JP5299973B2 - Lithium-air battery - Google Patents

Lithium-air battery Download PDF

Info

Publication number
JP5299973B2
JP5299973B2 JP2009293870A JP2009293870A JP5299973B2 JP 5299973 B2 JP5299973 B2 JP 5299973B2 JP 2009293870 A JP2009293870 A JP 2009293870A JP 2009293870 A JP2009293870 A JP 2009293870A JP 5299973 B2 JP5299973 B2 JP 5299973B2
Authority
JP
Japan
Prior art keywords
lithium
exchange membrane
air
negative electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009293870A
Other languages
Japanese (ja)
Other versions
JP2011134628A (en
Inventor
豪慎 周
平 何
永剛 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009293870A priority Critical patent/JP5299973B2/en
Publication of JP2011134628A publication Critical patent/JP2011134628A/en
Application granted granted Critical
Publication of JP5299973B2 publication Critical patent/JP5299973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は新規な電池構造を有するリチウム−空気電池に関する。   The present invention relates to a lithium-air battery having a novel battery structure.

最近数多くのリチウム−空気電池(或いはリチウム−酸素電池)の提案が報告されている。それらは、リチウム金属/有機電解液/固体電解質/水溶性電解液/触媒担持した多孔質カーボンを組み合わせたリチウム−空気電池に関するものである。   Recently, many proposals for lithium-air batteries (or lithium-oxygen batteries) have been reported. They relate to lithium-air batteries that combine lithium metal / organic electrolyte / solid electrolyte / water-soluble electrolyte / catalyst-supported porous carbon.

このリチウム−空気電池は、電解液として、負極側に有機電解液を、また、空気極側に水溶性電解液をそれぞれ分けて用い、負極側の有機電解液と空気極側の水溶性電解液の間に、リチウムイオンのみを通す固体電解質をセパレータとして使用する。放電反応により負極から溶出したリチウムイオンは固体電解質を介して空気極側の水溶性電解液に至り、ここで、固体の酸化リチウムではなく、水溶性電解液に溶けやすいLiOHが生成する。また、水や酸素などは固体電解質を通ることが出来ないため、これらが負極のリチウム金属と反応する危険性がない。更に、充電せず、負極側にリチウム金属を燃料として加えれば、燃料電池のように連続放電可能なリチウム−空気電池が得られる。   This lithium-air battery uses an organic electrolyte solution on the negative electrode side and a water-soluble electrolyte solution on the air electrode side as the electrolyte solution, respectively, and uses the organic electrolyte solution on the negative electrode side and the water-soluble electrolyte solution on the air electrode side. A solid electrolyte that allows only lithium ions to pass through is used as a separator. Lithium ions eluted from the negative electrode due to the discharge reaction reach the water-soluble electrolyte solution on the air electrode side through the solid electrolyte, and LiOH that is easily soluble in the water-soluble electrolyte solution is generated instead of solid lithium oxide. In addition, since water, oxygen, and the like cannot pass through the solid electrolyte, there is no risk that they will react with the lithium metal of the negative electrode. Furthermore, if lithium metal is added as a fuel to the negative electrode side without charging, a lithium-air battery capable of continuous discharge like a fuel cell can be obtained.

しかしながら、このリチウム−空気電池において用いられるガラス性の固体電解質は、振動と衝突により割れやすく、割れた際には、水が金属リチウムと反応し、水素が発生する恐れがある。また、当該固体電解質のリチウムイオンの伝導率は、室温25℃の時に約1×10-4S/cmである。
当該リチウムイオンの伝導率の、室温25℃で1×10-4S/cmという数値は、有機電解液の10-2S/cm、水溶性電解液の10-1S/cmという値より、遥かに小さい。固体電解質の、この小さいリチウムイオンの伝導率は、リチウム−空気電池の充放電性能に大きな影響を及ぼしている。
However, the glassy solid electrolyte used in this lithium-air battery is easily broken by vibration and collision, and when it breaks, water may react with metallic lithium to generate hydrogen. Further, the lithium ion conductivity of the solid electrolyte is about 1 × 10 −4 S / cm at room temperature of 25 ° C.
The conductivity of the lithium ion, a numerical value of 1 × 10 -4 S / cm at room temperature 25 ° C. is, 10 -2 S / cm in the organic electrolyte solution, than the value of 10 -1 S / cm of a water-soluble electrolyte, Much smaller. The small lithium ion conductivity of the solid electrolyte has a great influence on the charge / discharge performance of the lithium-air battery.

Journal of Power Sources 195 (2010) 358-361Journal of Power Sources 195 (2010) 358-361

本発明は、従来のリチウム−空気電池が、固体電解質のリチウムイオンの伝導率が小さいことに起因して、充放電性能が十分ではないという問題を解決することを課題とする。   An object of the present invention is to solve the problem that the conventional lithium-air battery has insufficient charge / discharge performance due to the low lithium ion conductivity of the solid electrolyte.

本発明者等は、新規な反応システムを利用したリチウム−空気電池について、長年鋭意検討した結果、従来の固体電解質のセパレーターに替えて、陽イオン交換膜と陰イオン交換膜を両側面に配し、これらに囲まれたセパレータ空間を設けることにより、上記課題を解決することができることを見出し、本発明を完成した。当該セパレータ空間を有する、本発明のリチウム−空気電池の構造は、負極材料/有機電解液/陽イオン交換膜/有機電解液或いは水溶性電解液/陰イオン交換膜/水溶性電解液/空気極、となる。   As a result of intensive studies on lithium-air batteries using a novel reaction system, the present inventors have arranged a cation exchange membrane and an anion exchange membrane on both sides in place of a conventional solid electrolyte separator. The present inventors have found that the above-mentioned problems can be solved by providing a separator space surrounded by these, and the present invention has been completed. The structure of the lithium-air battery of the present invention having the separator space is negative electrode material / organic electrolyte / cation exchange membrane / organic electrolyte or water-soluble electrolyte / anion exchange membrane / water-soluble electrolyte / air electrode. .

上記構成のリチウム−空気電池においては、放電時に、負極から放出されるリチウムイオンは、陽イオン交換膜を通過した後、陰イオン交換膜にブロックされ、陽イオン交換膜と陰イオン交換膜に囲まれる空間にとどまり、一方で、空気極に生成するOH-陰イオンは、空気極側から陰イオン交換膜を通過した後、陽イオン交換膜にブロックされ、陽イオン交換膜と陰イオン交換膜に囲まれる空間にとどまる。 In the lithium-air battery having the above configuration, during discharge, lithium ions released from the negative electrode pass through the cation exchange membrane and are then blocked by the anion exchange membrane, and are surrounded by the cation exchange membrane and the anion exchange membrane. On the other hand, the OH - anions generated in the air electrode pass through the anion exchange membrane from the air electrode side, and then are blocked by the cation exchange membrane. Stay in the enclosed space.

陽イオン交換膜のリチウムイオン伝導率および陰イオン交換膜のOH-陰イオン伝導率は、約10-1〜10-2S/cm程度である。この値は、現在の固体電解質のリチウムイオンの伝導率より遥かに高い。 The lithium ion conductivity of the cation exchange membrane and the OH anion conductivity of the anion exchange membrane are about 10 −1 to 10 −2 S / cm. This value is much higher than the lithium ion conductivity of current solid electrolytes.

したがって、この構成のリチウム−空気電池は、従来の低いイオンの伝導率の問題を解決することができる。また、OH-陰イオンは陽イオン交換膜によりブロックされるので、これが負極のリチウム金属と反応する危険性がない。更に、放電反応の生成物であるリチウムイオンとOH-陰イオンが、陽イオン交換膜と陰イオン交換膜に囲まれた、真ん中のセパレータ空間に集中するので、リチウム燃料電池として使用する時のLiOHの回収に有効となる。 Therefore, the lithium-air battery having this configuration can solve the conventional low ion conductivity problem. Further, OH - Since the anion is blocked by the cation exchange membrane, which is no risk that reacts with the negative electrode of a lithium metal. Furthermore, lithium ions and OH - anions, which are products of the discharge reaction, are concentrated in the middle separator space surrounded by the cation exchange membrane and the anion exchange membrane, so LiOH when used as a lithium fuel cell It becomes effective for recovery.

すなわち、この出願は以下の発明を提供するものである。
〈1〉リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極、負極用の電解液、陽イオン交換膜、電解液で満たされたセパレータ空間、陰イオン交換膜、空気極用の電解液および空気極がその順に設けられることを特徴とする、リチウム−空気電池。
〈2〉リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極/有機電解液/陽イオン交換膜/有機電解液或いは水溶性電解液/陰イオン交換膜/水溶性電解液/空気極がその順に設けられることを特徴とする、〈1〉に記載のリチウム−空気電池。
〈3〉負極として、リチウム金属、リチウムカーボン、リチウムシリコン、リチウムアルミニウム、リチウムインジウム、リチウム錫、窒化リチウムの中から選ばれた負極材料を用い、負極用電解液が有機電解液であることを特徴とする、〈1〉または〈2〉に記載のリチウム−空気電池。
〈4〉空気極が、白金、貴金属、ペロブスカイト酸化物、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄、酸化銅の中から選ばれた触媒が担持された多孔質カーボン或いは微細化カーボンであり、充電可能であることを特徴とする、〈1〉〜〈3〉のいずれかに記載のリチウム−空気電池。
〈5〉〈1〉〜〈4〉のいずれかに記載したリチウム−空気電池の空気極用の電解液に充電専用の正極を配置していることを特徴とする、充電可能なリチウム−空気電池。
〈6〉空気極用電解液が水溶性電解液であり、当該水溶性電解液はアルカリ性(弱アルカリ性或いは強アルカリ性)であることを特徴とする、〈1〉〜〈5〉のいずれかに記載のリチウム−空気電池。
〈7〉空気極用電解液がアルカリ性或いは強アルカリ性水を含むゲルであることを特徴とする、〈1〉〜〈6〉のいずれかに記載のリチウム−空気電池。
〈8〉放電時に、負極から溶出するリチウムイオンが陽イオン交換膜を通過し、陰イオン交換膜にブロックされ、陽イオン交換膜と陰イオン交換膜に囲まれる空間にとどまり、一方、空気極において生成したOH-陰イオンが空気極側から陰イオン交換膜を通過し、陽イオン交換膜にブロックされ、陽イオン交換膜と陰イオン交換膜に囲まれる空間にとどまることを特徴とする、〈1〉〜〈7〉のいずれかに記載のリチウム−空気電池。
〈9〉放電と共に、負極の金属リチウムの表面には、Li => Li+ + e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面には、O2 + 2H2O + 4e- => 4OH- なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li+ + e- => Li なる析出反応が、空気極には、4OH- => O2 + 2H2O + 4e- なる反応が生じることを特徴とする、〈1〉〜〈4〉および〈6〉〜〈8〉のいずれかに記載の充電可能なリチウム−空気電池。
〈10〉放電と共に、負極の金属リチウムの表面には、Li => Li+ + e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面には、O2 + 2H2O + 4e- => 4OH- なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li+ + e- => Li なる析出反応が、充電専用の正極電極には、4OH- => O2 + 2H2O + 4e- なる反応が生じることを特徴とする、〈5〉〜〈8〉のいずれかに記載の充電可能なリチウム−空気電池。
〈11〉負極側のリチウム金属が溶解反応により全部消耗するまでは、連続放電可能であることを特徴とする、〈1〉〜〈10〉のいずれかに記載のリチウム−空気電池。
〈12〉負極側にリチウム金属を燃料として適時に添加し、陽イオン交換膜と陰イオン交換膜に囲まれた領域に生成したLiOHの沈殿を電解液から分離することにより、充電せず、連続放電可能であることを特徴とする、〈1〉〜〈11〉のいずれかに記載のリチウム−空気電池或いはリチウム燃料電池。
〈13〉放電することにより陽イオン交換膜と陰イオン交換膜に囲まれる空間においてリチウムイオンと水酸化イオンとから生じた水酸化リチウムを回収し、当該水酸化リチウムから金属リチウムを再生して、その金属リチウムを負極の活物質として再使用することを特徴とする〈1〉〜〈12〉のいずれかに記載のリチウム−空気電池或いはリチウム燃料電池。
〈14〉陽イオン交換膜の有機電解液側にワックスを被覆することを特徴とする、〈1〉〜〈13〉のいずれかに記載のリチウム−空気電池。
That is, this application provides the following inventions.
<1> Negative electrode using negative electrode material of lithium ion battery or lithium secondary battery, electrolyte solution for negative electrode, cation exchange membrane, separator space filled with electrolyte solution, anion exchange membrane, electrolysis for air electrode A lithium-air battery, wherein a liquid and an air electrode are provided in that order.
<2> Negative electrode using negative electrode material of lithium ion battery or lithium secondary battery / organic electrolyte / cation exchange membrane / organic electrolyte or water-soluble electrolyte / anion exchange membrane / water-soluble electrolyte / air electrode Are provided in that order. The lithium-air battery according to <1>.
<3> A negative electrode material selected from lithium metal, lithium carbon, lithium silicon, lithium aluminum, lithium indium, lithium tin, and lithium nitride is used as the negative electrode, and the negative electrode electrolyte is an organic electrolyte. The lithium-air battery according to <1> or <2>.
<4> The air electrode is porous carbon or refined carbon carrying a catalyst selected from platinum, noble metal, perovskite oxide, manganese oxide, cobalt oxide, nickel oxide, iron oxide, and copper oxide. The lithium-air battery according to any one of <1> to <3>, wherein the battery is rechargeable.
<5> A rechargeable lithium-air battery, characterized in that a positive electrode dedicated to charging is disposed in the electrolyte for an air electrode of a lithium-air battery according to any one of <1> to <4>. .
<6> The electrolyte for air electrode is a water-soluble electrolyte, and the water-soluble electrolyte is alkaline (weakly alkaline or strongly alkaline), according to any one of <1> to <5> Lithium-air battery.
<7> The lithium-air battery according to any one of <1> to <6>, wherein the electrolyte for air electrode is a gel containing alkaline or strongly alkaline water.
<8> During discharge, lithium ions eluted from the negative electrode pass through the cation exchange membrane, are blocked by the anion exchange membrane, stay in the space surrounded by the cation exchange membrane and the anion exchange membrane, the resulting OH - anions pass through the anion exchange membrane from the cathode side, is blocked in the cation exchange membrane, characterized in that the stay in the space surrounded by the cation exchange membranes and anion exchange membranes, <1 >-<7> The lithium-air battery according to any one of the above.
<9> together with the discharge, the surface of the metallic lithium of the negative electrode, Li => Li + + e - to become soluble reaction, the catalyst-carrying porous carbon or the surface of the fine carbon of the air electrode, O 2 + 2H 2 O + 4e - => 4OH - consisting of oxygen has a dissolution reaction, together with the charge on the surface of the metallic lithium of the negative electrode, Li + + e - => Li becomes deposition reaction, the air electrode, 4OH - The rechargeable lithium-air battery according to any one of <1> to <4> and <6> to <8>, wherein a reaction of => O 2 + 2H 2 O + 4e occurs.
<10> together with the discharge, the surface of the metallic lithium of the negative electrode, Li => Li + + e - to become soluble reaction, the catalyst-carrying porous carbon or the surface of the fine carbon of the air electrode, O 2 + 2H 2 O + 4e - => 4OH - made has oxygen dissolution reaction, along with charging, on the surface of the metallic lithium of the negative electrode, Li + + e - => Li becomes deposition reaction, the positive electrode of the charge-only The rechargeable lithium-air battery according to any one of <5> to <8>, wherein a reaction of 4OH => O 2 + 2H 2 O + 4e occurs.
<11> The lithium-air battery according to any one of <1> to <10>, wherein continuous discharge is possible until the lithium metal on the negative electrode side is completely consumed by a dissolution reaction.
<12> Lithium metal is added to the negative electrode as a fuel in a timely manner, and the LiOH precipitate generated in the region surrounded by the cation exchange membrane and the anion exchange membrane is separated from the electrolyte solution. The lithium-air battery or the lithium fuel battery according to any one of <1> to <11>, wherein the lithium-air battery can be discharged.
<13> Recovering lithium hydroxide generated from lithium ions and hydroxide ions in a space surrounded by the cation exchange membrane and anion exchange membrane by discharging, regenerating metal lithium from the lithium hydroxide, The lithium-air battery or the lithium fuel battery according to any one of <1> to <12>, wherein the metal lithium is reused as an active material for the negative electrode.
<14> The lithium-air battery according to any one of <1> to <13>, wherein the organic electrolyte solution side of the cation exchange membrane is coated with wax.

本発明のリチウム−空気電池は、従来の固体電解質セパレータの割れやすいという問題を解決するとともに、当該固体電解質を用いたリチウム−空気電池の低いイオンの伝導率の問題を解決することができる。また、OH-陰イオンは陽イオン交換膜によりブロックされるので、これが負極のリチウム金属と反応する危険性がない。更に、放電反応の生成物であるリチウムイオンとOH-陰イオンが、陽イオン交換膜と陰イオン交換膜に囲まれた、真ん中のセパレータ空間に集中するので、本発明のリチウム−空気電池をリチウム燃料電池として使う時のLiOHの回収に有効となる。 The lithium-air battery of the present invention can solve the problem that the conventional solid electrolyte separator is easily broken, and can solve the problem of low ionic conductivity of the lithium-air battery using the solid electrolyte. Further, OH - Since the anion is blocked by the cation exchange membrane, which is no risk that reacts with the negative electrode of a lithium metal. Furthermore, lithium ion and OH is the product of the discharge reaction - lithium air battery - anions, surrounded by a cation exchange membrane and anion exchange membrane, since the concentrate separator space in the middle, lithium present invention Effective for recovering LiOH when used as a fuel cell.

従来の負極/有機電解液/固体電解質/水溶性電解液/空気極という構造を有するリチウム−空気電池の説明図Explanatory drawing of a lithium-air battery having a structure of a conventional negative electrode / organic electrolyte / solid electrolyte / water-soluble electrolyte / air electrode 本発明の負極/有機電解液/陽イオン交換膜/セパレータ空間(有機電解液或いは水溶性電解液)/陰イオン交換膜/水溶性電解液/空気極という構造を有するリチウム−空気電池の説明図Explanatory drawing of the lithium-air battery having the structure of negative electrode / organic electrolyte / cation exchange membrane / separator space (organic electrolyte or water-soluble electrolyte) / anion exchange membrane / water-soluble electrolyte / air electrode of the present invention. 実施例1のリチウム−空気電池の構造図Structure diagram of lithium-air battery of Example 1 実施例1のリチウム−空気電池の放電のプロファイルThe discharge profile of the lithium-air battery of Example 1 実施例2のリチウム−空気電池の構造図Structural diagram of lithium-air battery of Example 2 実施例2のリチウム−空気電池の放電のプロファイルThe discharge profile of the lithium-air battery of Example 2 実施例3のリチウム−空気電池の構造図Structural diagram of lithium-air battery of Example 3 実施例3のリチウム−空気電池の放電のプロファイルThe discharge profile of the lithium-air battery of Example 3 実施例3のリチウム−空気電池の充放電のサイクル特性Charging / discharging cycle characteristics of the lithium-air battery of Example 3 本発明のリチウム−空気電池をリチウム燃料電池として用いる場合の説明図(セパレータ空間に生成したLiOHを電解液から分離し、得られたLiOHからリチウム金属を精製して、燃料として負極側のリチウム金属に添加する)Explanatory drawing when the lithium-air battery of the present invention is used as a lithium fuel battery (LiOH produced in the separator space is separated from the electrolytic solution, lithium metal is purified from the obtained LiOH, and the lithium metal on the negative electrode side is used as fuel. To be added)

本発明のリチウム−空気電池は、負極、負極用の電解液、陽イオン交換膜、電解液で満たされたセパレータ空間、陰イオン交換膜、空気極用の電解液および空気極がその順に設けられたリチウム−空気電池であることを特徴としている。   The lithium-air battery of the present invention includes a negative electrode, an electrolyte for the negative electrode, a cation exchange membrane, a separator space filled with the electrolyte, an anion exchange membrane, an electrolyte for the air electrode, and an air electrode in that order. It is a lithium-air battery.

リチウム−空気電池においては、放電と共に、負極において、Li => Li+ + e-なるリチウムの溶解反応が、空気極表面において、O2 + 2H2O + 4e- => 4OH- なる酸素の溶解反応が生じ、充電と共に、負極表面において、Li+ + e- => Li なる析出反応が、空気極において、4OH- => O2 + 2H2O + 4e- なる反応が生じる。 Lithium - In air battery, with the discharge, in the negative electrode, Li => Li + + e - consisting dissolution reaction of lithium in the cathode surface, O 2 + 2H 2 O + 4e - => 4OH - consisting of oxygen dissolved in the Reaction occurs and, along with charging, a precipitation reaction of Li + + e => Li occurs on the negative electrode surface, and a reaction of 4OH => O 2 + 2H 2 O + 4e occurs at the air electrode.

本発明のリチウム−空気電池は、両側を陽イオン交換膜と陰イオン交換膜に囲まれるセパレータ空間を有することにより、充放電に伴い、負極側のリチウムイオンは負極側の有機電解液から陽イオン交換膜を介して当該セパレータ空間に出入りするが、陰イオン交換膜によりブロックされて、空気極側の水溶性電解液には入れない。一方、空気極側のOH-イオンは空気極側の水溶性電解液から陰イオン交換膜を介してセパレータ空間に出入りするが、陽イオン交換膜によりブロックされ、負極側の有機電解液には入れない。 The lithium-air battery of the present invention has a separator space surrounded on both sides by a cation exchange membrane and an anion exchange membrane, so that the lithium ion on the negative electrode side becomes a cation from the organic electrolyte on the negative electrode side along with charge / discharge. It enters and leaves the separator space through the exchange membrane, but is blocked by the anion exchange membrane and cannot enter the water-soluble electrolyte on the air electrode side. Meanwhile, OH on the air electrode side - but ions into and out of a water-soluble electrolyte in the air electrode side separator space through the anion exchange membrane, it is blocked by the cation exchange membrane, placed in an organic electrolyte of the negative electrode side Absent.

本発明の代表的なリチウム−空気電池を、図2に示す。
図2において、1は負極であるリチウム金属、2は負極側用の有機電解液、3は陽イオン交換膜、4は陽イオン交換膜と陰イオン交換膜に囲まれるセパレータ空間、5は陰イオン交換膜、6は空気極側の水溶性電解液、7は多孔質担体、触媒、およびバインダーからなる空気極を示す。
A typical lithium-air battery of the present invention is shown in FIG.
In FIG. 2, 1 is a lithium metal as a negative electrode, 2 is an organic electrolyte for the negative electrode side, 3 is a cation exchange membrane, 4 is a separator space surrounded by a cation exchange membrane and an anion exchange membrane, and 5 is an anion. An exchange membrane, 6 is a water-soluble electrolyte on the air electrode side, and 7 is an air electrode made of a porous carrier, a catalyst, and a binder.

1の負極を形成する材料としては、リチウム金属、リチウムカーボン、リチウムシリコン、リチウムアルミニウム、リチウムインジウム、リチウム錫、窒化リチウムなどが挙げられる。この中でも大容量、サイクル安定性の点からみて、金属リチウムが好ましく使用される。   Examples of the material forming the negative electrode 1 include lithium metal, lithium carbon, lithium silicon, lithium aluminum, lithium indium, lithium tin, and lithium nitride. Among these, from the viewpoint of large capacity and cycle stability, metallic lithium is preferably used.

負極域の電解液は特に制限はないが、負極として金属リチウムを用いた場合には、電解液として有機電解液を用いる必要がある。
電解液に含有させる電解質としては、電解液中でリチウムイオンを形成するものであれば特に限定されない。例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiAlCl4、LiCF3 SO3、LiSbF6 等が挙げられる。これら電解質は、単独でもよいが、組み合わせて使用してもよい。
また、電解液の溶媒としては、この種の有機溶媒として公知のものがすべて使用できる。例えば、プロピレンカーボネート、テトラヒドロフラン、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、スルホラン、ジエチルカーボネート、ジメチルホルムアミド、アセトニトリル、ジメチルカーボネート、エチレンカーボネート等が挙げられる。これら有機溶媒は、単独でもよいが、組み合わせて使用してもよい。
The electrolytic solution in the negative electrode region is not particularly limited, but when metallic lithium is used as the negative electrode, it is necessary to use an organic electrolytic solution as the electrolytic solution.
The electrolyte to be contained in the electrolytic solution is not particularly limited as long as it forms lithium ions in the electrolytic solution. Examples thereof include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiSbF 6 and the like. These electrolytes may be used alone or in combination.
In addition, as the solvent for the electrolytic solution, all known organic solvents of this type can be used. For example, propylene carbonate, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, sulfolane, diethyl carbonate, dimethylformamide, Examples include acetonitrile, dimethyl carbonate, and ethylene carbonate. These organic solvents may be used alone or in combination.

3は、陽イオン交換膜である。負極域の有機電解液とセパレータ空間中には、リチウムイオンのほかの陽イオンが存在していないため、リチウムイオンのみが陽イオン交換膜を通過する。   3 is a cation exchange membrane. Since no other cation of lithium ions is present in the organic electrolyte solution and the separator space in the negative electrode region, only lithium ions pass through the cation exchange membrane.

4は、セパレータ空間である。セパレータ空間中には、リチウムイオンとOH-イオンの二種類しか存在しない。電解液は有機電解液或いはアルカリ性水溶性電解液を用いる。 4 is a separator space. There are only two types of lithium ions and OH - ions in the separator space. As the electrolytic solution, an organic electrolytic solution or an alkaline water-soluble electrolytic solution is used.

5は、陰イオン交換膜である。空気極側の水溶性電解液とセパレータ空間中には、OH-イオンのほかの陰イオンが存在していないため、OH-イオンのみが陰イオン交換膜を通過する。 5 is an anion exchange membrane. In the water-soluble electrolyte on the air electrode side and in the separator space, no other anions other than OH - ions exist, so only OH - ions pass through the anion exchange membrane.

6は、空気極側の水溶性電解液である。水溶性電解液はアルカリ性或いは強アルカリ性水あるいは当該水を含むゲルを用いる。   6 is a water-soluble electrolyte on the air electrode side. As the water-soluble electrolyte, alkaline or strongly alkaline water or a gel containing the water is used.

7の空気極としては、白金、貴金属、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄、酸化銅から選ばれた触媒を担持する多孔質カーボン或いは微細化カーボンを用いることができる。   As the air electrode 7, porous carbon or refined carbon carrying a catalyst selected from platinum, noble metal, manganese oxide, cobalt oxide, nickel oxide, iron oxide, and copper oxide can be used.

これに対して、従来の有機電解液/固体電解質/水溶性電解液を用いるリチウム−空気電池を、図1に示す。
図1において、1は負極であるリチウム金属、2は負極側用の有機電解液、3は固体電解質セパレータ(或いは耐強アルカリ性高分子イオン交換膜つけた固体電解質セパレータ)、4は空気極用の水溶性電解液、5は多孔質担体、触媒、およびバインダーからなる空気極を示す。
On the other hand, a lithium-air battery using a conventional organic electrolyte / solid electrolyte / water-soluble electrolyte is shown in FIG.
In FIG. 1, 1 is a lithium metal as a negative electrode, 2 is an organic electrolyte for the negative electrode side, 3 is a solid electrolyte separator (or a solid electrolyte separator with a strong alkali-resistant polymer ion exchange membrane), and 4 is for an air electrode. A water-soluble electrolyte 5 indicates an air electrode composed of a porous carrier, a catalyst, and a binder.

当該従来型のリチウム−空気電池においては、充電と放電に伴い、リチウムイオンが固体電解質を介して、空気極区域から負極区域へ、あるいは、負極区域から空気極区域へと移動する。
すなわち、放電時、負極から負極区域溶液に溶出したLi+は固体電解質を通過して、空気極区域へ移動し、充電時、空気極区域溶液中のLi+は固体電解質を通過して、負極区域へ移動し、負極にリチウムが析出する。
In the conventional lithium-air battery, lithium ions move from the air electrode region to the negative electrode region or from the negative electrode region to the air electrode region through the solid electrolyte as the battery is charged and discharged.
That is, during discharge, Li + eluted from the negative electrode into the negative electrode region solution passes through the solid electrolyte and moves to the air electrode region, and during charging, Li + in the air electrode region solution passes through the solid electrolyte and flows into the negative electrode region. It moves to a zone and lithium is deposited on the negative electrode.

本発明のリチウム−空気電池は、従来の固体電解質セパレータを用いたリチウム−空気電池に比べると、以下のメリットを有する。
1)陽イオン交換膜/セパレータ区間/陰イオン交換膜のイオンの電導率は約10-1〜10-2S/cmになり、従来の固体電解質のリチウムイオンの電導率の約1×10-4S/cmに比べて遙かに高い。
これにより、本発明のリチウム−空気電池は、従来のリチウム−空気電池の低いイオンの電導率の問題を解決することができ、優れた充放電性能を得ることができる。
2)陽イオン交換膜と陰イオン交換膜はフレキシブルであり、加工しやすく、かつ、固体電解質のように割れることがない。
3)セパレータ空間にLiOHが集中するので、リチウムを回収しやすく、リチウム燃料電池に展開しやすい。
すなわち、本発明のリチウム−空気電池は、負極側にリチウム金属を燃料として適宜添加し、セパレータ空間に生成したLiOHの沈殿を電解液から分離すれば、燃料電池のように連続放電させることが可能である。
リチウム燃料電池においては、負極側のリチウム金属が溶解反応により全部消耗するまで、連続放電可能である。
The lithium-air battery of the present invention has the following merits as compared with a lithium-air battery using a conventional solid electrolyte separator.
1) The ion conductivity of the cation exchange membrane / separator section / anion exchange membrane is about 10 −1 to 10 −2 S / cm, which is about 1 × 10 of the lithium ion conductivity of the conventional solid electrolyte. It is much higher than 4 S / cm.
Thereby, the lithium-air battery of the present invention can solve the problem of low ionic conductivity of the conventional lithium-air battery, and can obtain excellent charge / discharge performance.
2) The cation exchange membrane and the anion exchange membrane are flexible, easy to process, and do not break like a solid electrolyte.
3) Since LiOH concentrates in the separator space, it is easy to collect lithium and easily deploy to lithium fuel cells.
That is, the lithium-air battery of the present invention can be continuously discharged like a fuel cell if lithium metal is appropriately added to the negative electrode as a fuel and the LiOH precipitate generated in the separator space is separated from the electrolyte. It is.
In the lithium fuel cell, continuous discharge is possible until the lithium metal on the negative electrode side is completely consumed by the dissolution reaction.

本発明を以下の実施例により更に詳細に説明する。   The invention is illustrated in more detail by the following examples.

実施例1
図3に示される装置において、1の負極として金属リチウムリボンを、2の負極用有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)を、3の陽イオン交換膜としてCMV(旭硝子株式会社製)を、4のセパレータ空間の電解液として、0.5MのLi2SO4と0.5MのLiOH水溶液の混合電解液を、5の陰イオン交換膜としてAMV(旭硝子株式会社製)を、6の空気極用の電解液として、0.5MのLi2SO4と0.5MのLiOH水溶液の混合電解液を、7の空気極として多孔質カーボンに触媒としてMn3O4を担持させ、バインダーとしてPolytetrafluoroethylene (PTFE)を用いて作製した電極を、それぞれ用いて、リチウム−空気電池を作製し、充放電試験を行った。
放電時には、Li => Li+ + e- (負極)、O2 + 2H2O + 4e- => 4OH- (空気極)の電極反応が起こり、負極区域の有機電解液中のLi+が陽イオン交換膜を通過して、セパレータ空間へ移動し、一方で、空気極水溶性電解液中のOH-が陰イオン交換膜を通過して、セパレータ空間へ移動する。
充電時には、Li+ + e- => Li (負極)、4OH- => O2 + 2H2O + 4e- (空気極)、の電極反応が起こり、セパレータ空間のLi+が陽イオン交換膜を通過して、負極区域へ移動し、一方、セパレータ空間のOH-は陰イオン交換膜を通過して、空気極区域へ移動する。
実施例1のリチウム−空気電池の放電のプロファイルを図4に示す。図4に示すように、OCV(=開路電圧)は3.4V(vs Li/Li+)であり、0.5mA/cm2で放電すると、空気電極の重さあたりの容量で、1000mAh/gまでの放電ができることがわかった。
Example 1
In the apparatus shown in FIG. 3, a metal lithium ribbon is used as 1 negative electrode, an organic electrolytic solution for 2 negative electrodes, and an organic electrolytic solution (EC / DEC) in which 1M LiClO 4 is dissolved as 3 cation exchange membranes. CMV (manufactured by Asahi Glass Co., Ltd.) is used as an electrolyte in the separator space of 4, and a mixed electrolyte of 0.5 M Li 2 SO 4 and 0.5 M LiOH aqueous solution is used as an anion exchange membrane of 5 AMV (manufactured by Asahi Glass Co., Ltd.) ) As the electrolyte for the air electrode of 6, mixed electrolyte of 0.5M Li 2 SO 4 and 0.5M LiOH aqueous solution, and as the air electrode of 7, the porous carbon is supported with Mn 3 O 4 as a catalyst. A lithium-air battery was prepared using the electrodes prepared using Polytetrafluoroethylene (PTFE) as a binder, and a charge / discharge test was performed.
During discharge, Li => Li + + e - ( negative), O 2 + 2H 2 O + 4e - => 4OH - occur electrode reaction (cathode), Li + is positive organic electrolyte of the negative electrode area The ion-exchange membrane passes through the ion-exchange membrane and moves to the separator space. On the other hand, OH − in the air electrode water-soluble electrolyte passes through the anion-exchange membrane and moves to the separator space.
During charging, Li + + e - => Li ( negative electrode), 4OH - => O 2 + 2H 2 O + 4e - ( air electrode), occurs in the electrode reaction, the Li + cation exchange membrane separator space Pass through and move to the negative electrode area, while OH − in the separator space passes through the anion exchange membrane and moves to the air electrode area.
The discharge profile of the lithium-air battery of Example 1 is shown in FIG. As shown in FIG. 4, OCV (= open circuit voltage) is 3.4V (vs Li / Li + ), and when discharged at 0.5mA / cm 2 , the capacity per weight of air electrode is up to 1000mAh / g. It was found that discharge was possible.

実施例2
図5に示される装置において、1の負極として金属リチウムリボンを、2の負極用有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)を、3の陽イオン交換膜としてCMV(旭硝子株式会社製)を、4のセパレータ空間の有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)を、5の陰イオン交換膜としてAMV(旭硝子株式会社製)を、6の空気極用の電解液として、0.5MのLi2SO4と0.5MのLiOH水溶液の混合電解液を、7の空気極として多孔質カーボンに触媒としてMn3O4を担持させ、バインダーとしてPolytetrafluoroethylene (PTFE)を用いて作製した電極を、それぞれ用いて、リチウム−空気電池を作製し、充放電試験を行った。
実施例2のリチウム−空気電池の放電のプロファイルを図6に示す。図6に示すように、OCV(=開路電圧)は3.4V(vs Li/Li+)であり、0.5mA/cm2で放電すると、空気電極の重さあたりの容量で、2500mAh/gまでの放電ができることがわかった。セパレータ空間に有機電解液を用いているため、陽イオン交換膜を通しての僅かの水の浸透もないので、陽イオン交換膜の耐久性が実施例1より良好となる。
Example 2
In the apparatus shown in FIG. 5, a metal lithium ribbon is used as 1 negative electrode, an organic electrolyte solution for 2 negative electrodes, and an organic electrolyte solution (EC / DEC) in which 1M LiClO 4 is dissolved as 3 cation exchange membranes. CMV (manufactured by Asahi Glass Co., Ltd.) is used as an organic electrolyte in 4 separator spaces, and organic electrolyte (EC / DEC) in which 1M LiClO 4 is dissolved is used as an anion exchange membrane in 5 AMV (manufactured by Asahi Glass Co., Ltd.). As an electrolyte for the air electrode 6, a mixed electrolyte of 0.5 M Li 2 SO 4 and a 0.5 M LiOH aqueous solution is used, and Mn 3 O 4 is supported as a catalyst on porous carbon as the air electrode 7. A lithium-air battery was prepared using an electrode prepared using Polytetrafluoroethylene (PTFE) as a binder, and a charge / discharge test was performed.
The discharge profile of the lithium-air battery of Example 2 is shown in FIG. As shown in Fig. 6, OCV (= open circuit voltage) is 3.4V (vs Li / Li + ), and when discharged at 0.5mA / cm 2 , the capacity per weight of air electrode is up to 2500mAh / g. It was found that discharge was possible. Since the organic electrolyte is used in the separator space, there is no permeation of water through the cation exchange membrane, so that the durability of the cation exchange membrane is better than that of Example 1.

実施例3
図7に示される装置において、1の負極として金属リチウムリボンを、2の負極用有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)を、3の陽イオン交換膜として、その有機電解液側にパラフィンワックスを塗布してワックス膜を形成させたCMV(旭硝子株式会社製)を、4のセパレータ空間の電解液として、0.5MのLi2SO4と0.5MのLiOH水溶液の混合電解液を、5の陰イオン交換膜としてAMV(旭硝子株式会社製)を、6の空気極用の電解液として、0.5MのLi2SO4と0.5MのLiOH水溶液の混合電解液を、7の空気極として多孔質カーボンに触媒としてMn3O4を担持させ、バインダーとしてPolytetrafluoroethylene (PTFE)を用いて作製した電極を、それぞれ用いて、リチウム−空気電池を作製し、充放電試験を行った。
実施例3のリチウム−空気電池の放電のプロファイルを図6に示す。図8に示すように、OCV(=開路電圧)は3.4V(vs Li/Li+)であり、0.5mA/cm2で放電すると、空気電極の重さあたりの容量で、1500mAh/gまでの放電ができることがわかった。図9に実施例3の電池の充電・放電のサイクル特性を示す。
陽イオン交換膜の有機電解液側にワックス膜を付着させているため、陽イオン交換膜を通しての僅かの水の浸透もないことにより、放電電位が放電時間と共に、徐徐に下がることが改善されるようである。
Example 3
In the apparatus shown in FIG. 7, a metal lithium ribbon is used as 1 negative electrode, an organic electrolyte solution for 2 negative electrodes, and an organic electrolyte solution (EC / DEC) in which 1M LiClO 4 is dissolved as 3 cation exchange membranes. CMV (manufactured by Asahi Glass Co., Ltd.) in which a paraffin wax is applied to the organic electrolyte side to form a wax film is used as an electrolyte in 4 separator spaces. 0.5M Li 2 SO 4 and 0.5M LiOH aqueous solution AMV (manufactured by Asahi Glass Co., Ltd.) is used as the anion exchange membrane of 5, and 0.5M Li 2 SO 4 and 0.5M LiOH aqueous solution as the electrolyte for the air electrode 6 A lithium-air battery was prepared using electrodes prepared by supporting Mn 3 O 4 as a catalyst on a porous carbon as an air electrode, 7 and using polytetrafluoroethylene (PTFE) as a binder, and conducting a charge / discharge test. went.
The discharge profile of the lithium-air battery of Example 3 is shown in FIG. As shown in FIG. 8, OCV (= open circuit voltage) is 3.4V (vs Li / Li + ), and when discharged at 0.5mA / cm 2 , the capacity per weight of air electrode is up to 1500mAh / g. It was found that discharge was possible. FIG. 9 shows the charge / discharge cycle characteristics of the battery of Example 3.
Since the wax membrane is attached to the organic electrolyte side of the cation exchange membrane, there is no permeation of water through the cation exchange membrane, so that the discharge potential gradually decreases with the discharge time. It seems.

〈本発明のリチウム−空気電池のリチウム燃料電池としての使用形態〉
負極側のリチウム金属を燃料として随時添加するとともに、セパレータ空間に生成したLiOHの沈殿をセパレータ空間の電解液から分離・回収すれば、図10に示すように、充電せず、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)を構成することができる。
すなわち、図10に示すように、セパレータ空間の電解液から分離したLiOHからリチウム金属を精製して、燃料として負極側のリチウム金属に加えれば、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)を構成することができる。
<Usage of the lithium-air battery of the present invention as a lithium fuel cell>
When the lithium metal on the negative electrode side is added as fuel as needed and the LiOH precipitate generated in the separator space is separated and recovered from the electrolyte in the separator space, as shown in FIG. A lithium-air battery (or lithium fuel battery) capable of continuous discharge can be constructed.
That is, as shown in FIG. 10, if lithium metal is purified from LiOH separated from the electrolyte in the separator space and added to the lithium metal on the negative electrode side as fuel, lithium-air that can be continuously discharged like a fuel cell. A battery (or lithium fuel cell) can be constructed.

Claims (14)

リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極、負極用の電解液、陽イオン交換膜、電解液で満たされたセパレータ空間、陰イオン交換膜、空気極用の電解液および空気極がその順に設けられることを特徴とする、リチウム−空気電池。   Negative electrode using negative electrode material of lithium ion battery or lithium secondary battery, electrolyte solution for negative electrode, cation exchange membrane, separator space filled with electrolyte solution, anion exchange membrane, electrolyte solution for air electrode and air A lithium-air battery, wherein the electrodes are provided in that order. リチウムイオン電池、或いはリチウム二次電池の負極材料を用いた負極/有機電解液/陽イオン交換膜/有機電解液或いは水溶性電解液/陰イオン交換膜/水溶性電解液/空気極がその順に設けられることを特徴とする、請求項1に記載のリチウム−空気電池。   Negative electrode using negative electrode material of lithium ion battery or lithium secondary battery / organic electrolyte / cation exchange membrane / organic electrolyte or water-soluble electrolyte / anion exchange membrane / water-soluble electrolyte / air electrode in that order The lithium-air battery according to claim 1, wherein the lithium-air battery is provided. 負極として、リチウム金属、リチウムカーボン、リチウムシリコン、リチウムアルミニウム、リチウムインジウム、リチウム錫、窒化リチウムの中から選ばれた負極材料を用い、負極用電解液が有機電解液であることを特徴とする、請求項1または2に記載のリチウム−空気電池。   As the negative electrode, a negative electrode material selected from lithium metal, lithium carbon, lithium silicon, lithium aluminum, lithium indium, lithium tin, and lithium nitride is used, and the negative electrode electrolyte is an organic electrolyte, The lithium-air battery according to claim 1 or 2. 空気極が、白金、貴金属、ペロブスカイト酸化物、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄、酸化銅の中から選ばれた触媒が担持された多孔質カーボン或いは微細化カーボンであり、充電可能であることを特徴とする、請求項1〜3のいずれかに記載のリチウム−空気電池。   The air electrode is porous carbon or refined carbon carrying a catalyst selected from platinum, noble metal, perovskite oxide, manganese oxide, cobalt oxide, nickel oxide, iron oxide, and copper oxide, and charged. The lithium-air battery according to claim 1, characterized in that it is possible. 請求項1〜4のいずれかに記載したリチウム−空気電池の空気極用の電解液に充電専用の正極を配置していることを特徴とする、充電可能なリチウム−空気電池。   A rechargeable lithium-air battery, characterized in that a positive electrode dedicated to charging is disposed in the electrolyte for an air electrode of a lithium-air battery according to any one of claims 1 to 4. 空気極用電解液が水溶性電解液であり、当該水溶性電解液はアルカリ性(弱アルカリ性或いは強アルカリ性)であることを特徴とする、請求項1〜5のいずれかに記載のリチウム−空気電池。   The lithium-air battery according to any one of claims 1 to 5, wherein the air electrode electrolyte is a water-soluble electrolyte, and the water-soluble electrolyte is alkaline (weakly alkaline or strongly alkaline). . 空気極用電解液がアルカリ性或いは強アルカリ性水を含むゲルであることを特徴とする、請求項1〜6のいずれかに記載のリチウム−空気電池。   The lithium-air battery according to any one of claims 1 to 6, wherein the air electrode electrolyte is a gel containing alkaline or strongly alkaline water. 放電時に、負極から溶出するリチウムイオンが陽イオン交換膜を通過し、陰イオン交換膜にブロックされ、陽イオン交換膜と陰イオン交換膜に囲まれる空間にとどまり、一方、空気極において生成したOH-陰イオンが空気極側から陰イオン交換膜を通過し、陽イオン交換膜にブロックされ、陽イオン交換膜と陰イオン交換膜に囲まれる空間にとどまることを特徴とする、請求項1〜7のいずれかに記載のリチウム−空気電池。 During discharge, lithium ions eluted from the negative electrode pass through the cation exchange membrane and are blocked by the anion exchange membrane, staying in the space surrounded by the cation exchange membrane and the anion exchange membrane, while the OH produced in the air electrode The anion passes through the anion exchange membrane from the air electrode side, is blocked by the cation exchange membrane, and stays in a space surrounded by the cation exchange membrane and the anion exchange membrane. The lithium-air battery according to any one of the above. 放電と共に、負極の金属リチウムの表面には、Li=>Li++e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面には、O2+2H2O+4e-=>4OH-なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li++e-=>Liなる析出反応が、空気極には、4OH-=>O2+2H2O+4e-なる反応が生じることを特徴とする、請求項1〜4および6〜8のいずれかに記載の充電可能なリチウム−空気電池。 With discharge on the surface of the metallic lithium of the negative electrode, Li => Li + + e - to become soluble reaction, the catalyst-carrying porous carbon or the surface of the fine carbon of the air electrode, O 2 + 2H 2 O + 4e - => 4OH - made has oxygen dissolution reaction, along with charging, on the surface of the metallic lithium of the negative electrode, Li + + e - => Li becomes deposition reaction, the air electrode, 4OH - => O characterized by comprising the reaction occurs, rechargeable lithium according to any one of claims 1 to 4 and 6~8 - - 2 + 2H 2 O + 4e air battery. 放電と共に、負極の金属リチウムの表面には、Li=>Li++e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面には、O2+2H2O+4e-=>4OH-なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li++e-=>Liなる析出反応が、充電専用の正極電極には、4OH-=>O2+2H2O+4e-なる反応が生じることを特徴とする、請求項5〜8のいずれかに記載の充電可能なリチウム−空気電池。 With discharge on the surface of the metallic lithium of the negative electrode, Li => Li + + e - to become soluble reaction, the catalyst-carrying porous carbon or the surface of the fine carbon of the air electrode, O 2 + 2H 2 O + 4e - => 4OH - made has oxygen dissolution reaction, together with the charge on the surface of the metallic lithium of the negative electrode, Li + + e - => Li becomes deposition reaction, the positive electrode of the charge-only, 4OH - The rechargeable lithium-air battery according to claim 5, wherein a reaction of => O 2 + 2H 2 O + 4e occurs. 負極側のリチウム金属が溶解反応により全部消耗するまでは、連続放電可能であることを特徴とする、請求項1〜10のいずれかに記載のリチウム−空気電池。   The lithium-air battery according to any one of claims 1 to 10, wherein continuous discharge is possible until all of the lithium metal on the negative electrode side is consumed by a dissolution reaction. 負極側にリチウム金属を燃料として適時に添加し、陽イオン交換膜と陰イオン交換膜に囲まれた領域に生成したLiOHの沈殿を電解液から分離することにより、充電せず、連続放電可能であるという、リチウム燃料電池としての特徴を備える、請求項1〜11のいずれかに記載のリチウム−空気電池。 Lithium metal can be added to the negative electrode as a fuel in a timely manner, and the LiOH precipitate formed in the region surrounded by the cation exchange membrane and anion exchange membrane can be separated from the electrolyte, allowing continuous discharge without charging. some of comprise the features as lithium fuel cells, lithium according to any one of claims 1 to 11 - air batteries. 放電することにより陽イオン交換膜と陰イオン交換膜に囲まれる空間においてリチウムイオンと水酸化イオンとから生じた水酸化リチウムを回収し、当該水酸化リチウムから金属リチウムを再生して、その金属リチウムを負極の活物質として再使用するという、リチウム燃料電池としての特徴を備える、請求項1〜12のいずれかに記載のリチウム−空気電池。 By discharging, lithium hydroxide generated from lithium ions and hydroxide ions is recovered in a space surrounded by the cation exchange membrane and the anion exchange membrane, and the metal lithium is regenerated from the lithium hydroxide. referred reused as an active material of the negative electrode, with the features as lithium fuel cells, lithium according to any one of claims 1 to 12 - air batteries. 陽イオン交換膜の有機電解液側にワックスを被覆することを特徴とする、請求項1〜13のいずれかに記載のリチウム−空気電池。   14. The lithium-air battery according to claim 1, wherein a wax is coated on the organic electrolyte side of the cation exchange membrane.
JP2009293870A 2009-12-25 2009-12-25 Lithium-air battery Expired - Fee Related JP5299973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293870A JP5299973B2 (en) 2009-12-25 2009-12-25 Lithium-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293870A JP5299973B2 (en) 2009-12-25 2009-12-25 Lithium-air battery

Publications (2)

Publication Number Publication Date
JP2011134628A JP2011134628A (en) 2011-07-07
JP5299973B2 true JP5299973B2 (en) 2013-09-25

Family

ID=44347125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293870A Expired - Fee Related JP5299973B2 (en) 2009-12-25 2009-12-25 Lithium-air battery

Country Status (1)

Country Link
JP (1) JP5299973B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550073B2 (en) * 2010-06-11 2014-07-16 独立行政法人産業技術総合研究所 Lithium-air battery comprising a cation exchange membrane between a solid electrolyte membrane and an electrolyte for an air electrode
JP5285134B2 (en) * 2011-09-08 2013-09-11 本田技研工業株式会社 Lithium ion oxygen battery
JP5749614B2 (en) * 2011-09-24 2015-07-15 株式会社イムラ材料開発研究所 Metal-air battery
CN102332568A (en) * 2011-09-26 2012-01-25 复旦大学 Cobalt oxide-diamond-like double-layer structured lithium-air battery cathode material and preparation method thereof
FR2982427B1 (en) 2011-11-09 2013-12-20 Electricite De France AQUEOUS ELECTROLYTE FOR LITHIUM-AIR BATTERY
WO2013100050A1 (en) 2011-12-27 2013-07-04 国立大学法人岡山大学 Negative electrode active material and use of same
JP5706842B2 (en) * 2012-03-14 2015-04-22 株式会社イムラ材料開発研究所 Bipolar ion exchange membrane metal-air battery
JP6032700B2 (en) * 2012-04-25 2016-11-30 東邦チタニウム株式会社 A lithium lanthanum titanium oxide sintered body, a solid electrolyte containing the oxide, and a lithium air battery and an all-solid-state lithium battery provided with the solid electrolyte.
US9711822B2 (en) 2012-04-25 2017-07-18 Toho Titanium Co., Ltd. Lithium-lanthanum-titanium oxide sintered material, solid electrolyte containing the oxide, and lithium air battery and all-solid lithium battery including the solid electrolyte
CN104221214B (en) * 2012-04-26 2016-12-07 日本碍子株式会社 lithium air secondary battery
CN102664277A (en) * 2012-05-18 2012-09-12 东南大学 Composite material used as lithium air battery positive electrode and preparation method thereof
WO2014017322A1 (en) 2012-07-27 2014-01-30 東邦チタニウム株式会社 Sintered lithium lanthanum titanium oxide, solid electrolyte containing sintered lithium lanthanum titanium oxide, lithium air battery using solid electrolyte containing sintered lithium lanthanum titanium oxide, all-solid-state lithium battery, and method for producing sintered lithium lanthanum titanium oxide
US10573946B2 (en) 2012-09-24 2020-02-25 Sk Innovation Co., Ltd. Lithium air battery
KR101622092B1 (en) 2013-08-22 2016-05-18 주식회사 엘지화학 Cathode Active Material for Metal-Air Cell and Metal-Air Cell Comprising The Same
KR102409387B1 (en) * 2015-07-14 2022-06-15 삼성전자주식회사 Metal air battery and operation method of the metal air battery
CN114050358B (en) * 2021-12-09 2024-04-19 清远道童新能源有限公司 Three-chamber concentration difference aluminum air battery system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166961A (en) * 1999-12-10 2001-06-22 Aiwa Co Ltd Method and device for inspecting function and computer readable recording medium
JP3805744B2 (en) * 2000-08-22 2006-08-09 日立マクセル株式会社 Air-hydrogen battery
JP2002343451A (en) * 2001-05-14 2002-11-29 Hitachi Maxell Ltd Air battery
JP2003234115A (en) * 2002-02-07 2003-08-22 Hitachi Maxell Ltd Air-hydrogen cell
US20100323249A1 (en) * 2008-02-18 2010-12-23 National Institute Of Advanced Industrial Science And Technology Air electrode

Also Published As

Publication number Publication date
JP2011134628A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5299973B2 (en) Lithium-air battery
Wang et al. Materials design for rechargeable metal-air batteries
Imanishi et al. Perspectives and challenges of rechargeable lithium–air batteries
JP6397108B2 (en) Method for alkalizing a negative electrode
JP5550073B2 (en) Lithium-air battery comprising a cation exchange membrane between a solid electrolyte membrane and an electrolyte for an air electrode
JP5414075B2 (en) Lithium secondary battery
JP2011228162A (en) Combination of hydrogen production by lithium-water battery and fuel cell
CN102668230B (en) Battery
JP5419084B2 (en) Nickel-lithium secondary battery
JP2010176941A (en) Lithium-air cell
US20120270116A1 (en) Metal air battery and method for preparing the same
CN104201417B (en) Can the Li-S battery of pulsed discharge, Li-S reserve cell and preparation method thereof
JP5163709B2 (en) Liquid air electrode for metal-air battery, and metal-air battery provided with the liquid air electrode
US11575181B2 (en) Battery, battery pack, and stationary power supply
KR20150053776A (en) Sodium-halogen secondary cell
US10396349B2 (en) Semi-solid flow Li/O2 battery
JP2006073308A (en) Non-aqueous electrolytic liquid secondary battery
JP2013161652A (en) Secondary battery
JP2012113929A (en) Electrolyte for lithium secondary battery, and lithium secondary battery and lithium air battery provided with the same
US9954229B2 (en) Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries
EP2859605B1 (en) Electrolyte additive for metal-air battery
WO2020136947A1 (en) Flow battery
JPWO2020136960A1 (en) Redox flow battery
KR20190082826A (en) Separator for battery cell and battery cell having same
Nazar Secondary lithium and other alkali-air batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5299973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees