JP5300440B2 - Boiling water reactor - Google Patents

Boiling water reactor Download PDF

Info

Publication number
JP5300440B2
JP5300440B2 JP2008302427A JP2008302427A JP5300440B2 JP 5300440 B2 JP5300440 B2 JP 5300440B2 JP 2008302427 A JP2008302427 A JP 2008302427A JP 2008302427 A JP2008302427 A JP 2008302427A JP 5300440 B2 JP5300440 B2 JP 5300440B2
Authority
JP
Japan
Prior art keywords
core shroud
ring
low
water injection
injection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008302427A
Other languages
Japanese (ja)
Other versions
JP2010127753A (en
Inventor
基貴 斎藤
輝雄 伊藤
愉 佐藤
照久 横島
稔 橋之口
利勝 山口
英夫 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008302427A priority Critical patent/JP5300440B2/en
Publication of JP2010127753A publication Critical patent/JP2010127753A/en
Application granted granted Critical
Publication of JP5300440B2 publication Critical patent/JP5300440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は沸騰水型原子炉に係り、特に主蒸気管破断事故等の冷却材喪失事故時に炉心の再冠水を行うため、冷却材を炉心シュラウド内に導く低圧注水配管の炉心シュラウドへの取付構造を改良した沸騰水型原子炉に関する。   The present invention relates to a boiling water reactor, and in particular, a structure for mounting a low-pressure water injection pipe to a core shroud for guiding the coolant into the core shroud in order to reflood the core in the event of loss of coolant such as a main steam pipe breakage accident. The present invention relates to a boiling water reactor improved.

沸騰水型原子炉の低圧注水配管の一般的な構成を図4の概略縦断面図により説明する。この図4に示すように、沸騰水型原子炉は、原子炉圧力容器(以下「RPV」と略称する。)101の内側に所定の間隙を設けて、炉心(不図示)を囲繞する炉心シュラウド105を備えている。この炉心シュラウド105は、その上部にシュラウド上部胴105aを備えており、このシュラウド上部胴105aからRPV101に向って低圧注水配管100が配置されている。   A general configuration of the low-pressure water injection pipe of the boiling water reactor will be described with reference to the schematic longitudinal sectional view of FIG. As shown in FIG. 4, the boiling water reactor is a core shroud that surrounds a core (not shown) by providing a predetermined gap inside a reactor pressure vessel (hereinafter abbreviated as “RPV”) 101. 105. The core shroud 105 is provided with a shroud upper body 105 a at an upper portion thereof, and a low-pressure water injection pipe 100 is disposed from the shroud upper body 105 a toward the RPV 101.

低圧注水配管100は、原子炉圧力容器101と炉心シュラウド105のシュラウド上部胴105aとの間に水平に設置されており、主蒸気管破断事故等の冷却材喪失事故時に、炉心の再冠水を行うため、冷却材を炉心シュラウド105内に導く機能を有している。   The low-pressure water injection pipe 100 is installed horizontally between the reactor pressure vessel 101 and the shroud upper shell 105a of the core shroud 105, and re-floods the core in the event of loss of coolant such as a main steam pipe breakage accident. Therefore, it has a function of guiding the coolant into the core shroud 105.

原子炉運転時には、冷却水が、RPV101に接続された低圧注水ノズル102を通過した後、低圧注水配管100を通り、シュラウド上部胴105aを貫通して流れて炉心シュラウド105内に放出される。   During the operation of the nuclear reactor, the cooling water passes through the low-pressure water injection nozzle 102 connected to the RPV 101, passes through the low-pressure water injection pipe 100, passes through the shroud upper body 105 a, and is discharged into the core shroud 105.

低圧注水配管100は、RPV101と炉心シュラウド105との熱膨脹差、内圧による変位差等を吸収できるように、2箇所がスリップジョイントになっており、軸方向の伸縮が可能であるとともに、あらゆる方向への回転が自由に行える構成となっている。   The low-pressure water injection pipe 100 has two slip joints so that it can absorb the thermal expansion difference between the RPV 101 and the core shroud 105, the displacement difference due to the internal pressure, etc., and it can be expanded and contracted in the axial direction and in all directions. Can be freely rotated.

低圧注水配管100は主にオーステナイト系ステンレス鋼を材料として構成されるが、この材料は、引張り残留応力、腐食環境、材料(クロム欠乏層の形成)の3つの条件が成立すると、応力腐食割れ(Stress Corrosion Cracking)が発生して損傷することが想定される。この応力腐食割れ現象は、上記3つの条件のうち、1つでも除外されれば発生しにくくなることが知られている。   The low-pressure water injection pipe 100 is mainly composed of austenitic stainless steel, and this material is stress-corrosion cracked when three conditions of tensile residual stress, corrosive environment, and material (formation of chromium-deficient layer) are satisfied. It is assumed that stress corrosion cracking occurs and is damaged. This stress corrosion cracking phenomenon is known to be difficult to occur if even one of the above three conditions is excluded.

ここで、RPV101と炉心シュラウド105との間に水平に取付けられる低圧注水配管100のプラント建設時における標準的な取付け手順について、図4、図5及び図6を参照して説明する。   Here, the standard attachment procedure at the time of plant construction of the low-pressure water injection pipe 100 horizontally attached between the RPV 101 and the core shroud 105 will be described with reference to FIGS. 4, 5, and 6.

a)初めに、図4に示したRPV101に、低圧注水ノズル102及びRPV側フランジネック103が取り付けられる。   a) First, the low pressure water injection nozzle 102 and the RPV side flange neck 103 are attached to the RPV 101 shown in FIG.

b)次に、RPV101内に、図4に示すように炉心シュラウド105が搬入されて据え付けられる。このとき、炉心シュラウド105のシュラウド上部胴105aには、図5及び図6に示すように、RPV側フランジネック103と対向する方位及び高さに、低圧注水配管100を取り付ける穴105bを予め設けておく。このため、炉心シュラウド105をRPV101に据え付けた状態では、RPV側フランジネック103と穴105bとの中心が略同一線上に配置される。   b) Next, the core shroud 105 is carried into the RPV 101 and installed as shown in FIG. At this time, as shown in FIGS. 5 and 6, the shroud upper body 105 a of the core shroud 105 is previously provided with a hole 105 b for attaching the low-pressure water injection pipe 100 in the direction and height facing the RPV side flange neck 103. deep. For this reason, in the state where the core shroud 105 is installed on the RPV 101, the centers of the RPV side flange neck 103 and the hole 105b are arranged on substantially the same line.

c)次に、RPV側フランジネック103の軸芯延長線上に沿う位置において、穴105bを塞ぐ状態でリング106が配置される。このリング106は、炉心シュラウド105のシュラウド上部胴105aに形成された穴105bの周囲に溶接部110により溶接固定される。   c) Next, the ring 106 is disposed in a state where the hole 105b is closed at a position along the axis extension line of the RPV side flange neck 103. This ring 106 is welded and fixed by a welded portion 110 around a hole 105 b formed in the shroud upper body 105 a of the core shroud 105.

尚、低圧注水配管100と炉心シュラウド105等の再取付時には、RPV101に取り付けられた低圧注水ノズル102と、交換された新たな炉心シュラウド105の穴105bのそれぞれの中心が芯ずれしてしまう場合があるので、交換される新たなリング106は、交換された新たな炉心シュラウド105のシュラウド上部胴105aの外表面に多少の芯ずれをもって取り付け可能な取り合い寸法となっている。   When the low-pressure water injection pipe 100 and the core shroud 105 are reinstalled, the centers of the low-pressure water injection nozzle 102 attached to the RPV 101 and the hole 105b of the new core shroud 105 replaced may be misaligned. Therefore, the new ring 106 to be replaced has a fitting dimension that can be attached to the outer surface of the shroud upper shell 105a of the new core shroud 105 to be replaced with a slight misalignment.

d)次に、炉心シュラウド側フランジネック104をリング106に、溶接部117により溶接固定する。   d) Next, the core shroud side flange neck 104 is welded and fixed to the ring 106 by the welded portion 117.

e)一方、RPV側フランジネック103と炉心シュラウド側フランジネック104との間に設置されるフランジ103a,103b、スリーブ103c、ベロー103d、ベローカバー103e及びピン103fを予め一体に組み立てておく(以下、この組み立て部品を「配管中央部材」と略記する)。   e) On the other hand, the flanges 103a and 103b, the sleeve 103c, the bellows 103d, the bellows cover 103e, and the pin 103f installed between the RPV side flange neck 103 and the core shroud side flange neck 104 are preliminarily assembled together (hereinafter, referred to as “below”). This assembly part is abbreviated as “pipe central member”).

f)そして、この配管中央部材を、RPV側フランジネック103と炉心シュラウド側フランジネック104との間に挟まれるように保持する。   f) The pipe central member is held so as to be sandwiched between the RPV side flange neck 103 and the core shroud side flange neck 104.

g)次に、下部ハーフクランプ107及び上部ハーフクランプ108が、RPV側フランジネック103とフランジ103bを、及び炉心シュラウド側フランジネック104とフランジ103aを、それぞれ、スリーブ103cの下方及び上方から覆うようにして取り付ける。   g) Next, the lower half clamp 107 and the upper half clamp 108 cover the RPV side flange neck 103 and the flange 103b and the core shroud side flange neck 104 and the flange 103a from below and above the sleeve 103c, respectively. And attach.

h)下部ハーフクランプ107及び上部ハーフクランプ108は、アイボルト111、ナット112、ピン113等を組み合わせて締付ける。下部ハーフクランプ107及び上部ハーフクランプ108の内側にはそれぞれ溝109が設けられており、これらの溝109が、フランジネック103とフランジ103b、フランジネック104とフランジ103aのそれぞれの外側斜面を押すことにより、これらのフランジ面同士を密着させる。   h) The lower half clamp 107 and the upper half clamp 108 are tightened by combining the eye bolt 111, the nut 112, the pin 113, and the like. A groove 109 is provided inside each of the lower half clamp 107 and the upper half clamp 108, and these grooves 109 push the outer inclined surfaces of the flange neck 103 and the flange 103b and the flange neck 104 and the flange 103a, respectively. These flange surfaces are brought into close contact with each other.

この締付け中に、フランジ面同士が徐々にずれる可能性があるため、下部ハーフクランプ107及び上部ハーフクランプ108の隙間から、互いに向かい合うフランジ面を観察し、位置ずれがないことを確認しながら、各ハーフクランプ107,108を締め込んでいく。   During this tightening, the flange surfaces may gradually shift, so the flange surfaces facing each other are observed from the gap between the lower half clamp 107 and the upper half clamp 108, and it is confirmed that there is no positional displacement. The half clamps 107 and 108 are tightened.

なお、従来では、炉内構造物に対し取外し、再据付けの難易度に応じて取替え,部分補修、及び予防保全工法を組み合わせて採用することにより、全ての炉内構造物の健全性を確保しつつ、比較的容易に取外し及び再取付け等を行う技術が提案されている(例えば、特許文献1等参照)。
特開平05−080187号公報
Conventionally, the integrity of all in-furnace structures is ensured by removing the in-furnace structures and using a combination of replacement, partial repairs, and preventive maintenance methods according to the difficulty of re-installation. On the other hand, a technique for detaching and reattaching relatively easily has been proposed (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 05-080187

オーステナイト系ステンレス鋼の応力腐食割れを発生する部位は、具体的には溶接部近傍の熱影響を受けた部分(HEAT AFFECTED ZONE(以下、「HAZ」と略記する。))である。例えば、図7に示すように、このHAZ114は、リング106とシュラウド上部胴105aとの溶接部110近傍等に生ずる。このHAZ114には、溶接による残留応力が発生している場合が多いため、応力腐食割れ対策としては残留応力の低減、強制的な圧縮残留応力の付与、溶接線そのものを減らす形状変更などが有効な方法であると考えられている。   Specifically, the site where the stress corrosion cracking of the austenitic stainless steel occurs is a portion (HEAT AFFECTED ZONE (hereinafter abbreviated as “HAZ”)) affected by the heat in the vicinity of the weld. For example, as shown in FIG. 7, the HAZ 114 is generated in the vicinity of the welded portion 110 between the ring 106 and the shroud upper body 105a. Since this HAZ114 often has residual stress due to welding, it is effective to reduce residual stress, forcibly apply compressive residual stress, and to change the shape to reduce the weld line itself as countermeasures against stress corrosion cracking. It is considered a method.

この方法の中で、引張り残留応力を除外する具体的な施策としてHAZにショットピーニングを行い、強制的な圧縮応力を付与する方法が効果的である。しかしながら、上述した低圧注水配管100においては、シュラウド上部胴105aとリング106との溶接裏側が狭隘部115となり、応力改善用施工装置としてのショットピーニング施工装置などが近接(アクセス)できないため、圧縮残留応力を付与することができなかった。   Among these methods, as a specific measure for excluding the tensile residual stress, a method of applying forced compressive stress by performing shot peening on the HAZ is effective. However, in the low-pressure water injection pipe 100 described above, the weld back side of the shroud upper body 105a and the ring 106 becomes a narrow portion 115, and a shot peening construction apparatus as a stress improvement construction apparatus cannot be approached (accessed). Stress could not be applied.

また、低圧注水配管100と炉心シュラウド105のシュラウド上部胴105aとの接続部分は形状の不連続部分116が構造上存在する。この不連続部分116は、例えばリング106とシュラウド上胴部105aとの接続部分や、リング106と炉心シュラウド側フランジネック104との接続部分等である。この不連続部分116には応力が集中するおそれがあり、またショットピーニング施工装置等の応力改善用施工装置の近接(アクセス)も困難である。   In addition, a discontinuous portion 116 having a shape is present in the connecting portion between the low-pressure water injection pipe 100 and the shroud upper body 105a of the core shroud 105. The discontinuous portion 116 is, for example, a connection portion between the ring 106 and the shroud upper body portion 105a, a connection portion between the ring 106 and the core shroud side flange neck 104, or the like. Stress may concentrate on the discontinuous portion 116, and it is difficult to approach (access) a stress improvement construction device such as a shot peening construction device.

また、低圧注水配管100を水平に取り付けるために前述の(a)乃至(h)の手順が実施されるが、このうち手順(c)の、リング106とシュラウド上部胴105aとを溶接する際には、プラント建設時においては作業員がRPV101とシュラウド上部胴105aとの間に入り、低圧注水配管100に近接して作業を行う。この作業は、プラント建設時においては容易に実施できるが、運転プラントでの低圧注水配管100や炉心シュラウド105等の再取付時においては、RPV101が放射化されているため作業員の被爆防止の観点から作業が困難となる課題がある。   Further, in order to attach the low-pressure water injection pipe 100 horizontally, the above-described procedures (a) to (h) are carried out. Among these procedures, when the ring 106 and the shroud upper body 105a are welded in the procedure (c). At the time of plant construction, an operator enters between the RPV 101 and the shroud upper trunk 105a and works in close proximity to the low-pressure water injection pipe 100. Although this operation can be easily performed at the time of plant construction, the RPV 101 is activated at the time of re-installation of the low-pressure water injection pipe 100 and the core shroud 105 etc. in the operation plant. Therefore, there is a problem that the work becomes difficult.

また、運転プラントでの低圧注水配管100や炉心シュラウド105等の再取付作業時に、一端がRPV101に接続された低圧注水配管100の中心とシュラウド上部胴105aの穴105bの中心に芯ずれが生じるおそれがあり、この芯ずれを吸収しなければならない課題がある。   Further, when the low pressure water injection pipe 100 and the core shroud 105 are reattached in the operation plant, misalignment may occur between the center of the low pressure water injection pipe 100 whose one end is connected to the RPV 101 and the center of the hole 105b of the shroud upper body 105a. There is a problem that this misalignment must be absorbed.

本発明の目的は、上述の事情を考慮してなされたものであり、溶接によるHAZへの応力改善用施工装置のアクセスを可能とし、低圧注水配管と炉心シュラウドとの接続部の形状不連続箇所を低減でき、更に、低圧注水配管等の再取付作業時には、作業者の被爆量を低減できると共に、低圧注水配管と炉心シュラウドの穴との芯ずれに対し良好に対処できる沸騰水型原子炉を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and enables access to the construction apparatus for stress improvement to the HAZ by welding, and the shape discontinuity portion of the connection portion between the low-pressure water injection pipe and the core shroud In addition, when re-installing low-pressure water injection pipes, etc., a boiling water nuclear reactor that can reduce the amount of exposure to the worker and cope well with misalignment between the low-pressure water injection pipe and the core shroud hole It is to provide.

本発明は、炉心の上部で、原子炉圧力容器と炉心シュラウドとの間に水平に溶接接合されて、前記炉心に冷却水を注水する低圧注水配管を備えた沸騰水型原子炉において、前記低圧注水配管の構成部品であるフランジネックとリングが一体化され、前記低圧注水配管の中心と前記炉心シュラウドの穴中心との芯ずれ量に合わせて前記リングの外周部を加工して前記炉心シュラウドの穴周縁に適合することで前記芯ずれ量を調整する芯ずれ調整手段が設けられ、前記炉心シュラウドの前記穴周縁と前記リングの前記外周縁との接合部の溶接開先が、前記炉心シュラウドの内側に露出して設けられ、これらの炉心シュラウドの穴周縁とリングの外周縁とが、それらの間に応力改善用施工装置の近接不可能な狭隘箇所がなく、且つ応力集中の発生を抑制すべく連続した形状で溶接接合されたことを特徴とするものである。 The present invention relates to a boiling water reactor including a low pressure water injection pipe which is welded and joined horizontally between a reactor pressure vessel and a core shroud at a top portion of a core and injects cooling water into the core. The flange neck and the ring, which are components of the water injection pipe, are integrated, and the outer periphery of the ring is machined according to the amount of misalignment between the center of the low pressure water injection pipe and the center of the hole of the core shroud. misalignment adjustment means are provided for adjusting the misalignment amount to meet the hole periphery, welding GMA of junction between the outer peripheral edge of the ring and the hole edge of the reactor core shroud, the core shroud provided exposed inside, and the outer peripheral edge of the hole rim and the ring of the core shroud, no impossible proximity narrow portion of the stress for improving construction device between them, and the occurrence of stress concentration It is characterized in that the welded joint in a continuous shape to Wins.

本発明によれば、低圧注水配管の構成部品であるフランジネックとリングが一体化されたので、これらの間に溶接によるHAZをなくすことができる。また、炉心シュラウドの穴周縁とリングとが、それらの間に応力改善用施工装置の近接不可能な狭隘箇所がなく溶接接合されるので、この溶接によるHAZに応力改善用施工装置がアクセス可能となる。更に、炉心シュラウドの穴周縁とリングとが、応力集中の発生を抑制すべく連続した形状で溶接接合されたので、低圧注水配管と炉心シュラウドとの接続部の形状不連続箇所を低減できる。また、炉心シュラウドの穴周縁とリングとの接合部の溶接開先が、炉心シュラウドの内側に露出するので、低圧注水配管等の再取付作業時に、炉心シュラウドとリングとの溶接作業を炉心シュラウド内で実施でき、作業者の被爆量を低減できる。また、低圧注水配管の中心と炉心シュラウドの穴中心との芯ずれ量に合わせてリングの外周部を加工して炉心シュラウドの穴周縁に適合することで前記芯ずれ量を調整する芯ずれ調整手段が設けられたので、低圧注水配管の中心と炉心シュラウドの穴中心との芯ずれに対し良好に対処できる。
According to the present invention, since the flange neck and the ring, which are components of the low-pressure water injection pipe, are integrated, it is possible to eliminate the HAZ caused by welding between them. In addition, since the peripheral edge of the core shroud and the ring are welded and joined together without any narrow portion where the stress improvement construction device cannot be brought close to the ring, the stress improvement construction device can be accessed to the HAZ by this welding. Become. Furthermore, since the peripheral edge of the hole of the core shroud and the ring are welded and joined in a continuous shape so as to suppress the occurrence of stress concentration, the discontinuity of the shape of the connecting portion between the low-pressure water injection pipe and the core shroud can be reduced. In addition, because the weld groove at the joint between the hole periphery of the core shroud and the ring is exposed inside the core shroud, the welding operation between the core shroud and the ring is performed in the core shroud when re-installing low-pressure water injection pipes, etc. The amount of exposure to workers can be reduced. Also, misalignment adjusting means for adjusting the misalignment amount by processing the outer peripheral portion of the ring in accordance with the misalignment amount between the center of the low-pressure water injection pipe and the hole center of the core shroud, and adjusting to the hole periphery of the core shroud. Therefore, it is possible to cope with misalignment between the center of the low-pressure water injection pipe and the center of the hole of the core shroud .

以下、本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施の形態に限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1の実施の形態(図1)
図1は、本発明に係る沸騰水型原子炉の第1の実施の形態における炉心シュラウドと低圧注水配管との接続部分を拡大して示す断面図である。本実施の形態において、図4〜図7に示す背景技術と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[A] First embodiment (FIG. 1)
FIG. 1 is an enlarged cross-sectional view showing a connection portion between a core shroud and a low-pressure water injection pipe in a first embodiment of a boiling water reactor according to the present invention. In the present embodiment, the same parts as those in the background art shown in FIGS. 4 to 7 are denoted by the same reference numerals, and the description thereof is simplified or omitted.

本実施の形態の沸騰水型原子炉においても、低圧注水配管100は、炉心の上部で、RPV101と炉心シュラウド105との間に水平に溶接接合されて、冷却材喪失事故時に前記炉心に冷却材を注水する。本実施の形態では、低圧注水配管100の構成部品である炉心シュラウド側フランジネック10とリング11は、一体化されて構成されている。   Also in the boiling water reactor of the present embodiment, the low-pressure water injection pipe 100 is welded and joined horizontally between the RPV 101 and the core shroud 105 at the upper part of the core, and the coolant is connected to the core at the time of the coolant loss accident. Pour water. In the present embodiment, the core shroud side flange neck 10 and the ring 11 that are components of the low-pressure water injection pipe 100 are integrated.

また、リング11の外周部11aは、低圧注水配管100の中心Oと炉心シュラウド105のシュラウド上部胴105aにおける穴105bの中心Qとの芯ずれ量Tに合わせて加工可能な寸法に形成され、芯ずれ調整手段として構成される。   Further, the outer peripheral portion 11a of the ring 11 is formed to have a dimension that can be machined according to the misalignment amount T between the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b in the shroud upper body 105a of the core shroud 105. It is configured as a deviation adjusting means.

つまり、例えば低圧注水配管100と炉心シュラウド105等の再取付時には、RPV101の低圧注水ノズル102(図4)の中心と、交換された新たな炉心シュラウド105のシュラウド上部胴105aにおける穴105bの中心Qとがずれ、低圧注水ノズル102と同一軸芯でRPV101に取り付けられる低圧注水配管100の中心Oとシュラウド上部胴105aの穴105bの中心Qとが芯ずれ量Tだけずれる場合がある。この場合に、リング11の外周部11aに上記芯ずれ量Tに合わせて切削などの加工を施し、リング11の外周縁をシュラウド上部胴105aの穴105bに適合させる。   That is, for example, when the low-pressure water injection pipe 100 and the core shroud 105 are reinstalled, the center Q of the low-pressure water injection nozzle 102 (FIG. 4) of the RPV 101 and the center Q of the hole 105b in the shroud upper body 105a of the new core shroud 105 replaced. The center O of the low-pressure water injection pipe 100 attached to the RPV 101 with the same axial center as the low-pressure water injection nozzle 102 and the center Q of the hole 105b of the shroud upper body 105a may deviate by an amount T of misalignment. In this case, the outer peripheral portion 11a of the ring 11 is subjected to processing such as cutting in accordance with the misalignment amount T, and the outer peripheral edge of the ring 11 is adapted to the hole 105b of the shroud upper body 105a.

更に、リング11の外周縁とシュラウド上部胴105aの穴105b周縁にそれぞれ形成される溶接開先12は、炉心シュラウド105の内側のみに露出して設けられ、RPV101側に露出することがない。そして、リング11の外周縁の溶接開先12とシュラウド上部胴105aの穴105b周縁の溶接開先12に溶接が施されたとき、リング11の外周縁とシュラウド上部胴105aの穴105b周縁は、狭隘箇所(例えば図6の狭隘部115)なく滑らかに溶接接合されて、溶接部13が形成される。   Further, the weld grooves 12 formed on the outer peripheral edge of the ring 11 and the peripheral edge of the hole 105b of the shroud upper body 105a are provided only on the inner side of the core shroud 105, and are not exposed on the RPV 101 side. When welding is performed on the welding groove 12 on the outer peripheral edge of the ring 11 and the welding groove 12 on the peripheral edge of the hole 105b in the shroud upper body 105a, the outer peripheral edge of the ring 11 and the peripheral edge of the hole 105b in the shroud upper body 105a are The welded portion 13 is formed by welding smoothly without a narrowed portion (for example, the narrowed portion 115 in FIG. 6).

従って、本実施の形態によれば、次の効果(1)〜(4)を奏する。   Therefore, according to the present embodiment, the following effects (1) to (4) are obtained.

(1)低圧注水配管100の構成部品であるフランジネック10とリング11が一体化されたので、これらの間に溶接によるHAZをなくすことができる。また、炉心シュラウド105のシュラウド上部胴105aにおける穴105b周縁とリング11とが狭隘箇所なく溶接接合されるので、この溶接による溶接部13近傍のHAZに応力改善用施工装置(例えばショットピーニング施工装置など)が近接(アクセス)可能となる。これらの結果、低圧注水配管100と炉心シュラウド105間に応力腐食割れの発生を抑制することができる。   (1) Since the flange neck 10 and the ring 11 which are components of the low-pressure water injection pipe 100 are integrated, the HAZ by welding can be eliminated between them. Further, since the periphery of the hole 105b in the shroud upper shell 105a of the core shroud 105 and the ring 11 are welded together without any narrow portions, a stress improving construction device (for example, a shot peening construction device or the like) is applied to the HAZ near the welded portion 13 by this welding. ) Can be accessed (accessed). As a result, the occurrence of stress corrosion cracking between the low-pressure water injection pipe 100 and the core shroud 105 can be suppressed.

(2)低圧注水配管100の中心Oと炉心シュラウド105におけるシュラウド上部胴105aの穴105bの中心Qとの芯ずれ量Tを、リング11の外周部11aを上記芯ずれ量Tに合わせて加工することで調整するので、この芯ずれに対し良好に対処できる。このため、シュラウド上部胴105aの穴105b周縁とリング11の外周縁とを滑らかに溶接できるので、低圧注水配管100とシュラウド上部胴105との溶接部に形状不連続部(例えば図6の不連続部分116)が発生することを低減でき、応力集中の発生を抑制できる。   (2) The misalignment amount T between the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b of the shroud upper body 105a in the core shroud 105 is processed to match the outer peripheral portion 11a of the ring 11 with the misalignment amount T. Therefore, this misalignment can be dealt with satisfactorily. For this reason, since the periphery of the hole 105b of the shroud upper body 105a and the outer periphery of the ring 11 can be smoothly welded, a shape discontinuity (for example, the discontinuity of FIG. 6) is formed at the welded portion between the low-pressure water injection pipe 100 and the shroud upper body 105. The occurrence of the portion 116) can be reduced, and the occurrence of stress concentration can be suppressed.

(3)炉心シュラウド105におけるシュラウド上部胴105aの穴105b周縁とリング11の外周縁とのそれぞれの溶接開先12が、炉心シュラウド105の内側のみに露出し、RPV101側に露出することがない。このため、低圧注水配管100等の再取付作業時に、炉心シュラウド105のシュラウド上部胴105aとリング11との溶接作業を炉心シュラウド105内で実施でき、RPV101と炉心シュラウド105との間の高放射線環境下に作業者が入る必要がない。この結果、作業者の被爆量を低減できる。   (3) In each of the core shrouds 105, the weld grooves 12 of the periphery of the hole 105b of the shroud upper body 105a and the outer periphery of the ring 11 are exposed only to the inside of the core shroud 105 and are not exposed to the RPV 101 side. For this reason, when the low-pressure water injection pipe 100 or the like is reattached, the welding operation of the shroud upper body 105a of the core shroud 105 and the ring 11 can be carried out in the core shroud 105, and the high radiation environment between the RPV 101 and the core shroud 105 is achieved. There is no need for an operator to enter below. As a result, the amount of exposure to the worker can be reduced.

(4)低圧注水配管100の構成部品である炉心シュラウド側フランジネック10とリング11が一体化されて構成されたので、これらの溶接作業が不要となり、低圧注水配管100の取付作業を短時間に実施できる。   (4) Since the core shroud side flange neck 10 and the ring 11 which are components of the low-pressure water injection pipe 100 are integrated, these welding operations become unnecessary, and the low-pressure water injection pipe 100 can be mounted in a short time. Can be implemented.

[B]第2の実施の形態(図2)
図2は、本発明に係る沸騰水型原子炉の第2の実施の形態における炉心シュラウドと低圧注水配管との接続部分を拡大して示す断面図である。この第2の実施の形態において、前記背景技術及び第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 2)
FIG. 2 is an enlarged cross-sectional view showing a connection portion between the core shroud and the low-pressure water injection pipe in the second embodiment of the boiling water reactor according to the present invention. In the second embodiment, the same parts as those in the background art and the first embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施の形態では、低圧注水配管100の構成部品である炉心シュラウド側フランジネック20とリング21との溶接部23の溶接開先22が、炉心シュラウド105の内側のみに露出して設けられ、RPV101側に露出することがない。そして、これらのフランジネック20の溶接開先22とリング21の溶接開先22に溶接が施されたときに、これらのフランジネック20とリング21は、狭隘箇所(例えば図6の狭隘部115)なく滑らかに溶接接合される。   In the present embodiment, the weld groove 22 of the welded portion 23 between the core shroud side flange neck 20 and the ring 21 that is a component of the low-pressure water injection pipe 100 is provided to be exposed only inside the core shroud 105, and the RPV 101. There is no exposure to the side. When the welding groove 22 of the flange neck 20 and the welding groove 22 of the ring 21 are welded, the flange neck 20 and the ring 21 are narrowed (for example, the narrow portion 115 in FIG. 6). It is welded and joined smoothly.

更に、フランジネック20に溶接接合されたリング21の外周縁は、低圧注水配管100の中心Oと炉心シュラウド105におけるシュラウド上部胴105aの穴105bの中心Qとの芯ずれを調整すべく位置決めされて、シュラウド上部胴105aの穴105b周辺部に、狭隘箇所なく溶接接合されて溶接部24が形成される。尚、このときの溶接作業は、炉心シュラウド105とRPV101との間に作業者が入って行われる。   Further, the outer peripheral edge of the ring 21 welded to the flange neck 20 is positioned to adjust the misalignment between the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b of the shroud upper body 105a in the core shroud 105. The welded portion 24 is formed by welding the shroud upper body 105a to the periphery of the hole 105b without narrowing. The welding operation at this time is performed with an operator between the core shroud 105 and the RPV 101.

従って、本実施の形態によれば、次の効果(5)〜(8)を奏する。   Therefore, according to the present embodiment, the following effects (5) to (8) are obtained.

(5)フランジネック20とリング21、及びリング21とシュラウド上部胴105aとがそれぞれ狭隘箇所なく溶接接合されるので、これらの溶接部23、24近傍のHAZに応力改善用施工装置(例えばショットピーニング施工装置など)を近接することが可能となる。この結果、低圧注水配管100と炉心シュラウド105間に応力腐食割れの発生を抑制できる。   (5) Since the flange neck 20 and the ring 21, and the ring 21 and the shroud upper body 105a are welded together without any narrow portions, a stress improving construction device (for example, shot peening) is applied to the HAZ in the vicinity of the welds 23 and 24. Construction equipment, etc.) can be brought close to each other. As a result, the occurrence of stress corrosion cracking between the low-pressure water injection pipe 100 and the core shroud 105 can be suppressed.

(6)炉心シュラウド側フランジネック20とリング21とが滑らかに溶接接合されることから、これらのフランジネック20とリング21の接続部に形状不連続部が発生することを防止でき、応力集中の発生を抑制できる。   (6) Since the core shroud side flange neck 20 and the ring 21 are smoothly welded and joined, it is possible to prevent the discontinuity of the shape from occurring at the connecting portion between the flange neck 20 and the ring 21 and to reduce stress concentration. Generation can be suppressed.

(7)炉心シュラウド側フランジネック20の溶接開先22とリング21の溶接開先22とが炉心シュラウド105の内側のみに露出して設けられたので、低圧注水配管100などの再取付時に、フランジネック20とリング21との溶接作業を炉心シュラウド105内で実施できる。このため、RPV101と炉心シュラウド105間の高放射線環境下での溶接作業が減少して、作業者の被爆量を低減できる。   (7) Since the weld groove 22 of the core shroud side flange neck 20 and the weld groove 22 of the ring 21 are provided so as to be exposed only inside the core shroud 105, the flange is provided when the low-pressure water injection pipe 100 or the like is remounted. The welding operation between the neck 20 and the ring 21 can be performed in the core shroud 105. For this reason, the welding work in the high radiation environment between RPV101 and the core shroud 105 reduces, and it can reduce an exposure amount of an operator.

(8)低圧注水配管100の中心Oと炉心シュラウド105におけるシュラウド上部胴5Aの穴105bの中心Qとの芯ずれを調整すべくリング21の位置決めがなされて、このリング21の外周縁がシュラウド上部胴105aの穴105b周辺部に溶接されるので、特に低圧注水配管100などの再取付時に、低圧注水配管100とシュラウド上部胴105aの穴105bとの芯ずれに対し良好に対処できる。   (8) The ring 21 is positioned so as to adjust the misalignment between the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b of the shroud upper shell 5A in the core shroud 105, and the outer peripheral edge of the ring 21 is the upper part of the shroud. Since it is welded to the periphery of the hole 105b of the body 105a, particularly when the low-pressure water injection pipe 100 is reattached, the misalignment between the low-pressure water injection pipe 100 and the hole 105b of the shroud upper body 105a can be dealt with satisfactorily.

[C]第3の実施の形態(図3)
図3は、本発明に係る沸騰水型原子炉の第3の実施の形態における炉心シュラウドと低圧注水配管との接続部を拡大して示す断面図である。この第3の実施の形態において、前記背景技術及び第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 3)
FIG. 3 is an enlarged cross-sectional view showing a connection portion between the core shroud and the low-pressure water injection pipe in the third embodiment of the boiling water reactor according to the present invention. In the third embodiment, the same parts as those in the background art and the first embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施の形態では低圧注水配管100の構成部品である炉心シュラウド側フランジネック30とリング31のうち、リング31の外周縁が炉心シュラウド105のシュラウド上部胴105aにおける穴105b周縁に、狭隘箇所(例えば図6の狭隘部115)なく滑らかに溶接接合されて、溶接部32が形成される。この溶接部32におけるシュラウド上部胴105aとリング31のそれぞれの溶接開先33は、RPV101側に形成されるが、この溶接は、炉心シュラウド105をRPV101内に搬入し据え付ける前に、例えば工場など放射線量の低い場所で予め実施される。   In the present embodiment, of the core shroud side flange neck 30 and the ring 31 that are components of the low-pressure water injection pipe 100, the outer peripheral edge of the ring 31 is narrower than the peripheral edge of the hole 105b in the shroud upper body 105a of the core shroud 105 (for example, The welded portion 32 is formed smoothly by welding without the narrow portion 115) of FIG. The welding groove 33 of each of the shroud upper body 105a and the ring 31 in the welded portion 32 is formed on the RPV 101 side, and this welding is performed before the core shroud 105 is carried into the RPV 101 and installed, for example, at a factory or the like. Pre-implemented in low-volume locations.

また、炉心シュラウド側フランジネック30またはリング31(本実施の形態ではフランジネック30の外周部30a)が、低圧注水配管100の中心Oと炉心シュラウド105におけるシュラウド上部胴105aの穴105bの中心Qとの芯ずれ量Tを調整するために偏心加工可能に構成されて、芯ずれ調整手段として機能する。つまり、前述の如く、低圧注水配管100と炉心シュラウド105等の再取付時に、低圧注水配管100の中心Oとシュラウド上部胴105aの穴105bの中心Qとが芯ずれ量Tだけずれる場合があるが、このとき、シュラウドネック30の外周部30aに上記芯ずれ量Tに合わせて、偏心加工量Lだけ偏心加工を施して、シュラウドネック30の外周部30aをリング31の内周縁に適合させる。   Further, the core shroud side flange neck 30 or ring 31 (in this embodiment, the outer peripheral portion 30a of the flange neck 30) is connected to the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b of the shroud upper body 105a in the core shroud 105. In order to adjust the misalignment amount T, it is configured to be capable of eccentric processing and functions as a misalignment adjusting means. That is, as described above, when the low-pressure water injection pipe 100 and the core shroud 105 are reinstalled, the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b of the shroud upper body 105a may be displaced by the misalignment amount T. At this time, the outer peripheral portion 30 a of the shroud neck 30 is eccentrically processed by an eccentric processing amount L in accordance with the above-described misalignment amount T, so that the outer peripheral portion 30 a of the shroud neck 30 is adapted to the inner peripheral edge of the ring 31.

更に、炉心シュラウド側フランジネック30の外周部30aとリング31の内周縁にそれぞれ形成される溶接開先34は、炉心シュラウド105の内側のみに露出して設けられ、RPV101側に露出して設けられることがない。そして、フランジネック30の外周部30aの溶接開先34とリング31の内周縁の溶接開先34に溶接が施されたとき、フランジネック30の外周部30aとリング31の内周縁とは、狭隘箇所(例えば図6の狭隘部115)なく溶接接合されて、溶接部35が形成される。   Further, the weld groove 34 formed on the outer peripheral portion 30a of the core shroud side flange neck 30 and the inner peripheral edge of the ring 31 is provided to be exposed only on the inner side of the core shroud 105, and is provided to be exposed on the RPV 101 side. There is nothing. When welding is performed on the welding groove 34 on the outer peripheral portion 30a of the flange neck 30 and the welding groove 34 on the inner peripheral edge of the ring 31, the outer peripheral portion 30a of the flange neck 30 and the inner peripheral edge of the ring 31 are narrow. The welded portion 35 is formed by welding and joining without a place (for example, the narrow portion 115 in FIG. 6).

従って、本実施の形態によれば、次の効果(9)〜(11)を奏する。   Therefore, according to the present embodiment, the following effects (9) to (11) are obtained.

(9)炉心シュラウド105のシュラウド上部胴105aにおける穴105b周縁とリング31の外周縁とが、更に、炉心シュラウド側フランジネック30の外周部30aとリング31の内周縁とが、共に狭隘箇所なく溶接接合されたので、これらの溶接部32、35近傍のHAZに、応力改善用施工装置(例えばショットピーニング施工装置など)を近接することが可能となる。この結果、低圧注水配管100と炉心シュラウド105間に応力腐食割れの発生を抑制できる。   (9) The hole 105b peripheral edge of the shroud upper body 105a of the core shroud 105 and the outer peripheral edge of the ring 31, and the outer peripheral part 30a of the core shroud side flange neck 30 and the inner peripheral edge of the ring 31 are welded together without any narrowing. Since they are joined, a stress improving construction device (for example, a shot peening construction device) can be brought close to the HAZ in the vicinity of these welds 32 and 35. As a result, the occurrence of stress corrosion cracking between the low-pressure water injection pipe 100 and the core shroud 105 can be suppressed.

(10)低圧注水配管100の中心Oと炉心シュラウド105におけるシュラウド上部胴105aの穴105bの中心Qとの芯ずれ量Tを、炉心シュラウド側フランジネック30の外周部30aを上記芯ずれ量Tに合わせて偏心加工することで調整するので、この芯ずれに対し良好に対処できる。このため、リング31の外周縁をシュラウド上部胴105aの穴105b周縁部に、炉心シュラウド105のRPV101への搬入前に滑らかに溶接できる。この結果、低圧注水配管100と炉心シュラウド105との接続部に形状不連続部(例えば図6の不連続部分116)が発生することを低減でき、応力集中の発生を抑制できる。   (10) The misalignment amount T between the center O of the low-pressure water injection pipe 100 and the center Q of the hole 105b of the shroud upper body 105a in the core shroud 105 is set to the above-described misalignment amount T in the outer peripheral portion 30a of the core shroud side flange neck 30. Since it adjusts by carrying out eccentric processing collectively, it can cope with this misalignment satisfactorily. For this reason, the outer peripheral edge of the ring 31 can be smoothly welded to the peripheral part of the hole 105b of the shroud upper trunk 105a before the core shroud 105 is carried into the RPV 101. As a result, it is possible to reduce the occurrence of a discontinuous shape (for example, the discontinuous portion 116 in FIG. 6) at the connection portion between the low-pressure water injection pipe 100 and the core shroud 105, and to suppress the occurrence of stress concentration.

(11)また、リング11の外周縁とシュラウド上部胴105aの穴105b周縁にそれぞれ設けられた溶接開先33が、RPV101側に露出する場合にも、これらの溶接開先33に施される溶接は、炉心シュラウド105のRPV101への搬入据付前になされるので、低圧注水配管100及び炉心シュラウド105等の再取付時に、作業者がRPV101と炉心シュラウド105との間に入って溶接作業を実施することがない。更に、炉心シュラウド側フランジネック30の外周部30aとリング31の内周縁にそれぞれ形成された溶接開先34が炉心シュラウド105側に露出して形成されたので、低圧注水配管100及び炉心シュラウド105等の再取付時に、作業者はRPV101と炉心シュラウド105間に入って、これらの溶接開先34に溶接を施す必要がない。これらの結果、作業者の被爆量を低減できる。   (11) In addition, even when the welding grooves 33 provided on the outer peripheral edge of the ring 11 and the peripheral edge of the hole 105b of the shroud upper body 105a are exposed to the RPV 101 side, the welding applied to the welding grooves 33 is performed. Is performed before the installation and installation of the core shroud 105 to the RPV 101, so that when the low-pressure water injection pipe 100 and the core shroud 105 are reinstalled, an operator enters between the RPV 101 and the core shroud 105 to perform welding work. There is nothing. Further, since the weld groove 34 formed on the outer peripheral portion 30a of the core shroud side flange neck 30 and the inner peripheral edge of the ring 31 is exposed and formed on the core shroud 105 side, the low pressure water injection pipe 100, the core shroud 105, etc. At the time of reattachment, the operator does not have to enter between the RPV 101 and the core shroud 105 and weld these weld grooves 34. As a result, the amount of exposure to the worker can be reduced.

尚、この第3の実施の形態における芯ずれ調整手段は、炉心シュラウド側フランジネック30の外周部30aではなく、リング31の内周縁としてもよい。   The misalignment adjusting means in the third embodiment may be the inner peripheral edge of the ring 31 instead of the outer peripheral portion 30a of the core shroud side flange neck 30.

本発明に係る沸騰水型原子炉の第1の実施の形態における炉心シュラウドと低圧注水配管との接続部分を拡大して示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which expands and shows the connection part of the core shroud and low-pressure water injection piping in 1st Embodiment of the boiling water reactor which concerns on this invention. 本発明に係る沸騰水型原子炉の第2の実施の形態における炉心シュラウドと低圧注水配管との接続部分を拡大して示す断面図。Sectional drawing which expands and shows the connection part of the core shroud and low-pressure water injection piping in 2nd Embodiment of the boiling water reactor which concerns on this invention. 本発明に係る沸騰水型原子炉の第3の実施の形態における炉心シュラウドと低圧注水配管との接続部を拡大して示す断面図。Sectional drawing which expands and shows the connection part of the core shroud and low-pressure water injection piping in 3rd Embodiment of the boiling water reactor which concerns on this invention. 従来の沸騰水型原子炉の原子炉圧力容器等を、低圧注水配管と共に示す概略断面図。The schematic sectional drawing which shows the reactor pressure vessel etc. of the conventional boiling water reactor with low-pressure water injection piping. 図4の低圧注水配管を示す斜視断面図。FIG. 5 is a perspective sectional view showing the low-pressure water injection pipe of FIG. 4. 図4の低圧注水配管の一部を断面状態で示す側面図。The side view which shows a part of low-pressure water injection piping of FIG. 4 in a cross-sectional state. 図6のVII部を拡大して示す拡大断面図。The expanded sectional view which expands and shows the VII part of FIG.

符号の説明Explanation of symbols

10 炉心シュラウド側フランジネック
11 リング
11a 外周部
12 溶接開先
13 溶接部
20 炉心シュラウド側フランジネック
21 リング
22 溶接開先
23 溶接部
30 炉心シュラウド側フランジネック
30a 外周部
31 リング
32 溶接部
34 溶接開先
35 溶接部
L 偏心加工量
O、Q 中心
T 芯ずれ量
10 Core shroud side flange neck 11 Ring 11a Outer peripheral part 12 Welding groove 13 Welding part 20 Core shroud side flange neck 21 Ring 22 Welding groove 23 Welding part 30 Core shroud side flange neck 30a Outer part 31 Ring 32 Welding part 34 Welding opening Tip 35 Weld L L Eccentric machining amount O, Q Center T Center misalignment

Claims (6)

炉心の上部で、原子炉圧力容器と炉心シュラウドとの間に水平に溶接接合されて、前記炉心に冷却水を注水する低圧注水配管を備えた沸騰水型原子炉において、
前記低圧注水配管の構成部品であるフランジネックとリングが一体化され、
前記低圧注水配管の中心と前記炉心シュラウドの穴中心との芯ずれ量に合わせて前記リングの外周部を加工して前記炉心シュラウドの穴周縁に適合することで前記芯ずれ量を調整する芯ずれ調整手段が設けられ
前記炉心シュラウドの前記穴周縁と前記リングの前記外周縁との接合部の溶接開先が、前記炉心シュラウドの内側に露出して設けられ、
これらの炉心シュラウドの穴周縁とリングの外周縁とが、それらの間に応力改善用施工装置の近接不可能な狭隘箇所がなく、且つ応力集中の発生を抑制すべく連続した形状で溶接接合されたことを特徴とする沸騰水型原子炉。
In a boiling water reactor having a low-pressure water injection pipe that is welded and joined horizontally between a reactor pressure vessel and a core shroud at the upper part of the core, and injects cooling water into the core.
The flange neck and ring, which are components of the low-pressure water injection pipe, are integrated,
A misalignment that adjusts the misalignment amount by machining the outer peripheral portion of the ring according to the misalignment amount between the center of the low-pressure water injection pipe and the center of the hole of the core shroud to fit the peripheral edge of the hole of the core shroud. Adjustment means are provided ,
The welding GMA of junction between the hole periphery of the core shroud and the outer peripheral edge of the ring is provided exposed to the inside of the reactor core shroud,
These core shroud hole periphery and ring outer periphery are welded and joined in a continuous shape so that there is no narrow area where the stress improving construction device cannot be approached between them and the occurrence of stress concentration is suppressed. A boiling water reactor characterized by that.
前記芯ずれ調整手段は、低圧注水配管の中心と炉心シュラウドの穴中心との芯ずれ量に合わせて加工可能な寸法に形成されたリングの外周部であることを特徴とする請求項1に記載の沸騰水型原子炉。 2. The center misalignment adjusting means is an outer peripheral portion of a ring formed in a dimension that can be machined in accordance with a center misalignment amount between a center of a low-pressure water injection pipe and a hole center of a core shroud. Boiling water reactor. 炉心の上部で、原子炉圧力容器と炉心シュラウドとの間に水平に溶接接合されて、前記炉心に冷却水を注水する低圧注水配管を備えた沸騰水型原子炉において、
前記低圧注水配管の構成部品であるフランジネックとリングとの溶接部の溶接開先が、前記炉心シュラウドの内側に露出して設けられ、
これらのフランジネックとリングとが、それらの間に応力改善用施工装置の近接不可能な狭隘箇所がなく、且つ応力集中の発生を抑制すべく連続した形状で溶接接合され、
前記低圧注水配管の中心と前記炉心シュラウドの穴中心とを一致させるように前記リングを位置決めすることで前記両中心の芯ずれを調整すべく、前記リングの外周縁が前記炉心シュラウドの穴周辺部に溶接接合されたことを特徴とする沸騰水型原子炉。
In a boiling water reactor having a low-pressure water injection pipe that is welded and joined horizontally between a reactor pressure vessel and a core shroud at the upper part of the core, and injects cooling water into the core.
A weld groove of a welded portion between a flange neck and a ring which is a component of the low-pressure water injection pipe is provided to be exposed inside the core shroud,
These flange necks and rings are welded and joined in a continuous shape in order to suppress the occurrence of stress concentration, and there is no narrow portion where the stress improving construction device cannot be approached between them .
In order to adjust the misalignment of the centers by positioning the ring so that the center of the low-pressure water injection pipe and the hole center of the core shroud coincide with each other, the outer peripheral edge of the ring is the peripheral part of the hole of the core shroud A boiling water reactor characterized by being welded to the reactor.
炉心の上部で、原子炉圧力容器と炉心シュラウドとの間に水平に溶接接合されて、前記炉心に冷却水を注水する低圧注水配管を備えた沸騰水型原子炉において、
前記低圧注水配管の構成部品であるフランジネックとリングのうち、リングの外周縁が前記炉心シュラウドの穴周縁に、それらの間に応力改善用施工装置の近接不可能な狭隘箇所がなく、且つ応力集中の発生を抑制すべく連続した形状で予め溶接接合され、
このフランジネックまたはリングに、前記低圧注水配管の中心と前記炉心シュラウドの穴中心とを一致させるように前記両中心の芯ずれ量に合わせて偏心加工して前記芯ずれ量を調整する芯ずれ調整手段が設けられ、
これらのフランジネックとリングとの溶接部の溶接開先が、前記炉心シュラウドの内側に露出して設けられ、
これらのフランジネックとリングとが、それらの間に応力改善用施工装置の近接不可能な狭隘箇所がなく溶接接合されたことを特徴とする沸騰水型原子炉。
In a boiling water reactor having a low-pressure water injection pipe that is welded and joined horizontally between a reactor pressure vessel and a core shroud at the upper part of the core, and injects cooling water into the core.
Of the flange neck and ring that are components of the low-pressure water injection pipe, the outer peripheral edge of the ring is at the peripheral edge of the hole of the core shroud , and there is no narrow portion where the stress improving construction device cannot be approached between them. Pre-welded in a continuous shape to suppress the occurrence of concentration ,
A misalignment adjustment that adjusts the misalignment amount by eccentrically processing the flange neck or ring according to the misalignment amount of the centers so that the center of the low-pressure water injection pipe and the hole center of the core shroud are aligned. Means are provided,
The weld groove of the welded portion of these flange neck and ring is provided exposed inside the core shroud,
A boiling water nuclear reactor in which the flange neck and the ring are welded and joined together without any narrow portion of the stress improving construction device that cannot be approached.
前記リングの外周縁と炉心シュラウドの穴周縁とは、この炉心シュラウドを原子炉圧力容器内に搬入する前に溶接接合されることを特徴とする請求項4に記載の沸騰水型原子炉。 The boiling water reactor according to claim 4, wherein the outer peripheral edge of the ring and the hole peripheral edge of the core shroud are welded together before the core shroud is carried into the reactor pressure vessel. 前記芯ずれ調整手段は、低圧注水配管の中心と炉心シュラウドの穴中心との芯ずれ量を調整するために偏心加工可能なフランジネックの外周部であることを特徴とする請求項4に記載の沸騰水型原子炉。 5. The center misalignment adjusting means is an outer peripheral portion of a flange neck that can be eccentrically processed to adjust the amount of misalignment between the center of the low-pressure water injection pipe and the center of the hole in the core shroud. Boiling water reactor.
JP2008302427A 2008-11-27 2008-11-27 Boiling water reactor Expired - Fee Related JP5300440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302427A JP5300440B2 (en) 2008-11-27 2008-11-27 Boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302427A JP5300440B2 (en) 2008-11-27 2008-11-27 Boiling water reactor

Publications (2)

Publication Number Publication Date
JP2010127753A JP2010127753A (en) 2010-06-10
JP5300440B2 true JP5300440B2 (en) 2013-09-25

Family

ID=42328266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302427A Expired - Fee Related JP5300440B2 (en) 2008-11-27 2008-11-27 Boiling water reactor

Country Status (1)

Country Link
JP (1) JP5300440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990141B (en) * 2017-12-29 2023-12-26 核工业西南物理研究院 A electrified water route penetration piece of series connection formula for fusion reactor atmospheric side

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119891A (en) * 1984-11-14 1986-06-07 株式会社東芝 Detachable device for expansion joint
JP4473806B2 (en) * 2005-10-20 2010-06-02 株式会社東芝 Replacement method of low-pressure water injection piping

Also Published As

Publication number Publication date
JP2010127753A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5185496B2 (en) Core spray porous dispersion tube T box mounting assembly
JP5327983B2 (en) Pipe assembly
JP5588133B2 (en) Method and apparatus for repair of core spray downcomer slip joint coupling
US6456682B1 (en) Core spray sparger T-box attachment with clamp
US20070216159A1 (en) Piping joint structure
EP2236883B1 (en) Apparatus and system for dampening the vibration experienced by a sprager pipe
JP3130018B2 (en) Core spray tube coupling device
JP2008151782A (en) Method and apparatus for repairing weld between jet pump diffuser adapter and tail pipe
KR20160105502A (en) Method for repairing cast steel member
JP5300440B2 (en) Boiling water reactor
JP2006276015A (en) Method and apparatus for repairing installation part of jet pump riser tube brace to reactor vessel pad in reactor
TWI451032B (en) Apparatus for repairing a core spray line pipe weld joint
US5494539A (en) Metal member quality improving method by spot welding
US7505546B2 (en) Method of preventing separation of feedwater sparger end bracket assemblies
JP5106310B2 (en) Boiling water reactor
KR101937610B1 (en) Method for repairing nozzle of RCS pipe in reactor
EP3224519A1 (en) Fluid conduit element and method for producing the fluid conduit element
JP6037621B2 (en) Plug member mounting structure
JP4660875B2 (en) Replacement method for RPV nozzle joint members
JP2007085793A (en) Jet pump
JP3959251B2 (en) Replacement method of core spray piping
JP5785982B2 (en) Mechanical connector and method
JP5437920B2 (en) Reactor pressure vessel safe-end thermal sleeve repair method
JPH02258190A (en) Method for reforming welded part of austenitic stainless steel
US20210054953A1 (en) Flange connection having a weld ring gasket

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

LAPS Cancellation because of no payment of annual fees