JP5301803B2 - Damping device adjustment method, damping device, and building floor structure - Google Patents

Damping device adjustment method, damping device, and building floor structure Download PDF

Info

Publication number
JP5301803B2
JP5301803B2 JP2007256508A JP2007256508A JP5301803B2 JP 5301803 B2 JP5301803 B2 JP 5301803B2 JP 2007256508 A JP2007256508 A JP 2007256508A JP 2007256508 A JP2007256508 A JP 2007256508A JP 5301803 B2 JP5301803 B2 JP 5301803B2
Authority
JP
Japan
Prior art keywords
damping device
tmd
floor
viscoelastic body
natural frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007256508A
Other languages
Japanese (ja)
Other versions
JP2009084885A (en
Inventor
竜太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2007256508A priority Critical patent/JP5301803B2/en
Publication of JP2009084885A publication Critical patent/JP2009084885A/en
Application granted granted Critical
Publication of JP5301803B2 publication Critical patent/JP5301803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Floor Finish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration control device-adjusting method which facilitates adjustment of a natural frequency of a vibration control device when it is mounted on a slab of a building construction, and to provide the vibration control device and a building floor structure. <P>SOLUTION: A TMD (tuned mass damper) 100 or the vibration control device has a viscoelastic body 104 which is directly or indirectly mounted on an upper surface or a lower surface of the floor slab 16, and a steel plate 102 mounted on the viscoelastic body 104. Then, the natural frequency of the TMD 100 is matched with the natural frequency of the floor slab 16 by changing a size of the viscoelastic body 104 and changing a mounting area of the same. Thus, only by cutting the viscoelastic body 104, for instance, synchronization between the natural frequency of the TMD 100 and the natural frequency of the floor slab 16 is achieved, and therefore preparation of a single type of the viscoelastic body 104 and a single type of the steel plate 102 is sufficient, which leads to good utilization efficiency. Further, only by changing the size of the viscoelastic body 104, the natural frequency of the TMD 100 can be adjusted, which facilitates mounting of the TMD. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、建築構造体の振動を制御する制振装置、制振装置調整方法、及び建築床構造に関する。   The present invention relates to a vibration damping device that controls vibration of a building structure, a vibration damping device adjustment method, and a building floor structure.

集合住宅等の建築構造体において、上階で物を床に落としたり、人が運動するなどしてスラブが振動すると、下階で床衝撃音が発生して問題となる。床衝撃音を低減する構造躯体の対策として、床スラブの厚みを増加させること、梁を追加補強すること、制振装置を設置することなどが挙げられる。しかし、床スラブの厚み増加は、建物全体の荷重が増加し、その荷重を支えるために柱、梁などの構造断面をさらに大きくしなければならないので、建築コストが増大する。また、梁の追加補強は、下階の天井高が確保できなくなってしまう問題がある。このため、床スラブに制振装置を設置することで、床衝撃音を低減することが望ましい。   In an architectural structure such as an apartment house, if a slab vibrates by dropping an object on the upper floor or a person moving, a floor impact sound is generated on the lower floor, which becomes a problem. Measures for structural enclosures that reduce floor impact noise include increasing the thickness of the floor slab, adding additional beams, and installing damping devices. However, an increase in the thickness of the floor slab increases the load of the entire building, and the structural cost of columns, beams, etc. must be further increased to support the load, thus increasing the construction cost. Further, the additional reinforcement of the beams has a problem that the ceiling height of the lower floor cannot be secured. For this reason, it is desirable to reduce floor impact sound by installing a vibration damping device on the floor slab.

制振装置の一例として、TMD(Tuned Mass Damper)が挙げられる。TMDは、振動を制御したい建築構造体に対して、バネ材を介して錘としての質量を設置したものである。TMDの固有振動数をスラブの固有振動数に合せて調整することにより、建築構造体の振動時に質量が揺れて、振動を低減するようになっている(例えば、特許文献1参照)。しかし、特許文献1の振動装置は、スラブへの取付け時に、スラブの固有振動数に合わせてTMDの固有振動数を調整する方法について開示されていない。
特開平3−260245
An example of a vibration damping device is TMD (Tuned Mass Damper). TMD installs the mass as a weight through a spring material with respect to the building structure which wants to control a vibration. By adjusting the natural frequency of TMD in accordance with the natural frequency of the slab, the mass is shaken during vibration of the building structure to reduce the vibration (for example, see Patent Document 1). However, the vibration device disclosed in Patent Document 1 does not disclose a method of adjusting the natural frequency of TMD in accordance with the natural frequency of the slab when attached to the slab.
JP-A-3-260245

本発明は、建築構造体のスラブに制振装置を取付けるときに、制振装置の固有振動数の調整が容易にできる制振装置調整方法、制振装置、及び建築床構造を得ることを目的とする。   An object of the present invention is to obtain a vibration damping device adjustment method, a vibration damping device, and a building floor structure that can easily adjust the natural frequency of the vibration damping device when the vibration damping device is attached to a slab of a building structure. And

本発明の請求項1に係る制振装置調整方法は、建築構造体のスラブの上面又は下面に直接的に取付けられ粘弾性部材と、前記スラブとは隙間を空けて前記粘弾性部材に取付けられ錘部材と、を有する制振装置の固有振動数を調整する制振装置調整方法において、前記粘弾性部材を切断して該粘弾性部材の大きさを変更し、前記制振装置の固有振動数を前記スラブの固有振動数に合わせることを特徴としている。 Vibration damping device adjustment method according to claim 1 of the present invention, the attachment and the viscoelastic member on the upper surface or the lower surface of the slab of the building structure that is directly attachable to said viscoelastic member with a gap from said slab a weight member that is, in the vibration damping apparatus adjustment method of adjusting the natural frequency of the vibration damping device having to change the size of the viscoelastic member by cutting the viscoelastic member, inherent of the damping device The frequency is matched with the natural frequency of the slab.

建築構造体の上階において、物を床に落としたり、人が運動するなどしてスラブが固有振動数で振動すると、下階で床衝撃音が発生して問題となる。この床衝撃音を低減するために、スラブに制振装置が設けられる。制振装置は、建築構造体のスラブの上面又は下面に直接的に取付けられ粘弾性部材と、スラブとは隙間を空けて粘弾性部材に取付けられ錘部材と、で構成されている。ここで、振動特性が異なるスラブに合わせて複数種類の制振装置を用意することは、制振装置の生産及び流通の観点から効率が悪い。 If the slab vibrates at the natural frequency by dropping an object on the floor or moving a person on the upper floor of the building structure, a floor impact sound is generated on the lower floor, which becomes a problem. In order to reduce the floor impact sound, a vibration damping device is provided in the slab. Vibration damping device includes a viscoelastic member that is attached directly to the upper or lower surface of the slab of the building structure, are in a weight member that is attached to the viscoelastic member, constituting a gap in the slab. Here, preparing a plurality of types of damping devices according to slabs having different vibration characteristics is inefficient from the viewpoint of production and distribution of the damping devices.

しかし、本発明では、制振装置の粘弾性部材を切断して当該粘弾性部材の大きさを変えることで、制振装置の固有振動数をスラブの固有振動数に合わせる(同調させる)ことができる。このため、粘弾性部材と錘部材は、1種類用意しておけばよい。また、粘弾性部材を切断して当該粘弾性部材の大きさを変えるだけで制振装置の固有振動数を調整できるので、施工が容易となる。なお、本発明における粘弾性部材の「大きさ」とは、粘弾性部材の面積、高さを含む概念である。 However, in the present invention, in the this changing the size of the viscoelastic member by cutting a viscoelastic member of the damping device, the natural frequency of the vibration damping device match the natural frequency of the slab (tuning) the Can do. For this reason, one type of viscoelastic member and weight member may be prepared. Moreover, since the natural frequency of the vibration damping device can be adjusted simply by cutting the viscoelastic member and changing the size of the viscoelastic member, the construction becomes easy. The “size” of the viscoelastic member in the present invention is a concept including the area and height of the viscoelastic member.

本発明の請求項に係る制振装置は、請求項1に記載の制振装置調整方法で固有振動数が調整されたことを特徴としている。上記構成によれば、簡単にチューニングできる制振装置が得られる。 The vibration damping device according to claim 2 of the present invention is characterized in that the natural frequency is adjusted by the vibration damping device adjustment method according to claim 1 . According to the above configuration, a vibration damping device that can be easily tuned is obtained.

本発明の請求項に係る制振装置は、前記粘弾性部材が、前記錘部材の中央に一つ配置されていることを特徴としている。スラブは、鉄筋コンクリート造であることが多く、表面に凹凸があるため、複数個の粘弾性部材をスラブ上に取付けるよりも、一つの粘弾性部材を錘部材の中央に配置した方が、スラブ面に対する錘部材の傾きを抑え、鉄板が傾いてバランスが崩れることを防ぐことができる。また、鉄板の重心位置のずれを抑えることで、鉄板がロッキング動するモードが発生することも抑えることができる。 The vibration damping device according to claim 3 of the present invention is characterized in that one viscoelastic member is arranged at the center of the weight member. Since slabs are often reinforced concrete and have irregularities on the surface, it is better to place one viscoelastic member in the center of the weight member than to install multiple viscoelastic members on the slab surface. It is possible to prevent the weight member from being tilted and to prevent the iron plate from being tilted and being out of balance. Moreover, it can also suppress that the mode which an iron plate rocks by generating by suppressing the shift | offset | difference of the gravity center position of an iron plate.

本発明の請求項に係る制振装置は、前記錘部材が、正方形の鉄板であり、且つ該鉄板の一辺の長さをL、該鉄板の厚さをt、該鉄板の質量をMとして、0<L<400mm、0<t<40mm、及び0<M<50kgであることを特徴としている。上記構成によれば、制振装置を集合住宅の一般的な乾式二重床内に設置するときに、錘部材が乾式二重床の脚部に当らず、且つ乾式二重床に接触せず、さらに、搬送が容易となる。 In the vibration damping device according to claim 4 of the present invention, the weight member is a square iron plate, the length of one side of the iron plate is L, the thickness of the iron plate is t, and the mass of the iron plate is M. 0 <L <400 mm, 0 <t <40 mm, and 0 <M <50 kg. According to the above configuration, when the vibration damping device is installed in a general dry double floor of an apartment house, the weight member does not hit the legs of the dry double floor and does not contact the dry double floor. Furthermore, conveyance becomes easy.

本発明の請求項に係る建築床構造は、請求項から請求項のいずれか1項に記載の制振装置と、前記制振装置が、振動モードの略腹部に配置されたスラブと、を有することを特徴としている。上記構成によれば、建築床構造において、振動モードの略腹部に制振装置が配置されるので、スラブの振動による床衝撃音を効果的に低減することができる。 According to a fifth aspect of the present invention, there is provided a building floor structure comprising: the vibration damping device according to any one of the second to fourth aspects; and a slab in which the vibration damping device is disposed in a substantially abdomen in a vibration mode. It is characterized by having. According to the above configuration, in the building floor structure, the vibration damping device is disposed in the substantially abdomen of the vibration mode, so that the floor impact sound due to the vibration of the slab can be effectively reduced.

本発明の請求項に係る建築床構造は、複数の制振装置が、前記スラブの異なる振動モードの略腹部に配置されることを特徴としている。上記構成によれば、一つのスラブの異なる振動モードの振動ピークを、それぞれの振動モードの略腹部に配置した制振装置によって抑えることができる。なお、本発明(請求項1〜請求項)において、「取付ける」とは、接着剤や両面テープによる接着のみならず、単に載せている場合を含む概念である。
The building floor structure according to claim 6 of the present invention is characterized in that a plurality of vibration control devices are arranged in substantially the abdomen of different vibration modes of the slab. According to the said structure, the vibration peak of the different vibration mode of one slab can be suppressed with the damping device arrange | positioned in the substantially abdominal part of each vibration mode. In the present invention (Claims 1 to 6 ), “attach” is a concept including not only adhesion by an adhesive or a double-sided tape but also a case where it is simply placed.

本発明は、上記構成としたので、建築構造体のスラブに制振装置を取付けるときに、制振装置の固有振動数の調整が容易となる。   Since this invention set it as the said structure, when attaching a damping device to the slab of a building structure, adjustment of the natural frequency of a damping device becomes easy.

本発明の制振装置調整方法、制振装置、及び建築床構造の第1実施形態を図面に基づき説明する。図1(a)及び図1(b)は、建築構造体としての建物10の断面図及び平面図を示している。建物10は、複数の柱12と複数の梁14で架構が構築されている。   A vibration damping device adjusting method, a vibration damping device, and a building floor structure according to a first embodiment of the present invention will be described with reference to the drawings. Fig.1 (a) and FIG.1 (b) have shown sectional drawing and the top view of the building 10 as a building structure. The building 10 is constructed with a plurality of columns 12 and a plurality of beams 14.

ここで、梁14の間に構築された上階24の床スラブ16と、下階26の床スラブ17を例にとって、制振装置を説明する。図1(a)及び図2(a)に示すように、床スラブ16上には、乾式二重床18が設けられている。乾式二重床18は、パーチクルボード及びフローリングからなる床部20と、支柱の一端に受け部が形成され他端にゴム足が取付けられて、床部20を支持する支持部22とで構成されている。   Here, the vibration damping device will be described by taking the floor slab 16 of the upper floor 24 and the floor slab 17 of the lower floor 26 constructed between the beams 14 as an example. As shown in FIG. 1A and FIG. 2A, a dry double floor 18 is provided on the floor slab 16. The dry double floor 18 includes a floor portion 20 made of a particle board and flooring, and a support portion 22 that supports the floor portion 20 with a receiving portion formed at one end of a support column and a rubber foot attached to the other end. Yes.

床スラブ16の上面で、乾式二重床18の下側には、制振装置としてのTMD(Tuned Mass Damper)100が設けられている。なお、図1(b)に示すTMD100の取付け位置は、例として、床スラブ16が一次モードの振動をするときの腹位置としているが、実際には、床スラブ16の振動モードを解析して、該振動モードの腹位置に取付けることになる。なお、床スラブ16とTMD100により、建物10の床構造50が形成されている。   A TMD (Tuned Mass Damper) 100 as a vibration damping device is provided on the upper surface of the floor slab 16 and below the dry double floor 18. In addition, although the attachment position of TMD100 shown in FIG.1 (b) is taken as the antinode position when the floor slab 16 vibrates in a primary mode as an example, actually, the vibration mode of the floor slab 16 is analyzed. , It is attached to the antinode position of the vibration mode. The floor structure 50 of the building 10 is formed by the floor slab 16 and the TMD 100.

図2(b)及び図2(c)に示すように、TMD100は、錘部材としての鉄板102と粘弾性体104で構成されている。鉄板102は、一例として、平面視における一辺の長さL1=L2=300mmの正方形状で、厚さt=25mm、質量18kgのものを用いている。   As shown in FIGS. 2B and 2C, the TMD 100 includes an iron plate 102 and a viscoelastic body 104 as weight members. As an example, the iron plate 102 has a square shape with a side length L1 = L2 = 300 mm in plan view, a thickness t = 25 mm, and a mass of 18 kg.

ここで、鉄板102の大きさの選定について説明する。TMD100を乾式二重床18の下側に設置するとき、TMD100を構成する鉄板102及び粘弾性体104の大きさが、乾式二重床18の懐(床下空間)に収まる大きさでなくてはならない。例えば、集合住宅の一般的な乾式二重床18としては、床スラブ16から乾式二重床18の天端までの高さが、110〜130mm程度に抑えられている。   Here, selection of the size of the iron plate 102 will be described. When the TMD 100 is installed on the lower side of the dry double floor 18, the size of the iron plate 102 and the viscoelastic body 104 constituting the TMD 100 must be large enough to fit in the pocket (under-floor space) of the dry double floor 18. Don't be. For example, as a general dry double floor 18 of an apartment house, the height from the floor slab 16 to the top of the dry double floor 18 is suppressed to about 110 to 130 mm.

乾式二重床18は、少なくとも厚さ20mm程度のパーチクルボードと厚さ12mm程度のフローリングが必要となるため、高さ110mmの場合には110−(20+12)=78mmの床下空間しかとれなくなる。さらに、床暖房を行うときには、床暖房の高さ12mm程度と、捨て張り合板12mmの高さが必要となるため、78−24=54mm程度しか床下空間が取れない。このため、乾式二重床18に接触しないように若干のクリアランスを確保すると、鉄板の厚さtは40mmより小さくする必要がある。また、乾式二重床18の支持部22の配置ピッチは一般的に450mm又は600mmであり、支持部22を避けてTMD100を設置するためには、鉄板102の一辺の長さL1、L2が400mmより小さいことが好ましい。   The dry double floor 18 requires at least a particle board having a thickness of about 20 mm and a flooring having a thickness of about 12 mm. Therefore, when the height is 110 mm, only a floor space of 110− (20 + 12) = 78 mm can be obtained. Furthermore, when floor heating is performed, the floor heating height of about 12 mm and the height of the discarded plywood 12 mm are required, so that only a space of about 78-24 = 54 mm can be obtained. For this reason, if some clearance is ensured so that it may not contact with the dry-type double floor 18, the thickness t of an iron plate needs to be made smaller than 40 mm. The arrangement pitch of the support portions 22 of the dry double floor 18 is generally 450 mm or 600 mm. In order to install the TMD 100 while avoiding the support portions 22, the lengths L1 and L2 on one side of the iron plate 102 are 400 mm. Preferably it is smaller.

一方、鉄板102の質量(M)に着目すると、施工性を重視する場合には、できるだけ軽いものを用いた方がよく、床スラブ16上でピンポイントの制振性能を発揮させる場合には、重いもの(50kgまで)を用いた方がよい。このため、鉄板102の質量Mは、0<M<50kgの範囲で選定される必要がある。なお、施工性及び制振性能を合わせて考慮すると、鉄板102の質量Mは、10kg<M<20kgが好ましい。1人の人間が繰り返し無理なく運搬できる重さは20kg程度までである。   On the other hand, paying attention to the mass (M) of the iron plate 102, when emphasizing workability, it is better to use a material that is as light as possible, and when exhibiting pinpoint damping performance on the floor slab 16, It is better to use a heavy one (up to 50kg). For this reason, the mass M of the iron plate 102 needs to be selected in the range of 0 <M <50 kg. In consideration of the workability and the vibration damping performance, the mass M of the iron plate 102 is preferably 10 kg <M <20 kg. The weight that one person can repeatedly carry without hesitation is about 20 kg.

以上の条件により、図3に示すように、本発明における鉄板102は、一辺の長さをL、厚さをt、質量をMとして、0<L<400mm、0<t<40mm、及び0<M<50kgの範囲で選定される。なお、前述のように、本実施形態における鉄板102は、L1=L2=300mm、厚さt=25mmの大きさであり、上記範囲の略中心付近の条件となっている。   Under the above conditions, as shown in FIG. 3, the iron plate 102 in the present invention has a length of one side of L, a thickness of t, and a mass of M, 0 <L <400 mm, 0 <t <40 mm, and 0 <M <50 kg is selected. As described above, the iron plate 102 in the present embodiment has a size of L1 = L2 = 300 mm and a thickness t = 25 mm, which is a condition near the approximate center of the above range.

一方、TMD100における粘弾性体104は、平面視における一辺の長さL3及びL4が、60mm以上300mm以下の略正方形状で、厚さが8mmの発泡ポリウレタンで構成されており、鉄板102の平面視における面積よりも小さい面積としている。また、粘弾性体104は、平面視において、鉄板102の中央に一つ配置されており、鉄板102及び床スラブ16に接着剤等により固定されている。なお、粘弾性体104の一辺があまり小さいと、鉄板102が傾いてバランスが悪い。   On the other hand, the viscoelastic body 104 in the TMD 100 is formed of a foamed polyurethane having a length of one side L3 and L4 of approximately 60 mm to 300 mm and a thickness of 8 mm in plan view. The area is smaller than the area. Further, one viscoelastic body 104 is disposed at the center of the iron plate 102 in plan view, and is fixed to the iron plate 102 and the floor slab 16 with an adhesive or the like. If one side of the viscoelastic body 104 is too small, the iron plate 102 is inclined and the balance is poor.

なお、粘弾性体104は、TMD100の固有振動数が、床スラブ16の振動数の63Hz帯域(45〜90Hz)に合うように、予め圧縮・引張方向のバネ定数(剛性)が調整されている。粘弾性体104のバネ定数は、発泡倍率(=発泡後の体積/発泡前の体積)が異なる他の発泡材(例えば、発泡ポリプロピレン)に交換することや、粘弾性体104の大きさ(厚さ、又は平面視における面積)を変更することにより調整される。   Note that the spring constant (rigidity) in the compression / tension direction of the viscoelastic body 104 is adjusted in advance so that the natural frequency of the TMD 100 matches the 63 Hz band (45 to 90 Hz) of the frequency of the floor slab 16. . The spring constant of the viscoelastic body 104 is changed to another foaming material (for example, foamed polypropylene) having a different expansion ratio (= volume after foaming / volume before foaming) or the size (thickness of the viscoelastic body 104). Or the area in plan view).

ここで、TMD100の固有振動数及び減衰定数と、粘弾性体104の材質、大きさとの関係について説明する。固有振動数及び減衰定数の測定は、図2(b)に示すように、床スラブ16上に加速度センサ23を設置し、鉄板102上に加速度センサ25を設置して、バングマシン(図示せず)で床スラブ16を加振させたときの加速度センサ23に対する加速度センサ25の出力の割合(増幅倍率)を求め、その卓越振動数から固有振動数を、また、増幅倍率から減衰定数を判断する方法により行った。   Here, the relationship between the natural frequency and damping constant of the TMD 100 and the material and size of the viscoelastic body 104 will be described. As shown in FIG. 2 (b), the natural frequency and the damping constant are measured by installing an acceleration sensor 23 on the floor slab 16 and an acceleration sensor 25 on the iron plate 102. ), The ratio (amplification factor) of the output of the acceleration sensor 25 to the acceleration sensor 23 when the floor slab 16 is vibrated is obtained, and the natural frequency is determined from the dominant frequency, and the damping constant is determined from the amplification factor. By the method.

図4(a)は、粘弾性体104に発泡ポリウレタンを用いたときの1辺の長さと振動数(TMD100の固有振動数)の関係を示している。また、表1は、粘弾性体104に発泡ポリウレタンを用いたときの1辺の長さに対する振動数及び減衰定数の値を示している。図4(a)に示すように、TMD100は、粘弾性体104の1辺の長さ(X[mm])が長くなるほど、固有振動数が増加している。   FIG. 4A shows the relationship between the length of one side and the frequency (the natural frequency of TMD 100) when foamed polyurethane is used for the viscoelastic body 104. FIG. Table 1 shows the values of the frequency and damping constant with respect to the length of one side when foamed polyurethane is used for the viscoelastic body 104. As shown in FIG. 4A, the natural frequency of the TMD 100 increases as the length of one side (X [mm]) of the viscoelastic body 104 increases.

Figure 0005301803
Figure 0005301803

Figure 0005301803

図4(a)のグラフを近似式で表すと、(1)式のようになる。また、表1に示すように、粘弾性体104の1辺の長さが長くなるほど、減衰定数が増加している。これは、粘弾性体104が大きくなるほど減衰(減衰係数)が大きくなるためである。このように、粘弾性体104の大きさを変更することによって、TMD100の固有振動数を調整することができる。
Figure 0005301803

When the graph of FIG. 4A is expressed by an approximate expression, the expression (1) is obtained. Further, as shown in Table 1, the damping constant increases as the length of one side of the viscoelastic body 104 increases. This is because attenuation (attenuation coefficient) increases as the viscoelastic body 104 increases. Thus, the natural frequency of the TMD 100 can be adjusted by changing the size of the viscoelastic body 104.

一方、図4(b)に、粘弾性体104として、発泡ポリウレタンと発泡倍率が異なる発泡ポリプロピレンを用いたときの1辺の長さと振動数(TMD100の固有振動数)の関係を示す。また、表2に、粘弾性体104に発泡ポリプロピレンを用いたときの1辺の長さに対する振動数及び減衰定数の値を示す。なお、発泡ポリプロピレンの発泡倍率は50倍としており、厚さは10mmとしている。   On the other hand, FIG. 4B shows the relationship between the length of one side and the frequency (the natural frequency of TMD100) when a foamed polypropylene having a foaming ratio different from that of foamed polyurethane is used as the viscoelastic body 104. Table 2 shows the values of the frequency and damping constant with respect to the length of one side when foamed polypropylene is used for the viscoelastic body 104. The expansion ratio of the expanded polypropylene is 50 times, and the thickness is 10 mm.

Figure 0005301803

図4(b)に示すように、粘弾性体104として、発泡ポリウレタンと発泡倍率の異なる発泡ポリプロピレンを用いても、同様に、1辺の長さが長くなるほど、固有振動数が増加している。また、表2に示すように、粘弾性体104の1辺の長さが長くなるほど、減衰定数が増加している。このように、粘弾性体104に発泡材を用いるとき、発泡倍率が異なる発泡材を用いることで、TMD100の固有振動数を調整することができる。
Figure 0005301803

As shown in FIG. 4B, the natural frequency increases as the length of one side increases, even when foamed polypropylene having a different foaming ratio is used as the viscoelastic body 104. . Further, as shown in Table 2, the damping constant increases as the length of one side of the viscoelastic body 104 increases. Thus, when a foam material is used for the viscoelastic body 104, the natural frequency of the TMD 100 can be adjusted by using foam materials having different foaming ratios.

次に、本発明の第1実施形態の作用について説明する。図1(a)に示す建物10の上階24において、TMD100が設置されていないとき、物を床部20に落としたり、人が運動するなどして床スラブ16が特定の振動モード(固有振動数)で振動すると、下階26で床衝撃音が発生する。この床衝撃音は、床スラブ16の固有振動数が63Hz帯域(45〜90Hz)のときに、耳障りで不快な音となる。このため、63Hz帯域の振動数に合わせた固有振動数を有するTMD100を、床スラブ16上の振動モードの腹位置に設ける。振動モードの腹位置に設けられたTMD100は、粘弾性体104がバネ材として作用し、鉄板102が床スラブ16の振動に合わせて揺動することにより、床スラブ16の振動を低減する。   Next, the operation of the first embodiment of the present invention will be described. In the upper floor 24 of the building 10 shown in FIG. 1A, when the TMD 100 is not installed, the floor slab 16 is moved to a specific vibration mode (natural vibration) by dropping an object on the floor 20 or moving a person. Number), floor impact sound is generated on the lower floor 26. This floor impact sound becomes an unpleasant and unpleasant sound when the natural frequency of the floor slab 16 is in the 63 Hz band (45 to 90 Hz). For this reason, the TMD 100 having a natural frequency matched to the frequency in the 63 Hz band is provided on the antinode of the vibration mode on the floor slab 16. The TMD 100 provided in the antinode position of the vibration mode reduces the vibration of the floor slab 16 by the viscoelastic body 104 acting as a spring material and the iron plate 102 swinging in accordance with the vibration of the floor slab 16.

一方、建物10と異なる他の建物にTMD100を設置しようとした場合、他の建物の床スラブの振動モードが異なるため、TMD100の固有振動数を調整する必要がある。ここで、振動モードが異なるスラブに合わせて複数種類のTMD100を用意することは、TMD100の生産及び流通の観点から効率が悪い。しかし、本発明では、TMD100の粘弾性体104の大きさを変えること、例えば、図2(c)において、粘弾性体104を切断して、一辺の長さL3をL5に、L4をL6にして取付面積を変えることで、TMD100の固有振動数を床スラブ16の固有振動数に合わせる(同調させる)ことができる。このため、粘弾性体104と鉄板102は、1種類用意しておけばよく、振動モード(振動特性)が異なる他の床スラブにおいても、予め用意しておいた同じ発泡倍率の粘弾性体104を転用することができる。また、1種類のTMD100を転用することにより、生産や流通の費用を抑えることができ、利用効率が良い。   On the other hand, when the TMD 100 is to be installed in another building different from the building 10, the vibration mode of the floor slab of the other building is different, so that the natural frequency of the TMD 100 needs to be adjusted. Here, preparing a plurality of types of TMD 100 according to slabs having different vibration modes is inefficient from the viewpoint of production and distribution of TMD 100. However, in the present invention, the size of the viscoelastic body 104 of the TMD 100 is changed. For example, in FIG. 2C, the viscoelastic body 104 is cut so that the length L3 of one side is L5 and L4 is L6. By changing the mounting area, the natural frequency of the TMD 100 can be matched (tuned) to the natural frequency of the floor slab 16. For this reason, only one kind of viscoelastic body 104 and iron plate 102 may be prepared, and the viscoelastic body 104 having the same expansion ratio prepared in advance also in other floor slabs having different vibration modes (vibration characteristics). Can be diverted. In addition, by diverting one type of TMD 100, the cost of production and distribution can be suppressed, and the utilization efficiency is good.

さらに、一般的に振動の対策は、低減対象とする振動数が低いほど難しく費用がかかるのに対し、本発明のTMD100は、低振動数に対しては、粘弾性体104を切断して取付面積を小さくすることにより同調させるので、振動数が低いほうが粘弾性体104の取付面積が小さく、材料費を抑えることができる。また、本発明のTMD100は、粘弾性体104の大きさを変えるだけで固有振動数を調整できるので、施工が容易となる。   Furthermore, in general, countermeasures against vibration are more difficult and costly as the frequency to be reduced is lower, whereas the TMD 100 of the present invention cuts and attaches the viscoelastic body 104 to low frequencies. Since the tuning is achieved by reducing the area, the lower the frequency, the smaller the attachment area of the viscoelastic body 104, and the material cost can be suppressed. In addition, the TMD 100 of the present invention can adjust the natural frequency only by changing the size of the viscoelastic body 104, so that the construction becomes easy.

一方、本発明のTMD100は、粘弾性体104として、図4(a)又は図4(b)に示す発泡ポリウレタン、発泡ポリプロピレンといった発泡材を用いた場合に、異なる発泡倍率の粘弾性体104に鉄板102を取付けることで、TMD100の固有振動数を調整して、床スラブ16の固有振動数に合わせることができるので、施工が容易となる。また、本発明のTMD100は、粘弾性部体104が、鉄板102の中央に一つ配置されている。ここで、床スラブ16は、鉄筋コンクリート造であることが多く、表面に凹凸があるため、複数個の粘弾性体104を床スラブ16上に取付けるよりも、一つの粘弾性体104を鉄板102の中央に配置した方が、床スラブ16面に対する鉄板102の傾きを抑え、鉄板102が傾いてバランスが崩れることを防ぐことができる。また、鉄板102の重心位置のずれを抑えることで、鉄板102がロッキング動するモードが発生することも抑えることができる。   On the other hand, the TMD 100 of the present invention has a viscoelastic body 104 having a different expansion ratio when a foamed material such as foamed polyurethane or foamed polypropylene shown in FIG. 4 (a) or 4 (b) is used as the viscoelastic body 104. Since the natural frequency of the TMD 100 can be adjusted to match the natural frequency of the floor slab 16 by attaching the iron plate 102, the construction becomes easy. In the TMD 100 of the present invention, one viscoelastic body 104 is disposed at the center of the iron plate 102. Here, the floor slab 16 is often made of reinforced concrete and has irregularities on the surface, so that one viscoelastic body 104 is attached to the iron plate 102 rather than a plurality of viscoelastic bodies 104 mounted on the floor slab 16. The arrangement at the center can suppress the inclination of the iron plate 102 with respect to the floor slab 16 surface and prevent the iron plate 102 from being inclined to lose the balance. Further, by suppressing the shift of the center of gravity position of the iron plate 102, it is possible to suppress the occurrence of a mode in which the iron plate 102 rocks.

さらに、本発明のTMD100は、鉄板102について、一辺の長さをL、厚さをt、質量をMとして、0<L<400mm、0<t<40mm、及び0<M<50kgと特定したので、TMD100を集合住宅の一般的な乾式二重床18内に設置するときに、鉄板102が、乾式二重床18の支持部22に当らず、且つ乾式二重床18に接触せず、さらに、搬送が容易となる。   Further, the TMD 100 of the present invention specified 0 <L <400 mm, 0 <t <40 mm, and 0 <M <50 kg, assuming that the length of one side is L, the thickness is t, and the mass is M for the iron plate 102. Therefore, when the TMD 100 is installed in a general dry double floor 18 of an apartment house, the iron plate 102 does not hit the support portion 22 of the dry double floor 18 and does not contact the dry double floor 18. Furthermore, conveyance becomes easy.

ここで、TMD100の設置形態として、図2(a)及び図2(b)に示す設置形態の他に、図5(a)〜図5(c)に示す設置形態も可能である。図5(a)は、床スラブ16の下面に粘弾性体104の上面を接着固定し、さらに粘弾性体104の下面に鉄板102を接着固定して、TMD100を設置したものである。図5(b)は、底板32と、底板32の上面に所定の間隔をあけて2カ所立設された支柱34とで構成された高剛性の架台30を、図示しないアンカーで床スラブ16の下面に固定し、さらに底板32の上面にTMD100を設置したものである。つまり、図5(a)は、床スラブ16に直接的にTMD100を設置したものであり、図5(b)は、床スラブ16に間接的にTMD100を設置したものである。   Here, as the installation form of the TMD 100, in addition to the installation forms shown in FIGS. 2 (a) and 2 (b), the installation forms shown in FIGS. 5 (a) to 5 (c) are also possible. FIG. 5A shows the TMD 100 installed by bonding and fixing the upper surface of the viscoelastic body 104 to the lower surface of the floor slab 16 and further bonding and fixing the iron plate 102 to the lower surface of the viscoelastic body 104. FIG. 5B shows a high-rigidity gantry 30 composed of a bottom plate 32 and struts 34 provided at two positions on the upper surface of the bottom plate 32 with anchors (not shown) of the floor slab 16. The TMD 100 is installed on the upper surface of the bottom plate 32 and fixed to the lower surface. That is, FIG. 5A shows the TMD 100 installed directly on the floor slab 16, and FIG. 5B shows the TMD 100 installed indirectly on the floor slab 16.

竣工後の集合住宅などにTMDを設置する場合、下階の住民のために、上階の床仕上げを一部壊してTMD100を設置することは現実的ではない。ここで、図5(a)及び図5(b)に示すように、TMD100を床スラブ16の下側に設置することにより、実際に床衝撃音が問題となっている下階のみで施工を完結させて、床衝撃音を低減することができる。   When installing a TMD in an apartment complex after completion, it is not realistic to install the TMD 100 by partially destroying the floor finish of the upper floor for residents on the lower floor. Here, as shown in FIG. 5 (a) and FIG. 5 (b), the TMD 100 is installed on the lower side of the floor slab 16, so that the construction is performed only on the lower floor where the floor impact sound is actually a problem. When completed, floor impact noise can be reduced.

一方、図5(c)は、鉄板102と、前述の粘弾性体104と同じ材質の物を3等分した粘弾性体112とからなるTMD110を示している。ここで、図1のTMD100において、床スラブ16の振動における63Hz帯域よりも低い振動数帯域(例えば、31.5Hz帯域)の床衝撃音の低減を試みる場合には、粘弾性体104の取付面積を減少させて、バネ定数(剛性)を低下させる方法もある。   On the other hand, FIG. 5 (c) shows a TMD 110 including an iron plate 102 and a viscoelastic body 112 obtained by equally dividing the same material as the viscoelastic body 104. Here, in the TMD 100 of FIG. 1, when attempting to reduce floor impact sound in a frequency band (for example, 31.5 Hz band) lower than the 63 Hz band in the vibration of the floor slab 16, the mounting area of the viscoelastic body 104 There is also a method of reducing the spring constant (rigidity) by reducing the above.

しかし、粘弾性体104が1カ所に配置されているため、取付面積が小さくなり過ぎると、鉄板102の支持が不安定となり、所望の制振性能を得られない可能性がある。このため、図5(c)に示すように、粘弾性体112の取付面積を小さくするとともに、鉄板102の3カ所(複数箇所)に粘弾性体112を取付けることで、鉄板102の支持を安定させるとともに、63Hz帯域より低い振動数帯域の床衝撃音にも対応可能となる。その際、鉄板102がロッキング動するモードが生じないよう留意する必要がある。   However, since the viscoelastic body 104 is disposed at one location, if the mounting area becomes too small, the support of the iron plate 102 becomes unstable and the desired vibration damping performance may not be obtained. For this reason, as shown in FIG.5 (c), while reducing the attachment area of the viscoelastic body 112, the viscoelastic body 112 is attached to three places (plural places) of the iron plate 102, and the support of the iron plate 102 is stabilized. In addition, it is possible to deal with floor impact sound in a frequency band lower than the 63 Hz band. At that time, it is necessary to pay attention not to cause a mode in which the iron plate 102 rocks.

次に、本発明の制振装置調整方法、制振装置、及び建築床構造の第2実施形態を図面に基づき説明する。なお、前述した第1実施形態と基本的に同一のものには、前記第1実施形態と同一の符号を付与してその説明を省略する。   Next, a vibration damping device adjusting method, a vibration damping device, and a building floor structure according to a second embodiment of the present invention will be described with reference to the drawings. Note that the same reference numerals as those in the first embodiment are given to the same elements as those in the first embodiment described above, and the description thereof is omitted.

図6(b)に示すように、床スラブ16上に制振装置としてのTMD120が設置されている。TMD120は、前述の粘弾性体104(図2参照)と同様の材質からなり、平面視において鉄板102の面積と略等しい面積を有する粘弾性体122が取付けられた鉄板102と、粘弾性体122の下面及び床スラブ16の上面に接着され、鉄板102及び粘弾性体122を支持する支持部材124とで構成されている。また、床スラブ16とTMD120により、床構造60が形成されている。   As shown in FIG. 6B, a TMD 120 as a vibration damping device is installed on the floor slab 16. The TMD 120 is made of the same material as the above-described viscoelastic body 104 (see FIG. 2), the iron plate 102 to which the viscoelastic body 122 having an area substantially equal to the area of the iron plate 102 in plan view is attached, and the viscoelastic body 122. And a supporting member 124 that supports the iron plate 102 and the viscoelastic body 122. Further, a floor structure 60 is formed by the floor slab 16 and the TMD 120.

支持部材124は、粘弾性体122よりも硬質のものであり、鉄、樹脂(プラスチック)、木材(合板、パーチクルボード)などが用いられる。ここでは、支持部材124として、鉄を用いている。また、図6(a)に示すように、支持部材124は、平面視における一辺の長さL7、L8が、鉄板102の一辺の長さL1、L2よりも短くなっており、粘弾性体122の中央に1ヵ所配置されている。   The support member 124 is harder than the viscoelastic body 122, and iron, resin (plastic), wood (plywood, particle board), or the like is used. Here, iron is used as the support member 124. Further, as shown in FIG. 6A, the support member 124 has the lengths L7 and L8 of one side in plan view shorter than the lengths L1 and L2 of one side of the iron plate 102, and the viscoelastic body 122 is provided. One place is arranged in the center of the.

次に、本発明の第2実施形態の作用について説明する。図6(a)及び図6(b)に示すように、TMD120は、粘弾性体122と床スラブ16の間に、鉄板102を支持する支持部材124を有している。ここで、粘弾性体122に対する支持部材124の取付面積を変更することにより、鉄板102と支持部材124で挟まれる粘弾性体122の領域が増減し、粘弾性体122のバネ定数が変わる。これにより、TMD120の固有振動数を調整して、床スラブ16の固有振動数に合わせることができるので、粘弾性体122と鉄板102は、1種類用意しておけばよい。また、支持部材124の取付面積を変更するのみで床スラブ16の固有振動数に合わせることができるので、施工が容易となる。   Next, the operation of the second embodiment of the present invention will be described. As shown in FIGS. 6A and 6B, the TMD 120 includes a support member 124 that supports the iron plate 102 between the viscoelastic body 122 and the floor slab 16. Here, by changing the mounting area of the support member 124 with respect to the viscoelastic body 122, the region of the viscoelastic body 122 sandwiched between the iron plate 102 and the support member 124 increases and decreases, and the spring constant of the viscoelastic body 122 changes. As a result, the natural frequency of the TMD 120 can be adjusted to match the natural frequency of the floor slab 16, so one type of viscoelastic body 122 and iron plate 102 may be prepared. Moreover, since it can match with the natural frequency of the floor slab 16 only by changing the mounting area of the support member 124, construction becomes easy.

次に、本発明の制振装置調整方法、制振装置、及び建築床構造の第3実施形態を図面に基づき説明する。なお、前述した第1実施形態と基本的に同一のものには、前記第1実施形態と同一の符号を付与してその説明を省略する。   Next, a vibration damping device adjusting method, a vibration damping device, and a building floor structure according to a third embodiment of the present invention will be described with reference to the drawings. Note that the same reference numerals as those in the first embodiment are given to the same elements as those in the first embodiment described above, and the description thereof is omitted.

図7(a)は、複数の柱42と複数の梁44で構築され、床スラブ46が形成された建物40を平面視したものである。建物40の床スラブ46上には、仕切壁48で囲まれた居室49が設けられている。ここで、重量床衝撃音で問題となる63Hz帯域(45〜90Hz)を対象にして、居室49の振動を低減するために、まず、床スラブ46の振動モードの測定を行った。振動モードの測定は、居室49の床の複数箇所に加速度センサ(図示せず)を配置して、ランダム加振機(図示せず)で床を加振したときの振動を、該加速度センサで測定することによって行った。なお、加速度センサの配置は、縦横500mmの間隔とした。   FIG. 7A is a plan view of a building 40 constructed with a plurality of pillars 42 and a plurality of beams 44 and having a floor slab 46 formed thereon. On the floor slab 46 of the building 40, a living room 49 surrounded by a partition wall 48 is provided. Here, the vibration mode of the floor slab 46 was first measured in order to reduce the vibration of the living room 49 in the 63 Hz band (45 to 90 Hz) which is a problem with the heavy floor impact sound. The vibration mode is measured by arranging acceleration sensors (not shown) at a plurality of locations on the floor of the living room 49, and using the acceleration sensor to vibrate when the floor is vibrated with a random shaker (not shown). This was done by measuring. The acceleration sensor is arranged at intervals of 500 mm in length and width.

振動モードの測定の結果、図7(b)及び図7(c)に示すように、居室49の床には、振動数が50Hzと57Hzの2つの振動モードが存在することがわかった。図7(b)は、測定結果のうち、50Hzの振動モードを示しており、図7(c)は、57Hzの振動モードを示している。測定領域A1における50Hzの振動の振幅が最も大きい領域(振動モードの略腹部)がA2であり、57Hzの振動の振幅が最も大きい領域(振動モードの略腹部)がA3である。   As a result of the measurement of the vibration mode, it was found that there are two vibration modes having a frequency of 50 Hz and 57 Hz on the floor of the living room 49 as shown in FIGS. 7B and 7C. FIG. 7B shows the 50 Hz vibration mode of the measurement results, and FIG. 7C shows the 57 Hz vibration mode. In the measurement region A1, the region having the largest amplitude of vibration at 50 Hz (substantially abdomen in vibration mode) is A2, and the region having the largest amplitude of vibration at 57 Hz (substantially abdomen in vibration mode) is A3.

続いて、図7(d)に示すように、領域A2、A3に、固有振動数をそれぞれ略50Hz、略57Hzに調整した複数のTMD140、150を設置した。TMD140、150は、前述のTMD100(図1参照)と同様に鉄板102と粘弾性体104で構成されており、粘弾性体104の取付面積を変更することにより、固有振動数が調整されている。なお、複数のTMD140、150は、それぞれ僅かに固有振動数が異なっており、居室49の床に重いものを置いた場合などの荷重条件の変化によって床スラブ46の固有振動数がずれても、全体として制振効果が得られるようになっている(いわゆるロバスト性の向上)。本実施形態では、50Hzの振動モードの腹位置にTMD140を12台、57Hzの振動モードの腹位置にTMD150を6台設置している。   Subsequently, as shown in FIG. 7D, a plurality of TMDs 140 and 150 having natural frequencies adjusted to about 50 Hz and about 57 Hz, respectively, were installed in the regions A2 and A3. The TMDs 140 and 150 are composed of the iron plate 102 and the viscoelastic body 104 as in the above-described TMD 100 (see FIG. 1), and the natural frequency is adjusted by changing the mounting area of the viscoelastic body 104. . Note that the TMDs 140 and 150 have slightly different natural frequencies, and even if the natural frequency of the floor slab 46 is shifted due to a change in load conditions such as when a heavy object is placed on the floor of the living room 49, As a whole, a damping effect can be obtained (an improvement in so-called robustness). In the present embodiment, 12 TMDs 140 are installed at the antinodes in the vibration mode of 50 Hz, and six TMDs 150 are installed at the antinodes in the vibration mode of 57 Hz.

次に、本発明の第3実施形態の作用について説明する。図7(d)に示すTMD140、150を設置した床スラブ46の振動状態の測定を行った。なお、比較のために、TMD140、150を設置していない床スラブ46の振動状態の測定も行った。   Next, the operation of the third embodiment of the present invention will be described. The vibration state of the floor slab 46 provided with the TMDs 140 and 150 shown in FIG. 7 (d) was measured. For comparison, the vibration state of the floor slab 46 where the TMDs 140 and 150 are not installed was also measured.

振動状態の測定位置は、図7(a)に示すように、居室49の床の対角線M、Nの交点位置を測定位置S1とした。また、対角線M、N上で且つ居室49の四隅と測定位置S1を結んだ線分を2等分する位置を、測定位置S2、S4、S3、S5とした。振動状態の測定は、各測定位置S1〜S5に加速度センサ(図示せず)を設置し、各測定位置S1〜S5の近傍をバングマシンで加振したときの加速度センサの出力(加速度)を計測した。この測定結果を図8(a)〜図8(c)に示す。なお、測定位置S4、S5については、測定結果を省略する。   As the measurement position in the vibration state, as shown in FIG. 7A, the intersection position of the diagonal lines M and N of the floor of the living room 49 is set as the measurement position S1. In addition, the positions on the diagonal lines M and N and the line segment connecting the four corners of the living room 49 and the measurement position S1 are equally divided into measurement positions S2, S4, S3, and S5. For measurement of the vibration state, an acceleration sensor (not shown) is installed at each measurement position S1 to S5, and the output (acceleration) of the acceleration sensor when the vicinity of each measurement position S1 to S5 is vibrated with a bang machine is measured. did. The measurement results are shown in FIGS. 8 (a) to 8 (c). Note that the measurement results are omitted for the measurement positions S4 and S5.

図8(a)〜図8(c)は、測定位置S1、S2、S3における各振動数と加速度の関係を示している。いずれの測定位置も、TMD140、150が無い場合のグラフG2に対して、TMD140、150が設置された場合のグラフG1の方が、振動数が50Hz及び57Hzの加速度が低減されており、TMD140、150による床スラブ46の制振効果が得られていることが分かる。また、図7(d)に示すように、床スラブ46上に仕切壁48を設ける等の支持条件の変化によって、床スラブ46の振動モードの振動数が変化した場合でも、TMD140、150が僅かに異なる固有振動数で複数配置されているため、振動のピークを抑えることができる。   FIGS. 8A to 8C show the relationship between each frequency and acceleration at the measurement positions S1, S2, and S3. In any measurement position, the acceleration of the frequency 50 Hz and 57 Hz is reduced in the graph G1 when the TMDs 140 and 150 are installed compared to the graph G2 when the TMDs 140 and 150 are not provided. It can be seen that the vibration damping effect of the floor slab 46 by 150 is obtained. Further, as shown in FIG. 7D, even when the frequency of the vibration mode of the floor slab 46 is changed due to a change in support conditions such as the provision of a partition wall 48 on the floor slab 46, the TMDs 140 and 150 are slightly changed. Since a plurality of vibrations are arranged at different natural frequencies, vibration peaks can be suppressed.

なお、本発明は上記の実施形態に限定されない。鉄板102、粘弾性体104、支持部材124は、正方形だけでなく、多角形状であってもよい。粘弾性体104は、発泡材以外に、例えば、天然ゴムやクロロプレン系ゴムといった防振ゴムや、シリコーンゲルなどの高分子ゲルを用いてもよい。床スラブ16又は床スラブ46の振動モードの測定では、バングマシン以外に、ランダム加振機やインパクトハンマーを用いてもよい。   In addition, this invention is not limited to said embodiment. The iron plate 102, the viscoelastic body 104, and the support member 124 may be not only square but also polygonal. The viscoelastic body 104 may use, for example, a vibration-proof rubber such as natural rubber or chloroprene rubber, or a polymer gel such as silicone gel, in addition to the foam material. In the measurement of the vibration mode of the floor slab 16 or the floor slab 46, a random vibrator or impact hammer may be used in addition to the bung machine.

(a)本発明の第1実施形態に係る建物の断面図である。(b)本発明の第1実施形態に係る床スラブの平面図である。(A) It is sectional drawing of the building which concerns on 1st Embodiment of this invention. (B) It is a top view of the floor slab which concerns on 1st Embodiment of this invention. (a)本発明の第1実施形態に係るTMDの配置図である。(b)本発明の第1実施形態に係るTMDの断面図である。(c)本発明の第1実施形態に係るTMDの平面図である。(A) It is layout drawing of TMD which concerns on 1st Embodiment of this invention. (B) It is sectional drawing of TMD which concerns on 1st Embodiment of this invention. (C) It is a top view of TMD concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る鉄板の厚さ、一辺の長さ、及び重さの関係を示したグラフである。It is the graph which showed the thickness of the iron plate which concerns on 1st Embodiment of this invention, the length of one side, and the weight. (a)本発明の第1実施形態に係る粘弾性体(発泡ポリウレタン)の一辺の長さと振動数の関係を示したグラフである。(b)本発明の第1実施形態に係る粘弾性体の他の例として、発泡ポリウレタンを用いたときの一辺の長さと振動数の関係を示したグラフである。(A) It is the graph which showed the relationship between the length of one side and the frequency of the viscoelastic body (foaming polyurethane) which concerns on 1st Embodiment of this invention. (B) As another example of the viscoelastic body according to the first embodiment of the present invention, it is a graph showing the relationship between the length of one side and the frequency when foamed polyurethane is used. 本発明の第1実施形態に係るTMDの他の設置例を示した断面図及び平面図である。It is sectional drawing and the top view which showed the other example of installation of TMD which concerns on 1st Embodiment of this invention. (a)本発明の第2実施形態に係るTMDの平面図である。(b)本発明の第2実施形態に係るTMDの断面図である。(A) It is a top view of TMD concerning a 2nd embodiment of the present invention. (B) It is sectional drawing of TMD which concerns on 2nd Embodiment of this invention. (a)本発明の第3実施形態に係る床スラブの平面図である。(b)、(c)本発明の第3実施形態に係る床スラブの振動モードを示した模式図である。(d)本発明の第3実施形態に係るTMDの設置状態を示す平面図である。(A) It is a top view of the floor slab which concerns on 3rd Embodiment of this invention. (B), (c) It is the schematic diagram which showed the vibration mode of the floor slab which concerns on 3rd Embodiment of this invention. (D) It is a top view which shows the installation state of TMD which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るTMD設置の有無における各測定位置での床スラブの振動数と加速度の関係を示すグラフである。It is a graph which shows the relationship between the frequency and acceleration of a floor slab in each measurement position in the presence or absence of TMD installation which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

10 建物(建築構造体)
16 床スラブ(スラブ)
40 建物(建築構造体)
46 床スラブ(スラブ)
50 床構造(建築床構造)
60 床構造(建築床構造)
100 TMD(制振装置)
102 鉄板(錘部材)
104 粘弾性体(粘弾性部材)
110 TMD(制振装置)
112 粘弾性体(粘弾性部材)
120 TMD(制振装置)
122 粘弾性体(粘弾性部材)
124 支持部材(支持部材)
140 TMD(制振装置)
150 TMD(制振装置)
10 Building (Building structure)
16 Floor slab (slab)
40 Building (building structure)
46 Floor Slab (Slab)
50 Floor structure (building floor structure)
60 Floor structure (building floor structure)
100 TMD (damping device)
102 Iron plate (weight member)
104 Viscoelastic body (Viscoelastic member)
110 TMD (damping device)
112 Viscoelastic body (Viscoelastic member)
120 TMD (damping device)
122 Viscoelastic body (Viscoelastic member)
124 Support member (support member)
140 TMD (damping device)
150 TMD (damping device)

Claims (6)

建築構造体のスラブの上面又は下面に直接的に取付けられ粘弾性部材と、
前記スラブとは隙間を空けて前記粘弾性部材に取付けられ錘部材と、
を有する制振装置の固有振動数を調整する制振装置調整方法において、
前記粘弾性部材を切断して該粘弾性部材の大きさを変更し、前記制振装置の固有振動数を前記スラブの固有振動数に合わせることを特徴とする制振装置調整方法。
And the viscoelastic member that directly to attached to an upper surface or lower surface of the slab of the building structure,
A weight member that is attached to the viscoelastic member with a gap from said slab,
In the damping device adjustment method for adjusting the natural frequency of the damping device having
Vibration damping device adjusting method characterized in that said cutting the viscoelastic member to change the size of the viscoelastic member, matching the natural frequency of the damping device to the natural frequency of the slab.
請求項1に記載の制振装置調整方法で固有振動数が調整されたことを特徴とする制振装置。A vibration damping device, wherein the natural frequency is adjusted by the vibration damping device adjusting method according to claim 1. 前記粘弾性部材が、前記錘部材の中央に一つ配置されていることを特徴とする請求項2に記載の制振装置。The vibration damping device according to claim 2, wherein one viscoelastic member is disposed at a center of the weight member. 前記錘部材が、正方形の鉄板であり、且つ該鉄板の一辺の長さをL、該鉄板の厚さをt、該鉄板の質量をMとして、0<L<400mm、0<t<40mm、及び0<M<50kgであることを特徴とする請求項2又は請求項3に記載の制振装置。The weight member is a square iron plate, and the length of one side of the iron plate is L, the thickness of the iron plate is t, and the mass of the iron plate is M, 0 <L <400 mm, 0 <t <40 mm, The vibration damping device according to claim 2, wherein 0 <M <50 kg. 請求項2から請求項4のいずれか1項に記載の制振装置と、A vibration damping device according to any one of claims 2 to 4,
前記制振装置が、振動モードの略腹部に配置されたスラブと、The vibration damping device is a slab disposed substantially in the abdomen of the vibration mode;
を有することを特徴とする建築床構造。An architectural floor structure characterized by comprising:
複数の制振装置が、前記スラブの異なる振動モードの略腹部に配置されることを特徴とする請求項5に記載の建築床構造。The building floor structure according to claim 5, wherein a plurality of vibration control devices are arranged in abdominal portions of the vibration modes of the slab.
JP2007256508A 2007-09-28 2007-09-28 Damping device adjustment method, damping device, and building floor structure Active JP5301803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256508A JP5301803B2 (en) 2007-09-28 2007-09-28 Damping device adjustment method, damping device, and building floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256508A JP5301803B2 (en) 2007-09-28 2007-09-28 Damping device adjustment method, damping device, and building floor structure

Publications (2)

Publication Number Publication Date
JP2009084885A JP2009084885A (en) 2009-04-23
JP5301803B2 true JP5301803B2 (en) 2013-09-25

Family

ID=40658653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256508A Active JP5301803B2 (en) 2007-09-28 2007-09-28 Damping device adjustment method, damping device, and building floor structure

Country Status (1)

Country Link
JP (1) JP5301803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190090146A (en) * 2018-01-24 2019-08-01 연세대학교 산학협력단 Apparatus for reducing floor impact sound of low frequency band using acoustic meta materials structures and method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052572B2 (en) * 2012-04-24 2016-12-27 学校法人金沢工業大学 TMD device and structure for reducing heavyweight floor impact sound using the same
JP6029174B2 (en) * 2013-02-27 2016-11-24 ヤンマー株式会社 Anti-vibration structure for marine equipment and ship equipped with the same
JP2014162444A (en) * 2013-02-27 2014-09-08 Yanmar Co Ltd Vibration-proof material for marine apparatus and ship including the same
WO2014132779A1 (en) * 2013-02-27 2014-09-04 ヤンマー株式会社 Vibration-isolation material for marine equipment and ship provided with same, and vibration-isolation structure for marine equipment and ship provided with same
JP6029175B2 (en) * 2013-02-27 2016-11-24 ヤンマー株式会社 Ship
CN103510637B (en) * 2013-10-24 2015-11-18 上海电力学院 Three-dimensional low frequency variation rigidity mutative damp tuned mass damper
JP7401090B2 (en) * 2019-12-25 2023-12-19 株式会社竹中工務店 double floor structure
CN117266428B (en) * 2023-11-20 2024-02-06 西南石油大学 Assembled vibration reduction floor slab and assembling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683447B2 (en) * 1990-10-04 1997-11-26 株式会社神戸製鋼所 Soundproof floor structure
JP3755191B2 (en) * 1996-06-10 2006-03-15 Jfeスチール株式会社 Floor vibration attenuator and steel floor structure provided with the same
JP4806247B2 (en) * 2005-11-07 2011-11-02 トヨタホーム株式会社 Damping structure for buildings
JP4901220B2 (en) * 2006-01-16 2012-03-21 鹿島建設株式会社 Double structure of structure and construction method of double structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190090146A (en) * 2018-01-24 2019-08-01 연세대학교 산학협력단 Apparatus for reducing floor impact sound of low frequency band using acoustic meta materials structures and method thereof
KR102098194B1 (en) * 2018-01-24 2020-04-07 연세대학교 산학협력단 Apparatus for reducing floor impact sound of low frequency band using acoustic meta materials structures and method thereof

Also Published As

Publication number Publication date
JP2009084885A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5301803B2 (en) Damping device adjustment method, damping device, and building floor structure
JP6571343B2 (en) Double floor
JPH08319680A (en) Sound insulating device
JP4806253B2 (en) Floor structure
JP2002106088A (en) Wall structure in double floor
JP2009091859A (en) Floor supporting device and floor structure
JP4199561B2 (en) Double floor, partition wall and ceiling structure
JPH04309658A (en) Mobile floor structure
JP2003172019A (en) Floating interior-finishing structure of building
JP2009174120A (en) Ceiling structure, method of constructing ceiling structure, and building
JPS6033974A (en) Floor base construction method
JP7090296B2 (en) Soundproof ceiling structure
JP7122185B2 (en) floor structure
JP7201174B2 (en) Ceiling anti-vibration material and ceiling anti-vibration structure
JPH02272138A (en) Soundproof floor
JP4366492B2 (en) Ceiling structure
JPH08199779A (en) Soundproofing double floor
JP6928428B2 (en) Sound insulation floor structure
JP2007205152A (en) Sound insulating double-floor structure
JP2008019601A (en) Multimode damper
JP6754688B2 (en) Floor structure
JP2001182212A (en) Floor structure
JP2004132055A (en) Sound-proofing floor structure
JP2000352144A (en) Structure of sound insulating ceiling
JP2020002541A (en) Ceiling structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150