance of the obtained sample was evaluated under the following conditions.
Work material: SNCN439
Cutting speed: 300 m / min
Feed: 0.15mm / rev
Cutting depth: 1.0mm
Cutting environment: Wet evaluation item: The cutting edge was observed at 20 minutes from the start of cutting to confirm the presence or absence of welding, and the time until the amount of wear reached 0.15 mm was evaluated.
The results are shown in Table 2.

Figure 0005312095
Figure 0005312095

Figure 0005312095
Figure 0005312095

表1、2から明らかなように、従来の焼結合金粉砕粉末を混合せずにブラスト加工を行い焼結合金の表面に点在粒子が存在しない試料No.7、およびブラシ加工を行った試料No.6では、焼結合金の表面が変質して摩耗の進行が速かった。また、焼成後の焼結合金の表面にボイドや結合相の染み出しがなく、ブラスト加工によっても焼結合金の表面に点在粒子が存在しない試料No.4、または焼成温度が高すぎて焼結合金の表面状態が粗くなり、点在粒子の存在比率が20面積%を超えてしまった試料No.5では、切削直後から切刃に溶着が見られ切削時間が短くなった。また、試料No.5においては切刃に欠損も見られた。また、ブラストに使用した砥粒の粒径が粗すぎて点在粒子の平均粒径100μmを超えてしまった試料No.8では、切削試験においては摩耗の進行が速かった。 As can be seen from Tables 1 and 2, the sample No. 1 was blasted without mixing the conventional sintered alloy pulverized powder and no interspersed particles were present on the surface of the sintered alloy. 7 and the sample No. In No. 6, the surface of the sintered alloy was altered and the progress of wear was fast. Further, sample No. No. in which no voids or binder phase oozes out on the surface of the sintered alloy after firing, and no scattered particles exist on the surface of the sintered alloy by blasting. 4, or the firing temperature is too high, the surface state of the sintered alloy becomes rough, and the existence ratio of scattered particles exceeds 20 area%. In No. 5, welding was observed on the cutting edge immediately after cutting, and the cutting time was shortened. Sample No. In No. 5, the cutting blade was also missing. The average particle diameter of scattered particle diameter of the abrasive grains used in blasting is too coarse is exceeded a 100μm sample No. In No. 8, the progress of wear was fast in the cutting test.

これに対して、本発明に従い、すくい面の表面に平均粒径100μm以下の点在粒子が5〜20面積%の比率で存在している試料No.1〜3では、いずれも溶着もなく切屑の流れが良くて切削時間が長いものであった。   On the other hand, according to the present invention, sample No. 1 in which scattered particles having an average particle diameter of 100 μm or less are present on the surface of the rake face in a ratio of 5 to 20 area%. In Nos. 1-3, there was no welding and the flow of chips was good and the cutting time was long.

1 切削工具
2 すくい面
4 逃げ面
5 切刃
6 焼結合金
7 点在粒子
8 ボイド
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Rake face 4 Relief face 5 Cutting edge 6 Sintered alloy 7 Dotted particle 8 Void

Claims (1)

CoおよびNiの少なくとも1種からなる結合相と、周期表第4、5および6族金属の炭窒化物からなる硬質相と、にて構成される焼結合金からなる切削工具であって、
前記焼結合金のすくい面側の表面に、平均粒径5〜100μmのアルミナ粒子または立方晶窒化硼素(cBN)粒子の少なくとも1種が5〜20面積%の割合で点在しているとともに、
前記点在している粒子の高さの20〜50%の部分は前記すくい面の表面から前記焼結合金の内部に埋め込まれ、前記高さの50〜80%の部分は前記すくい面の表面から突出した形態で存在していることを特徴とする切削工具。
A cutting tool composed of a sintered alloy composed of a binder phase composed of at least one of Co and Ni and a hard phase composed of a carbonitride of Group 4, 5, and 6 metals of the periodic table,
At least one kind of alumina particles or cubic boron nitride (cBN) particles having an average particle diameter of 5 to 100 μm is scattered on the surface on the rake face side of the sintered alloy at a ratio of 5 to 20 area% ,
A portion of 20 to 50% of the height of the scattered particles is embedded in the sintered alloy from the surface of the rake face, and a portion of 50 to 80% of the height is the surface of the rake face. A cutting tool characterized in that it exists in a form protruding from .
JP2009041993A 2009-02-25 2009-02-25 Cutting tools Active JP5312095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041993A JP5312095B2 (en) 2009-02-25 2009-02-25 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041993A JP5312095B2 (en) 2009-02-25 2009-02-25 Cutting tools

Publications (2)

Publication Number Publication Date
JP2010194669A JP2010194669A (en) 2010-09-09
JP5312095B2 true JP5312095B2 (en) 2013-10-09

Family

ID=42819943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041993A Active JP5312095B2 (en) 2009-02-25 2009-02-25 Cutting tools

Country Status (1)

Country Link
JP (1) JP5312095B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111011B2 (en) * 2011-10-12 2017-04-05 株式会社Sumco Abrasive grain charging method and hard brittle substrate manufacturing method
JP5279099B1 (en) 2012-03-14 2013-09-04 住友電工ハードメタル株式会社 Cutting tools
JP6639556B2 (en) * 2018-04-27 2020-02-05 株式会社クボタ Sliding member and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179848A (en) * 1986-02-17 1986-08-12 Toshiba Tungaloy Co Ltd High hardness sintered body for cutting
JP3309897B2 (en) * 1995-11-15 2002-07-29 住友電気工業株式会社 Ultra-hard composite member and method of manufacturing the same
JP2005153131A (en) * 2003-11-28 2005-06-16 Tecnisco Ltd Drilling tool and drilling method
WO2008099347A1 (en) * 2007-02-13 2008-08-21 Element Six Ltd Electro discharge sintering manufacturing
JP5171082B2 (en) * 2007-03-23 2013-03-27 株式会社不二製作所 Substrate treatment method for film forming part

Also Published As

Publication number Publication date
JP2010194669A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5732663B2 (en) Cubic boron nitride sintered tool
JP5568827B2 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JPH06287067A (en) Cutting tool with excellent resistance to wear and chipping made from cubic boron nitride-based ultra-high-pressure sintering material
CN103878555B (en) Cubic boron nitride base ultra-high pressure sintered material control surface coated cutting tool
JP5559575B2 (en) Cermet and coated cermet
JP2010105099A (en) Cutting tool
WO2015199230A1 (en) Sintered object of cubic boron nitride and cutting tool
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP5279099B1 (en) Cutting tools
JP5312095B2 (en) Cutting tools
JP5031182B2 (en) Cemented carbide
JP2019172477A (en) Cubic boron nitride base sintered compact and cutting tool having cubic boron nitride base sintered compact as base body
JP6756819B2 (en) Cutting inserts and cutting tools
JP2006144089A (en) Hard metal made of superfine particle
JP2011140414A (en) Sintered compact and cutting tool using the sintered compact
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP4284153B2 (en) Cutting method
JP4609631B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP5023448B2 (en) cBN tool
JP5451507B2 (en) Cutting tools
JP2007196355A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP2006137623A (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP2022147103A (en) Cutting tool
JP4793752B2 (en) Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials
JP2023134938A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150