JP5307982B2 - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
JP5307982B2
JP5307982B2 JP2007055929A JP2007055929A JP5307982B2 JP 5307982 B2 JP5307982 B2 JP 5307982B2 JP 2007055929 A JP2007055929 A JP 2007055929A JP 2007055929 A JP2007055929 A JP 2007055929A JP 5307982 B2 JP5307982 B2 JP 5307982B2
Authority
JP
Japan
Prior art keywords
adsorption
compressor
oxygen
valve
adsorption cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007055929A
Other languages
Japanese (ja)
Other versions
JP2008214151A (en
Inventor
久 切明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2007055929A priority Critical patent/JP5307982B2/en
Publication of JP2008214151A publication Critical patent/JP2008214151A/en
Application granted granted Critical
Publication of JP5307982B2 publication Critical patent/JP5307982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、大気中から酸素富化空気、酸素濃縮気体を分離して使用するための酸素濃縮装置に関する。   The present invention relates to an oxygen concentrator for separating and using oxygen-enriched air and oxygen-enriched gas from the atmosphere.

近年、肺気腫、肺結核後遺症や慢性気管支炎などの慢性呼吸器疾患に苦しむ患者が増加する傾向にあるが、かかる患者に対する治療方法として、高濃度酸素を吸入させる酸素吸入療法が行われている。酸素吸入療法とは前記疾病患者に対して酸素ガス若しくは酸素濃縮気体を吸入させる治療法である。治療用の酸素ガス或いは濃縮酸素気体の供給源としては、高圧酸素ボンベ、液体酸素ボンベ、酸素濃縮装置等の使用が挙げられるが、長時間の連続使用に耐えることができ、また使い勝手がよいなどの理由により、酸素濃縮装置を使用するケースが増加している。   In recent years, the number of patients suffering from chronic respiratory diseases such as pulmonary emphysema, pulmonary tuberculosis sequelae and chronic bronchitis tends to increase. As a treatment method for such patients, oxygen inhalation therapy for inhaling high concentration oxygen is performed. The oxygen inhalation therapy is a treatment method for inhaling oxygen gas or oxygen enriched gas to the diseased patient. Examples of the supply source of therapeutic oxygen gas or concentrated oxygen gas include the use of high-pressure oxygen cylinders, liquid oxygen cylinders, oxygen concentrators, etc., which can withstand long-term continuous use and are easy to use. For this reason, cases of using oxygen concentrators are increasing.

酸素濃縮装置は空気中の酸素を分離し、濃縮することを可能にした装置である。かかる酸素を分離濃縮する装置としては、90%以上の高濃度の酸素が得られるという観点で、空気中の窒素を選択的に吸着し得る吸着剤を吸着筒に充填した吸着型酸素濃縮装置が広く知られ使用されている。その中でも圧力変動装置としてコンプレッサを用いた圧力変動吸着型酸素濃縮装置が広く世の中に広まっている。かかる装置は通常窒素を選択的に吸着する吸着剤を充填させた複数の吸着床に対して、コンプレッサから圧縮空気を供給し、吸着床内を加圧状態にして窒素を吸着させ、未吸着の高濃度の酸素を得る吸着工程と、吸着床内を減圧して窒素を脱着させる脱着工程からなり、これを一定サイクルで繰り返すことで、高濃度の酸素を得る装置である。圧力変動吸着法には、脱着工程を大気圧まで減圧するPSA(Pressure Swing Adsorption)法、吸着剤の再生効率を高める為にコンプレッサを用いて吸着筒を真空圧まで減圧するVPSA(Vacuum Pressure Swing Adsorption)法があり、医療用酸素濃縮装置として採用されている。   The oxygen concentrator is an apparatus that can separate and concentrate oxygen in the air. As an apparatus for separating and concentrating oxygen, an adsorption-type oxygen concentrating apparatus in which an adsorbent capable of selectively adsorbing nitrogen in air is filled in an adsorption cylinder from the viewpoint that high concentration oxygen of 90% or more can be obtained. Widely known and used. Among them, a pressure fluctuation adsorption type oxygen concentrator using a compressor as a pressure fluctuation apparatus is widely spread in the world. Such an apparatus usually supplies compressed air from a compressor to a plurality of adsorbent beds filled with an adsorbent that selectively adsorbs nitrogen, adsorbs nitrogen by applying pressure to the inside of the adsorbent bed, It is an apparatus that obtains high concentration oxygen by repeating an adsorption step for obtaining high concentration oxygen and a desorption step for desorbing nitrogen by depressurizing the inside of the adsorption bed. The pressure fluctuation adsorption method includes the PSA (Pressure Swing Adsorption) method for reducing the desorption process to atmospheric pressure, and the VPSA (Vacuum Pressure Swing Adsorption) for reducing the adsorption cylinder to a vacuum pressure using a compressor in order to increase the regeneration efficiency of the adsorbent. ) And is used as a medical oxygen concentrator.

吸着工程時における吸着筒の昇圧時間を短縮し、早期に吸着効率を向上させる装置として、特開平6-31129号公報には、吸着工程時の所定時間コンプレッサ駆動モータの回転数を増速させ、それ以外は通常回転数に制御する気体分離装置が開示されている。
特開平6-31129号公報
As a device for shortening the pressurizing time of the adsorption cylinder during the adsorption process and improving the adsorption efficiency at an early stage, JP-A-6-31129 discloses that the rotation speed of the compressor drive motor is increased for a predetermined time during the adsorption process, Other than that, a gas separation device is disclosed that is controlled to a normal rotational speed.
JP-A-6-31129

酸素濃縮装置の起動時には、コンプレッサの圧縮部にかかる圧力負荷、摩擦抵抗などにより定常運転時に比較してコンプレッサを駆動するモータに負荷がかかる。
静的負荷抵抗の大きさは酸素濃縮装置の使用環境によって大きく変動し、特に冬季における低温環境下ではコンプレッサが起動しないという事態も生じることがある。原因として起動時の必要トルクが大きくなり駆動モータの起動電流が大きくなるため、トルク不足、場合によっては装置が起動しないことがある。
When the oxygen concentrator is started, a load is applied to the motor that drives the compressor as compared with the steady operation due to pressure load, frictional resistance, and the like applied to the compression portion of the compressor.
The magnitude of the static load resistance varies greatly depending on the environment in which the oxygen concentrator is used, and a situation may occur in which the compressor does not start, particularly in a low temperature environment in winter. As a cause, the required torque at the time of start-up becomes large and the start-up current of the drive motor becomes large. Therefore, the torque may be insufficient, and in some cases, the device may not start.

本発明は上記課題を解決するものであり、酸素濃縮装置起動時のコンプレッサ負荷を抑えることが可能な装置を実現するものである。
すなわち本発明は、酸素よりも窒素を選択的に吸着し得る吸着剤を充填した複数の吸着筒、該吸着筒へ加圧空気を供給するコンプレッサ、該コンプレッサと各吸着筒間の流路を順次切り替え、各吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、各吸着筒を減圧し吸着剤を再生する脱着工程を所定タイミングで繰り返すための流路切換手段を具備した圧力変動吸着型酸素濃縮装置において、該吸着筒の下流側に吸着筒間を均圧する均圧弁を有した均圧流路を備え、かつ該コンプレッサの起動時に該均圧弁を開いた状態で起動させる起動制御手段を備えることを特徴とする酸素濃縮装置を提供するものである。
This invention solves the said subject, and implement | achieves the apparatus which can suppress the compressor load at the time of oxygen concentration apparatus starting.
That is, the present invention sequentially provides a plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, a compressor for supplying pressurized air to the adsorption cylinders, and a flow path between the compressor and each adsorption cylinder. Pressure fluctuation adsorption type equipped with flow path switching means for switching, repeating an adsorption process for supplying pressurized air to each adsorption cylinder to extract concentrated oxygen, and a desorption process for depressurizing each adsorption cylinder to regenerate the adsorbent The oxygen concentrator includes a pressure equalizing flow path having a pressure equalizing valve for equalizing pressure between the adsorbing cylinders on the downstream side of the adsorbing cylinders, and further includes an activation control unit that activates the pressure equalizing valve when the compressor is activated. An oxygen concentrator characterized by this is provided.

また本発明は、かかる吸着筒が2つの吸着筒、該流路切換手段が各吸着筒とコンプレッサ、排気管を切り換える電磁弁であり、該起動制御手段が、該コンプレッサの起動時に所定時間、該電磁弁を介してコンプレッサと吸着工程側吸着筒とを連通させると共に、均圧弁を開き、脱着工程側吸着筒と電磁弁を介し排気管を連通させるように、該均圧弁及び該電磁弁の開閉制御を行なう手段であることを特徴とし、特に該流路切換手段が三方電磁弁であることを特徴とする酸素濃縮装置を提供するものである。   Further, the present invention is such that the adsorption cylinder is two adsorption cylinders, the flow path switching means is an electromagnetic valve for switching between each adsorption cylinder, the compressor, and the exhaust pipe, and the activation control means has a predetermined time when the compressor is activated, Open and close the pressure equalizing valve and the solenoid valve so that the compressor communicates with the adsorption process side adsorption cylinder via the solenoid valve, and the pressure equalization valve is opened, and the exhaust pipe is communicated with the desorption process side adsorption cylinder and the solenoid valve. The present invention provides an oxygen concentrator characterized in that it is a means for performing control, and in particular, the flow path switching means is a three-way solenoid valve.

また本発明は、かかる起動制御手段が、該コンプレッサの起動時の回転数を定常状態よりも低回転数で起動させる制御手段であることを特徴とする酸素濃縮装置を提供するものである。   Further, the present invention provides an oxygen concentrator characterized in that the start control means is a control means for starting the compressor at the start speed at a speed lower than the steady state.

本発明の酸素濃縮装置では、均圧弁を介して加圧側吸着筒、脱着側吸着筒が連通し、加圧空気が吸着筒内圧の加圧に利用されることなく、そのまま排気側に流れる為、実質的に圧力負荷のない状態でコンプレッサを起動させることが可能となる。従って、起動時に起動電流が大きくなることがなくなり、起動時の突入電流の低減に寄与する。また、起動時初期に加圧側吸着筒の製品端から生成される、不純物を含む低酸素濃度ガスを均圧弁を介して脱着工程側吸着筒に回収することで低濃度酸素ガスが製品タンク側に流れることを防止することが出来、90%といった高濃度酸素ガスを早期に使用者に供給することが出来る。   In the oxygen concentrator of the present invention, the pressure side adsorption cylinder and the desorption side adsorption cylinder communicate with each other through the pressure equalizing valve, and the pressurized air flows as it is to the exhaust side without being used for pressurization of the adsorption cylinder internal pressure. It is possible to start the compressor in a state where there is substantially no pressure load. Therefore, the starting current does not increase at the time of starting, which contributes to the reduction of the inrush current at the time of starting. In addition, by collecting low oxygen concentration gas containing impurities, which is generated from the product end of the pressurized side adsorption cylinder at the beginning of startup, to the desorption process side adsorption cylinder via the pressure equalizing valve, the low concentration oxygen gas is returned to the product tank side. It can be prevented from flowing and high concentration oxygen gas such as 90% can be supplied to the user at an early stage.

本発明の酸素濃縮装置の実施態様例を、以下の図面を用いて説明する。図1は本発明の一実施形態である2筒式PSA型の圧力変動吸着型酸素濃縮装置を例示した概略装置構成図である。この図1において、1は酸素濃縮装置、3は加湿された酸素富化空気を吸入する使用者(患者)を示す。圧力変動吸着型の酸素濃縮装置1は、外部空気取り込みフィルタ101、コンプレッサ103、流路切換弁である三方電磁弁104a,104b、吸着筒105a,105b、逆止弁106a,106b、製品タンク107、調圧弁108、流量設定手段109、フィルタ110を備える。これにより外部から取り込んだ原料空気から酸素ガスを濃縮した酸素濃縮ガスを製造することができる。使用者に供給される酸素ガスの濃度、流量は酸素濃度センサ301、流量センサ302で検知され、コンプレッサ103、流路切換弁の切り替えを制御する制御手段401にフィードバックされる。図1では流量センサ302は加湿器201の上流側に設けてあるが、加湿器201の下流側に設けてもよい。   An embodiment of the oxygen concentrator of the present invention will be described with reference to the following drawings. FIG. 1 is a schematic apparatus configuration diagram illustrating a two-cylinder PSA type pressure fluctuation adsorption type oxygen concentrator as an embodiment of the present invention. In FIG. 1, 1 is an oxygen concentrator, and 3 is a user (patient) who inhales humidified oxygen-enriched air. The pressure fluctuation adsorption type oxygen concentrator 1 includes an external air intake filter 101, a compressor 103, three-way solenoid valves 104a and 104b which are flow path switching valves, adsorption cylinders 105a and 105b, check valves 106a and 106b, a product tank 107, A pressure regulating valve 108, a flow rate setting means 109, and a filter 110 are provided. Thereby, the oxygen enriched gas which concentrated oxygen gas from the raw material air taken in from the outside can be manufactured. The concentration and flow rate of the oxygen gas supplied to the user are detected by the oxygen concentration sensor 301 and the flow rate sensor 302 and fed back to the control means 401 that controls the switching of the compressor 103 and the flow path switching valve. In FIG. 1, the flow sensor 302 is provided on the upstream side of the humidifier 201, but may be provided on the downstream side of the humidifier 201.

先ず、外部から取り込まれる原料空気は、塵埃などの異物を取り除くための外部空気取り込みフィルタ101などを備えた空気取り込み口から取り込まれる。このとき、通常の空気中には、約21%の酸素ガス、約77%の窒素ガス、0.8%のアルゴンガス、水蒸気ほかのガスが1.2%含まれている。かかる装置では、呼吸用ガスとして必要な酸素ガスのみを濃縮して取り出す。   First, the raw material air taken in from the outside is taken in from an air intake port provided with an external air intake filter 101 for removing foreign matters such as dust. At this time, the normal air contains 1.2% of oxygen gas of about 21%, nitrogen gas of about 77%, argon gas of 0.8%, water vapor and the like. In such an apparatus, only oxygen gas necessary as a breathing gas is concentrated and extracted.

この酸素ガスの取り出しは、原料空気を酸素ガス分子よりも窒素ガス分子を選択的に吸着するゼオライトなどからなる吸着剤が充填された吸着筒105に対して、切換弁104a,104bによって対象とする吸着筒105a,105bを順次切り換えながら、原料空気をコンプレッサ103により加圧して供給し、吸着筒105内で原料空気中に含まれる約77%の窒素ガスを選択的に吸着除去する。   This extraction of oxygen gas is targeted by the switching valves 104a and 104b with respect to the adsorption cylinder 105 filled with an adsorbent made of zeolite or the like that selectively adsorbs nitrogen gas molecules rather than oxygen gas molecules. While the adsorption cylinders 105a and 105b are sequentially switched, the source air is pressurized and supplied by the compressor 103, and about 77% of nitrogen gas contained in the source air is selectively adsorbed and removed in the adsorption cylinder 105.

前記の吸着筒105としては、前記吸着剤を充填した円筒状容器で形成され、通常、1筒式、2筒式の他に3筒以上の多筒式が用いられるが、連続的かつ効率的に原料空気から酸素富化空気を製造するためには、2筒式や多筒式の吸着筒を使用することが好ましい。また、前記のコンプレッサ103としては、揺動型空気圧縮機が用いられるほか、スクリュー式、ロータリー式、スクロール式などの回転型空気圧縮機が用いられる場合もある。また、このコンプレッサ103を駆動する電動機の電源は、交流であっても直流であってもよい。
前記吸着筒105で吸着されなかった酸素ガスを主成分とする酸素富化空気は、吸着筒105へ逆流しないように設けられた逆止弁106a,106bを介して、製品タンク107に流入する。
The adsorbing cylinder 105 is formed of a cylindrical container filled with the adsorbent, and usually a multi-cylinder type of three or more cylinders is used in addition to the one-cylinder type and the two-cylinder type. In order to produce oxygen-enriched air from raw material air, it is preferable to use a two-cylinder or multi-cylinder type adsorption cylinder. Further, as the compressor 103, a swing type air compressor may be used, and a rotary type air compressor such as a screw type, a rotary type, or a scroll type may be used. Further, the power source of the electric motor that drives the compressor 103 may be alternating current or direct current.
Oxygen-enriched air mainly composed of oxygen gas that has not been adsorbed by the adsorption cylinder 105 flows into the product tank 107 via check valves 106a and 106b provided so as not to flow back to the adsorption cylinder 105.

なお、吸着筒105内に充填された吸着剤に吸着された窒素ガスは、新たに導入される原料空気から再度窒素ガスを吸着するために吸着剤から脱着させる必要がある。このために、コンプレッサ103によって実現される加圧状態から、三方電磁弁(切換弁)104a,104bによって減圧状態(大気圧状態)に切り換え、吸着されていた窒素ガスを脱着させて吸着剤を再生させる。図1はPSA型の酸素濃縮装置であるが、排気を真空ポンプに接続することで真空脱着させるVPSA型とすることも可能である。さらにこの脱着工程において、その脱着効率を高めるため、均圧弁102を介して吸着工程中の吸着筒の製品端側から酸素濃縮ガスをパージガスとして逆流させるようにしてもよい。   Note that the nitrogen gas adsorbed by the adsorbent filled in the adsorption cylinder 105 needs to be desorbed from the adsorbent in order to adsorb the nitrogen gas again from the newly introduced raw material air. For this purpose, the pressurized state realized by the compressor 103 is switched to the reduced pressure state (atmospheric pressure state) by the three-way solenoid valves (switching valves) 104a and 104b, and the adsorbent is regenerated by desorbing the adsorbed nitrogen gas. Let FIG. 1 shows a PSA type oxygen concentrator, but it is also possible to use a VPSA type in which exhaust is connected to a vacuum pump for vacuum desorption. Further, in this desorption process, in order to increase the desorption efficiency, the oxygen-enriched gas may be caused to flow back as a purge gas from the product end side of the adsorption cylinder during the adsorption process via the pressure equalizing valve 102.

原料空気から酸素富化空気が製造され、製品タンク107へ蓄えられる。この製品タンク107に蓄えられた酸素富化空気は、例えば95%といった高濃度の酸素ガスを含んでおり、調圧弁108や流量設定手段109などによってその供給流量と圧力とが制御されながら、加湿器201へ供給され、加湿された酸素富化空気が患者に供給される。
かかる加湿器には、水分透過膜を有する水分透過膜モジュールによって、外部空気から水分を取り込んで乾燥状態の酸素富化空気へ供給する無給水式加湿器や、水を用いたバブリング式加湿器、或いは表面蒸発式加湿器を用いることが出来る。
Oxygen-enriched air is produced from the raw air and stored in the product tank 107. The oxygen-enriched air stored in the product tank 107 contains high-concentration oxygen gas, for example, 95%, and the supply flow rate and pressure are controlled by the pressure regulating valve 108, the flow rate setting means 109, etc. Supplied to the vessel 201 and humidified oxygen-enriched air is supplied to the patient.
In such a humidifier, a moisture permeable membrane module having a moisture permeable membrane takes in moisture from external air and supplies it to dry oxygen-enriched air, a bubbling humidifier using water, Alternatively, a surface evaporation humidifier can be used.

圧力変動吸着法で使用する吸着剤は圧力に依存するため、酸素濃縮装置の起動初期には吸着筒の圧力が十分に上昇しない間に製品端からガスが精製されるため、起動初期の生成ガスの酸素濃度は定常状態の90%以上よりも低値となり、結果として製品タンク107中の酸素濃度が定常状態に達するのに時間を要することになる。本発明の装置の起動時には、コンプレッサ(圧縮機)103の起動と合わせて制御手段401により吸着筒105の下流側(製品端側)の均圧弁102を開く制御を行い、例えば吸着工程である吸着筒105aに加圧空気を供給し、生成初期のガスを均圧弁102を介して、脱着工程の吸着筒105bの製品端から回収する。通常は数秒で吸着筒105aは昇圧するので、その後均圧弁102を閉じ、通常の吸着工程を開始し、例えば90%といった高濃度酸素を逆止弁106aを介して生成タンクにする貯留する。   Since the adsorbent used in the pressure fluctuation adsorption method depends on the pressure, the gas is purified from the end of the product while the pressure in the adsorption cylinder does not rise sufficiently at the initial start of the oxygen concentrator. As a result, it takes time for the oxygen concentration in the product tank 107 to reach the steady state. When starting the apparatus of the present invention, the control means 401 controls to open the pressure equalizing valve 102 on the downstream side (product end side) of the adsorption cylinder 105 in conjunction with the activation of the compressor 103, for example, the adsorption process is an adsorption process. Pressurized air is supplied to the cylinder 105a, and the initial gas is collected from the product end of the adsorption cylinder 105b in the desorption process via the pressure equalizing valve 102. Normally, the pressure in the adsorption cylinder 105a is increased within a few seconds, and then the pressure equalizing valve 102 is closed and a normal adsorption process is started, and high concentration oxygen such as 90% is stored in the production tank via the check valve 106a.

コンプレッサの起動時には定常運転状態に比較して負荷がかかる。特に冬季などの低温状態で起動する際にはコンプレッサの駆動トルクが上昇するため、場合によっては電源を入れてもコンプレッサが起動しない状態になる。通常、コンプレッサ起動時には必要トルクが大きく、駆動モータの起動電流が大きくなる。   When the compressor is started, a load is applied compared to the steady operation state. In particular, when starting in a low temperature state such as winter, the driving torque of the compressor increases, and in some cases, the compressor does not start even when the power is turned on. Normally, the required torque is large when the compressor is activated, and the activation current of the drive motor is increased.

本発明の装置では、コンプレッサ駆動時には吸着工程の吸着筒105aと脱着工程の吸着筒105bを均圧弁102を介して連通した状態で起動するため、コンプレッサの圧縮部に加圧負荷が殆どかからず、実質的に圧力負荷のかからない状態での起動となり、上記のような必要以上に突入電流が上げるといったことが起こらず、起動させることができる。
従って、装置起動時には、起動を制御する制御手段401が、コンプレッサの起動時の回転数を定常状態よりも低回転数で起動させることも可能である。
In the apparatus of the present invention, when the compressor is driven, the adsorption cylinder 105a in the adsorption process and the adsorption cylinder 105b in the desorption process are started in communication with each other via the pressure equalizing valve 102, so that almost no pressure load is applied to the compression section of the compressor. Thus, the start-up is performed in a state where the pressure load is not substantially applied, and the start-up can be started without causing the inrush current to increase more than necessary.
Therefore, when the apparatus is activated, the control means 401 that controls activation can also activate the rotational speed at the time of starting the compressor at a lower rotational speed than in the steady state.

酸素濃縮装置の制御手段401は、定常状態では種々の運転制御を行う。流量設定手段109の設定値、流量センサ302による製品ガス流量値、酸素濃度センサ301による生成された酸素濃縮ガスの酸素濃度を検知し、制御手段401によりコンプレッサ103の電動機の回転数を制御することで吸着筒105への供給風量を制御する。設定流量が低流量の場合には回転数を落とすことで生成酸素量を抑え、且つ消費電力の低減を図る。切換弁104a,104b、均圧弁102の切り換えタイミングを制御し、吸脱着シーケンスタイムを変更することで最適な酸素生成を実現する。   The control means 401 of the oxygen concentrator performs various operation controls in a steady state. Detecting the set value of the flow rate setting means 109, the product gas flow rate value by the flow rate sensor 302, and the oxygen concentration of the oxygen-enriched gas generated by the oxygen concentration sensor 301, and controlling the rotation speed of the motor of the compressor 103 by the control means 401 To control the amount of air supplied to the adsorption cylinder 105. When the set flow rate is low, the amount of generated oxygen is suppressed and the power consumption is reduced by reducing the number of rotations. By controlling the switching timing of the switching valves 104a and 104b and the pressure equalizing valve 102 and changing the adsorption / desorption sequence time, optimal oxygen generation is realized.

本発明の酸素濃縮装置の実施態様例である圧力変動吸着型酸素濃縮装置の模式図。The schematic diagram of the pressure fluctuation adsorption type oxygen concentrator which is an embodiment of the oxygen concentrator of the present invention.

符号の説明Explanation of symbols

1:酸素濃縮装置
3:使用者
101:外部空気取り込みフィルタ
102:均圧弁
103:コンプレッサ
104a,104b:三方電磁弁(切換弁)
105a,105b:吸着筒
106a,106b:逆止弁
107:製品タンク
108:調圧弁
109:流量設定手段
110:フィルタ
201:加湿器
301:酸素濃度センサ
302:流量センサ
401:制御手段
1: Oxygen concentrator 3: User
101: External air intake filter
102: Pressure equalizing valve
103: Compressor
104a, 104b: Three-way solenoid valve (switching valve)
105a, 105b: Adsorption cylinder
106a, 106b: Check valve
107: Product tank
108: Pressure regulating valve
109: Flow rate setting method
110: Filter
201: Humidifier
301: Oxygen concentration sensor
302: Flow sensor
401: Control means

Claims (3)

酸素よりも窒素を選択的に吸着し得る吸着剤を充填した複数の吸着筒、該吸着筒へ加圧空気を供給するコンプレッサ、該コンプレッサと各吸着筒間の流路を順次切り替え、各吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、各吸着筒を減圧し吸着剤を再生する脱着工程を所定タイミングで繰り返すための流路切換手段を具備した圧力変動吸着型酸素濃縮装置において、該吸着筒の下流側に吸着筒間を均圧する均圧弁を有した均圧流路を備え、かつ該コンプレッサの起動時に該均圧弁を開いた状態で起動させる起動制御手段を備えると共に、該吸着筒が2つの吸着筒、該流路切換手段が各吸着筒とコンプレッサ、排気管を切り換える電磁弁であり、該起動制御手段が、該コンプレッサの起動時に所定時間、該電磁弁を介してコンプレッサと吸着工程側吸着筒とを連通させると共に、均圧弁を開き、脱着工程側吸着筒と電磁弁を介し排気管を連通させ、加圧空気が吸着工程側吸着筒から均圧弁を介して脱着工程側吸着筒に流れるように、該均圧弁及び該電磁弁の開閉制御を行なう手段であることを特徴とする酸素濃縮装置。 A plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, a compressor for supplying pressurized air to the adsorption cylinders, and a flow path between the compressor and each adsorption cylinder are sequentially switched to each adsorption cylinder. In a pressure fluctuation adsorption type oxygen concentrator equipped with a flow path switching means for repeating an adsorption step of supplying pressurized air to extract concentrated oxygen and a desorption step of depressurizing each adsorption cylinder to regenerate the adsorbent at a predetermined timing, provided with a start control means for starting between adsorption column downstream of the adsorber tube equipped with a pressure equalizing passage having a pressure equalizing valve which applies uniform, and with open the homogeneous valve when starting the compressor, the adsorption column Are two adsorption cylinders, the flow path switching means is an electromagnetic valve for switching between each adsorption cylinder, the compressor, and the exhaust pipe, and the activation control means is connected to the compressor via the electromagnetic valve for a predetermined time when the compressor is activated. And the adsorption process side adsorption cylinder are opened, the pressure equalization valve is opened, the exhaust pipe is communicated via the desorption process side adsorption cylinder and the solenoid valve, and the pressurized air is desorbed from the adsorption process side adsorption cylinder via the pressure equalization valve. An oxygen concentrator, which is means for controlling opening and closing of the pressure equalizing valve and the electromagnetic valve so as to flow to the side adsorption cylinder . 該流路切換手段が三方電磁弁であることを特徴とする請求項に記載の酸素濃縮装置。 2. The oxygen concentrator according to claim 1 , wherein the flow path switching means is a three-way solenoid valve. 該起動制御手段が、該コンプレッサの起動時の回転数を定常状態よりも低回転数で起動させる制御手段であることを特徴とする請求項1または2の何れかに記載の酸素濃縮装置。 3. The oxygen concentrator according to claim 1, wherein the start control means is a control means for starting the compressor at a start speed at a speed lower than a steady state.
JP2007055929A 2007-03-06 2007-03-06 Oxygen concentrator Active JP5307982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055929A JP5307982B2 (en) 2007-03-06 2007-03-06 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055929A JP5307982B2 (en) 2007-03-06 2007-03-06 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2008214151A JP2008214151A (en) 2008-09-18
JP5307982B2 true JP5307982B2 (en) 2013-10-02

Family

ID=39834643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055929A Active JP5307982B2 (en) 2007-03-06 2007-03-06 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP5307982B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789834B2 (en) * 2011-11-03 2015-10-07 オリオン機械株式会社 Method of purging gas adsorption device and gas adsorption device
EP3199195B1 (en) 2014-09-25 2019-06-19 Teijin Pharma Limited Oxygen concentration device
CN106365123B (en) * 2016-08-27 2018-04-17 成都联帮医疗科技股份有限公司 A kind of list lobe pump double acting medical molecular sieve oxygen generation system and method for producing oxygen through

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598605A (en) * 1982-07-07 1984-01-17 Osaka Oxgen Ind Ltd Concentration of nitrogen
JPH0422072Y2 (en) * 1986-09-19 1992-05-20
JP3138067B2 (en) * 1992-07-17 2001-02-26 トキコ株式会社 Gas separation device
JPH06185468A (en) * 1992-12-17 1994-07-05 Tokico Ltd Air compressor
US5871564A (en) * 1997-06-16 1999-02-16 Airsep Corp Pressure swing adsorption apparatus
JP3889125B2 (en) * 1997-08-13 2007-03-07 大陽日酸株式会社 Gas separation method
JP2002028429A (en) * 2000-07-14 2002-01-29 Nippon Sanso Corp Gas separating method
JP2002253676A (en) * 2001-03-06 2002-09-10 Teijin Ltd Adsorbing type oxygen concentrating device
JP3867229B2 (en) * 2001-10-09 2007-01-10 株式会社日立製作所 Gas separation device
JP2003146621A (en) * 2001-11-14 2003-05-21 Teijin Ltd Oxygen enricher
JP2004209467A (en) * 2002-10-31 2004-07-29 Matsushita Electric Ind Co Ltd Gas enrichment device and blowing apparatus
JP4257256B2 (en) * 2004-04-30 2009-04-22 日本特殊陶業株式会社 Oxygen concentrator

Also Published As

Publication number Publication date
JP2008214151A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5080483B2 (en) Oxygen concentrator
JP5357264B2 (en) Oxygen concentrator
WO2008136540A1 (en) Oxygen enricher
JP5864767B2 (en) Oxygen concentrator
JP2013052021A (en) Oxygen concentrator
JP6313461B2 (en) Oxygen concentrator
JP5833358B2 (en) Oxygen concentrator
JP5307982B2 (en) Oxygen concentrator
JP6211753B2 (en) Cylindrical unit fixing method and oxygen concentrator using the same method
JP4922739B2 (en) Oxygen concentrator
JP5193537B2 (en) Oxygen concentrator
JP5431662B2 (en) Oxygen concentrator
JP5242996B2 (en) Oxygen concentrator
JP2003180837A (en) Medical oxygen concentration device
JP5112839B2 (en) Oxygen concentrator
JP5524574B2 (en) Oxygen concentrator
JP5123556B2 (en) Oxygen concentrator
JP5065714B2 (en) Oxygen concentrator
JP5242928B2 (en) Oxygen concentrator
JP2008178795A (en) Oxygen concentrator
JP2009273623A (en) Oxygen enricher
JP2009254502A (en) Oxygen concentrator
JP2003180838A (en) Medical oxygen concentration device
JP2008173284A (en) Adsorption oxygen concentrator
JP2009089777A (en) Oxygen concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350