JP5303732B2 - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP5303732B2
JP5303732B2 JP2008009958A JP2008009958A JP5303732B2 JP 5303732 B2 JP5303732 B2 JP 5303732B2 JP 2008009958 A JP2008009958 A JP 2008009958A JP 2008009958 A JP2008009958 A JP 2008009958A JP 5303732 B2 JP5303732 B2 JP 5303732B2
Authority
JP
Japan
Prior art keywords
film
gas
aluminum oxide
oxide film
cno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008009958A
Other languages
Japanese (ja)
Other versions
JP2009166216A (en
Inventor
有三 福永
豊 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008009958A priority Critical patent/JP5303732B2/en
Publication of JP2009166216A publication Critical patent/JP2009166216A/en
Application granted granted Critical
Publication of JP5303732B2 publication Critical patent/JP5303732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本願発明は、密着性に優れた酸化アルミニウム膜を被覆した被覆工具であり、切削工具等への適用に関する。   The present invention is a coated tool coated with an aluminum oxide film having excellent adhesion, and relates to application to a cutting tool or the like.

特許文献1〜4は、突起形状を有した結合膜を介して酸化アルミニウム膜を被覆する技術が開示されている。   Patent Documents 1 to 4 disclose techniques for coating an aluminum oxide film through a bonding film having a protruding shape.

特許3250134号公報Japanese Patent No. 3250134 特許3418066号公報Japanese Patent No. 3418066 特許3544450号公報Japanese Patent No. 3544450 特許3962300号公報Japanese Patent No. 3962300 特開2005−271123号公報JP-A-2005-271123

本願発明は、酸化アルミニウム膜の密着性を高め、皮膜の耐剥離性に優れた被覆工具を提供することである。   The present invention is to provide a coated tool that improves the adhesion of an aluminum oxide film and is excellent in the peel resistance of the film.

本願発明は、基体表面に周期律表4a、5a、6a族金属から選択される元素の炭化物、窒化物、炭窒化物、酸化物、炭酸化物、窒酸化物及び炭窒酸化物のいずれか1種の単層皮膜又は2種以上の多層皮膜が形成され、該皮膜の上層に結合膜を介してα型酸化アルミニウム膜が形成されている被覆工具において、該結合膜と該α型酸化アルミニウム膜との界面における該結合膜の表面形状が樹状突起とこれに連なる枝状突起とからなる樹枝形状を有し、該枝状突起の長さ(nm)をLBとしたとき、5≦LB≦200、であり、該枝状突起の格子縞と該α型酸化アルミニウム膜の格子縞との界面は透過電子顕微鏡の観察により連続した格子縞を有してエピタキシャル成長しており、該結合膜の該樹状突起はTi(CO)又はTi(CNO)であり、該枝状突起は(TiAl)(CNO)であることを特徴とする被覆工具である。上記の構成を採用することによって、酸化アルミニウム膜の密着性を高め、皮膜の耐剥離性に優れた被覆工具を提供することができる。 In the present invention, any one of carbides, nitrides, carbonitrides, oxides, carbonates, nitrides and carbonitrides of an element selected from the group 4a, 5a, and 6a metals of the periodic table is provided on the substrate surface. In a coated tool in which a single monolayer coating or two or more multi-layer coatings are formed, and an α-type aluminum oxide film is formed on the upper layer of the coating via a binding film, the binding film and the α-type aluminum oxide film When the surface shape of the binding film at the interface with the substrate has a dendritic shape composed of dendrites and branching projections connected to the dendrites, and the length (nm) of the branching projections is LB, 5 ≦ LB ≦ 200 is, the interface between the plaid plaid and the α-type aluminum oxide film of the branches like protrusions to have a continuous lattice fringes by observation of a transmission electron microscope has been epitaxially grown, dendritic projections of the coupling film Is Ti (CO) or Ti (CNO) , The branches like protrusions are coated tool, wherein der Rukoto (TiAl) (CNO). By adopting the above configuration, it is possible to provide a coated tool that improves the adhesion of the aluminum oxide film and is excellent in the peel resistance of the film.

本願発明により、酸化アルミニウム膜の密着性を高め、皮膜の耐剥離性に優れた被覆工具を提供することができた。   By this invention, the adhesiveness of the aluminum oxide film was improved and the coated tool excellent in the peeling resistance of a film | membrane could be provided.

本願発明の被覆工具は、結合膜とα型酸化アルミニウム膜との界面における結合膜の表面形状が樹状突起と、これに連なる枝状突起からなる樹枝形状を有していることを特徴とする被覆工具である。結合膜の表面形状が樹状突起と枝状突起とを併せ持つことによって、結合膜とα型酸化アルミニウム膜との界面における密着強度の改善に大きく寄与して皮膜の耐剥離性に優れた被覆工具を得ることができる。この理由は、結合膜における樹枝形状の突起がα型酸化アルミニウム膜へ食い込み、アンカー効果により密着性が格段に改善されるからである。樹状突起と、これに連なる枝状突起の複数の突起は、より好ましくは、先端形状が鋭角形状を有することであり、このような場合にα型酸化アルミニウム膜へ突起が鋭く食い込むことからアンカー効果が効果的に作用して密着強度は最大となる。また、本願発明における樹枝形状を有した結合膜において、樹状突起に連なる枝状突起のLB値(nm)は、5≦LB≦200、である。より好ましくは、枝状突起の先端形状が鋭角形状を有することであり、これによって結合膜とα型酸化アルミニウム膜との密着性が優れる。LB値が5nm以上であることにより、アンカー効果が有効に作用し、また、200nm以下であることにより、α型酸化アルミニウム膜表面の凹凸を減少させることができ、皮膜の結晶粒径の粗大化を回避して優れた密着性を得ることができる。この理由は、α型酸化アルミニウム膜が枝状突起を起点として成長するためである。枝状突起のLB値が200nmを超えて大きいと、α型酸化アルミニウム膜の表面凹凸が大きくなってしまう。
更に、本願発明における樹枝形状を有した結合膜において、樹状突起に連なる枝状突起の格子縞とα型酸化アルミニウム膜の格子縞との界面は、透過電子顕微鏡の観察により連続した格子縞を有してエピタキシャル成長しており、該結合膜の該樹状突起はTi(CO)又はTi(CNO)であり、該枝状突起は(TiAl)(CNO)である。両者の格子縞を連続させることにより、結合膜とα型酸化アルミニウム膜との密着性及び耐剥離性に優れる。
The coated tool of the present invention is characterized in that the surface shape of the bonding film at the interface between the bonding film and the α-type aluminum oxide film has a dendritic shape and a dendritic shape consisting of branching protrusions connected thereto. It is a coated tool. Coated tool with excellent peeling resistance of the coating because the surface shape of the binding film has both dendritic protrusions and branch-like protrusions, which greatly contributes to improving the adhesion strength at the interface between the binding film and the α-type aluminum oxide film. Can be obtained. The reason for this is that dendritic protrusions in the binding film bite into the α-type aluminum oxide film, and the adhesion is remarkably improved by the anchor effect. More preferably, the plurality of projections of the dendrite and the branch-like projections connected to the dendrite has an acute-angled tip shape. In such a case, the projections sharply bite into the α-type aluminum oxide film. The effect acts effectively and the adhesion strength is maximized. Further, in the coupling film having a dendritic shape in the present invention, the LB value (nm) of the branch-like projections connected to the dendrites is 5 ≦ LB ≦ 200. More preferably, the tip shape of the branch-like protrusion has an acute angle shape, and thereby the adhesion between the binding film and the α-type aluminum oxide film is excellent. When the LB value is 5 nm or more, the anchor effect works effectively, and when it is 200 nm or less, the unevenness of the surface of the α-type aluminum oxide film can be reduced, and the crystal grain size of the film becomes coarse. And excellent adhesion can be obtained. This is because the α-type aluminum oxide film grows starting from the branch-like projections. If the LB value of the branch protrusions exceeds 200 nm, the surface unevenness of the α-type aluminum oxide film becomes large.
Further, in the binding film having a dendritic shape in the present invention, the interface between the lattice fringes of the branch projections continuous with the dendrites and the lattice fringes of the α-type aluminum oxide film has a continuous lattice fringe by observation with a transmission electron microscope. and epitaxially growing, dendritic projections of the coupling film is Ti (CO) or Ti (CNO), the branches like projections Ru der (TiAl) (CNO). By making both the lattice stripes continuous, the adhesion between the bonding film and the α-type aluminum oxide film and the peel resistance are excellent.

本願発明の被覆工具の結合膜において、樹状突起はTi(CO)又はTi(CNO)であり、また枝状突起は(TiAl)(CNO)であることが必要である。上記の組成を有することによって樹状突起や枝状突起の先端部が針状や棒状の鋭角突起とな。また、本願発明における樹枝形状を有した結合膜の樹状突起のLA値(μm)は、0.2≦LA≦1.5、であることが好ましい。LA値が0.2μm以上であることにより、樹状突起に連なる枝状突起を多数形成することに好都合となり、α型酸化アルミニウム膜との密着性向上に有効である。また、LA値が1.5μm以下であることにより、α型酸化アルミニウム膜の結晶粒子の粗大化を回避することに好適となり、高硬度、高密度で優れた皮膜を得ることができる。 In the bonding film of the coated tool of the present invention, the dendrite is required to be Ti (CO) or Ti (CNO), and the branch protrusion is required to be (TiAl) (CNO). That Do tip of dendrites or branched projections acicular or rod-like sharp projections by having the above composition. Further, the LA value (μm) of the dendrite of the binding membrane having a dendritic shape in the present invention is preferably 0.2 ≦ LA ≦ 1.5. When the LA value is 0.2 μm or more, it is convenient to form a large number of branch protrusions connected to the dendrite, and it is effective for improving the adhesion with the α-type aluminum oxide film. Further, when the LA value is 1.5 μm or less, it is suitable for avoiding the coarsening of the crystal grains of the α-type aluminum oxide film, and an excellent film with high hardness and high density can be obtained.

本願発明における樹状突起の長さLA値と、枝状突起の長さLB値は、次のように測定した。図1、2にLA値を求める時の模式図を示す。図1、2の様に、樹状突起の成長基点P1から樹状突起の先端P2までを結んだ中心線を描き、この距離をLA値とした。ここで樹状突起の成長基点P1は、樹状突起と下地の膜や基体とが接した点P3、P4を結んだ線の中間点とする。次に、図3にLB値を求める時の模式図を示す。図3の様に、樹状突起と枝状突起との接点P5、P6を結んだ線の中間点である枝状突起の成長基点P7を求め、このP7と枝状突起の先端P8とを結んだ線を樹状突起の中心線と交わるまで延長させ、この交点P9を求めた。このP9と枝状突起先端P8との距離をLB値とした。上記の測定方法により、各試料毎に任意に選んだ10本の樹状突起を対象にしてLA値(μm)を測定した。そして、0.2≦LA≦1.5の範囲内であるかどうかを確認した。また、LA値を測定した樹状突起を対象に、枝状突起のLB値(nm)を測定した。そして、5≦LB≦200の範囲内であるかどうかを確認した。   The dendrite length LA value and the branch-like length LB value in the present invention were measured as follows. 1 and 2 are schematic diagrams for obtaining the LA value. As shown in FIGS. 1 and 2, a center line connecting the dendrite growth base point P1 to the dendrite tip P2 was drawn, and this distance was defined as the LA value. Here, the growth base point P1 of the dendrite is an intermediate point of a line connecting the points P3 and P4 where the dendrite is in contact with the underlying film or substrate. Next, FIG. 3 shows a schematic diagram for obtaining the LB value. As shown in FIG. 3, the growth base point P7 of the branch projection, which is the midpoint of the line connecting the contact points P5 and P6 of the dendrite and the branch projection, is obtained, and this P7 is connected to the tip P8 of the branch projection. The ellipse was extended until it intersected the center line of the dendrite, and this intersection point P9 was obtained. The distance between this P9 and the branch projection tip P8 was taken as the LB value. The LA value (μm) was measured for 10 dendrites arbitrarily selected for each sample by the above measurement method. And it was confirmed whether it was in the range of 0.2 <= LA <= 1.5. Moreover, the LB value (nm) of the branch-like process was measured for the dendrite whose LA value was measured. And it was confirmed whether it was in the range of 5 <= LB <= 200.

本願発明の結合膜は、化学蒸着法(以下、CVD法と記す。)により成膜することができる。結合膜の成膜条件を制御することにより、表面形状が樹状突起とこれに連なる枝状突起とからなる樹枝形状を得る。また、LA値、LB値を制御して、枝状突起の格子縞とα型酸化アルミニウム膜の格子縞との界面が透過電子顕微鏡の観察により連続した格子縞となるようにする。
先ず始めに、CVD法においてキャリアーガスであるH2ガスと結合膜の原料ガスであるTiCl4ガス、CH4ガス、N2ガスとCOガスを成膜容器内に流し、Ti(CNO)の結合膜と針状、棒状の突起形状を有した樹状突起を形成する。針状、棒状の突起形状やLA値は、CH4ガス、COガス流量、成膜温度や成膜圧力によって制御する。
次に、成膜ガスであるキャリアーガス以外の原料ガスを止め、成膜容器内圧力を高圧にし樹状突起表面に、枝状突起を形成するための起点を形成する。枝状突起の起点を形成するガスは、TiCl4ガス、N2ガス、COガスとH2キャリアーガスに、C量を多く含んだガスを使用する。C量を多く含んだガスとは、CH4ガスの代わりに、例えば組成はCxH(2x+2)のガス、但しx≧2、やCH3CH2CNを使用することができる。CH3CH2CNガスはCH4ガスと比べC量が多く、Ti(CNO)の樹状突起表面に、枝状突起の起点を複数形成することができる。
次に、この起点から先端が鋭角形状の枝状突起を形成するために、AlCl3ガスを追加する。また、TiCl4ガス、CH3CH2CNガスとN2ガスを徐々に少なくしてゆき、一方、COガスを徐々に多くしてゆくことで先端が鋭角形状となる枝状突起を形成することができる。この枝状突起の組成は(TiAl)(CNO)である。そして、Ti(CNO)の樹状突起と、これに連なる枝状突起の(TiAl)(CNO)が成長する。また、LB値はガス流量、成膜温度や成膜時間によって制御することができる。その後、原料ガスにCO2とCOガスの混合ガスを加え、(TiAl)(CNO)の表面を強酸化状態にする。
次に、TiCl4ガス、CH3CH2CNガスとN2ガスを止め、α型酸化アルミニウム膜を形成する。このとき、(TiAl)(CNO)膜は強酸化状態であることから、α型酸化アルミニウム膜と格子縞が連続したエピタキシャル成長が可能となる。
The bonding film of the present invention can be formed by chemical vapor deposition (hereinafter referred to as CVD). By controlling the film forming conditions of the binding film, a dendritic shape whose surface shape is composed of dendrites and branching protrusions connected to the dendrites is obtained. Further, the LA value and the LB value are controlled so that the interface between the lattice stripes of the branch-like projections and the lattice stripes of the α-type aluminum oxide film becomes a continuous lattice stripe by observation with a transmission electron microscope.
First, H2 gas, which is a carrier gas, and TiCl4 gas, CH4 gas, N2 gas, and CO gas, which are raw material gases for the bonding film, are flowed into the film formation container in the CVD method, and the Ti (CNO) bonding film and the needle-like film A dendrite having a rod-like projection shape is formed. The needle-like and rod-like protrusion shapes and the LA value are controlled by CH4 gas, CO gas flow rate, film formation temperature and film formation pressure.
Next, the source gas other than the carrier gas, which is a film forming gas, is stopped, the pressure inside the film forming container is increased, and a starting point for forming the branch protrusions is formed on the surface of the dendrite protrusions. As the gas forming the starting point of the branch projections, a gas containing a large amount of C is used as TiCl4 gas, N2 gas, CO gas and H2 carrier gas. As the gas containing a large amount of C, for example, a gas having a composition of CxH (2x + 2), where x ≧ 2, or CH3CH2CN can be used instead of CH4 gas. The CH3CH2CN gas has a larger amount of C than the CH4 gas, and a plurality of branch protrusions can be formed on the surface of the dendrite of Ti (CNO).
Next, AlCl 3 gas is added in order to form a branch-like projection having an acute-angled tip from the starting point. In addition, branching protrusions having sharp edges can be formed by gradually reducing TiCl4 gas, CH3CH2CN gas, and N2 gas while gradually increasing CO gas. The composition of the branch protrusions is (TiAl) (CNO). Then, Ti (CNO) dendrite and branching (TiAl) (CNO) which is continuous to this grow. The LB value can be controlled by the gas flow rate, the film formation temperature, and the film formation time. Thereafter, a mixed gas of CO2 and CO gas is added to the raw material gas to bring the (TiAl) (CNO) surface into a strong oxidation state.
Next, the TiCl4 gas, CH3CH2CN gas and N2 gas are stopped to form an α-type aluminum oxide film. At this time, since the (TiAl) (CNO) film is in a strongly oxidized state, epitaxial growth in which the α-type aluminum oxide film and the lattice stripes are continuous is possible.

本願発明の被覆工具は、皮膜にW、Co等の不可避の不純物を含んでいても良い。これはCVD法の場合では成膜温度が高いことから皮膜中に基体成分であるWやCoを含有するためである。また、3%以下のB、Hf、Cr等を含有していても良く、これは皮膜の原料であるZrに微量のHfが含まれることや、更に、3%以下のB、Hf、Crの添加により、結晶粒径を制御することができるためである。またα型酸化アルミニウムは、必ずしも最外層である必要はない。この上層に、4a、5a、6a族元素の窒化物、炭窒化物、炭窒酸化物、酸化物を被覆することができる。   The coated tool of the present invention may contain inevitable impurities such as W and Co in the coating. This is because, in the case of the CVD method, since the film forming temperature is high, the base material contains W and Co in the film. Further, it may contain 3% or less of B, Hf, Cr, etc. This is because a small amount of Hf is contained in Zr which is a raw material of the film, and further, 3% or less of B, Hf, Cr. This is because the crystal grain size can be controlled by the addition. Further, the α-type aluminum oxide is not necessarily the outermost layer. This upper layer can be coated with nitrides, carbonitrides, carbonitrides and oxides of group 4a, 5a and 6a elements.

(実施例1)
質量%で、Co:7%、Cr:0.6%、Zr:2.2%、Ta:3.3%、Nb:0.2%、残WC及び不可避不純物からなる超硬合金製基体を、CVD成膜装置内にセットした。基体は切削工具用インサート、工具形状はCNMG120408を使用した。基体表面に1.5μm厚さのTiN膜を形成した。成膜条件は、H2キャリアーガス、TiCl4ガスとN2ガスとを用い、920℃、120Torrであった。次に、7μm厚さのTi(CN)膜を形成した。成膜条件は、H2キャリアーガス、TiCl4ガスとCH3CNガスとを原料ガスに用い、850℃、80Torrであった。次に、結合膜としてTi(CNO)膜を形成した。Ti(CNO)膜の表面には針状、棒状の突起形状を有する樹状突起を形成した。成膜条件は、H2キャリヤーガス、TiCl4ガス、CH4ガス、N2ガスとCOガスを用い、1000℃、80Torrであった。所定膜厚を形成した後、一旦、H2キャリアーガス以外の原料ガスを流すのをやめ、成膜装置内を1000℃に保持したまま、圧力を500Torrにした。次に、TiCl4ガス、N2ガス、COガス、H2キャリアーガス、CH3CH2CNガスを使用して、樹状突起表面に枝状突起を形成するための起点を形成した。続いてAl金属小片を詰め350℃に保温した小筒中にH2ガスを流量300ml/分とHClガス80ml/分とを流すことにより発生させたAlCl3ガスを追加して流した。また、TiCl4ガス、CH3CH2CNガスとN2ガスを徐々に少なくし、一方、COガスを徐々に多くすることで(TiAl)(CNO)の枝状突起を複数形成した。その後、原料ガスにCO2とCOの混合ガスを追加し、(TiAl)(CNO)を1000℃と100Torrで形成するとともに、(TiAl)(CNO)表面を強酸化状態にした。次に、CO2ガスを徐々に多くし、TiCl4ガス、CH3CH2CNガスとN2ガスを止めた。その後、5μm厚さのα型酸化アルミニウム膜を形成した。成膜条件は、H2キャリアーガス、AlCl3ガス、COガス、CO2ガスとH2Sガスとを用い、1000℃、50Torrであった。また、1μm厚さのTi(CN)膜を形成した。成膜には、H2キャリアーガス、TiCl4ガス、CH4ガスとN2ガスを用いた。更に、1.5μm厚さのTiN膜形成し、本発明例1を作製した。成膜には、H2キャリアーガスとTiCl4ガスとN2ガスを使用した。
Example 1
A cemented carbide substrate comprising, in mass%, Co: 7%, Cr: 0.6%, Zr: 2.2%, Ta: 3.3%, Nb: 0.2%, residual WC and inevitable impurities. And set in a CVD film forming apparatus. The base was a cutting tool insert, and the tool shape was CNMG120408. A TiN film having a thickness of 1.5 μm was formed on the surface of the substrate. The film formation conditions were 920 ° C. and 120 Torr using H 2 carrier gas, TiCl 4 gas and N 2 gas. Next, a Ti (CN) film having a thickness of 7 μm was formed. The film forming conditions were 850 ° C. and 80 Torr using H 2 carrier gas, TiCl 4 gas and CH 3 CN gas as source gases. Next, a Ti (CNO) film was formed as a coupling film. Dendrites having needle-like and rod-like projection shapes were formed on the surface of the Ti (CNO) film. Film formation conditions were 1000 ° C. and 80 Torr using H 2 carrier gas, TiCl 4 gas, CH 4 gas, N 2 gas and CO gas. After forming the predetermined film thickness, the flow of the source gas other than the H2 carrier gas was once stopped, and the pressure was set to 500 Torr while the inside of the film forming apparatus was kept at 1000 ° C. Next, using TiCl4 gas, N2 gas, CO gas, H2 carrier gas, and CH3CH2CN gas, a starting point for forming branch protrusions on the dendrite surface was formed. Subsequently, AlCl 3 gas generated by flowing H 2 gas at a flow rate of 300 ml / min and HCl gas 80 ml / min in a small tube filled with Al metal pieces and kept at 350 ° C. was added and flowed. Further, TiCl4 gas, CH3CH2CN gas, and N2 gas were gradually reduced, while CO gas was gradually increased to form a plurality of (TiAl) (CNO) branch protrusions. Thereafter, a mixed gas of CO2 and CO was added to the source gas to form (TiAl) (CNO) at 1000 ° C. and 100 Torr, and the (TiAl) (CNO) surface was brought into a strongly oxidized state. Next, CO2 gas was gradually increased, and TiCl4 gas, CH3CH2CN gas, and N2 gas were stopped. Thereafter, an α-type aluminum oxide film having a thickness of 5 μm was formed. The film forming conditions were H 2 carrier gas, AlCl 3 gas, CO gas, CO 2 gas and H 2 S gas, and 1000 ° C. and 50 Torr. A 1 μm thick Ti (CN) film was formed. For film formation, H2 carrier gas, TiCl4 gas, CH4 gas and N2 gas were used. Further, a TiN film having a thickness of 1.5 μm was formed to produce Inventive Example 1. For film formation, H2 carrier gas, TiCl4 gas and N2 gas were used.

一方、結合膜が樹枝状形状であることの効果を明らかにするため比較例4を作製した。比較例4は、結合膜の形成において樹状突起の形成工程は施したが、枝状突起の形成工程は行わなかった。即ち、比較例4は、本発明例1と同様の成膜条件をもちいて結合膜の針状や棒状の突起形状のTi(CNO)を形成した後、(TiAl)(CNO)を形成することなく、α型酸化アルミニウム膜、Ti(CN)膜、TiN膜を形成した。 On the other hand, Comparative Example 4 was prepared in order to clarify the effect of the binding membrane having a dendritic shape. In Comparative Example 4, the dendrite formation step was performed in the formation of the binding film, but the branch projection formation step was not performed. That is, in Comparative Example 4, Ti (CNO) having a needle-like or rod- like projection shape of the binding film is formed using the same film formation conditions as in Invention Example 1, and then (TiAl) (CNO) is formed. Instead, an α-type aluminum oxide film, a Ti (CN) film, and a TiN film were formed.

本発明例1、比較例4の皮膜断面を日本電子製JEM−2010F型の電界放射型透過電子顕微鏡(以下、TEMと記す。)により加速電圧200kVの条件で観察した。図4は本発明例1の皮膜構成の模式図を示している。基体1から表面側に向かって、TiN膜2、Ti(CN)膜3、結合膜4、α型酸化アルミニウム膜5、Ti(CN)膜6、TiN膜7である。図5は、図4における結合膜4の観察写真であり、倍率200k倍で観察したTEM像である。また図6は、図5における樹状突起8の先端拡大図であり、倍率1600k倍で観察したTEM像である。図5、図6より、結合膜4とα型酸化アルミニウム膜5との界面における結合膜の表面形状が樹状突起8と、これに連なる枝状突起9とからなる樹枝形状を有していることがわかった。図7、8、9は、夫々図6における分析スポット1、2、3の極微電子回折像である。図7より分析スポット1はα型酸化アルミニウムの結晶構造であり、図8、9より、分析スポット2、3は面心立方構造であることがわかった。図10、図11は、図6におけるスポット4、5を倍率4000k倍で観察したTEM像である。図10、図11より、枝状突起とα型酸化アルミニウム膜との界面は、透過電子顕微鏡の観察により連続した格子縞を有することがわかった。一方、図12は、比較例4の結合膜4を倍率200k倍で観察したTEM像である。また図13は、図12における樹状突起8の先端拡大図であり、倍率1600k倍で観察したTEM像である。図12、図13より、比較例4の結合膜は針形状をした樹状突起はあるが、この樹状突起とこれに連なる枝状突起とからなる樹枝形状は観察されなかった。   The film cross sections of Invention Example 1 and Comparative Example 4 were observed under the condition of an acceleration voltage of 200 kV using a JEM-2010F type field emission transmission electron microscope (hereinafter referred to as TEM) manufactured by JEOL. FIG. 4 shows a schematic diagram of the film configuration of Example 1 of the present invention. From the substrate 1 toward the surface side, there are a TiN film 2, a Ti (CN) film 3, a bonding film 4, an α-type aluminum oxide film 5, a Ti (CN) film 6, and a TiN film 7. FIG. 5 is an observation photograph of the binding film 4 in FIG. 4, which is a TEM image observed at a magnification of 200 k. FIG. 6 is an enlarged view of the tip of the dendrite 8 in FIG. 5, which is a TEM image observed at a magnification of 1600 k. 5 and 6, the surface shape of the binding film at the interface between the binding film 4 and the α-type aluminum oxide film 5 has a dendritic shape including a dendrite 8 and a branch-like projection 9 connected to the dendrite 8. I understood it. 7, 8 and 9 are micro electron diffraction images of the analysis spots 1, 2 and 3 in FIG. 6, respectively. 7 that the analysis spot 1 has an α-type aluminum oxide crystal structure, and FIGS. 8 and 9 show that the analysis spots 2 and 3 have a face-centered cubic structure. 10 and 11 are TEM images obtained by observing spots 4 and 5 in FIG. 6 at a magnification of 4000 k. 10 and 11, it was found that the interface between the branch protrusions and the α-type aluminum oxide film has continuous lattice fringes by observation with a transmission electron microscope. On the other hand, FIG. 12 is a TEM image obtained by observing the binding film 4 of Comparative Example 4 at a magnification of 200 k. FIG. 13 is an enlarged view of the tip of the dendrite 8 in FIG. 12, which is a TEM image observed at a magnification of 1600 k. From FIG. 12 and FIG. 13, the binding film of Comparative Example 4 has a needle-like dendrite, but a dendrite shape consisting of this dendrite and a branch-like projection connected thereto was not observed.

本発明例1から3、比較例4のLA値μm、LB値nmの評価を行った。本発明例1は、測定対象にした10本の樹状突起のLA値μmは全て、0.2≦LA≦1.5の範囲内であり、また、測定対象にした樹状突起に連なる複数の枝状突起のLB値nmは全て、5≦LB≦200の範囲内であった。次に、LA値の影響効果を明らかにするため準備した本発明例2、3の評価を行った。本発明例2、3は、本発明例1と同じ基体と皮膜構成であり、本発明例2は、樹状突起となるTi(CNO)の成膜時間を本発明例1の0.2倍に、本発明例3は、成膜時間を3倍にした。その後、本発明例1と同様に枝状突起の形成工程を施し、次にα型酸化アルミニウム膜、Ti(CN)膜とTiN膜を成膜した。本発明例2のLA値は、成膜時間を反映して、最大値のものでも0.1μm程度と短いものであり、本発明例3は、最小値のものでも1.6μm程度と長いものであった。本発明例2、3における枝状突起とα型酸化アルミニウム膜との界面も、透過電子顕微鏡の観察により連続した格子縞を有することを確認した。   Inventive Examples 1 to 3 and Comparative Example 4 were evaluated for the LA value μm and LB value nm. In Example 1 of the present invention, the LA values μm of 10 dendrites measured are all in the range of 0.2 ≦ LA ≦ 1.5, and a plurality of dendrites connected to the dendrites measured The LB values nm of the branch projections were all in the range of 5 ≦ LB ≦ 200. Next, the inventive examples 2 and 3 prepared for clarifying the effect of the LA value were evaluated. Inventive Examples 2 and 3 have the same substrate and coating structure as Inventive Example 1, and Inventive Example 2 has a film formation time of Ti (CNO) that becomes dendrites 0.2 times that of Inventive Example 1. Furthermore, in Invention Example 3, the film formation time was tripled. Thereafter, branching protrusions were formed in the same manner as in Invention Example 1, and then an α-type aluminum oxide film, a Ti (CN) film, and a TiN film were formed. The LA value of Example 2 of the present invention reflects the film formation time, and the maximum value is as short as about 0.1 μm, and Example 3 of the present invention is as long as about 1.6 μm even if the minimum value. there were. It was confirmed that the interface between the branch-like projections and the α-type aluminum oxide film in Invention Examples 2 and 3 also had continuous lattice fringes by observation with a transmission electron microscope.

実施例2
本発明例1から3、比較例4を次の切削試験条件で評価した。切削加工は直径160mm、長さ600mmの丸棒材を連続加工し、工具刃先の酸化アルミニウム膜が剥離した時を工具寿命と判定した。刃先は倍率100倍の光学顕微鏡で観察した。
試験条件
被削材:FCD800
加工方法:長手方向連続切削
工具形状:CNMG120408
切削速度:150m/分
送り量:0.40mm/回転
切込み量:3.0mm
切削液:湿式加工
Example 2
Invention Examples 1 to 3 and Comparative Example 4 were evaluated under the following cutting test conditions. In the cutting process, a round bar having a diameter of 160 mm and a length of 600 mm was continuously processed, and when the aluminum oxide film on the tool edge was peeled off, the tool life was determined. The cutting edge was observed with an optical microscope having a magnification of 100 times.
Test conditions Work material: FCD800
Machining method: Longitudinal continuous cutting Tool shape: CNMG120408
Cutting speed: 150 m / min Feed amount: 0.40 mm / rotation Cutting depth: 3.0 mm
Cutting fluid: wet machining

本発明例1から3は、夫々工具寿命が16分、12分、8分であった。これに対し、比較例4は4分であったことから、本発明例は比較例に対して工具寿命が2倍以上長く優れていた。これは、本発明例のLB値が5≦LB≦200を満たし、結合膜の表面形状が樹状突起と、これに連なる枝状突起とからなる樹枝形状を有していることから、酸化アルミニウム膜への突起が強く食い込み、アンカー効果が最大となって皮膜の密着性が優れていためである。また枝状突起とα型酸化アルミニウム膜との界面は、連続した格子縞を有していることから、エピタキシャル成長により結晶サイズでも格子間の密着性が最大となっているためである。上記によって、切削時に酸化アルミニウム膜の密着性が高くなり、結晶粒の脱落も無く優れた工具寿命が得られた。
本発明例1から3を比較すると、LA値が0.2≦LA≦1を満たす本発明例1は、本発明例2と比較して、工具寿命が1.5倍以上長く優れていた。これは、本発明例1の樹枝形状、特にLA値が十分な大きさを持ち、酸化アルミニウム膜へのアンカー効果が高く、密着性が優れていたためである。また、本発明例1は本発明例3と比較して、工具寿命が2倍以上長く優れていた。これは、本発明例1の酸化アルミニウム膜の結晶粒が粗大化することなく、結晶粒の脱落も無かったためである。比較例4は、4分間連続切削した時に酸化アルミニウム膜が剥離し工具寿命に至った。これは、比較例4の結合膜は針状や棒状の突起であったものの樹枝形状を有していないため、酸化アルミニウムの密着性が劣ったためである。
Inventive Examples 1 to 3 had tool lifes of 16 minutes, 12 minutes, and 8 minutes, respectively. On the other hand, since the comparative example 4 was 4 minutes, the example of this invention was excellent in the tool life 2 times or more with respect to the comparative example. This is because the LB value of the example of the present invention satisfies 5 ≦ LB ≦ 200, and the surface shape of the binding film has a dendritic shape composed of a dendritic protrusion and a branching protrusion connected to the dendritic protrusion. projections to the membrane bite strong anchoring effect is due to excellent adhesion of the film becomes the maximum. This is because the interface between the branch-like projections and the α-type aluminum oxide film has continuous lattice stripes, so that the adhesion between the lattices is maximized even in the crystal size by epitaxial growth. By the above, the adhesiveness of the aluminum oxide film became high at the time of cutting, and an excellent tool life was obtained without crystal grains falling off.
When Invention Examples 1 to 3 were compared, Invention Example 1 satisfying the LA value of 0.2 ≦ LA ≦ 1 was superior to Invention Example 2 in that the tool life was 1.5 times longer. This is because the dendritic shape of Example 1 of the present invention, in particular, the LA value was sufficiently large, the anchor effect to the aluminum oxide film was high, and the adhesion was excellent. In addition, the inventive example 1 was superior to the inventive example 3 in that the tool life was more than twice as long. This is because the crystal grains of the aluminum oxide film of Invention Example 1 did not become coarse and the crystal grains did not fall off. In Comparative Example 4, the aluminum oxide film peeled off when cutting continuously for 4 minutes, and the tool life was reached. This is because the bonding film of Comparative Example 4 was a needle-like or rod-like protrusion but did not have a dendritic shape, and therefore the adhesion of aluminum oxide was inferior.

図1は、枝状突起模式図を示す。FIG. 1 shows a schematic diagram of a branch-like projection. 図2は、枝状突起模式図を示す。FIG. 2 shows a schematic diagram of a branch-like projection. 図3は、枝状突起模式図を示す。FIG. 3 shows a schematic diagram of a branch-like projection. 図4は、本発明例1の皮膜構成の模式図を示す。FIG. 4 is a schematic diagram of the film configuration of Example 1 of the present invention. 図5は、図4の拡大図であり皮膜断面の観察写真を示す。FIG. 5 is an enlarged view of FIG. 4 and shows an observation photograph of the film cross section. 図6は、図5の拡大図であり皮膜断面の観察写真を示す。FIG. 6 is an enlarged view of FIG. 5 and shows an observation photograph of the film cross section. 図7は、図6の分析スポット1の極微電子回折像を示す。FIG. 7 shows a microelectron diffraction image of the analysis spot 1 of FIG. 図8は、図6の分析スポット2の極微電子回折像を示す。FIG. 8 shows a micro electron diffraction image of the analysis spot 2 of FIG. 図9は、図6の分析スポット3の極微電子回折像を示す。FIG. 9 shows a microelectron diffraction image of the analysis spot 3 of FIG. 図10は、図6のスポット4の拡大図であり皮膜断面の観察写真を示す。FIG. 10 is an enlarged view of the spot 4 of FIG. 6 and shows an observation photograph of the film cross section. 図11は、図6のスポット5の拡大図であり皮膜断面の観察写真を示す。FIG. 11 is an enlarged view of the spot 5 in FIG. 6 and shows an observation photograph of the film cross section. 図12は、比較例4の皮膜断面の観察写真を示す。FIG. 12 shows an observation photograph of the cross section of the film of Comparative Example 4. 図13は、図12の拡大図であり皮膜断面の観察写真を示す。FIG. 13 is an enlarged view of FIG. 12 and shows an observation photograph of the film cross section.

符号の説明Explanation of symbols

1:基体
2:TiN膜
3:Ti(CN)膜
4:結合膜
5:α型酸化アルミニウム膜
6:Ti(CN)膜
7:TiN膜
8:樹状突起
9:枝状突起
P1:樹状突起の成長基点
P2:樹状突起の先端
P3:樹状突起と下地膜との接点
P4:樹状突起と下地膜との接点
P5:樹状突起と枝状突起との接点
P6:樹状突起と枝状突起との接点
P7:枝状突起の成長基点
P8:枝状突起の先端
P9:P7とP8とを結んだ線と樹状突起中心線との交点
1: Substrate 2: TiN film 3: Ti (CN) film 4: Bonding film 5: α-type aluminum oxide film 6: Ti (CN) film 7: TiN film 8: Dendritic protrusion 9: Branched protrusion P1: Dendritic Growth point of protrusion P2: Tip of dendrite P3: Contact point between dendrite and base film P4: Contact point between dendrite and base film P5: Contact point between dendrite and branch P6: Dendrite P7: Branch projection growth base point P8: Branch projection tip P9: Intersection of the line connecting P7 and P8 and the dendrite center line

Claims (2)

基体表面に周期律表4a、5a、6a族金属から選択される元素の炭化物、窒化物、炭窒化物、酸化物、炭酸化物、窒酸化物及び炭窒酸化物のいずれか1種の単層皮膜又は2種以上の多層皮膜が形成され、該皮膜の上層に結合膜を介してα型酸化アルミニウム膜が形成されている被覆工具において、
該結合膜と該α型酸化アルミニウム膜との界面における該結合膜の表面形状が樹状突起とこれに連なる枝状突起とからなる樹枝形状を有し、該枝状突起の長さ(nm)をLBとしたとき、5≦LB≦200、であり、該枝状突起の格子縞と該α型酸化アルミニウム膜の格子縞との界面は透過電子顕微鏡の観察により連続した格子縞を有してエピタキシャル成長しており、
該結合膜の該樹状突起はTi(CO)又はTi(CNO)であり、該枝状突起は(TiAl)(CNO)であることを特徴とする被覆工具。
Single layer of any one of carbides, nitrides, carbonitrides, oxides, carbonates, nitrides and carbonitrides of the elements selected from the metals in the periodic table 4a, 5a, and 6a on the substrate surface In a coated tool in which a film or two or more kinds of multilayer films are formed, and an α-type aluminum oxide film is formed on the upper layer of the film via a bonding film,
The surface shape of the binding film at the interface between the binding film and the α-type aluminum oxide film has a dendritic shape composed of dendrites and branching protrusions connected thereto, and the length (nm) of the branching protrusions. the when the LB, 5 ≦ LB ≦ 200, an interface between the plaid plaid and the α-type aluminum oxide film of the branches like protrusions and closed to epitaxially grow a continuous lattice fringes by observation of a transmission electron microscope And
Coated tools dendritic projections of the coupling film is Ti (CO) or Ti (CNO), the branches like projections, characterized in (TiAl) (CNO) der Rukoto.
請求項1記載の被覆工具において、該枝状突起(TiAl)(CNO)の表面は強酸化状態にされており、該樹状突起の長さ(μm)をLAとしたとき、0.2≦LA≦1.5、であることを特徴とする被覆工具。 The coated tool according to claim 1, wherein the surface of the branch protrusion (TiAl) (CNO) is in a strongly oxidized state, and when the length (μm) of the dendrite is LA, 0.2 ≦ A coated tool, wherein LA ≦ 1.5.
JP2008009958A 2008-01-21 2008-01-21 Coated tool Active JP5303732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009958A JP5303732B2 (en) 2008-01-21 2008-01-21 Coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009958A JP5303732B2 (en) 2008-01-21 2008-01-21 Coated tool

Publications (2)

Publication Number Publication Date
JP2009166216A JP2009166216A (en) 2009-07-30
JP5303732B2 true JP5303732B2 (en) 2013-10-02

Family

ID=40967990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009958A Active JP5303732B2 (en) 2008-01-21 2008-01-21 Coated tool

Country Status (1)

Country Link
JP (1) JP5303732B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517966B2 (en) 2018-01-29 2022-12-06 Kyocera Corporation Coated tool, and cutting tool comprising same
US11534835B2 (en) 2018-01-29 2022-12-27 Kyocera Corporation Coated tool and cutting tool including same
US11541468B2 (en) 2018-01-29 2023-01-03 Kyocera Corporation Coated tool and cutting tool including same
US11911829B2 (en) 2018-11-29 2024-02-27 Kyocera Corporation Coated tool and cutting tool including same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317722B2 (en) * 2009-01-28 2013-10-16 京セラ株式会社 Surface coated cutting tool
JP5995082B2 (en) * 2012-12-27 2016-09-21 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
EP3635157B1 (en) * 2017-06-07 2022-06-01 Sandvik Intellectual Property AB Coated cutting tool
DE112018003209T5 (en) 2017-06-21 2020-03-19 Kyocera Corporation Coated tool, cutting tool and manufacturing process of a machined product
WO2021020366A1 (en) 2019-07-29 2021-02-04 京セラ株式会社 Coated tool, and cutting tool comprising same
US20220250161A1 (en) * 2019-07-29 2022-08-11 Kyocera Corporation Coated tool and cutting tool including the same
EP4005708A4 (en) * 2019-07-29 2022-11-30 Kyocera Corporation Coated tool, and cutting tool comprising same
CN114173967A (en) * 2019-07-29 2022-03-11 京瓷株式会社 Cover tool and cutting tool provided with same
WO2021205644A1 (en) 2020-04-10 2021-10-14 住友電工ハードメタル株式会社 Cutting tool
US11207736B2 (en) 2020-04-10 2021-12-28 Sumitomo Electric Hardmetal Corp. Cutting tool
CN113905842A (en) 2020-04-10 2022-01-07 住友电工硬质合金株式会社 Cutting tool
WO2024095655A1 (en) * 2022-11-04 2024-05-10 京セラ株式会社 Coated tool and cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3901477B2 (en) * 2001-08-21 2007-04-04 日立ツール株式会社 Aluminum oxide coated tool
JP3818961B2 (en) * 2002-12-17 2006-09-06 日立ツール株式会社 Aluminum oxide coated tools
JP4713137B2 (en) * 2004-11-29 2011-06-29 京セラ株式会社 Surface covering member and cutting tool
JP4711714B2 (en) * 2005-03-30 2011-06-29 京セラ株式会社 Surface coated cutting tool
WO2007122859A1 (en) * 2006-03-28 2007-11-01 Kyocera Corporation Cutting tool, method for producing same and cutting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517966B2 (en) 2018-01-29 2022-12-06 Kyocera Corporation Coated tool, and cutting tool comprising same
US11534835B2 (en) 2018-01-29 2022-12-27 Kyocera Corporation Coated tool and cutting tool including same
US11541468B2 (en) 2018-01-29 2023-01-03 Kyocera Corporation Coated tool and cutting tool including same
US11911829B2 (en) 2018-11-29 2024-02-27 Kyocera Corporation Coated tool and cutting tool including same

Also Published As

Publication number Publication date
JP2009166216A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5303732B2 (en) Coated tool
JP4711714B2 (en) Surface coated cutting tool
JP5111600B2 (en) Surface covering member and cutting tool
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
WO2005011902A1 (en) Diamond film coated tool and process for producing the same
JP5333418B2 (en) Manufacturing method of hard coating tool
JP6608937B2 (en) Coated tool
JP2003340610A (en) Cutting tool insert
JP6044861B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6344601B2 (en) Hard coating, cutting tool, and manufacturing method of hard coating
WO2013081047A1 (en) Coated tool
JP5383259B2 (en) Cutting tools
JP3768136B2 (en) Coated tool
JP7035296B2 (en) Surface coating cutting tool and its manufacturing method
JP2012144766A (en) Coated member
JP2004216488A (en) Surface coated cutting tool
JP6996064B2 (en) Surface coating cutting tool and its manufacturing method
JP2012071370A (en) Diamond coated cutting tool
JP6331503B2 (en) Coated cutting tool and cutting method of Ni-base superalloy
JP4831717B2 (en) Coated tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP2004243494A (en) Surface coated cutting tool
JP4480090B2 (en) Coated tool
WO2011007848A1 (en) Hard film-coated tool and manufacturing method for the same
JP2974285B2 (en) Manufacturing method of coated carbide tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5303732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350