JP5300163B1 - Steel pile rooting method - Google Patents

Steel pile rooting method Download PDF

Info

Publication number
JP5300163B1
JP5300163B1 JP2012264202A JP2012264202A JP5300163B1 JP 5300163 B1 JP5300163 B1 JP 5300163B1 JP 2012264202 A JP2012264202 A JP 2012264202A JP 2012264202 A JP2012264202 A JP 2012264202A JP 5300163 B1 JP5300163 B1 JP 5300163B1
Authority
JP
Japan
Prior art keywords
steel
steel pile
pile
hole
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012264202A
Other languages
Japanese (ja)
Other versions
JP2014109143A (en
Inventor
孝彦 樫本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oak Co Ltd
Original Assignee
Oak Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oak Co Ltd filed Critical Oak Co Ltd
Priority to JP2012264202A priority Critical patent/JP5300163B1/en
Application granted granted Critical
Publication of JP5300163B1 publication Critical patent/JP5300163B1/en
Publication of JP2014109143A publication Critical patent/JP2014109143A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

【課題】従来の根固め工法における諸問題点を解決すること。
【解決手段】岩盤支持層Grを削孔し、その孔に鋼杭1を建て込んで根固めする鋼杭の根固め工法において、岩盤支持層Grには、根固めする鋼杭1の外径Do又は対角線長Dgよりも小さい内径Diの下孔2を削孔機DHによって削孔し、その下孔2に、鋼杭1をバイブロハンマー22によって強制圧入する。
【選択図】図1
[PROBLEMS] To solve various problems in conventional root-setting methods.
In a rock pile support method in which a rock pile support layer Gr is drilled and a steel pile 1 is built into the hole and solidified, the rock support layer Gr has an outer diameter of the steel pile 1 to be solidified. The pilot hole 2 having an inner diameter Di smaller than Do or the diagonal length Dg is drilled by the drilling machine DH, and the steel pile 1 is forcibly press-fitted into the pilot hole 2 by the vibro hammer 22.
[Selection] Figure 1

Description

本発明は、削孔機によって岩盤支持層を削孔し、その孔に鋼杭を建て込んで根固めする鋼杭の根固め工法に関するものである。   TECHNICAL FIELD The present invention relates to a steel pile rooting method in which a rock support layer is drilled by a drilling machine, and a steel pile is built into the hole and solidified.

従来のプレボーリング根固め工法である鋼杭の根固め工法を図13により説明すると、先ず、同図の(a) 〜(c) に示すように、地盤Gを、ダウンザホールハンマーDHにより、粘土、砂礫等よりなる土砂層Gsから極めて良質の支持地盤である岩盤支持層Grにわたって所定深度まで削孔する。削孔中及び削孔後にダウンザホールハンマーDHを引き上げる際には、(b) 〜(d) に示すように、掘削屑であるスライムをエアブローによって地上へ排出する。その後、ダウンザホールハンマーDHを孔30から引上げ、そしてその孔30内に(g) に示すように鋼杭として例えばH形鋼24を建て込み、(h) に示すように孔30に挿入したモルタル注入管25でモルタル26を注入して根固めを行い、(i) に示すように施工を完了する。この場合、岩盤支持層Grに削孔される孔30は、鋼杭としてのH形鋼24の対角線長よりも大きい。 The steel pile rooting method, which is a conventional pre-boring rooting method, will be described with reference to FIG. 13. First, as shown in (a) to (c) of FIG. A hole is drilled from the earth and sand layer Gs made of sand and gravel to a predetermined depth over a bedrock supporting layer Gr which is an extremely good supporting ground. When the down-the-hole hammer DH is pulled up during and after drilling, as shown in (b) to (d), the slime that is excavation waste is discharged to the ground by air blow. Thereafter, the down-the-hole hammer DH is pulled up from the hole 30, and, for example, an H-shaped steel 24 is built in the hole 30 as a steel pile as shown in (g), and the mortar injection inserted into the hole 30 as shown in (h) The mortar 26 is poured into the tube 25 to solidify it, and the construction is completed as shown in (i). In this case, the hole 30 drilled in the bedrock support layer Gr is larger than the diagonal length of the H-section steel 24 as a steel pile.

また、従来のプレボーリング根固め工法としては、図13の(e) 及び(f) に示すようにダウンザホールハンマーDHを孔30から引き上げた後、発生土砂を埋め戻し、そうしてその孔30内に鋼杭を、バイブロハンマーで打撃しながら打ち込んで根固めを行なう方法がある。その他、プレボーリング鋼杭建て込み工法に伴う根固め工法として、セメントミルクを注入したり、あるいは砕石やコンクリートを充填するなどの方法があるが、従来の工法は全て、鋼杭の対角線長より大きい内径の孔を岩盤支持層に掘削しておいて、その孔に鋼杭を建て込み、そして孔と鋼杭との間にモルタル、セメントミルク、砕石、コンクリート等の根固め材を充填し、又は圧密するという工法である。 Further, as a conventional pre-boring consolidation method, as shown in FIGS. 13 (e) and 13 (f), the down-the-hole hammer DH is pulled up from the hole 30, and then the generated sediment is backfilled. There is also a method of solidifying the steel pile by hitting it with a vibro hammer. As other root compaction method with the pre-boring steel pile like an anchor method, there are methods such as filling or injecting cement milk, or crushed stone and concrete, all the conventional method diagonal line length of steel piles A hole with a larger inner diameter is drilled in the bedrock support layer, a steel pile is built into the hole, and a mortar, cement milk, crushed stone, concrete, or other solidifying material is filled between the hole and the steel pile. Or a consolidation method.

従来の根固め工法では、地下水や表面流水があったり、沿岸部などで海水が流れている所では、モルタルやセメントミルクが流出し、充分な根固めができないケースがある。   In the conventional root consolidation method, there are cases where mortar and cement milk flow out where there is groundwater or surface running water, or where seawater is flowing along the coast, etc., and sufficient root consolidation is not possible.

また、仮橋(仮設桟橋)構台用の鋼杭のように、鋼杭打ち込み後に杭打機(クローラクレーン)等を乗載して施工を行なう場合、モルタルが硬化するのに或る一定の時間を要するため、施工時間が延びる。即ち、モルタルが硬化するまでは仮橋の構台に杭打機を乗載させることができず、従って後の作業が遅れることになる。   In addition, when steel piles (crawler cranes) are mounted after construction, such as steel piles for temporary bridges (temporary piers), a certain time is required for the mortar to harden. Therefore, construction time is extended. That is, the pile driver cannot be mounted on the gantry of the temporary bridge until the mortar is hardened, and the subsequent work is delayed.

また、ダウンザホールハンマー等で削孔した孔が崩壊した時はモルタル等の充填が不可能となるので、ケーシングを併用する必要があり、そのために工費及び工期が更にアップする。更にまた、地下水、特に水中での施工の際、モルタル注入中にモルタルが分離し、根固めの性能が低下する場合がある。   In addition, when a hole drilled with a down-the-hole hammer or the like is collapsed, mortar cannot be filled, so it is necessary to use a casing together, which further increases the construction cost and construction period. Furthermore, in the case of construction in groundwater, particularly underwater, the mortar may be separated during mortar injection, and the performance of solidifying may be reduced.

そして、杭の支持層として極めて優良な地層は岩盤である。しかしながら、現在の土木仕様書では、岩に対する杭の支持層としての扱い、分類がなく、全てN値換算した砂礫層としての扱いとなっている。従って、硬質の岩盤支持層へ杭を打ち込んでも、その根固め処理方法のみで支持力及び引抜力が計算されてしまうので、岩盤支持層の中へ5〜10m以上根入れしないと、支持がとれなくなる計算となる。つまり、杭周面が砂となり、充分な摩擦がとれないために必要以上に長い根入れが要求されることになる。   And a very good stratum as a support layer for piles is bedrock. However, in the current civil engineering specification, there is no classification and classification as a support layer of piles against rocks, and all are treated as gravel layers converted to N values. Therefore, even if the pile is driven into the hard rock support layer, the support force and the pulling force are calculated only by the rooting treatment method. It becomes calculation that disappears. In other words, the pile peripheral surface becomes sand and sufficient friction cannot be taken, so that it is required to have a deeper root than necessary.

本発明は、上記のような従来の根固め工法における諸問題点を解決し得るもので、モルタル、セメントミルク、コンクリート、その他の根固め材を使用することなく、鋼杭を岩盤支持層に対して充分かつ有効に根固めできる鋼杭の根固め工法を提供することを目的とする。   The present invention can solve the problems in the conventional consolidation method as described above, and without using mortar, cement milk, concrete, or other consolidation materials, the steel pile can be applied to the bedrock support layer. The purpose is to provide a steel pile rooting method that can be sufficiently and effectively rooted.

上記課題を解決するための手段を、後述する実施形態の参照符号を付して説明すると、請求項1に係る発明の鋼杭の根固め工法は、岩盤支持層Grを削孔し、その孔に鋼杭1を建て込んで根固めする鋼杭の根固め工法において、前記鋼杭1として、ウェブbと両端部のフランジa,aとからなるH形鋼1(11〜61)からなり、且つ各フランジaの先端部を先細りテーパ状に切除して、その切除部3にH形鋼より硬質のカッティングプレート4を取り付けたH形鋼1を使用し、しかして岩盤支持層Grには、根固めする前記H形鋼1の対角線長Dgよりも小さい内径Diの下孔2を削孔機DHによって削孔し、その下孔2に、前記H形鋼1を高出力超高周波型バイブロハンマー22によって強制圧入するようにしたことを特徴とする。 Means for solving the above problems will be described with reference numerals in the embodiments described later. The steel pile rooting method according to the first aspect of the present invention comprises drilling the rock support layer Gr, In the steel pile rooting method of building and solidifying the steel pile 1, the steel pile 1 is made of H-shaped steel 1 (11-61) comprising a web b and flanges a and a at both ends, In addition, the tip of each flange a is cut off in a tapered shape and the H-section steel 1 in which the cutting plate 4 harder than the H-section steel is attached to the cut-out section 3 is used for the bedrock support layer Gr. A pilot hole 2 having an inner diameter Di smaller than the diagonal length Dg of the H-shaped steel 1 to be solidified is drilled by a drilling machine DH, and the H-shaped steel 1 is inserted into the lower hole 2 with a high-power, high-frequency vibro hammer. 22 is forcibly press-fitted.

請求項は、請求項に記載の鋼杭の根固め工法において、図2に示すように、前記H形鋼21(1)の各フランジa先端部の外側面中央部に支持力増大プレート6を取り付けたことを特徴とする。 Claim 2 is the root compaction method of the steel pile according to claim 1, as shown in FIG. 2, the supporting force increases plate to the outer surface center portion of each flange a distal end portion of the H-beams 21 (1) 6 is attached.

請求項は、請求項1又は2に記載の鋼杭の根固め工法において、図3に示すように、前記H形鋼31(1)の各フランジa先端部側の両側端面に切欠部7を長手方向一定間隔おきに切欠形成したことを特徴とする。 According to a third aspect of the present invention, in the steel pile rooting method according to the first or second aspect, as shown in FIG. 3 , the notches 7 are formed on both side end surfaces of the front ends of the flanges a of the H-shaped steel 31 (1). Are formed at regular intervals in the longitudinal direction.

請求項は、請求項1又は2に記載の鋼杭の根固め工法において、図4に示すように、前記H形鋼41(1)の各フランジa先端部側の両側端面に支持力増大用凸部8を長手方向一定間隔おきに突設したことを特徴とする。 Claim 4 is a steel pile root-clamping method according to claim 1 or 2, as shown in FIG. 4 , the supporting force is increased on both side end faces of each of the flange a tips of the H-shaped steel 41 (1). The projecting convex portions 8 are projected at regular intervals in the longitudinal direction.

請求項は、請求項1〜4の何れかに記載の鋼杭の根固め工法において、図5に示すように、前記H形鋼51(1)のウェブb先端部側の両側端面に支持力増大プレート23を取り付けたことを特徴とする。 Claim 5 is a steel pile rooting method according to any one of claims 1 to 4 , as shown in FIG. 5 , supported on both side end faces of the H-section steel 51 (1) on the front end side of the web b. A force increasing plate 23 is attached.

請求項は、請求項1〜5の何れかに記載の鋼杭の根固め工法において、図6に示すように、前記H形鋼61(1)の両フランジaの先端部間に補強プレート25を介装したことを特徴とする。 Claim 6 is the root compaction method of the steel pile according to any one of claims 1 to 5, as shown in FIG. 6, the reinforcing plate between the ends of both flanges a of the H-beams 61 (1) 25 is interposed.

上記解決手段による発明の効果を、後述する実施形態の参照符号を付して説明すると、請求項1に係る発明の鋼杭の根固め工法によれば、岩盤支持層Grに、根固めする鋼杭1としてH形鋼11〜16を使用し、該H形鋼11〜16の対角線長Dgより小さい内径Diの下孔2を削孔機DHによって削孔し、その下孔2にH形鋼11〜16をバイブロハンマー22の打撃力によって強制圧入することにより、H形鋼のフランジaの角部が岩盤支持層Grの下孔2内壁を削って、その内壁に食い付いて一体化すると共に、H形鋼11〜16が充分な周面摩擦力を確保して、岩盤支持層Grに対するH形鋼11〜16の支持を大きくとることができて、H形鋼11〜16を岩盤支持層Grに対し充分かつ有効に根固めすることができる。また、モルタル、セメントミルク等の根固め材を使用しないから、仮設桟橋工事では、鋼杭1の打設後即時に杭打機等の乗載が可能で、工期の大幅な短縮を図ることができ、また工事完了後の鋼杭1の引抜きが可能となり、環境にも優しく、そして更に地下水、河川等の汚染を防ぐことができる。 The effect of the invention by the above solution will be described with reference numerals of the embodiments described later. According to the steel pile rooting method of the invention according to claim 1, the steel to be solidified in the rock mass support layer Gr. H-shaped steels 11 to 16 are used as the pile 1 , and a pilot hole 2 having an inner diameter Di smaller than the diagonal length Dg of the H-shaped steels 11 to 16 is drilled by a drilling machine DH. By forcibly press-fitting 11 to 16 with the striking force of the vibro hammer 22, the corners of the flange a of the H-shaped steel scrape the inner wall of the lower hole 2 of the rock support layer Gr, and bite into and integrate with the inner wall. , and H-section steel 11 to 16 to ensure a sufficient circumferential surface frictional force, to be able to increase the support of H-beams 11 to 16 for the rock support layer Gr, rock supporting layer H-beams 11 to 16 It is possible to firmly and effectively solidify against Gr. In addition, since no mortar, cement milk, or other rooting material is used, it is possible to mount a pile driver etc. immediately after placing the steel pile 1 in the temporary pier construction, which can greatly shorten the construction period. In addition, the steel pile 1 can be pulled out after the construction is completed, and it is environmentally friendly. Further, contamination of groundwater, rivers and the like can be prevented.

この際、本発明によれば、図1に示すように、前H形鋼11〜16の各フランジaの先端部を先細りテーパ状に切除して、その切除部3にH形鋼より硬質のカッティングプレート4を取り付け、該H形鋼11〜16の先端部の先細りテーパ状で硬質のカッティングプレート4で、岩盤支持層Grの下孔2を、切削しながら食い込んでいくから、下孔2に対する圧入作業が容易となる。
しかも、前記H形鋼11〜16を、普通型バイブロハンマー(SR・45で起振力47t)ではなく、高出力超高周波型バイフロハンマー(ICE・28RF)で、起振力が113〜160tと普通型バイブロハンマーの約3〜4倍のバイフロハンマーによって岩盤の下孔に対して強烈に切削圧入を行うことができ、岩盤支持層Grに対する前記H形鋼11〜16の支持力を大幅に増大させることができ、極めて優良な根固めを作ることができる。
In this case, according to the present invention, as shown in FIG. 1, by cutting the tip portion of each flange a prior SL H-beams 11 to 16 in a tapered tapered rigid than H-beam to the cut portion 3 The cutting plate 4 is attached, and the lower hole 2 of the rock support layer Gr is bitten while cutting with the tapered tapered hard cutting plate 4 at the tip of the H-shaped steels 11 to 16. The press-fitting work with respect to is easy.
In addition, the H-shaped steels 11 to 16 are not a normal type vibro hammer (SR · 45, vibration force 47 t), but a high output super-high frequency type bi-floor hammer (ICE · 28RF), and the vibration force is 113 to 160 t. And by vibro hammer about 3 to 4 times that of the normal vibro hammer, it is possible to perform strong cutting press-fitting into the drill hole of the rock mass, greatly increasing the support force of the H-shaped steels 11 to 16 against the rock mass support layer Gr It can be increased to a very good root.

請求項2に係る発明によれば図2に示すように、前記H形鋼21(1)の各フランジaの先端部を先細りテーパ状に切除して、その切除部3に該H形鋼21(1)より硬質のカッティングプレート4を取り付け、各フランジa先端部の外側面中央部に支持力増大プレート6を取り付けてなるため、H形鋼の先端部が岩盤支持層Grの下孔2をカッティングプレート4で切削しながら食い込んでいくから、下孔2に対する圧入作業が容易となり、そしてこのH形鋼21(1)は、各フランジaの先端部外側面中央部に取り付けた支持力増大プレート6が岩盤支持層Grの下孔2内壁に食い込んで一体化するから、岩盤支持層Grに対する支持をより大きくとることができる。 According to the invention according to claim 2, as shown in FIG. 2, the tip of each flange a of the H-shaped steel 21 (1) is cut out in a tapered shape, and the H-shaped steel is cut into the cut-out portion 3. Since the cutting plate 4 that is harder than 21 (1) is attached and the supporting force increasing plate 6 is attached to the center of the outer surface of each flange a tip, the tip of the H-shaped steel is the bottom hole 2 of the rock support layer Gr. Is cut while cutting with the cutting plate 4, so that the press-fitting work into the pilot hole 2 becomes easy, and the H-shaped steel 21 (1) has an increased support force attached to the center of the outer surface of the front end of each flange a. Since the plate 6 bites into the inner wall of the lower hole 2 of the bedrock support layer Gr and integrates, the support for the bedrock support layer Gr can be further increased.

請求項3に係る発明によれば図3に示すように、前記H形鋼31(1)の各フランジa先端部側の両側端面に切欠部7を長手方向一定間隔おきに形成してなるため、この切欠部7は、H形鋼31(1)を岩盤支持層Grの下孔2に強制圧入する時に、下孔2の内壁に対する各フランジa先端部両側端面の摺動摩擦抵抗を軽減して、下孔2に対する該H形鋼31(1)の圧入作業を容易にすることができる。 According to the invention of claim 3, as shown in FIG. 3 , the notches 7 are formed at regular intervals in the longitudinal direction on both side end surfaces of the front ends of the flanges a of the H-shaped steel 31 (1). Therefore, the notch 7 reduces the sliding frictional resistance of both end surfaces of the front end of each flange a with respect to the inner wall of the lower hole 2 when the H-shaped steel 31 (1) is forcibly press-fitted into the lower hole 2 of the rock support layer Gr. Thus, the press-fitting work of the H-shaped steel 31 (1) into the prepared hole 2 can be facilitated.

請求項4に係る発明によれば図4に示すように、前記H形鋼41(1)の各フランジa先端部側の両側端面に支持力増大用凸部8を長手方向一定間隔おきに突設してなるため、このH形鋼41(1)は、各フランジaの先端部側の両側端面に突設した支持力増大用凸部8が下孔2内壁に食い込んで一体化するから、岩盤支持層Grに対する支持をより大きくとることができる。 According to the fourth aspect of the present invention, as shown in FIG. 4 , the supporting force increasing convex portions 8 are provided at regular intervals in the longitudinal direction on both side end surfaces of the front end portion of each flange a of the H-shaped steel 41 (1). Since the H-shaped steel 41 (1) is formed by projecting, the supporting force increasing convex portions 8 projecting from both end surfaces on the front end side of each flange a bite into the inner wall of the lower hole 2 and are integrated. The support for the bedrock support layer Gr can be made larger.

請求項5に係る発明によれば図5に示すように、前記H形鋼51(1)のウェブb先端部側の両側端面に支持力増大プレート23を取り付けてなるため、岩盤支持層Grに対する支持をより一層大きくとることができる。 According to the fifth aspect of the present invention, as shown in FIG. 5 , since the supporting force increasing plates 23 are attached to both side end surfaces of the H-shaped steel 51 (1) on the front end side of the web b, The support for can be further increased.

請求項6に係る発明によれば図6に示すように、前記H形鋼61(1)の両フランジaの先端部間に補強プレート25を介装してなるめため、補強プレート25により当該H形鋼61(1)の両フランジa,a先端部間が閉塞された状態となるから、下孔2に掘削土砂などが溜まっている時にフランジa,a先端部間の閉塞による土砂等の抵抗により当該H形鋼71(1)の支持力を増大することができる。 According to the invention according to claim 6, as shown in FIG. 6 , the reinforcing plate 25 is interposed between the front ends of both flanges a of the H-shaped steel 61 (1). Since the ends of both flanges a and a of the H-shaped steel 61 (1) are closed, the sand and the like due to blockage between the tips of the flanges a and a when the excavated sediment is accumulated in the lower hole 2 The supporting force of the H-section steel 71 (1) can be increased by the resistance of.

本発明工法に使用するH形鋼からなる鋼杭の一例を示すもので、(a) は正面図、(b) は底面図、(c) は側面図である。An example of the steel pile which consists of H-section steel used for this invention construction method is shown, (a) is a front view, (b) is a bottom view, (c) is a side view. 本発明工法に使用するH形鋼からなる鋼杭の他の例を示すもので、(a) は正面図、(b) は底面図、(c) は側面図である。The other example of the steel pile which consists of H-section steel used for this invention construction method is shown, (a) is a front view, (b) is a bottom view, (c) is a side view. 本発明工法に使用するH形鋼からなる鋼杭の更に他の例を示すもので、(a) は正面図、(b) は底面図、(c) は側面図である。The other example of the steel pile which consists of H-section steel used for this invention construction method is shown, (a) is a front view, (b) is a bottom view, (c) is a side view. 本発明工法に使用するH形鋼からなる鋼杭の更に他の例を示すもので、(a) は正面図、(b) は底面図、(c) は側面図である。The other example of the steel pile which consists of H-section steel used for this invention construction method is shown, (a) is a front view, (b) is a bottom view, (c) is a side view. 本発明工法に使用するH形鋼からなる鋼杭の更に他の例を示すもので、(a) は正面図、(b) は底面図、(c) は側面図である。The other example of the steel pile which consists of H-section steel used for this invention construction method is shown, (a) is a front view, (b) is a bottom view, (c) is a side view. 本発明工法に使用するH形鋼からなる鋼杭の更に他の例を示すもので、(a) は正面図、(b) は底面図、(c) は側面図である。The other example of the steel pile which consists of H-section steel used for this invention construction method is shown, (a) is a front view, (b) is a bottom view, (c) is a side view. (a) は本発明工法の一実施形態を示す説明図、(b) は(a) に続く説明図である。(a) is explanatory drawing which shows one Embodiment of this invention construction method, (b) is explanatory drawing following (a). (a) は図7の(b) に続く本発明工法の説明図、(b) は(a) に続く説明図である。(a) is explanatory drawing of this invention construction method following (b) of FIG. 7, (b) is explanatory drawing following (a). (a) は図8の(b) に続く本発明工法の説明図、(b) は(a) に続く説明図である。(a) is explanatory drawing of this invention construction method following (b) of FIG. 8, (b) is explanatory drawing following (a). (a) は図9の(b) に続く本発明工法の説明図、(b) は(a) に続く説明図である。(a) is explanatory drawing of this invention construction method following (b) of FIG. 9, (b) is explanatory drawing following (a). (a) は図10の(b) に続く本発明工法の説明図、(b) は(a) に続く説明図である。(a) is explanatory drawing of this invention construction method following (b) of FIG. 10, (b) is explanatory drawing following (a). (a) 及び(b) は本発明工法の他の実施形態を示す説明断面図である。(a) And (b) is explanatory sectional drawing which shows other embodiment of this invention construction method. (a) 〜(i) は従来工法を説明する説明図である。(a)-(i) is explanatory drawing explaining a conventional construction method.

以下に本発明工法の好適な実施形態を図面に基づいて説明すると、図1〜図6は本発明に係る鋼杭根固め工法に使用するH形鋼からなる鋼杭の種々の例を示し、そして図7〜図11は本発明工法を仮橋構台用の鋼杭の根固めに実施した実施形態を示したものである。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the construction method of the present invention will be described with reference to the drawings. FIGS. 1 to 6 show various examples of steel piles made of H-section steel used in the steel pile rooting construction method according to the present invention. 7 to 11 show an embodiment in which the present invention construction method is carried out to solidify a steel pile for a temporary bridge gantry.

先ず、図1に示す鋼杭1として使用するH形鋼11は、両フランジa,aとウェブbとからなるもので、地盤をプレボーリングするにあたって、地盤Gの岩盤支持層Gr(図7〜図11参照)には、図1の(b) に示すように両フランジa,aの対角線長Dgよりも小さい内径Diの下孔2をダウンザホールハンマー等の削孔機によって削孔する。そして、このH形鋼11は、図1の(c) から分かるように、各フランジaの先端部を先細りテーパ状に切除し、その切除部3,3にH形鋼11よりも硬質のカッティングプレート4,4を取り付けてなるもので、削孔した岩盤支持層Grの下孔2に、バイブロハンマー22(図10参照)の打撃力によって強制圧入することで根固めを行なう。フランジaの先端部を先細りテーパ状に形成したのは、H形鋼11の先端部が下孔2に嵌まり込み易くするためである。   First, the H-section steel 11 used as the steel pile 1 shown in FIG. 1 is composed of both flanges a and a and a web b. When the ground is pre-bored, the rock support layer Gr of the ground G (FIG. 7 to FIG. 7). In FIG. 11 (b), as shown in FIG. 1 (b), the pilot hole 2 having an inner diameter Di smaller than the diagonal length Dg of both flanges a and a is drilled by a drilling machine such as a down-the-hole hammer. As can be seen from FIG. 1 (c), the H-section steel 11 has a tapered end cut off at each flange a, and the cut sections 3 and 3 are harder than the H-section steel 11. Plates 4 and 4 are attached, and rooting is performed by forcibly press-fitting into the prepared hole 2 of the drilled rock support layer Gr by the striking force of the vibro hammer 22 (see FIG. 10). The reason why the tip of the flange a is tapered and tapered is to make it easy to fit the tip of the H-shaped steel 11 into the lower hole 2.

この場合、鋼杭1としてのH形鋼11は、図1の(b) に示すように、両フランジa,aの対角線長Dgがプレボーリングされる下孔2の内径Diより大きいため、このH形鋼11を下孔2にバイブロハンマー22(図11参照)の打撃力で強制圧入することにより、H形鋼11のフランジa角部が岩盤支持層Grの下孔2内壁を削ってその内壁に食い込んで、岩盤本来の持つ反力を確保すると共に、H形鋼11が充分な周面摩擦力を確保して、岩盤支持層Grに対する支持を大きくとることができ、極めて優良な根固めを作ることができる。またこの場合、各フランジaの先端部を先細りテーパ状に切除して、その切除部3,3にカッティングプレート4,4を取り付けることにより、H形鋼11の先端部が岩盤支持層Grの下孔2をカッティングプレート4で切削しながら食い込んでいくから、下孔2に対する圧入作業が容易となる。なお、H形鋼11の材質をSS400とすれば、カッティングプレート4には、S35C、S45C、S50C、S55C、SCM等を使用する。   In this case, the H-section steel 11 as the steel pile 1 is larger than the inner diameter Di of the pilot hole 2 where the diagonal length Dg of both flanges a and a is pre-bored as shown in FIG. By forcibly press-fitting the H-shaped steel 11 into the lower hole 2 with the striking force of the vibro hammer 22 (see FIG. 11), the corners of the flange a of the H-shaped steel 11 cut the inner wall of the lower hole 2 of the rock support layer Gr. It bites into the inner wall to ensure the reaction force inherent to the rock mass, and the H-section steel 11 secures sufficient peripheral frictional force so that the support for the rock mass support layer Gr can be greatly increased. Can be made. In this case, the tip of each flange a is cut out in a tapered shape, and the cutting plates 4 and 4 are attached to the cut-out portions 3 and 3, so that the tip of the H-shaped steel 11 is under the rock support layer Gr. Since the hole 2 is bitten while being cut by the cutting plate 4, the press-fitting work into the lower hole 2 becomes easy. If the material of the H-section steel 11 is SS400, S35C, S45C, S50C, S55C, SCM or the like is used for the cutting plate 4.

図2に示す鋼杭1としてのH形鋼21は、図1のH形鋼11と同様、各フランジaの先端部を先細りテーパ状に切除して、その切除部3,3にH形鋼よりも硬質のカッティングプレート4,4を取り付け、更に各フランジaの先端部の外側面中央部に一つ又は複数の支持力増大プレート6を溶接により取り付けたものであり、図1のH形鋼11と同様に、両フランジa,aの対角線長Dgよりも小さい内径Diの下孔2に対し、バイブロハンマーで強制圧入することによって根固めを行なう。   The H-section steel 21 as the steel pile 1 shown in FIG. 2 is cut out at the tip of each flange a in a tapered shape like the H-section steel 11 in FIG. A harder cutting plates 4 and 4 are attached, and one or more support force increasing plates 6 are attached to the center of the outer surface of the front end of each flange a by welding. In the same manner as in FIG. 11, rooting is performed by forcibly press-fitting with a vibro hammer into the prepared hole 2 of the inner diameter Di smaller than the diagonal length Dg of both flanges a and a.

この場合も、H形鋼21は、図2の(b) に示すように両フランジa,aの対角線長Dgが下孔2の内径よりも大きいため、下孔2に切削圧入することにより、岩盤支持層Grに対する支持を大きくとれて、極めて優良な根固めを作ることができ、また各フランジaの先端部を先細りテーパ状に切除して、その切除部3,3にカッティングプレート4,4を取り付けていることにより、H形鋼21先端部が岩盤支持層Grの下孔2をカッティングプレート4で切削しながら食い込んでいくから、下孔2に対する圧入作業が容易となる。そして特に、このH形鋼21は、各フランジaの先端部外側面中央部に取り付けた支持力増大プレート6が岩盤支持層Grの下孔2内壁に食い込んで一体化するから、岩盤支持層Grに対する支持を一層大きくとることができる。   Also in this case, the H-shaped steel 21 has a diagonal length Dg of both flanges a and a larger than the inner diameter of the lower hole 2 as shown in FIG. The support for the bedrock support layer Gr can be greatly increased, and an extremely good root can be formed. The tip of each flange a is cut off in a tapered shape, and the cutting plates 4 and 4 are cut into the cutouts 3 and 3. Since the tip of the H-shaped steel 21 bites in the rock support layer Gr while cutting the lower hole 2 with the cutting plate 4, the press-fitting work into the lower hole 2 becomes easy. In particular, the H-shaped steel 21 is integrated with the rock support layer Gr because the support force increasing plate 6 attached to the center of the outer surface of the front end of each flange a bites into the inner wall of the lower hole 2 of the rock support layer Gr. Can be supported more greatly.

図3に示す鋼杭1としてのH形鋼31は、図1のH形鋼11及び図2のH形鋼21と同様に、各フランジaの先端部を先細りテーパ状に切除して、その切除部3,3にH形鋼よりも硬質のカッティングプレート4,4を取り付けているが、特にこのH形鋼31では、各フランジaの先端部両側端面に切欠部7を長手方向一定間隔おきに切欠形成している点が特徴である。この切欠部7は、H形鋼31を岩盤支持層Grの下孔2に強制圧入する時に、下孔2の内壁に対する各フランジa先端部両側端面の摺動摩擦抵抗を軽減して、下孔2に対するH形鋼31の圧入作業を容易にすることができる。なお、このH形鋼31に設けてあるような切欠部7は、図2に示すH形鋼21のフランジaにも設けることができる。   The H-section steel 31 as the steel pile 1 shown in FIG. 3 is cut out at the tip of each flange a in a tapered shape, like the H-section steel 11 in FIG. 1 and the H-section steel 21 in FIG. Cutting plates 4 and 4 that are harder than H-section steel are attached to the cut-out sections 3 and 3. In particular, in this H-section steel 31, notches 7 are provided at regular intervals in the longitudinal direction on both end faces of the front end of each flange a. The feature is that a notch is formed. This notch 7 reduces the sliding frictional resistance of both end surfaces of the front end of each flange a against the inner wall of the lower hole 2 when the H-shaped steel 31 is forcibly press-fitted into the lower hole 2 of the rock support layer Gr. It is possible to facilitate the press-fitting work of the H-shaped steel 31 with respect to. In addition, the notch part 7 as provided in this H-section steel 31 can also be provided also in the flange a of the H-section steel 21 shown in FIG.

図4に示す鋼杭1としてのH形鋼41は、各フランジaの先端部側両側端面に支持力増大用凸部8を長手方向一定間隔おきに突設した点が特徴である。従って、このH形鋼41は、各フランジaの先端部側両側端面に突設した支持力増大用凸部8が下孔2内壁に食い込んで一体化するから、岩盤支持層Grに対する支持を一層大きくとることができる。   The H-section steel 41 as the steel pile 1 shown in FIG. 4 is characterized in that support force increasing convex portions 8 are projected at regular intervals in the longitudinal direction on both end surfaces on the front end side of each flange a. Therefore, the H-shaped steel 41 is provided with support for the rock mass support layer Gr because the supporting force increasing convex portions 8 projecting from both end surfaces on the front end side of each flange a bite into the inner wall of the lower hole 2 and are integrated. It can be taken big.

図5に示す鋼杭1としてのH形鋼51は、図1のH形鋼11や図2のH形鋼21と同様に、各フランジaの先端部を先細りテーパ状に切除して、その切除部3,3にカッティングプレート4,4を取り付けているが、特にこのH形鋼51では、ウェブbの先端部側の両側端面に支持力増大プレート23を一つ又は複数取り付けた点を特徴としている。この支持力増大プレート23の外側端面先端部は、下孔2に嵌まり込み易くするために斜めにカットしてあり、その斜めカット部を23aで示す。また、各フランジaの先端部側の外側面中央部には、図2に示すH形鋼21の支持力増大プレート6と同様な支持力増大プレート24を取り付けている。この支持力増大プレート24の外側端面先端部も斜めカット部を24aを形成している。従って、このH形鋼51は、フランジaに支持力増大プレート24を取り付けたうえに、ウェブbにも支持力増大プレート23を取り付けているから、岩盤支持層Grに対する支持をより一層大きくとることができる。   The H-section steel 51 as the steel pile 1 shown in FIG. 5 is formed by cutting off the tip of each flange a in a tapered shape, like the H-section steel 11 in FIG. 1 and the H-section steel 21 in FIG. The cutting plates 4 and 4 are attached to the cut portions 3 and 3, and this H-shaped steel 51 is particularly characterized in that one or a plurality of supporting force increasing plates 23 are attached to both end surfaces on the tip end side of the web b. It is said. The front end portion of the outer end surface of the supporting force increasing plate 23 is cut obliquely so as to be easily fitted into the lower hole 2, and the oblique cut portion is indicated by 23a. Further, a support force increasing plate 24 similar to the support force increasing plate 6 of the H-section steel 21 shown in FIG. 2 is attached to the center portion of the outer surface on the tip end side of each flange a. The front end portion of the outer end surface of the supporting force increasing plate 24 also forms an oblique cut portion 24a. Accordingly, the H-shaped steel 51 has the support force increasing plate 24 attached to the flange a and the support force increasing plate 23 attached to the web b, so that the support for the rock support layer Gr can be further increased. Can do.

図6に示す鋼杭1としてのH形鋼61は、各フランジaの先端部を先細りテーパ状に切除して、その切除部3,3にカッティングプレート4,4を取り付けているが、特にこのH形鋼61では、両フランジa,a の先端部間に一つ又は複数の補強プレート25を介装した点を特徴としている。また、各フランジaの先端部側の外側面中央部には、図5のH形鋼51と同様、支持力増大プレート26を取り付け、その外側端面先端部には斜めカット部を26aを形成している。このように両フランジa,aの先端部間に補強プレート25を介装したH形鋼61では、補強プレート25によりH形鋼61の両フランジa,a先端部間が閉塞された状態となるから、下孔2の下部に土砂等が溜まっている時にフランジa,a先端部間の閉塞による土砂等の抵抗により鋼杭1の支持力を増大することができる。   The H-shaped steel 61 as the steel pile 1 shown in FIG. 6 has a tapered end cut off at the front end of each flange a, and cutting plates 4 and 4 are attached to the cut-out portions 3 and 3. The H-shaped steel 61 is characterized in that one or a plurality of reinforcing plates 25 are interposed between the tips of both flanges a and a. Further, like the H-shaped steel 51 in FIG. 5, a supporting force increasing plate 26 is attached to the central portion of the outer surface on the front end side of each flange a, and an oblique cut portion 26a is formed at the front end portion of the outer end surface. ing. Thus, in the H-section steel 61 in which the reinforcing plate 25 is interposed between the front ends of the flanges a and a, the end of the flanges a and a of the H-section steel 61 is closed by the reinforcing plate 25. From this, when soil or the like is accumulated in the lower part of the lower hole 2, the supporting force of the steel pile 1 can be increased by the resistance of the soil or the like due to blockage between the front ends of the flanges a and a.

図7〜図11は、本発明に係る鋼杭根固め工法の実施形態を示すもので、海岸等の水際にあるの傾斜岩盤支持層Grに鋼杭1(H形鋼や鋼管)を打ち込んで仮橋(仮設桟橋)の構台を施工する場合を示しており、この施工について以下に説明すると、図7の(a) は、地盤Gの傾斜土砂層Gsから傾斜岩盤支持層Grにわたり打設されて根固めされた複数本の鋼杭1により仮橋構台12の一部が架設された状態で、反力架台16(図8以降参照)の施工を開始した状態を示している。なお、図7、図8、図9及び図10の(a) に夫々示される鋼杭1は、上述した本発明工法によって既に根固めされたものである。   7 to 11 show an embodiment of a steel pile root consolidation method according to the present invention, in which a steel pile 1 (H-shaped steel or steel pipe) is driven into an inclined bedrock support layer Gr at the waterfront such as a coast. The construction of a temporary bridge (temporary pier) gantry is shown. This construction will be described below. Fig. 7 (a) shows the construction of the ground G from the sloped earth and sand layer Gs to the sloped bedrock support layer Gr. The state where construction of the reaction force frame 16 (see FIG. 8 and subsequent figures) is started in a state where a part of the temporary bridge gantry 12 is erected by a plurality of steel piles 1 that are solidified in this manner. In addition, the steel pile 1 shown by (a) of FIG.7, FIG.8, FIG.9 and FIG. 10, respectively is already solidified by the above-mentioned this invention construction method.

図7の(a) においては、一部架設された仮橋構台12上に乗載させたクローラクレーン(図示省略)の昇降ワイヤー17に吊持したバイブロハンマー13によって、反力架台用の杭14を複数本、地盤Gの土砂層Gsに所要深さ打設し、その後同図の(b) に示すように、反力架台用の架台本体15を前記クレーンの昇降ワイヤー18により吊り上げて複数本の杭14上に横架し、図8の(a) ,(b) に示すような反力架台16を施工する。   In FIG. 7 (a), a pile 14 for a reaction force frame is provided by a vibro hammer 13 suspended on a lifting wire 17 of a crawler crane (not shown) mounted on a partially built temporary bridge frame 12. Are placed in the earth and sand layer Gs of the ground G to the required depth, and then the base body 15 for the reaction force base is lifted by the lifting wire 18 of the crane, as shown in FIG. The reaction force platform 16 as shown in FIGS. 8 (a) and 8 (b) is constructed on the pile 14 of FIG.

上記のように施工した反力架台16の架台本体15上には図8の(a) に示すように、テーブルマシーンである全周回転圧入装置19を前記クレーンの昇降ワイヤー17により吊り上げて設置し、しかしてこの全周回転圧入装置19には、図8の(b) に示すようにダウンザホールハンマーDHをセットし、このハンマーDHにより、土砂層Gsから岩盤支持層Grにわたって、仮橋構台用の鋼杭1の外径又は対角線長よりも小さい内径の下孔2(図10参照)を削孔する。なお、ダウンザホールハンマーDHは、掘孔の進行に従ってハンマーロッドを継ぎ足していく必要があり、その継ぎ足し作業は、反力架台16の上で行なう。   On the gantry body 15 of the reaction force gantry 16 constructed as described above, as shown in FIG. 8 (a), an all-round rotary press-fitting device 19 as a table machine is lifted by the lifting wire 17 of the crane and installed. However, as shown in FIG. 8 (b), the down-the-hole hammer DH is set in the all-round rotary press-fitting device 19, and the hammer DH is used for the temporary bridge gantry from the earth and sand layer Gs to the bedrock support layer Gr. A pilot hole 2 (see FIG. 10) having an inner diameter smaller than the outer diameter or diagonal length of the steel pile 1 is drilled. The down-the-hole hammer DH needs to be added with a hammer rod according to the progress of the digging hole, and the addition work is performed on the reaction force mount 16.

しかして、図9の(a) に示すように所定深度まで掘孔したならば、ダウンザホールハンマーDHを引き上げて下孔2から抜き取る。このダウンザホールハンマーDHを下孔2から抜き取ると、下孔2に水が入り込んでくるため、下孔2の土砂層Gs部分が崩壊し、その崩壊した土砂20が水と共に泥土砂状態となって、図9の(b) に示すように下孔2に充満した状態となる。   If the hole is dug to a predetermined depth as shown in FIG. 9A, the down-the-hole hammer DH is pulled up and removed from the lower hole 2. When this down-the-hole hammer DH is extracted from the lower hole 2, water enters the lower hole 2, so the earth and sand layer Gs portion of the lower hole 2 collapses, and the collapsed earth and sand 20 becomes mud and sand with water. As shown in FIG. 9B, the pilot hole 2 is filled.

それから、反力架台16上に設置していた全周回転圧入装置19(テーブルマシーン)を図10の(a) に示すようにクレーンの昇降ワイヤー17により吊り上げて撤去した後、同図の(b) に示すように鋼杭1(H形鋼)をクレーンで吊り込み、そして図11の(a) に示すようにバイブロハンマー22により鋼杭1を打撃しながら下孔2に強制圧入する。バイブロハンマー22としては、高出力超高周波型バイブロハンマー(ICE ・20RF又はICE ・28RF )が好ましい。この高出力超高周波型バイブロハンマーでは、起振力が113〜160tと、普通型バイブロハンマー(SR・45で起振力47t)の約3〜4倍となり、未削孔部の岩盤に対し強烈な切削圧入を行い、岩盤支持層Grに対する鋼杭1の支持力を増大させることができる。   Then, the entire circumference rotary press-fitting device 19 (table machine) installed on the reaction stand 16 is lifted and removed by the crane lifting wire 17 as shown in FIG. As shown in FIG. 11, the steel pile 1 (H-shaped steel) is suspended by a crane, and is forcedly inserted into the pilot hole 2 while striking the steel pile 1 with a vibro hammer 22 as shown in FIG. The vibro hammer 22 is preferably a high-power, super-high-frequency vibro hammer (ICE 20RF or ICE 28RF). In this high output super high frequency type vibro hammer, the vibration force is 113 to 160t, which is about 3 to 4 times that of the normal vibration vibrator (SR · 45, vibration force 47t), which is strong against the rock in the uncut hole. It is possible to increase the support force of the steel pile 1 with respect to the rock support layer Gr.

図11の(b) に示すように、鋼杭1を岩盤支持層Grの所定深度まで打撃圧入し終えたならば、鋼杭1の沈下量を測定し、支持力を算出して記録する。   As shown in FIG. 11 (b), when the steel pile 1 has been hit and pressed to the predetermined depth of the rock support layer Gr, the amount of settlement of the steel pile 1 is measured, and the bearing force is calculated and recorded.

上述した図7〜図11の実施形態は、仮橋構台の鋼杭1を根固めする施工例であるが、本発明に係る鋼杭の根固め工法は、仮橋構台の鋼杭に限らず、土留め用鋼杭、地滑り抑止杭、その他、根固めを必要とする全ての鋼杭に適用可能である。図12の(a) は、土留め用鋼杭1として利用する場合を示したもので、この図に示す地盤Gは、シルト(泥土)、粘性土、礫土等よりなる土砂層Gsと、その下方の岩盤支持層Grとからなる。また同図の(b) は地滑り抑止杭として利用する場合を示したもので、この図に示す地盤Gは、表土層Gaと粘性土層Gbと礫土層Gcと岩盤支持層Grとからなる。   The embodiment of FIGS. 7 to 11 described above is a construction example for solidifying the steel pile 1 of the temporary bridge gantry. However, the steel pile consolidation method according to the present invention is not limited to the steel pile of the temporary bridge gantry. It can be applied to steel piles for earth retaining, landslide deterrent piles, and all other steel piles that require consolidation. (A) of FIG. 12 shows the case where it is used as a steel pile 1 for earth retaining. The ground G shown in this figure includes a sediment layer Gs made of silt, mud soil, gravel soil, etc. It consists of the lower rock support layer Gr. (B) of the figure shows a case where it is used as a landslide prevention pile. The ground G shown in this figure is composed of a topsoil layer Ga, a cohesive soil layer Gb, a gravel soil layer Gc, and a bedrock support layer Gr.

以上説明した本発明の実施形態の鋼杭の根固め工法は、岩盤支持層Grに、根固めする鋼杭1(H形鋼)の対角線長Dgよりも小さい内径Diの下孔2をダウンザホールハンマーDHにより削孔し、この下孔2に、鋼杭1として例えばH形鋼11〜61をバイブロハンマー、好ましくは高出力超高周波型バイブロハンマー22にて強制圧入するようにしたもので、鋼杭1であるH形鋼11〜61のフランジaが岩盤支持層Grに対し直接圧入されることから、H形鋼11〜61の外周部に充分な摩擦力を確保し得ることが期待される。また、フランジaの先端部は、岩着となり、H形鋼11〜61のフランジaの角部が岩盤支持層Grの下孔2内壁を削ってその内壁に食い込んで、岩盤本来の持つ反力を確保することができる。   In the steel pile rooting method according to the embodiment of the present invention described above, the pilot hole 2 having an inner diameter Di smaller than the diagonal length Dg of the steel pile 1 (H-shaped steel) to be solidified is formed in the bedrock support layer Gr. A hole is drilled by DH, and for example, H-shaped steels 11 to 61 are forcibly press-fitted into the lower hole 2 with a vibro hammer, preferably a high-power, super-high frequency vibro hammer 22, as a steel pile 1. Since the flange a of the H-section steel 11 to 61 that is 1 is directly press-fitted into the rock support layer Gr, it is expected that a sufficient frictional force can be secured on the outer peripheral portion of the H-section steel 11 to 61. Further, the tip of the flange a becomes rocky, and the corner of the flange a of the H-shaped steels 11 to 61 cuts into the inner wall of the lower hole 2 of the rock support layer Gr and bites into the inner wall. Can be secured.

また、本発明の根固め工法では、モルタル、セメントミルク、コンクリートK等の根固め材を使用しないから、実施形態に示すような仮橋構台の工事においては、地盤Gの下孔2に鋼杭1を打設した後、即時に杭打機(クローラクレーン)の乗載が可能となるから、工期を大幅に短縮することができる。また、モルタル等を使用する根固め工法の場合は、工事完了後に鋼杭の引抜きが困難となり、従って切断して地中に残置しなければならず、不経済であり、環境への問題も残るが、本発明の根固め工法ではモルタルやセメント等を用いないから、工事完了後に鋼杭の引抜きが可能となり、環境にも優しくなる。   In addition, since the root hardening method of the present invention does not use a root hardening material such as mortar, cement milk, concrete K or the like, in the construction of the temporary bridge gantry as shown in the embodiment, the steel pile is placed in the pilot hole 2 of the ground G. Since the pile driver (crawler crane) can be mounted immediately after placing 1, the construction period can be greatly shortened. In addition, in the case of the consolidation method using mortar, etc., it becomes difficult to pull out the steel pile after the completion of construction, so it must be cut and left in the ground, which is uneconomical and environmental problems remain. However, since the mortar or cement of the present invention does not use mortar, cement or the like, the steel pile can be pulled out after the construction is completed, and it becomes environmentally friendly.

また、岩盤支持層への根入れ長さを計算する時に、前述したように、現在の土木仕様書では、岩盤に対する杭の支持層としての扱い、分類がなく、全てN値換算した砂礫層として扱われ、岩盤支持層へ杭を打ち込んでも、その根固め処理方法のみで支持力及び引抜力が計算されてしまうので、岩盤支持層の中へ5〜10m以上根入れしないと、支持がとれなくなる計算となり、図7〜図11の実施形態で示した仮橋構台用鋼杭のような根固め工事においては、鋼杭の根入れ長さは例えば7.5mと比較的深く設計される。しかるに、仮橋構台用鋼杭では岩としての考え方が未解であり、砂質、粘性土としての計算となるため、根固め、根入れ共に支持力が不足することになるが、本発明に係る鋼杭の根固め工法によれば、前述したように鋼杭周面側に充分な周面摩擦力を確保できることから、岩としての考え方をすれば上記例示した7.5mの有効根入れ長さを確保でき、尚且つ先端部を打撃圧入しているために計算以上の支持が発現するものと考えられる。   In addition, when calculating the penetration depth to the bedrock support layer, as described above, the current civil engineering specification treats it as a pile support layer for the bedrock, and does not classify it as a gravel layer converted to N value. Even if the pile is driven into the rock support layer, the support force and the pulling force are calculated only by the rooting treatment method. In the rooting work such as the steel pile for temporary bridge gantry shown in the embodiment of FIGS. 7 to 11, the penetration length of the steel pile is designed to be relatively deep, for example, 7.5 m. However, the steel pile for the temporary bridge gantry is not yet understood as a rock, and it is calculated as sandy and cohesive soil. According to the steel pile consolidation method, as described above, a sufficient peripheral frictional force can be secured on the steel pile peripheral surface side. Therefore, if it is considered as a rock, the effective penetration length of 7.5 m exemplified above Therefore, it is considered that the support beyond the calculation is expressed because the tip is hit and pressed.

また図7〜図11の実施形態で示した仮橋構台用鋼杭の根固め工事では、図9の(a) に示すようにダウンザホールハンマーDHで所定深度掘孔した後、このダウンザホールハンマーDHを下孔2から抜き取ると、下孔2は水が入り込んで崩壊状態となり、空洞部は全て無い状況となるが、その後図10〜図11に示すように鋼杭1がバイブロハンマー22によって強制圧入されることから、下孔2内部の土砂20が密に圧縮されて、摩擦力を増大させ、H形鋼の場合ではフランジ部のみではなくH形鋼周面全体が圧密され、極めて安定した根固め状態となる。なお、下孔2が崩壊しない状況にある場合は、削孔時の発生土砂を事前に埋め戻すことによって、上記の下孔崩壊時と同様な作用効果を発揮させることができる。   In addition, in the rooting work of the steel pile for the temporary bridge gantry shown in the embodiment of FIGS. 7 to 11, the down-the-hole hammer DH is drilled to a predetermined depth with the down-the-hole hammer DH as shown in FIG. 9 (a). When it is extracted from the lower hole 2, the water enters the collapsed state with the water entering the lower hole 2, and there are no cavities. Thereafter, the steel pile 1 is forcibly pressed by the vibro hammer 22 as shown in FIGS. 10 to 11. Therefore, the earth and sand 20 inside the pilot hole 2 is densely compressed to increase the frictional force, and in the case of H-section steel, not only the flange part but the entire H-section steel peripheral surface is consolidated, and extremely stable root consolidation. It becomes a state. In addition, when it exists in the condition where the lower hole 2 does not collapse, the effect similar to the time of said lower hole collapse can be exhibited by refilling the generated earth and sand at the time of drilling beforehand.

また、本発明の根固め工法は、モルタル、セメントミルク、コンクリート等の根固め材を使用しないため、地下水や河川の汚染を防止し、仮橋構台等の解体時の鋼杭の引抜きも容易に行なうことができる。   In addition, since the rooting method of the present invention does not use rooting materials such as mortar, cement milk, concrete, etc., it prevents contamination of groundwater and rivers, and it is easy to pull out steel piles when dismantling temporary bridge piers, etc. Can be done.

1 鋼杭
2 下孔
3 切除部
4 カッティングプレート
5 補強プレート
6 支持力増大プレート
7 切欠部
8 支持力増大用凸部
11 H形鋼
21 H形鋼
22 高出力高周波型バイブロハンマー
23 支持力増大プレート
24 支持力増大プレート
25 補強プレート
31 H形鋼
41 H形鋼
51 H形鋼
61 H形鋼
DESCRIPTION OF SYMBOLS 1 Steel pile 2 Pilot hole 3 Cutting part 4 Cutting plate 5 Reinforcement plate 6 Supporting force increase plate 7 Notch part 8 Supporting force increasing convex part 11 H-section steel 21 H-section steel 22 High-power high-frequency vibro hammer 23 Supporting capacity increase plate 24 Supporting force increasing plate 25 Reinforcing plate 31 H-section steel 41 H-section steel 51 H-section steel 61 H-section steel

Claims (6)

岩盤支持層を削孔し、その孔に鋼杭を建て込んで根固めする鋼杭の根固め工法において、前記鋼杭として、ウェブとその両端部のフランジからなるH形鋼からなり、且つ各フランジの先端部を先細りテーパ状に切除して、その切除部にH形鋼より硬質のカッティングプレートを取り付けたH形鋼を使用し、しかして岩盤支持層には、根固めする前記H形鋼の対角線長よりも小さい内径の下孔を削孔機によって削孔し、その下孔に、前記H形鋼を高出力超高周波型バイブロハンマーによって強制圧入するようにしたことを特徴とする鋼杭の根固め工法。 In the steel pile rooting method of drilling the bedrock support layer and building and solidifying the steel pile in the hole, the steel pile is made of H-shaped steel consisting of a web and flanges at both ends thereof, and The tip of the flange is cut into a tapered shape, and the H-section steel with a cutting plate harder than the H-section steel is used for the cut-out section. A steel pile characterized in that a pilot hole having an inner diameter smaller than the diagonal length of the steel is drilled by a drilling machine, and the H-shaped steel is forcibly press-fitted into the pilot hole by a high-power, super-high-frequency vibro hammer . Rooting method. 前記H形鋼の各フランジの先端部の外側面中央部に支持力増大プレートを取り付けたことを特徴とする請求項1に記載の鋼杭の根固め工法。   The steel pile rooting method according to claim 1, wherein a supporting force increasing plate is attached to a central portion of an outer surface of a front end portion of each flange of the H-shaped steel. 前記H形鋼の各フランジ先端部側の両側端面に切欠部を長手方向一定間隔おきに切欠形成したことを特徴とする請求項1又は2に記載の鋼杭の根固め工法。   3. The steel pile rooting method according to claim 1 or 2, wherein notches are formed on both side end surfaces of each of the flanges of the H-shaped steel at regular intervals in the longitudinal direction. 前記H形鋼の各フランジ先端部側の両側端面に支持力増大用凸部を長手方向一定間隔おきに突設したことを特徴とする請求項1又は2に記載の鋼杭の根固め工法。   3. A steel pile rooting method according to claim 1 or 2, wherein convexities for increasing the supporting force are projected at regular intervals in the longitudinal direction on both side end faces of each flange end of the H-shaped steel. 前記H形鋼のウェブ先端部側の両側端面に支持力増大プレートを取り付けたことを特徴とする請求項1〜4の何れかに記載の鋼杭の根固め工法。   The steel pile rooting method according to any one of claims 1 to 4, wherein supporting force increasing plates are attached to both side end surfaces of the H-shaped steel on the web front end side. 前記H形鋼の両フランジの先端部間に補強プレートを介装したことを特徴とする請求項2〜5何れかに記載の鋼杭の根固め工法。   The steel pile rooting method according to any one of claims 2 to 5, wherein a reinforcing plate is interposed between tip portions of both flanges of the H-shaped steel.
JP2012264202A 2012-12-03 2012-12-03 Steel pile rooting method Active JP5300163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264202A JP5300163B1 (en) 2012-12-03 2012-12-03 Steel pile rooting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264202A JP5300163B1 (en) 2012-12-03 2012-12-03 Steel pile rooting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013127051A Division JP2014109190A (en) 2013-06-17 2013-06-17 Foot protection method for steel pile

Publications (2)

Publication Number Publication Date
JP5300163B1 true JP5300163B1 (en) 2013-09-25
JP2014109143A JP2014109143A (en) 2014-06-12

Family

ID=49396853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264202A Active JP5300163B1 (en) 2012-12-03 2012-12-03 Steel pile rooting method

Country Status (1)

Country Link
JP (1) JP5300163B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112010A (en) * 2019-01-17 2020-07-27 ジェコス株式会社 Joint structure for h-shaped steel pile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084380B1 (en) * 2018-07-30 2020-10-23 Saipem Sa PROCESS FOR INSTALLING A TUBULAR METAL PILE IN ROCKY SOIL

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225423A (en) * 1985-03-29 1986-10-07 Toyo Kensetsu Kk Piling work for hard ground
JPH0318238U (en) * 1989-07-05 1991-02-22
JPH0726559A (en) * 1993-07-13 1995-01-27 Kagota Boring:Kk H-steel end protecting member for pile driving
JPH07127053A (en) * 1993-09-07 1995-05-16 Tobishima Corp Horizontal resistance increasing pile
JPH11209969A (en) * 1998-01-20 1999-08-03 East Japan Railway Co Bearing-power-enhancing pile and method for constructing the same
JP2008169564A (en) * 2007-01-09 2008-07-24 Nakano Denki Kk Metallic pipe pile, and method and equipment for manufacturing it
JP2009167602A (en) * 2008-01-11 2009-07-30 East Japan Railway Co Structure of h-shaped steel pile
JP2011084892A (en) * 2009-10-14 2011-04-28 Nippon Steel Corp Foundation pile structure and constructing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225423A (en) * 1985-03-29 1986-10-07 Toyo Kensetsu Kk Piling work for hard ground
JPH0318238U (en) * 1989-07-05 1991-02-22
JPH0726559A (en) * 1993-07-13 1995-01-27 Kagota Boring:Kk H-steel end protecting member for pile driving
JPH07127053A (en) * 1993-09-07 1995-05-16 Tobishima Corp Horizontal resistance increasing pile
JPH11209969A (en) * 1998-01-20 1999-08-03 East Japan Railway Co Bearing-power-enhancing pile and method for constructing the same
JP2008169564A (en) * 2007-01-09 2008-07-24 Nakano Denki Kk Metallic pipe pile, and method and equipment for manufacturing it
JP2009167602A (en) * 2008-01-11 2009-07-30 East Japan Railway Co Structure of h-shaped steel pile
JP2011084892A (en) * 2009-10-14 2011-04-28 Nippon Steel Corp Foundation pile structure and constructing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112010A (en) * 2019-01-17 2020-07-27 ジェコス株式会社 Joint structure for h-shaped steel pile
JP7079448B2 (en) 2019-01-17 2022-06-02 ジェコス株式会社 Joint structure of H-shaped steel pile

Also Published As

Publication number Publication date
JP2014109143A (en) 2014-06-12

Similar Documents

Publication Publication Date Title
JP6166264B2 (en) How to build a retaining wall
JP5932124B1 (en) Steel pipe pile construction method
KR100762991B1 (en) Precast piling method injected with high-strength mortar
WO2011105703A2 (en) Method for constructing a steel pipe/concrete composite pile in which the steel pipe is buried integrally with bedrock, and pile construction
JP2008297864A (en) Construction method of cast-in-place pile
JP6413469B2 (en) Pile foundation and pile foundation construction method
CN104695433A (en) Construction method of bituminous coating pile in sandy foundation
JP2019015100A (en) Removing method of earth retaining wall
JP5300163B1 (en) Steel pile rooting method
JP6518035B2 (en) Casting aids for steel pipe sheet piles and steel pipe sheet piles
JP2014088687A (en) Method for creating pile body
JP2013104215A (en) Liquefaction prevention method
KR101812463B1 (en) Rrotating-press type pile construction method by using tip-enlarged pile
JP2014109190A (en) Foot protection method for steel pile
JP2000170149A (en) Forming method for underground pile and equipment therefor
JP3144767B2 (en) Underground pile forming method and apparatus
CN104153356B (en) The constructing device of concrete-pile and construction method thereof
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
JP2008045367A (en) Ground consolidation construction method and ground-subsidence correction construction method
KR101047257B1 (en) Construction method of earth wall using composite sheet pile
JP7265451B2 (en) Floating prevention method for underground buried objects
KR101794112B1 (en) Rrotating-press type pile construction device by using tip-enlarged pile
JP2004218378A (en) Removing method for existing pile
JP6298255B2 (en) Method and jig for preventing floating of underground structure
CN216379617U (en) Reusable steel pipe pile foundation structure on soft rock foundation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5300163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250