JP5310673B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP5310673B2
JP5310673B2 JP2010178903A JP2010178903A JP5310673B2 JP 5310673 B2 JP5310673 B2 JP 5310673B2 JP 2010178903 A JP2010178903 A JP 2010178903A JP 2010178903 A JP2010178903 A JP 2010178903A JP 5310673 B2 JP5310673 B2 JP 5310673B2
Authority
JP
Japan
Prior art keywords
sensor
gas
gas sensor
sensor element
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010178903A
Other languages
Japanese (ja)
Other versions
JP2012037428A (en
Inventor
竜二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010178903A priority Critical patent/JP5310673B2/en
Publication of JP2012037428A publication Critical patent/JP2012037428A/en
Application granted granted Critical
Publication of JP5310673B2 publication Critical patent/JP5310673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized gas sensor of high practical use which is excellent in mountability and has no limitation on installation place and can be prevented from cracking due to soaking in water and poisoning. <P>SOLUTION: A gas sensor 1 has a sensor element 3 held in an opening of a cylindrical housing 4 fixed to an exhaust pipe wall and outputs a detection signal from the sensor element 3 to an external control part 12. The sensor element 3 is like a plate and is disposed on the inside of a front end opening edge of the housing 4 with a thickness direction of a substrate 31 as a sensor axis direction and has two opposite surfaces perpendicular to the sensor axis, and an exhaust side electrode 33 is formed on one surface on the passage side and an atmospheric side electrode 32 is formed on the other surface as a detection part. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、車両等に搭載されて各種ガスを検出するために用いられるガスセンサ、特に小型のガスセンサに関する。   The present invention relates to a gas sensor mounted on a vehicle or the like and used for detecting various gases, and more particularly to a small gas sensor.

車両内燃機関の排気管にガスセンサを設け、排気ガス中の酸素等のガス濃度を検出して、その検出信号を基に機関本体各部を制御することが行われている。ガスセンサは、一般に、ジルコニア等の酸素イオン導電性の固体電解質を利用したものが広く用いられている。従来技術として、特許文献1のガスセンサの基本構造を図8に示す。ガスセンサSは、センサ素子101と、その基端部を保持するハウジング102を備え、センサ素子101からの検出信号は外部の制御部(図示せず)に入力される。センサ素子101は、酸素イオン導電性の固体電解質を、例えばコップ型に形成した基体103を有し、このコップ型の基体103を挟んで内外表面に電極が形成され、固体電解質内を酸素イオンが拡散する性質を利用して、ガス濃度を測定する。   A gas sensor is provided in an exhaust pipe of a vehicle internal combustion engine, a gas concentration such as oxygen in the exhaust gas is detected, and each part of the engine body is controlled based on the detection signal. In general, a gas sensor using an oxygen ion conductive solid electrolyte such as zirconia is widely used. As a prior art, the basic structure of the gas sensor of patent document 1 is shown in FIG. The gas sensor S includes a sensor element 101 and a housing 102 that holds a base end portion thereof, and a detection signal from the sensor element 101 is input to an external control unit (not shown). The sensor element 101 has a base body 103 in which an oxygen ion conductive solid electrolyte is formed, for example, in a cup shape. Electrodes are formed on the inner and outer surfaces with the cup base body 103 interposed therebetween, and oxygen ions are passed through the solid electrolyte. The gas concentration is measured by utilizing the diffusing property.

ガスセンサは、ハウジング102の外周に設けたねじ部にて図示しない排気管壁に固定され、二重筒状の素子カバー104内に保持されるセンサ素子101の先端部が、排気管内に位置する。センサ素子101の電極端子には、検出結果を取り出すためにリード線105が接続される。リード線105は、ハウジング102に固定した保護カバー106の開口に配設したブッシュ107を貫通して外部に引き出され、その延出端が車両の制御部と直接電気的に接続されて検出信号を出力するようになっている。   The gas sensor is fixed to an exhaust pipe wall (not shown) by a screw portion provided on the outer periphery of the housing 102, and the tip of the sensor element 101 held in the double cylindrical element cover 104 is located in the exhaust pipe. A lead wire 105 is connected to the electrode terminal of the sensor element 101 in order to extract a detection result. The lead wire 105 passes through the bush 107 disposed in the opening of the protective cover 106 fixed to the housing 102 and is drawn to the outside, and its extension end is directly electrically connected to the control unit of the vehicle to send a detection signal. It is designed to output.

一方、家庭用または車両用の制御システムにおいて、検出結果を制御部に無線等を用いて発信することが可能なワイヤレス装置が知られている(例えば、特許文献2、3)。このようなワイヤレス装置は、有線式のセンサに必要な配線の引き回しが不要になるといった利点があるが、内蔵電池の交換が必要となる。そこで、本発明者等は、検出信号をワイヤレスで制御部に発信することができるだけでなく、電源部を備え、内蔵電池の交換が不要な小型のガスセンサを先に提案した(特許文献4)。   On the other hand, in a home or vehicle control system, a wireless device is known that can transmit a detection result to a control unit using radio or the like (for example, Patent Documents 2 and 3). Such a wireless device has an advantage that the wiring required for the wired sensor is not necessary, but the internal battery needs to be replaced. Therefore, the present inventors have previously proposed a small gas sensor that not only can transmit a detection signal to the control unit wirelessly but also includes a power supply unit and does not require replacement of the built-in battery (Patent Document 4).

また、内燃機関の低温始動時等に、排気管内の凝縮水がガスセンサに付着すると、ヒータ加熱による熱衝撃でセンサ素子の被水割れを生じるおそれがある。この対策として、センサ素子に、撥水性の表面層を形成して水の付着を抑制する構成(例えば、特許文献5)、素子カバーの開口の形状や配置を工夫して、排水性能を向上させるか水の侵入を抑制する構成が提案されている(例えば、特許文献6、7)。   Further, when condensed water in the exhaust pipe adheres to the gas sensor when the internal combustion engine is started at a low temperature or the like, there is a possibility that the sensor element may be wet-cracked due to a thermal shock caused by heater heating. As countermeasures for this, a water-repellent surface layer is formed on the sensor element to suppress the adhesion of water (for example, Patent Document 5), and the shape and arrangement of the opening of the element cover are devised to improve drainage performance. The structure which suppresses the penetration | invasion of water is proposed (for example, patent document 6, 7).

特開2008−122414号公報JP 2008-122414 A 特開平7−318144号公報JP-A-7-318144 特開2008−50943号公報JP 2008-50943 A 特開2010−60452号公報JP 2010-60452 A 特開平8−240559号公報JP-A-8-240559 特開2008−76211号公報JP 2008-76211 A 特開2008−46102号公報JP 2008-46102 A

特許文献4のガスセンサは、電源部を小型とし、排気管外部へ延出する配線の引き回しを不要にしたことで、全体をコンパクトにできる。ただし、排気管内に位置する素子部構造は、従来のガスセンサと同様である。つまり、従来のガスセンサが、素子カバー104とともにセンサ素子101を排気管中央部付近まで突出させる基本構造であるため、より小径の排気管には配置できず、搭載性が悪い。   The gas sensor disclosed in Patent Document 4 can be made compact as a whole by making the power supply portion small and eliminating the need for wiring that extends outside the exhaust pipe. However, the element part structure located in an exhaust pipe is the same as that of the conventional gas sensor. That is, the conventional gas sensor has a basic structure in which the sensor element 101 is projected together with the element cover 104 to the vicinity of the central portion of the exhaust pipe.

しかも、従来のガスセンサは、センサ素子101を排気流れの中央部に位置するために、レスポンスは良好であるものの、素子部を排気中の水や被毒物が直撃しやすい。このため、凝縮水が生じやすい場所には取り付けできず、設置位置が制約される。これに対して、特許文献5〜7のガスセンサは、素子表面層の追加や、素子カバー形状といった構造の見直しで対応しているが、いずれも構造が複雑となってコスト高となる懸念がある。   In addition, since the conventional gas sensor has a good response because the sensor element 101 is located at the center of the exhaust flow, water and poisonous substances in the exhaust gas are likely to hit the element part directly. For this reason, it cannot be installed in a place where condensed water is likely to be generated, and the installation position is restricted. On the other hand, the gas sensors of Patent Documents 5 to 7 deal with the addition of the element surface layer and the review of the structure such as the element cover shape, but there is a concern that the structure becomes complicated and the cost increases. .

本発明は、このような問題点を解決するために、車両内燃機関の排気管等に設置されるガスセンサの搭載性を改善し、設置箇所の制約なく酸素等のガス濃度を良好に検出すること、しかも構造を簡易にしながら、被水割れや被毒を抑制可能とすることで、小型で低コストであり実用性の高いガスセンサを提供することを目的とする。   In order to solve such a problem, the present invention improves the mountability of a gas sensor installed in an exhaust pipe or the like of a vehicle internal combustion engine, and satisfactorily detects the concentration of gas such as oxygen without restriction of the installation location. In addition, it is an object to provide a gas sensor that is small, low-cost, and highly practical by making it possible to suppress water cracking and poisoning while simplifying the structure.

請求項1記載の発明は、被測定ガス中の特定ガス成分を検出するセンサ素子と、該センサ素子を内部に保持する筒状ハウジングと、該ハウジングに保持される電源部を有し上記センサ素子からの検出信号を外部の制御部に出力する出力部とを備えるガスセンサであって、
上記筒状ハウジングは、被測定ガスが流通する通路壁に固定されて、一端側が上記通路内に突出開口し、該一端側開口縁より内方に配置した筒状インシュレータ内に上記センサ素子を絶縁保持しており、
上記センサ素子は板状体であり固体電解質を板状に成形した基体がセンサ軸に対して垂直な2つの対向する面を有し、この2つの面のうち上記通路側の一方に測定側電極を形成し、他方に基準側電極を形成した検出部を備えている。
上記インシュレータは、中央に開口を有する先端面に上記基体を保持しており、該開口に面する上記基体の一方の板面に、上記測定側電極を配置するとともに、これと同一形状の上記基準側電極を、他方の板面の対向位置に配置している。
The invention according to claim 1 includes a sensor element that detects a specific gas component in a gas to be measured, a cylindrical housing that holds the sensor element therein, and a power supply unit that is held in the housing A gas sensor comprising: an output unit that outputs a detection signal from to an external control unit;
The cylindrical housing is fixed to a passage wall through which a gas to be measured flows, and has one end projecting and opening into the passage and insulating the sensor element in a cylindrical insulator disposed inward from the opening edge of the one end. Hold
The sensor element is a plate-like body, and a base body in which a solid electrolyte is formed into a plate shape has two opposing plate surfaces perpendicular to the sensor axis, and one of the two plate surfaces on one side of the passage. The detection part which formed the measurement side electrode and formed the reference | standard side electrode in the other is provided.
The insulator holds the substrate on a tip surface having an opening in the center, and the measurement side electrode is disposed on one plate surface of the substrate facing the opening, and the reference having the same shape as the measurement side electrode is disposed. The side electrode is arranged at a position facing the other plate surface.

請求項2記載の発明において、上記センサ素子は、自己発熱によるヒータ機能、または、素子温度と内部抵抗の相関を利用した温度センサ機能を有している。 In the invention of claim 2, wherein said sensor element, the heater functions by self-heating, or, which have a temperature sensor function using the correlation between the element temperature and the internal resistance.

請求項3記載の発明において、上記センサ素子は、上記筒状ハウジングの上記一端側開口内に、上記基体の厚み方向がセンサ軸方向となるように配置されており、センサ軸方向の素子長さがセンサ径方向の素子長さより短く形成されている。   4. The sensor element according to claim 3, wherein the sensor element is disposed in the opening on the one end side of the cylindrical housing such that the thickness direction of the base body is the sensor axis direction, and the element length in the sensor axis direction is set. Is shorter than the element length in the sensor radial direction.

請求項4記載の発明において、上記センサ素子と上記筒状ハウジングの上記一端側の開口縁との間に、多孔性の保護層を形成している。   According to a fourth aspect of the present invention, a porous protective layer is formed between the sensor element and the opening edge on the one end side of the cylindrical housing.

請求項5記載の発明において、上記筒状ハウジングの他端側に上記出力部を設けたセンサ軸方向の全長をL1とし、上記筒状ハウジングの上記一端側の開口縁から上記センサ素子の先端面までの距離をL2とした時に、L2/L1×100=6.25〜25%としている。   6. The sensor device according to claim 5, wherein a total length in the sensor axial direction in which the output portion is provided on the other end side of the cylindrical housing is L1, and an opening edge on the one end side of the cylindrical housing is a tip end surface of the sensor element. L2 / L1 × 100 = 6.25 to 25% when the distance to L2 is L2.

請求項6記載の発明において、上記出力部は、上記ハウジングの他端側に発信部と上記電源部を設けて、上記発信部から上記制御部に設けた受信部に信号を出力するワイヤレス通信部としている。 In the invention of claim 6, wherein the output unit is provided with a transmitting portion and the power supply unit to the other end of the housing, a wireless communication unit for outputting a signal to the receiving unit provided in the control unit from the transmission unit It is said.

本発明の請求項1記載のガスセンサは、センサ素子がハウジング内に保持されるので、被測定ガスの通路内への突出長が短くなり、小型にできる。また、通路内を流通する被測定ガスに凝縮水や被毒物質が含まれていても、センサ素子を直撃することがない。したがって、素子カバーをなくすことができ、簡易な構成で、搭載性に優れ、しかも被水割れや被毒が生じにくいガスセンサとすることができるので、実用性が高い。   In the gas sensor according to the first aspect of the present invention, since the sensor element is held in the housing, the projecting length of the gas to be measured into the passage is shortened and can be miniaturized. Further, even if condensed gas or poisonous substances are contained in the gas to be measured flowing in the passage, the sensor element is not hit directly. Therefore, the element cover can be eliminated, and the gas sensor can be provided with a simple configuration, excellent in mountability, and less susceptible to water cracking and poisoning.

また、板状センサ素子とすることで、小型でシンプルな構成となるので、従来のコップ型素子よりも生産工程が簡素化でき、低コスト化が可能である。請求項2記載のガスセンサは、センサ機能を向上できる。 Moreover, since it becomes a small and simple structure by setting it as a plate-shaped sensor element, a production process can be simplified compared with the conventional cup type | mold element, and cost reduction is possible. The gas sensor according to claim 2 can improve the sensor function.

請求項3記載のガスセンサは、板状センサ素子の厚み方向がセンサ軸方向、すなわち筒状ハウジングの軸方向となるように、ハウジングに収容されるので、軸方向長を短くして小型にできる。また、センサ軸方向に対してセンサ径方向の素子長さを長くしているので、出力取り出しのための構造も容易に形成できる。   Since the gas sensor according to the third aspect is accommodated in the housing such that the thickness direction of the plate-like sensor element is the sensor axial direction, that is, the axial direction of the cylindrical housing, the axial length can be shortened to reduce the size. In addition, since the element length in the sensor radial direction is increased with respect to the sensor axial direction, a structure for taking out the output can be easily formed.

請求項4記載のガスセンサは、ハウジングの開口部に多孔性の保護層を有するので、センサ素子を被水や被毒からより効果的に保護することができる。   Since the gas sensor according to claim 4 has a porous protective layer in the opening of the housing, the sensor element can be more effectively protected from water and poisoning.

請求項5記載のガスセンサは、センサ軸方向長L1に対して、ハウジングの開口縁から素子先端面までの距離L2が所定の範囲となるように設定すると、上記効果を得やすい。   In the gas sensor according to the fifth aspect, the above-described effect is easily obtained when the distance L2 from the opening edge of the housing to the element front end surface is set within a predetermined range with respect to the sensor axial length L1.

請求項6記載のガスセンサは、出力部がワイヤレス通信部として構成されるので、より小型で、搭載性に優れ、内蔵電池の交換が不要で実用性が高いガスセンサとすることができる。   In the gas sensor according to the sixth aspect, since the output unit is configured as a wireless communication unit, the gas sensor can be made smaller, excellent in mountability, not requiring replacement of the built-in battery, and highly practical.

(a)、(b)は本発明の第1実施形態であり、(a)はガスセンサの全体構成図、(b)はガスセンサを車両エンジンの排気管へ搭載した例を示す図、(c)は本発明の第2実施形態であり、ガスセンサを小型船舶エンジンの排気管へ搭載した例を示す図である。(A), (b) is 1st Embodiment of this invention, (a) is a whole block diagram of a gas sensor, (b) is a figure which shows the example which mounted the gas sensor in the exhaust pipe of a vehicle engine, (c). These are 2nd Embodiment of this invention and are the figures which show the example which mounted the gas sensor in the exhaust pipe of a small ship engine. (a)はガスセンサの詳細構成を説明するための断面図、(b)は酸素センサ素子として構成した例を示す要部拡大図、(c)は空燃比センサ素子として構成した例を示す要部拡大図である。(A) is sectional drawing for demonstrating the detailed structure of a gas sensor, (b) is a principal part enlarged view which shows the example comprised as an oxygen sensor element, (c) is the principal part which shows the example comprised as an air fuel ratio sensor element It is an enlarged view. 本発明のガスセンサを排気管へ搭載した構成を、従来のガスセンサと比較して示す断面図である。It is sectional drawing which shows the structure which mounted the gas sensor of this invention in an exhaust pipe compared with the conventional gas sensor. (a)は本発明のガスセンサを小型船舶エンジンの排気管へ搭載した効果を説明するための図、(b)〜(d)は車両エンジンの排気管へ搭載した効果を説明するための図である。(A) is a figure for demonstrating the effect which mounted the gas sensor of this invention in the exhaust pipe of a small ship engine, (b)-(d) is a figure for demonstrating the effect mounted in the exhaust pipe of a vehicle engine. is there. (a)は本発明のガスセンサの詳細構成を示す断面図、(b)はセンサ素子の生産工程を説明するための図である。(A) is sectional drawing which shows the detailed structure of the gas sensor of this invention, (b) is a figure for demonstrating the production process of a sensor element. (a)はガスセンサの保護層と応答性の関係を示す図、(b)はガスセンサの素子構成と応答性の関係を示す図である。(A) is a figure which shows the relationship between the protective layer of a gas sensor, and responsiveness, (b) is a figure which shows the element structure of a gas sensor, and the relationship of responsiveness. (a)、(b)はそれぞれセンサ素子厚さおよび素子温度と応答性の関係を示す図、(c)、(d)はそれぞれ水滴下量および素子温度と素子割れ率の関係を示す図、(e)は素子内部抵抗と素子温度の関係を示す図である。(A), (b) is a diagram showing the relationship between the sensor element thickness and the element temperature and responsiveness, respectively (c), (d) is a diagram showing the relationship between the amount of water dripping, the element temperature and the element cracking rate, (E) is a figure which shows the relationship between element internal resistance and element temperature. 従来のガスセンサの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the conventional gas sensor.

以下、図面を参照しながら本発明を詳細に説明する。図1(a)は、本発明を適用した内燃機関用のガスセンサ1の第1実施形態であり、本実施形態は、例えば図1(b)に示すように、車両エンジンの排気通路への搭載例として説明する。本発明のガスセンサ1は、被測定ガスである排ガス中に含まれる特定成分を検出するもので、代表的なものとして酸素センサ、空燃比センサがある。その他、NOxセンサ、COセンサ、HCセンサ等、排ガス中の特定のガス成分やその濃度を検出する種々のガスセンサに適用することができる。本発明のガスセンサ1は、車両以外のエンジンへ搭載することもでき、図1(c)には、第2実施形態として、例えば小型船舶エンジンの排気通路に搭載されるガスセンサ1を示している。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 (a) is a first embodiment of a gas sensor 1 for an internal combustion engine to which the present invention is applied. This embodiment is mounted on an exhaust passage of a vehicle engine, for example, as shown in FIG. 1 (b). This will be described as an example. The gas sensor 1 of the present invention detects a specific component contained in an exhaust gas that is a gas to be measured, and representative examples include an oxygen sensor and an air-fuel ratio sensor. In addition, the present invention can be applied to various gas sensors that detect specific gas components and their concentrations in exhaust gas, such as NOx sensors, CO 2 sensors, and HC sensors. The gas sensor 1 of the present invention can also be mounted on an engine other than a vehicle. FIG. 1C shows a gas sensor 1 mounted in, for example, an exhaust passage of a small ship engine as a second embodiment.

図1(a)の全体構成図に示すように、本発明のガスセンサ1は、センサ本体11と、公知の電子制御ユニット(ECU)からなる制御部12を備える。センサ本体11の発信部21と電源部22は、出力部であるワイヤレス通信部2を構成しており、制御部12に設けられる受信部へ、ワイヤレスで出力可能となっている。ECUは、一般的な車両エンジン用の基本構成を有するもので、ガスセンサ1の他、機関各部に設けた各種センサ類からの情報に基づいて、機関の運転および各種装置の作動をフィードバック制御する。   As shown in the overall configuration diagram of FIG. 1A, the gas sensor 1 of the present invention includes a sensor body 11 and a control unit 12 including a known electronic control unit (ECU). The transmission unit 21 and the power supply unit 22 of the sensor body 11 constitute a wireless communication unit 2 that is an output unit, and can be output wirelessly to a reception unit provided in the control unit 12. The ECU has a basic configuration for a general vehicle engine, and performs feedback control of the operation of the engine and the operation of various devices based on information from various sensors provided in each part of the engine in addition to the gas sensor 1.

ガスセンサ1のセンサ本体11は、センサ素子3と、センサ素子3を内部に保持する筒状ハウジング4と、ワイヤレス通信部2とを有する。筒状ハウジング4は、中間部外周にフランジ部41を有し、このフランジ部41より先端側(図の下端側)が、非測定ガスが流通する通路である排気通路内に突出位置する。図1(b)では、排気通路である排気管Pの途中に介設した三元触媒6の外周壁に取り付け穴を設けて、ガスセンサ1のハウジング4を挿通固定している。具体的には、図1(a)において、金属製(例えばSUS等)のハウジング4の先端部(図の下端部)外周にネジ部42を形成し、フランジ部41の下面にシール用のガスケットを配置して、取り付け穴にねじ固定する。   A sensor body 11 of the gas sensor 1 includes a sensor element 3, a cylindrical housing 4 that holds the sensor element 3 inside, and a wireless communication unit 2. The cylindrical housing 4 has a flange portion 41 on the outer periphery of the intermediate portion, and the front end side (lower end side in the figure) of the flange portion 41 protrudes into an exhaust passage that is a passage through which non-measurement gas flows. In FIG. 1B, an attachment hole is provided in the outer peripheral wall of the three-way catalyst 6 interposed in the middle of the exhaust pipe P that is an exhaust passage, and the housing 4 of the gas sensor 1 is inserted and fixed. Specifically, in FIG. 1A, a screw portion 42 is formed on the outer periphery of the tip portion (lower end portion in the drawing) of a metal (for example, SUS) housing 4, and a sealing gasket is formed on the lower surface of the flange portion 41. And screw it into the mounting hole.

ワイヤレス通信部2は、筒状ハウジング4の基端側(図の上端側)に設けられる。ハウジング4の基端側開口(図の上端側開口)は、カプラー5で封止され、カプラー5の上面に設けた筒状部内に、後述するワイヤレス通信部2の発信部21が収容されている。カプラー5内には、電源部22を構成する振動素子23と、変換素子24が収容保持される。振動素子23はセンサ本体11自体の振動に対応して相対的に振動するものであり、この振動エネルギを変換素子24が電気エネルギに変換して、発信部21の電力源とする。このようにワイヤレス通信部2は、自己発電可能な電源部22を有するので、内蔵電池が不要であり、電池交換や保守点検の手間が省ける利点がある。カプラー5は、多孔質フッ素樹脂、例えばポリテトラフルオロエチレン(PTFE)からなる。   The wireless communication unit 2 is provided on the proximal end side (upper end side in the figure) of the cylindrical housing 4. A proximal end opening (upper end opening in the figure) of the housing 4 is sealed with a coupler 5, and a transmitter 21 of the wireless communication unit 2 described later is accommodated in a cylindrical portion provided on the upper surface of the coupler 5. . In the coupler 5, a vibration element 23 and a conversion element 24 constituting the power supply unit 22 are accommodated and held. The vibration element 23 is relatively vibrated corresponding to the vibration of the sensor body 11 itself, and this vibration energy is converted into electric energy by the conversion element 24 and used as a power source of the transmitter 21. As described above, since the wireless communication unit 2 includes the power source unit 22 capable of self-power generation, there is an advantage that a built-in battery is unnecessary and the labor for battery replacement and maintenance inspection can be saved. The coupler 5 is made of a porous fluororesin such as polytetrafluoroethylene (PTFE).

次に、本発明の特徴部分であるセンサ素子3の構成と配置について説明する。本実施形態において、センサ素子3は、図示するように矩形の板状体であり、ハウジング4は、排気通路内に突出開口する筒状の先端部内に、センサ素子3の厚み方向をセンサ軸方向として先端部内空間を上下に仕切るように配置し、例えばアルミナ等からなるインシュレータ43を介して絶縁保持している。このように本発明では、センサ素子3をハウジング4内に収容する構成としており、従来のようにハウジング4外に突出する部分を覆う素子カバーを設けていない。   Next, the configuration and arrangement of the sensor element 3 which is a characteristic part of the present invention will be described. In the present embodiment, the sensor element 3 is a rectangular plate-shaped body as shown in the figure, and the housing 4 has a thickness direction of the sensor element 3 in the sensor axial direction in a cylindrical tip that projects into the exhaust passage. As described above, the inner space of the tip portion is arranged so as to be vertically divided, and is insulated and held via an insulator 43 made of alumina or the like, for example. Thus, in this invention, it is set as the structure which accommodates the sensor element 3 in the housing 4, and the element cover which covers the part which protrudes outside the housing 4 is not provided unlike the past.

センサ素子3は、例えばジルコニア等の固体電解質よりなる基体31と、その対向する2面に形成される電極32、33からなる検出部を有する。基体31は、所望形状(ここでは長方形)の板状体に成形されて、厚み方向に対向する2面を電極形成面としており、基端面(図の上面)に基準側電極である大気側電極32が、先端面(図の下面)に測定側電極である排気側電極33が、例えば白金ペースト等を用いて印刷形成されている。インシュレータ43は筒状で、中央に開口を有する先端面を有し、該先端面上にセンサ素子3を保持している。この時、インシュレータ43先端面の開口は、センサ素子3の排気側電極33の形成位置と一致するように形成され、排気側電極33に排気通路から排気が導入可能となる。大気側電極32が露出するインシュレータ43内空間には、排気通路外部の空間から大気が導入される。   The sensor element 3 includes a detection unit including a base 31 made of a solid electrolyte such as zirconia and electrodes 32 and 33 formed on two opposing surfaces thereof. The base 31 is formed into a plate-like body having a desired shape (here, rectangular), and has two surfaces facing each other in the thickness direction as electrode forming surfaces, and an air-side electrode serving as a reference-side electrode on the base end surface (upper surface in the figure). 32, an exhaust-side electrode 33, which is a measurement-side electrode, is printed on the front end surface (the lower surface in the drawing) using, for example, platinum paste or the like. The insulator 43 is cylindrical and has a front end surface having an opening at the center, and holds the sensor element 3 on the front end surface. At this time, the opening at the front end surface of the insulator 43 is formed so as to coincide with the formation position of the exhaust side electrode 33 of the sensor element 3, and exhaust can be introduced into the exhaust side electrode 33 from the exhaust passage. The atmosphere is introduced into the space inside the insulator 43 where the atmosphere side electrode 32 is exposed from the space outside the exhaust passage.

大気側電極32および排気側電極33は、インシュレータ43内に配置される大気側電極ホルダ34、排気側電極ホルダ35にそれぞれ接続される。これら大気側電極ホルダ34、排気側電極ホルダ35は、例えばNi基超合金(耐熱温度約550℃)等からなり、縦方向の複数箇所にスリットを形成したバネ部を有する形状として、センサ素子3の表面に押圧され、電気的接続を確保するようになっている。ハウジング4は、先端開口縁が内方に屈曲してフランジ部を形成し、このフランジ部とカプラー5の間に、インシュレータ43を保持している。また、インシュレータ43の外周とハウジング4内周面の間は、SUS等よりなるパッキン44でシールされる。   The atmosphere side electrode 32 and the exhaust side electrode 33 are connected to an atmosphere side electrode holder 34 and an exhaust side electrode holder 35 disposed in the insulator 43, respectively. The atmosphere-side electrode holder 34 and the exhaust-side electrode holder 35 are made of, for example, a Ni-base superalloy (heat-resistant temperature of about 550 ° C.) or the like, and have a shape having a spring portion in which slits are formed at a plurality of longitudinal positions. The surface is pressed to ensure electrical connection. In the housing 4, the opening edge of the tip is bent inward to form a flange portion, and an insulator 43 is held between the flange portion and the coupler 5. Further, the outer periphery of the insulator 43 and the inner peripheral surface of the housing 4 are sealed with a packing 44 made of SUS or the like.

これにより、センサ軸方向長(厚み方向長)がセンサ径方向よりも短いセンサ素子3を、ハウジング4の開口より内方に保持し、排気通路内への突出長を短くすることができる。この時、センサ素子3に、排気通路内の排気流れが直接衝突しないので、素子カバーがなくても凝縮水による被水割れや被毒物質による汚染を抑制できるが、好適には、センサ素子3の先端面とハウジング4の開口縁との間に、多孔質の保護層36を設ける。保護層36は、例えばアルミナ等の多孔質材料からなり、多孔度を適宜調整することにより拡散抵抗層、被毒トラップ層の2層構造とすることもできる。   As a result, the sensor element 3 having a shorter length in the sensor axial direction (length in the thickness direction) than the sensor radial direction can be held inward from the opening of the housing 4 and the projecting length into the exhaust passage can be shortened. At this time, since the exhaust flow in the exhaust passage does not directly collide with the sensor element 3, it is possible to suppress water cracking due to condensed water and contamination by poisonous substances without the element cover. A porous protective layer 36 is provided between the front end surface of the housing 4 and the opening edge of the housing 4. The protective layer 36 is made of, for example, a porous material such as alumina, and can have a two-layer structure of a diffusion resistance layer and a poisoning trap layer by appropriately adjusting the porosity.

図2により、本発明のガスセンサ1の基本作動を説明する。図2(a)において、センサ素子3は、例えば、代表的なガスセンサである酸素センサ素子として構成されており、排気側電極33の下方に形成される保護層36(多孔質アルミナ)を通過して、図示しない排気管から被測定ガスである排気が取り込まれる。一方、カプラー5を構成する多孔質PTFEを通過してハウジング4内に外気が取り込まれ、大気側電極32の上方に、基準ガスとしての大気が存在している。カプラー5を構成する多孔質PTFEは、例えばポリフロン原料の粒径を大小混ぜることで圧縮成形時の密度を向上させ、またガラス粉末を20〜30%添加することにより熱による変形を抑えながらシール性・通気性を確保できる。   The basic operation of the gas sensor 1 of the present invention will be described with reference to FIG. In FIG. 2A, the sensor element 3 is configured as an oxygen sensor element which is a typical gas sensor, for example, and passes through a protective layer 36 (porous alumina) formed below the exhaust-side electrode 33. Thus, exhaust gas, which is a gas to be measured, is taken in from an exhaust pipe (not shown). On the other hand, outside air is taken into the housing 4 through the porous PTFE constituting the coupler 5, and the atmosphere as the reference gas exists above the atmosphere side electrode 32. The porous PTFE constituting the coupler 5 improves the density at the time of compression molding by, for example, mixing the particle size of the polyfluorone raw material, and seals while suppressing deformation due to heat by adding 20 to 30% glass powder. -Ensures air permeability.

この時、図2(b)に示すように、ジルコニア固体電解質(基体31)を挟んで、大気側電極32と排気側電極33が対向配置され、酸素濃淡電池を構成する。保護層36は、排気側電極33に接する拡散抵抗層の外側に、気孔率のより大きい被毒トラップ層を配置することで、排気中に含まれる被毒物質を捕捉するようになっている。上記構成において、酸素センサ素子には、ジルコニア固体電解質(基体31)の両面に設けた大気側電極32と排気側電極33の酸素濃度差に応じた起電力を発生する。この起電力を大気側電極ホルダ34、排気側電極ホルダ35を介して取り出し、発信部21からガス濃度の検出信号として、ワイヤレス通信により制御部12の受信部へ出力することができる。   At this time, as shown in FIG. 2 (b), the atmosphere side electrode 32 and the exhaust side electrode 33 are arranged opposite to each other with the zirconia solid electrolyte (base 31) interposed therebetween, thereby constituting an oxygen concentration cell. The protective layer 36 is configured to capture poisonous substances contained in the exhaust gas by disposing a poisoning trap layer having a higher porosity outside the diffusion resistance layer in contact with the exhaust-side electrode 33. In the above configuration, the oxygen sensor element generates an electromotive force according to the oxygen concentration difference between the atmosphere side electrode 32 and the exhaust side electrode 33 provided on both surfaces of the zirconia solid electrolyte (substrate 31). This electromotive force can be taken out via the atmosphere-side electrode holder 34 and the exhaust-side electrode holder 35 and output from the transmitter 21 as a gas concentration detection signal to the receiver of the controller 12 by wireless communication.

図2(c)に示すように、センサ素子3を、空燃比(A/F)センサ素子として構成することもできる。この場合、センサ素子3には、大気側電極32を正極性、排気側電極33を負極性とする一定のバイアス電圧Voが印加されている。排気の空燃比がリーンの時には、酸素ポンプ特性により、排気側電極33から大気側電極へ酸素イオン(O2−)の移動が起こり、その結果、正極から、大気側電極32、ジルコニア固体電解質(基体31)、排気側電極33を介して、負極へと電流が流れる。この時流れる限界電流の大きさを検出すれば、酸素濃度を知ることができ、リーン領域における空燃比を知ることができる。一方、排気の空燃比がリッチの時には酸素濃淡電池特性により、大気側電極32から排気側電極33へ酸素イオン(O2−)の移動が引き起こす方向に作用し、大気側電極32から、電圧源を通って排気側電極33へ電流が流れる。この時流れる電流の大きさは、移動する酸素イオン(O2−)の量に依存し、さらには排気中から拡散抵抗層(保護層36)を通って拡散により流入するHC、CO等の未燃ガス濃度に対応するため、この限界電流の大きさを検出すれば、未燃ガス濃度を知ることができ、リッチ領域における空燃比を知ることができる。 As shown in FIG. 2C, the sensor element 3 can be configured as an air-fuel ratio (A / F) sensor element. In this case, a constant bias voltage Vo is applied to the sensor element 3 so that the atmosphere side electrode 32 has a positive polarity and the exhaust side electrode 33 has a negative polarity. When the air-fuel ratio of the exhaust gas is lean, oxygen ions (O 2− ) move from the exhaust-side electrode 33 to the atmosphere-side electrode due to the oxygen pump characteristics. As a result, from the positive electrode, the atmosphere-side electrode 32, the zirconia solid electrolyte ( A current flows to the negative electrode via the base 31) and the exhaust side electrode 33. By detecting the magnitude of the limiting current flowing at this time, the oxygen concentration can be known, and the air-fuel ratio in the lean region can be known. On the other hand, when the air-fuel ratio of the exhaust gas is rich, due to the oxygen concentration cell characteristics, the oxygen ion (O 2− ) moves from the atmosphere side electrode 32 to the exhaust side electrode 33 due to the characteristics of the oxygen concentration cell. A current flows through the exhaust electrode 33 through the exhaust gas. The magnitude of the current flowing at this time depends on the amount of moving oxygen ions (O 2− ), and further, the HC, CO, etc. that flow in from the exhaust gas through the diffusion resistance layer (protective layer 36) by diffusion. In order to correspond to the fuel gas concentration, if the magnitude of this limit current is detected, the unburned gas concentration can be known, and the air-fuel ratio in the rich region can be known.

図3に、本発明のガスセンサ1を排気管に取り付けた状態を、従来のガスセンサSと比較して示す。従来のガスセンサSは、センサ素子101が排気管内に突出しており、凝縮水や被毒物質が直撃しやすい構成となっている。このため、二重の素子カバー104で保護する必要があり、構成が複雑となる。これに対して、本発明のガスセンサ1は、検出部を小さくし、素子カバーをなくして簡素な構造とした小型センサである。すなわち、センサ素子3をハウジング4内に収容したので、凝縮水や被毒物質が直撃することがなく、被水割れや被毒を防止する効果が高い。しかも、排気通路内への突出長を短くすることができ、素子カバーをなくすことで、簡素な構造でコストを低減し、搭載性を向上させることができる。   In FIG. 3, the state which attached the gas sensor 1 of this invention to the exhaust pipe is shown compared with the conventional gas sensor S. FIG. The conventional gas sensor S has a configuration in which the sensor element 101 protrudes into the exhaust pipe, so that condensed water and poisonous substances are easily hit directly. For this reason, it is necessary to protect with the double element cover 104, and a structure becomes complicated. On the other hand, the gas sensor 1 of the present invention is a small sensor having a simple structure with a small detection portion and no element cover. That is, since the sensor element 3 is accommodated in the housing 4, the condensed water and the poisoning substance are not directly hit, and the effect of preventing water cracking and poisoning is high. Moreover, the projecting length into the exhaust passage can be shortened, and by eliminating the element cover, the cost can be reduced and the mountability can be improved with a simple structure.

また、内蔵電池不要のワイヤレス通信部2によりセンサ出力を発信するので、排気通路外への突出長も短くなり、取り付け位置の制約が小さい。このため、図1(b)のように、従来のガスセンサSでは困難であった三元触媒6外周への取り付けも可能となり、対向する車両ボディBとの間隔は、より小径の排気管Pに取り付けられた従来のガスセンサSと同等とすることができる。また、本発明のガスセンサ1は、内部への突出長も小さいので、排気通路構造や排気流通への影響が小さく、三元触媒6内の酸素濃度または空燃比を直接測定できるので、エンジンのフィードバック制御に大きく貢献する。   In addition, since the sensor output is transmitted by the wireless communication unit 2 that does not require a built-in battery, the projecting length to the outside of the exhaust passage is shortened, and the mounting position is less restricted. For this reason, as shown in FIG. 1 (b), it is possible to attach to the outer periphery of the three-way catalyst 6, which is difficult with the conventional gas sensor S, and the distance from the opposite vehicle body B is set to the exhaust pipe P having a smaller diameter. It can be equivalent to the attached conventional gas sensor S. Further, since the gas sensor 1 of the present invention has a small protrusion length to the inside, the influence on the exhaust passage structure and exhaust gas flow is small, and the oxygen concentration or the air-fuel ratio in the three-way catalyst 6 can be directly measured. Contributes greatly to control.

ここで、ワイヤレス通信部2を構成する発信部21および制御部12の受信部は、例えば、公知の無線LAN規格に対応するネットワーク通信機能を備え、検出したガス濃度情報を出入力可能である。発信部21に無線LANを用いると、車両グランドアースにより、ノイズの影響を受けにくい利点がある。また、汎用性が高く、小型化が可能で実用性が高い。その他、電波無線、赤外線、光通信を用いたワイヤレス通信を採用することもできる。   Here, the transmitting unit 21 and the receiving unit of the control unit 12 constituting the wireless communication unit 2 have, for example, a network communication function corresponding to a known wireless LAN standard, and can input / output the detected gas concentration information. When a wireless LAN is used for the transmitter 21, there is an advantage that it is less susceptible to noise due to the vehicle ground. In addition, it is highly versatile, can be miniaturized, and is highly practical. In addition, wireless communication using radio waves, infrared rays, or optical communication can be employed.

なお、電源部22の電力源としては、振動エネルギの他、光エネルギ、熱エネルギおよび化学エネルギの少なくとも1種を用いて電気エネルギを発生可能なものであればよい。例えば、高温となるセンサ本体11の熱を利用して電気エネルギに変換し、あるいはソーラー電池等をセンサ本体11に付設することもできる。また、化学エネルギとして、上述したセンサ素子3の電極における排ガスとの反応を利用することもできる。この際、固体電解質よりなる基体31内を酸素イオンが移動することにより、電力・電流が発生するため、これを発信部21に導入することで、電力源としてもよい。   The power source of the power supply unit 22 may be any power source that can generate electrical energy using at least one of light energy, thermal energy, and chemical energy in addition to vibration energy. For example, the sensor body 11 that is at a high temperature can be converted into electrical energy by using heat, or a solar battery or the like can be attached to the sensor body 11. Moreover, reaction with the exhaust gas in the electrode of the sensor element 3 mentioned above can also be utilized as chemical energy. At this time, since oxygen ions move in the base body 31 made of a solid electrolyte, power and current are generated. Therefore, by introducing them into the transmitter 21, a power source may be used.

本発明のガスセンサ1は小型であり、また排気流れがセンサ素子3に対向していないので、より径の小さい排気管、あるいは従来形状では凝縮水や被毒物質の影響を受けるおそれがある場所にも搭載が可能である。例えば、図1(c)のような小型船舶の船外機では、従来のガスセンサSは、エンジンの排気管とその周囲のエンジンカバーとの間にスペースがあり、排気流れに対して位置調節が容易な場所に設けられる。例えば、各気筒からの排気ポートの集合部付近では、水冷されているために凝縮水が発生しやすく、しかも排気流れの方向がそれぞれ異なるために、従来のガスセンサSでは素子カバーを有していても、被水を避けることは難しい。これに対して、本発明のガスセンサ1は、排気ポートの集合部近傍への配置が可能であり、耐被水性を確保しながら小型化を実現する。しかも、従来のガスセンサSの設置場所では、単一の気筒からの排気のみが流通するが、本発明のガスセンサ1は、排気の集合部で測定できるので、精度よい検出が可能であり制御性が向上する。   Since the gas sensor 1 of the present invention is small and the exhaust flow does not face the sensor element 3, the exhaust pipe has a smaller diameter, or in a place where there is a risk of being affected by condensed water or poisonous substances in the conventional shape. Can also be installed. For example, in an outboard motor of a small vessel as shown in FIG. 1C, the conventional gas sensor S has a space between the exhaust pipe of the engine and the surrounding engine cover, and the position is adjusted with respect to the exhaust flow. Provided in an easy place. For example, in the vicinity of the exhaust port gathering portion from each cylinder, since it is water-cooled, condensed water is likely to be generated, and since the direction of exhaust flow is different, the conventional gas sensor S has an element cover. However, it is difficult to avoid flooding. On the other hand, the gas sensor 1 of the present invention can be arranged in the vicinity of the collecting portion of the exhaust port, and realizes downsizing while ensuring water resistance. Moreover, at the place where the conventional gas sensor S is installed, only exhaust gas from a single cylinder circulates. However, since the gas sensor 1 of the present invention can be measured at the exhaust collecting portion, it can be detected with high accuracy and has controllability. improves.

ここで、図4(a)に示すように、ガスセンサ1の搭載位置は、ハウジング4のフランジ41より基端側のA寸法、先端側のB寸法によって制約を受ける。すなわち、図1(c)の船外機であれば、エンジンの排気管の外側にA寸法以上のスペースが、排気管内にB寸法以上のスペースが必要となる。また、排気管内には、エンジンからの凝縮水C、船外からの海水Dが浸入するが、図示するように、本発明のガスセンサ1を排気の集合部に設置した場合には、寸法に充分な余裕があり、かつ被水しにくい配置とすることができる。   Here, as shown in FIG. 4A, the mounting position of the gas sensor 1 is restricted by the A dimension on the proximal end side and the B dimension on the distal end side from the flange 41 of the housing 4. That is, in the case of the outboard motor shown in FIG. 1 (c), a space larger than A dimension is required outside the exhaust pipe of the engine, and a space larger than B dimension is required inside the exhaust pipe. Further, the condensed water C from the engine and the seawater D from the outside of the ship enter the exhaust pipe, but as shown in the figure, when the gas sensor 1 of the present invention is installed in the exhaust collecting part, the dimensions are sufficient. It is possible to provide an arrangement that has a sufficient margin and is difficult to get wet.

図4(b)、(c)に示すように、本発明のガスセンサ1を車両エンジンに搭載する場合には、ガスセンサ1の基端側のA寸法がエンジンルームスペースによって制約され、ガスセンサ1の先端側のB寸法が排気管内スペースによって制約を受ける。なお、図4(d)に図示するように、三元触媒6の側面には、車両ボディBや路面との間のようなスペースの制約はなく、従来のガスセンサSであっても設置可能であるが、飛石がガスセンサSの頭部に当たって破損するため、現実的ではない。   As shown in FIGS. 4B and 4C, when the gas sensor 1 of the present invention is mounted on a vehicle engine, the dimension A on the base end side of the gas sensor 1 is restricted by the engine room space, and the tip of the gas sensor 1 The B dimension on the side is limited by the space in the exhaust pipe. As shown in FIG. 4D, the side surface of the three-way catalyst 6 is not limited by the space between the vehicle body B and the road surface, and even a conventional gas sensor S can be installed. Although there is a stepping stone that hits the head of the gas sensor S and breaks, it is not realistic.

次に、図3において、ガスセンサ1のサイズを変更した時の、保護層36による耐被水性および応答性への影響を調べた。ガスセンサ1の軸方向の全長をL1、センサ素子3の先端面からガスセンサ1の先端までの距離をL2とし、排気管への取り付け径となるネジ径をM8、M12、M18の3種類について、全長L1を20mm〜60mmまたは20mm〜80mmの範囲で変更した。なお、ここでは全長L1を、ガスセンサ1の先端からカプラー5の基端までの距離とし、いずれもL2は5mmとした。耐被水性は、素子部に100μlの水を滴下した時の割れの有無を、応答性は、素子温度600℃で、導入されるガスの空燃比(λ)を、λ=0.90→1.10、λ=1.10→0.90となるように変化させた時の出力が、空燃比に追従して変化するまでの時間を調べた(0.6V⇔0.3V)。また、比較のため、従来のガスセンサSについても同様の評価を行い、結果を表1に示した。   Next, in FIG. 3, the influence of the protective layer 36 on water resistance and responsiveness when the size of the gas sensor 1 was changed was examined. The total length in the axial direction of the gas sensor 1 is L1, the distance from the tip surface of the sensor element 3 to the tip of the gas sensor 1 is L2, and the screw diameters that are the attachment diameters to the exhaust pipe are M8, M12, and M18. L1 was changed in the range of 20 mm to 60 mm or 20 mm to 80 mm. Here, the total length L1 is the distance from the distal end of the gas sensor 1 to the proximal end of the coupler 5, and L2 is 5 mm in both cases. The water resistance is the presence or absence of cracking when 100 μl of water is dropped on the element part, and the response is the air-fuel ratio (λ) of the introduced gas at an element temperature of 600 ° C., where λ = 0.90 → 1 .10, λ = 1.10 → 0.90, the time until the output changes following the air-fuel ratio was examined (0.6V⇔0.3V). For comparison, the same evaluation was performed for the conventional gas sensor S, and the results are shown in Table 1.

Figure 0005310673
Figure 0005310673

表1に明らかなように、本発明のガスセンサ1は、ネジ径や全長によらず、優れた耐被水性を示し、従来センサSよりも向上した。また、応答性は、従来センサSより若干劣るもののほぼ同等であり、実用上問題ない値が得られた。これらより、通常使用されるガスセンサ1のサイズであれば、L2/L1×100=6.25〜25%の範囲となるように設定することで、耐被水性と応答性を両立させ、十分な効果が得られる。   As is apparent from Table 1, the gas sensor 1 of the present invention showed excellent water resistance regardless of the screw diameter and the total length, and was improved over the conventional sensor S. In addition, the responsiveness was almost the same as that of the conventional sensor S, although it was slightly inferior, and a practically satisfactory value was obtained. From these, if it is the size of the gas sensor 1 normally used, by setting it to be in a range of L2 / L1 × 100 = 6.25 to 25%, both water resistance and responsiveness can be achieved, and sufficient An effect is obtained.

さらに、素子構成がシンプルであるために、生産工程が簡素化可能である。図5(a)、(b)に示すように、本実施例では、センサ素子3の基体31を長方形としているので、固体電解質をシート化することで切削が容易になり、1シートから多数の基体31を取り出すことができる。また、長方形の素子形状であると、出力取り出し構造が複雑になることがなく、量産効果、コスト低減効果が大である。   Furthermore, since the element configuration is simple, the production process can be simplified. As shown in FIGS. 5 (a) and 5 (b), in this embodiment, the base 31 of the sensor element 3 has a rectangular shape, so that cutting can be facilitated by forming a solid electrolyte into a sheet, and a large number of sheets can be formed from one sheet. The base 31 can be taken out. Further, when the element shape is rectangular, the output extraction structure is not complicated, and the mass production effect and the cost reduction effect are great.

図6(a)に示すように、本発明のガスセンサ1において、保護層36の構成とセンサ素子3の応答性には相関がある。本発明では、センサ素子3がハウジングから突出していないため、応答性については従来のガスセンサSに対してやや劣る。応答性をよくするには、保護層36となる多孔質アルミナ層を通過する排気のガス拡散スピードが重要であり、原料となるアルミナ粒径を大小混ぜて、その比率を調整したアルミナスラリーに浸漬して保護層36を形成し、応答性との関係を調べた(素子温度600℃)。図示の結果から、アルミナ粒径が大の比率が大きいほど応答性が良好であり、これら比率を適宜調整してガス拡散スピードを設定するとよいことがわかる。   As shown in FIG. 6A, in the gas sensor 1 of the present invention, there is a correlation between the configuration of the protective layer 36 and the response of the sensor element 3. In the present invention, since the sensor element 3 does not protrude from the housing, the response is slightly inferior to the conventional gas sensor S. In order to improve responsiveness, the gas diffusion speed of the exhaust gas that passes through the porous alumina layer serving as the protective layer 36 is important, and the alumina particle size used as a raw material is mixed in large and small, and immersed in an alumina slurry whose ratio is adjusted. Then, the protective layer 36 was formed, and the relationship with the responsiveness was examined (element temperature 600 ° C.). From the results shown in the figure, it can be seen that the larger the ratio of the alumina particle diameter, the better the responsiveness, and the gas diffusion speed should be set by appropriately adjusting these ratios.

図6(b)に、本発明のガスセンサ1において、センサ素子3の排気側電極33が排気ガスに接触する面積と、応答性の関係を示す。図示するように、接触面積が大きいほど、応答性が速くなっている。また、図7(a)、(b)に示すように、保護層36厚さが薄いほど、あるいは素子温度が高いほど、応答性が速くなる。ただし、図7(c)、(d)に示すように、被水割れについては、水滴下量が多いほど、あるいは素子温度が高いほど、素子割れ率が高くなるので、これら素子構成や検出条件を必要に応じて適宜調整するのがよい。   FIG. 6B shows the relationship between the area where the exhaust side electrode 33 of the sensor element 3 contacts the exhaust gas and the responsiveness in the gas sensor 1 of the present invention. As shown in the figure, the larger the contact area, the faster the response. Further, as shown in FIGS. 7A and 7B, the responsiveness becomes faster as the protective layer 36 is thinner or the element temperature is higher. However, as shown in FIGS. 7 (c) and 7 (d), for water cracking, the greater the amount of dripping water or the higher the element temperature, the higher the element cracking rate. It is good to adjust as necessary.

図7(e)に示すように、本発明のガスセンサ1において、センサ素子3の内部抵抗は、素子温度と相関があるので、これを利用して簡易構造の温度センサとして使用することもできる。例えば、センサ素子3を自己発熱により加熱し、素子インピーダンスをモニタすることで早期活性化し、ヒータレスで早期に三元触媒のフィードバック制御を開始して排気浄化性能を向上できる。   As shown in FIG. 7E, in the gas sensor 1 of the present invention, the internal resistance of the sensor element 3 has a correlation with the element temperature, so that it can be used as a temperature sensor with a simple structure. For example, the sensor element 3 is heated by self-heating, and the element impedance is monitored for early activation, and the feedback control of the three-way catalyst is started at an early stage without a heater to improve the exhaust purification performance.

このようにして形成される本発明のガスセンサは、小型でメンテナンスフリーのワイヤレスガスセンサであるので、軽自動車のターボエンジンのようにエンジンルームにスペースが少ない場合に優位である。あるいは、二輪自動車に設置した場合には、小型で目立たないためにデザイン性に優れる。このように従来設置が困難であったエンジンその他のガスセンサとして好適に利用することができる。   Since the gas sensor of the present invention formed in this way is a small and maintenance-free wireless gas sensor, it is advantageous when there is little space in the engine room like a turbo engine of a light vehicle. Or, when installed in a two-wheeled vehicle, it is compact and inconspicuous, so it is excellent in design. Thus, it can be suitably used as an engine or other gas sensor that has been difficult to install.

1 ガスセンサ
11 センサ本体
12 制御部
2 ワイヤレス通信部(出力部)
21 発信部
22 電源部
23 振動素子
24 変換素子
3 センサ素子
31 基体
32 大気側電極(基準側電極)
33 排気側電極(測定側電極)
34 大気側ホルダ
35 排気側ホルダ
36 保護層
4 ハウジング
41 フランジ部
5 カプラー
6 三元触媒
DESCRIPTION OF SYMBOLS 1 Gas sensor 11 Sensor main body 12 Control part 2 Wireless communication part (output part)
DESCRIPTION OF SYMBOLS 21 Transmission part 22 Power supply part 23 Vibration element 24 Conversion element 3 Sensor element 31 Base | substrate 32 Atmosphere side electrode (reference | standard side electrode)
33 Exhaust side electrode (measurement side electrode)
34 Atmosphere side holder 35 Exhaust side holder 36 Protective layer 4 Housing 41 Flange part 5 Coupler 6 Three-way catalyst

Claims (6)

被測定ガス中の特定ガス成分を検出するセンサ素子と、該センサ素子を内部に保持する筒状ハウジングと、該ハウジングに保持される電源部を有し上記センサ素子からの検出信号を外部の制御部に出力する出力部とを備えるガスセンサであって、
上記筒状ハウジングは、被測定ガスが流通する通路壁に固定されて、一端側が上記通路内に突出開口し、該一端側開口縁より内方に配置した筒状インシュレータ内に上記センサ素子を絶縁保持しており、
上記センサ素子は板状体であり固体電解質を板状に成形した基体がセンサ軸に対して垂直な2つの対向する面を有し、この2つの面のうち上記通路側の一方に測定側電極を形成し、他方に基準側電極を形成した検出部を備え
上記インシュレータは、中央に開口を有する先端面に上記基体を保持しており、該開口に面する上記基体の一方の板面に、上記測定側電極を配置するとともに、これと同一形状の上記基準側電極を、他方の板面の対向位置に配置したことを特徴とするガスセンサ。
A sensor element that detects a specific gas component in the gas to be measured, a cylindrical housing that holds the sensor element inside, and a power supply unit that is held by the housing. A gas sensor comprising an output unit for outputting to the unit,
The cylindrical housing is fixed to a passage wall through which a gas to be measured flows, and has one end projecting and opening into the passage and insulating the sensor element in a cylindrical insulator disposed inward from the opening edge of the one end. Hold
The sensor element is a plate-like body, and a base body in which a solid electrolyte is formed into a plate shape has two opposing plate surfaces perpendicular to the sensor axis, and one of the two plate surfaces on one side of the passage. It has a detection part that forms a measurement side electrode and a reference side electrode on the other side ,
The insulator holds the substrate on a tip surface having an opening in the center, and the measurement side electrode is disposed on one plate surface of the substrate facing the opening, and the reference having the same shape as the measurement side electrode is disposed. A gas sensor , wherein the side electrode is disposed at a position opposite to the other plate surface .
上記センサ素子は、自己発熱によるヒータ機能、または、素子温度と内部抵抗の相関を利用した温度センサ機能を有する請求項1記載のガスセンサ。 The gas sensor according to claim 1, wherein the sensor element has a heater function by self-heating or a temperature sensor function using a correlation between an element temperature and an internal resistance . 上記センサ素子は、上記筒状ハウジングの上記一端側開口内に、上記基体の厚み方向がセンサ軸方向となるように配置されており、センサ軸方向の素子長さがセンサ径方向の素子長さより短く形成される請求項2記載のガスセンサ。   The sensor element is disposed in the opening on the one end side of the cylindrical housing so that the thickness direction of the base body is the sensor axis direction, and the element length in the sensor axis direction is greater than the element length in the sensor radial direction. The gas sensor according to claim 2, which is formed short. 上記センサ素子と上記筒状ハウジングの上記一端側の開口縁との間に、多孔性の保護層を形成した請求項1ないし3のいずれか1項に記載のガスセンサ。   The gas sensor according to any one of claims 1 to 3, wherein a porous protective layer is formed between the sensor element and an opening edge on the one end side of the cylindrical housing. 上記筒状ハウジングの他端側に上記出力部を設けたセンサ軸方向の全長をL1とし、上記筒状ハウジングの上記一端側の開口縁から上記センサ素子の先端面までの距離をL2とした時に、L2/L1×100=6.25〜25%とする請求項1ないし4のいずれか1項に記載のガスセンサ。   When the total length in the sensor axial direction in which the output portion is provided on the other end side of the cylindrical housing is L1, and the distance from the opening edge on the one end side of the cylindrical housing to the tip surface of the sensor element is L2. The gas sensor according to any one of claims 1 to 4, wherein L2 / L1 × 100 = 6.25 to 25%. 上記出力部は、上記ハウジングの他端側に発信部と上記電源部を設けて、上記発信部から上記制御部に設けた受信部に信号を出力するワイヤレス通信部とする請求項1ないし5のいずれか1項に記載のガスセンサ。 The output unit is provided with a transmission unit to the other side and the power supply portion of the housing, from the originating portion of the claims 1 to 5, a wireless communication unit for outputting a signal to the receiving unit provided in the control unit The gas sensor according to any one of claims.
JP2010178903A 2010-08-09 2010-08-09 Gas sensor Expired - Fee Related JP5310673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178903A JP5310673B2 (en) 2010-08-09 2010-08-09 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178903A JP5310673B2 (en) 2010-08-09 2010-08-09 Gas sensor

Publications (2)

Publication Number Publication Date
JP2012037428A JP2012037428A (en) 2012-02-23
JP5310673B2 true JP5310673B2 (en) 2013-10-09

Family

ID=45849564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178903A Expired - Fee Related JP5310673B2 (en) 2010-08-09 2010-08-09 Gas sensor

Country Status (1)

Country Link
JP (1) JP5310673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279961B2 (en) * 2014-04-08 2018-02-14 日本特殊陶業株式会社 Sensor control system, sensor control device, and terminal device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795681A (en) * 1972-02-21 1973-08-20 Philips Nv MEASUREMENT CELL ALLOWING TO DETERMINE THE OXYGEN CONCENTRATION IN A GAS MIXTURE
JPS5433554B2 (en) * 1973-04-12 1979-10-22
JPS52165685U (en) * 1976-06-09 1977-12-15
US4123344A (en) * 1977-04-15 1978-10-31 Bendix Autolite Corporation Two fire ceramic sealed oxygen sensing device and method of forming same
JPS56151962U (en) * 1980-04-14 1981-11-13
JPS6199856A (en) * 1984-10-22 1986-05-17 Hitachi Ltd Oxygen concentration detector
JP5024239B2 (en) * 2008-09-04 2012-09-12 株式会社デンソー Gas sensor

Also Published As

Publication number Publication date
JP2012037428A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
US3915830A (en) Solid electrolyte electrochemical cell with self contained reference
JPS5816144B2 (en) Electrochemical detector that measures the amount of oxygen in exhaust gas
GB2061522A (en) Heated measuring sensor for the constituents of gases
JP2017198659A (en) Gas sensor element and gas sensor
JP2000065789A (en) Carbon monoxide sensor, its production and its use
US20130062203A1 (en) Ammonia gas sensor
US20100314249A1 (en) Gas sensor apparatus for automotive exhaust gas applications
JP5033017B2 (en) Ammonia gas sensor
US20220065809A1 (en) Gas sensor
JP2009186424A (en) Gas sensor
JP5310673B2 (en) Gas sensor
JP2004226171A (en) Oxygen concentration detector
US6889536B2 (en) Air/fuel-ratio detecting apparatus
JP5024239B2 (en) Gas sensor
JP4433429B2 (en) Oxygen sensor
JP2005338091A (en) Sensor element for gas measurement sensor
US20080142364A1 (en) Gas sensor element designed to minimize direct exposure to water
JP2001108648A (en) Gas sensor
US8176618B2 (en) Method for producing gas sensor
JP2003287516A (en) Oxygen sensor
JP3588094B2 (en) Oxygen sensor structure
JP2004239688A (en) Air/fuel ratio detection device
WO2020230515A1 (en) Gas sensor
JP2004198363A (en) Gas sensor
CN111492235A (en) Sensor element and gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees