JP5299806B2 - Electronic circuit member processing method, magnetic disk head processing method, and apparatus - Google Patents

Electronic circuit member processing method, magnetic disk head processing method, and apparatus Download PDF

Info

Publication number
JP5299806B2
JP5299806B2 JP2005281095A JP2005281095A JP5299806B2 JP 5299806 B2 JP5299806 B2 JP 5299806B2 JP 2005281095 A JP2005281095 A JP 2005281095A JP 2005281095 A JP2005281095 A JP 2005281095A JP 5299806 B2 JP5299806 B2 JP 5299806B2
Authority
JP
Japan
Prior art keywords
change material
phase change
magnetic disk
disk head
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005281095A
Other languages
Japanese (ja)
Other versions
JP2007095139A (en
Inventor
英司 佐保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Information and Telecommunication Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information and Telecommunication Engineering Ltd filed Critical Hitachi Information and Telecommunication Engineering Ltd
Priority to JP2005281095A priority Critical patent/JP5299806B2/en
Publication of JP2007095139A publication Critical patent/JP2007095139A/en
Application granted granted Critical
Publication of JP5299806B2 publication Critical patent/JP5299806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the technology of processing a magnetic disk head, to quickly and easily change electric resistance between two read side pads 6r, and to repeatedly switch between a connected conductive state and an electric insulated state (or high resistance state). <P>SOLUTION: A phase-change material 9 is arranged in a bridge shape between two write side pads 6W to apply a laser beam 10 to the phase-change material. The laser beam is set to a laser pulse. A signal PS for a short-width high energy pulse and a signal PL for a long-width low energy pulse are sent from a control pulse generator, and selected by a pulse switch 14 to be applied to a laser generator 12. The phase-change material 9 changes in temperature according to a laser pulse form, and made in amorphous upon reception of a laser pulse of a short-width high energy to be set in an electric insulated state. Thus, electric measurement is not blocked. Upon reception of a laser pulse of a long-width low energy, the material 9 is crystallized to be set conductive, thereby preventing electrostatic discharge damage. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、電子回路を有する被加工部材を複数の工程で加工する場合、該電子気回路の特定の2カ所を電気的に接続したり電気的に切り離したりする技術に係り、機械的な接続・取り外しを必要とせず、非接触で遠隔的に操作し得るように改良した加工方法及び加工装置に関するものである。
新規な技術である。
The present invention relates to a technique for electrically connecting or disconnecting two specific locations of an electronic circuit when a workpiece having an electronic circuit is processed in a plurality of steps, and mechanical connection. The present invention relates to a machining method and a machining apparatus that are improved so that they can be operated remotely without contact without requiring removal.
It is a new technology.

図5は、電子回路部材の1例としての磁気ディスク用ヘッドを示し、模式的に描いた従来例の斜視図である。
磁気ディスク用ヘッドを工業的に生産する場合は、ウエハ(図示省略)上に多数の磁気ディスク用ヘッド1を構成して、個々に切り離す。切り離された個々の磁気ディスク用ヘッドは一般に、ディスク側の面aが700〜1000μm×500〜700μm、もう一つの稜が200〜300μmという非常に小形の部材である。
FIG. 5 is a perspective view of a conventional example schematically showing a magnetic disk head as an example of an electronic circuit member.
When industrially producing magnetic disk heads, a large number of magnetic disk heads 1 are formed on a wafer (not shown) and separated individually. Each separated magnetic disk head is generally a very small member having a disk-side surface a of 700 to 1000 μm × 500 to 700 μm and another ridge of 200 to 300 μm.

磁気ディスク用ヘッド1の中には、ライト用インダクティブ素子2とリード用GMR素子3とが形成されている。
上記ライト用インダクティブ素子2は1個のライトコア4と2個のライト側パッド6wとを備えており、前記リード用GMR素子3は1個のリードコア5と2個のリード側パッド6rとを備えている。
前記リードコア5の幅寸法は0.05〜0.1μm、ライトコア4の幅寸法は0.1〜0.2μmといった超小形の構成部分であり、前記リード側パッド6r及びライト側パッド6wは1辺の長さ寸法50〜100μmである。
In the magnetic disk head 1, a write inductive element 2 and a read GMR element 3 are formed.
The write inductive element 2 includes one write core 4 and two write side pads 6w, and the read GMR element 3 includes one read core 5 and two read side pads 6r. ing.
The lead core 5 is an ultra-small component having a width dimension of 0.05 to 0.1 μm and the write core 4 is 0.1 to 0.2 μm. The read side pad 6r and the write side pad 6w are 1 The side length is 50 to 100 μm.

図6は磁気ディスク用ヘッドを製作する途中の工程(A),工程(B)〜工程(E)を示す模式的な工程図である。
(図6(B)参照)磁気ディスク用ヘッド1を製作する場合、その途中で、2個のリード側パッド6rにそれぞれプローブピン7を接触させて電気的測定(例えば抵抗値測定)が行なわれる。
この(B)の工程の直前の(A)工程では、その前の加工工程(図外)からの移送が行なわれる。
FIG. 6 is a schematic process diagram showing process (A) and processes (B) to (E) in the process of manufacturing the magnetic disk head.
(Refer to FIG. 6B) When the magnetic disk head 1 is manufactured, the probe pin 7 is brought into contact with the two lead-side pads 6r in the middle thereof to perform electrical measurement (for example, resistance value measurement). .
In the step (A) immediately before the step (B), transfer from the previous processing step (not shown) is performed.

いま仮に、(B)工程を第n回目の測定とすると、その次の第(n+1)回目の測定((D)図)までの間に(C)の移送工程が有り、さらに、第(n+1)回目の測定(D)を終えた後、移送工程(E)が続く。
以上に説明したように、電気的測定という作業に着目すると、移送と測定とが何度も繰り返して行なわれる。
特開2005−135574号公報 特開2005−514722号公報 特開2003−228880号公報 特開2004−241536号公報 特開2003−077127号公報 特開2005−012220号公報
Assuming that step (B) is the n-th measurement, there is a transfer step (C) until the next (n + 1) -th measurement (FIG. (D)), and further (n + 1) ) After completing the measurement (D) for the second time, the transfer step (E) continues.
As described above, paying attention to the work of electrical measurement, transfer and measurement are repeated many times.
JP 2005-135574 A JP 2005-514722 A JP 2003-228880 A JP 2004-241536 A JP 2003-071127 A JP 2005-012220 A

図6を参照して説明したように、磁気ディスク用ヘッドの製造工程の途中で、測定と移送とが何度も繰り返して行なわれる。
磁気ディスク用ヘッドの半製品を移送する際、どうしても若干の振動を受けるので、静電気が発生し、静電破壊を招く虞れが有る。
そこで移送工程においては、金線8で2個のリード側パッド6rを相互にワイヤーボンディングして、電流を分流(シャント)している。
電気的測定を行なう際には、上記の金線8によるシャンンティングを除去しなければならない。
As described with reference to FIG. 6, measurement and transfer are repeated many times during the manufacturing process of the magnetic disk head.
When the semi-finished product of the magnetic disk head is transferred, it is inevitably subjected to slight vibrations, so that static electricity is generated and there is a possibility of causing electrostatic breakdown.
Therefore, in the transfer process, the two lead-side pads 6r are wire-bonded to each other with the gold wire 8, and the current is shunted.
When electrical measurement is performed, shunting due to the gold wire 8 must be removed.

先に述べたように、磁気ディスク用ヘッド製造工程の途中では、測定と移送とが何度も
繰返されるので、その度に金線8をボンディングしたり除去したりしなければならない。
この操作に少なからぬコストを要するのみでなく、磁気ディスク用ヘッド製作の能率を低下させている。
本発明は以上に述べた事情に鑑みて為されたものであって、その目的とするところは、磁気ディスク用ヘッド製造工程の途中におけるリード側パッドの電気的接続と電気的な切り離しとを、迅速容易かつ低コストで行ない得る技術を提供するにある。
なお、本発明は磁気ディスク用ヘッドに限らず、電子回路を有する部材に広く適用することができる。
As described above, during the magnetic disk head manufacturing process, measurement and transfer are repeated many times. Therefore, the gold wire 8 must be bonded or removed each time.
This operation not only requires considerable cost, but also reduces the efficiency of manufacturing the magnetic disk head.
The present invention has been made in view of the circumstances described above, and the object of the present invention is to electrically connect and disconnect the lead-side pad during the magnetic disk head manufacturing process. It is to provide a technique that can be quickly and easily performed at low cost.
The present invention is not limited to the magnetic disk head, and can be widely applied to members having an electronic circuit.

上記の目的を達成するために創作した本発明の基本的な原理は、『相変化材料が、結晶状態では電気抵抗が低く、アモルファス状態では電気抵抗が高くなること』を利用し、
かつ、相変化を起こさせる手段として光線(例えばレーザ光)を用いることにより、非接触で操作する。
本発明においては同一の光源から投射された同種類の光線によって、相変化材料の結晶化とアモルファス化とを行なう。
このような操作が可能である理由は、同種類の光線であっても照射条件を制御することによって、相変化材料の相(分子配列状態)を変化せしめ得るからである。
さらに、前記の光線を集光して細長い形状に伸長した焦点を結ばせると、小さいエネルギーの光束で効率よく相変化を行なわせることができる。
The basic principle of the present invention created in order to achieve the above object is to utilize the fact that the phase change material has low electrical resistance in the crystalline state and high electrical resistance in the amorphous state.
In addition, operation is performed in a non-contact manner by using a light beam (for example, laser light) as a means for causing a phase change.
In the present invention, the phase change material is crystallized and amorphized by the same kind of light rays projected from the same light source.
The reason why such an operation is possible is that the phase (molecular arrangement state) of the phase change material can be changed by controlling the irradiation conditions even with the same type of light beam.
Furthermore, if the light beam is condensed and the focal point extended into an elongated shape is formed, the phase change can be efficiently performed with a light beam having a small energy.

上述の原理に基づく具体的な構成として、請求項1に係る発明方法は、巨大磁気抵抗効果素子に接続され、一辺長が50μmから100μmの一対のパッドを20μmから50μmの間隔を空けて一面に配置した立体形状の磁気ディスク用ヘッドを加工手段間で移送し、前記一対のパッド間の電気抵抗値を加工手段に配置した状態で測定する磁気ディスク用ヘッドの加工方法であって、
前記一対のパッドを接続する長さが20μmから50μmの長さの辺と、厚さが0.1から5μmの辺と、幅が20μmから50μmの辺とから成り、レーザ光の照射によって電気抵抗値が変化する立体形状の相変化材料をブリッジ状に設ける工程と、
前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射し、相変化材料を結晶化させて電気的抵抗値を50Ωから100Ωとした導通状態にする導通工程と、
前記導通工程により相変化材料を結晶化させた磁気ディスク用ヘッドを次の加工手段に移送する移送工程と、
前記移送工程の後、前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射し、相変化材料をアモルファス化して電気的抵抗値を100KΩとした非導通状態にする非導通工程とを含むことを特徴とする。
As a specific configuration based on the above-described principle, the method of the invention according to claim 1 is connected to a giant magnetoresistive effect element, and a pair of pads each having a side length of 50 μm to 100 μm with a spacing of 20 μm to 50 μm on one side. A method of processing a magnetic disk head for measuring a magnetic disk head having a three-dimensional shape arranged between the processing means and measuring an electrical resistance value between the pair of pads in the processing means,
The pair of pads is connected to a side having a length of 20 μm to 50 μm, a side having a thickness of 0.1 to 5 μm, and a side having a width of 20 μm to 50 μm. Providing a three-dimensional phase change material whose value changes in a bridge shape;
And conducting step width of the phase change material is irradiated with a laser beam having a length transverse to 50μm sides from 20 [mu] m, the phase change material is crystallized into a conductive state in which a 100Ω electrical resistance value 50Ω, the
A transfer step of transferring the magnetic disk head crystallized from the phase change material by the conduction step to the next processing means;
After the transfer step, the phase change material is irradiated with a laser beam having a length that crosses a side having a width of 20 μm to 50 μm, and the phase change material is amorphized so that the electrical resistance value becomes 100 KΩ. And a non-conducting step.

請求項2に係る発明は、前記特徴の磁気ディスク用ヘッドの加工方法において、前記相変化材料として、AgInSbTeを用いることを特徴とする。 According to a second aspect of the present invention, in the method for processing a magnetic disk head having the above characteristics, AgInSbTe is used as the phase change material.

請求項3に係る発明は、巨大磁気抵抗効果素子に接続され、一辺長が50μmから100μmの導電性の一対のパッドを20μmから50μmの間隔を空けて一面に配置した立体形状の磁気ディスク用ヘッドを加工手段間で移送し、前記一対のパッド間の電気抵抗値を加工手段に配置した状態で測定する磁気ディスク用ヘッドの加工装置であって、
前記一対のパッドを接続する長さが20μmから50μmの長さの辺と、厚さが0.1から5μmの辺と、幅が20μmから50μmの辺とから成り、レーザ光の照射によって電気抵抗値が変化する立体形状の相変化材料をブリッジ状に設ける相変化材料加工手段と、
前記磁気ディスク用ヘッドを移送する移送手段と、
前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射して相変化材料を結晶化させて電気的抵抗値を50Ωから100Ωとした導通状態とし、前記相変化材料を結晶化させた磁気ディスク用ヘッドを移送手段によって移送した後に前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射し、相変化材料をアモルファス化して電気的抵抗値を100KΩとした非導通状態とするレーザ照射手段と、
前記レーザ照射手段が相変化材料を非導通工状態とした前記一対のパッド間の電気的抵抗値を測定する測定手段とを備えることを特徴とする。
The invention according to claim 3 is a three-dimensional magnetic disk head which is connected to a giant magnetoresistive effect element and has a pair of conductive pads each having a side length of 50 μm to 100 μm arranged on one side with an interval of 20 μm to 50 μm. Is transferred between the processing means, and the magnetic disk head processing apparatus for measuring the electrical resistance value between the pair of pads in a state of being arranged in the processing means,
The pair of pads is connected to a side having a length of 20 μm to 50 μm, a side having a thickness of 0.1 to 5 μm, and a side having a width of 20 μm to 50 μm. Phase change material processing means for providing a three-dimensional phase change material whose value changes in a bridge shape;
Transfer means for transferring the magnetic disk head;
And a conductive state in which the width is set to 100Ω electrical resistance value which is crystallized phase change material is irradiated with a laser beam having a length transverse to 50μm sides from 20μm from 50Ω of the phase change material, the phase change material After the magnetic disk head crystallized is transferred by the transfer means, the phase change material is irradiated with a laser beam having a length that crosses the side having a width of 20 μm to 50 μm, and the phase change material is amorphized to make an electrical resistance. A laser irradiating means for non-conducting with a value of 100 KΩ;
The laser irradiation means includes a measuring means for measuring an electrical resistance value between the pair of pads in which the phase change material is in a non-conductive state.

請求項4に係る発明は、前記特徴の磁気ディスク用ヘッドの加工装置において、前記相変化材料加工手段が、相変化材料としてAgInSbTeを用いることを特徴とする。 According to a fourth aspect of the present invention, in the magnetic disk head processing apparatus having the above characteristics, the phase change material processing means uses AgInSbTe as the phase change material.

本発明による磁気ディスク用ヘッドの加工方法及び装置は、一辺長が50μmから100μmの導電性の一対のパッド間にレーザ光の照射によって電気抵抗値が変化する立体形状の相変化材料をブリッジ状に設け、前記相変化材料のプレッジを横断する長さのレーザ光を照射して相変化材料を結晶化させた電気的抵抗値を50Ωから100Ωとした導通状態にし、前記磁気ディスク用ヘッドの一対のパッド間の電気抵抗値を加工手段に配置した状態で測定するとき、前記相変化材料に前記幅が20μmから50μmの辺を横断する長さのレーザ光を照射して相変化材料をアモルファス化して電気的抵抗値を100KΩとした非導通状態にすることによって、磁気ディスク用ヘッドを一対のパッド間を移送時に導通状態とし、測定時に非導通状態とすることにより、加工工程におけるGMR素子の放電破壊を容易に防止することができ、生産能率を高めることができる。 In the method and apparatus for processing a magnetic disk head according to the present invention, a three-dimensional phase change material whose electrical resistance value is changed by laser light irradiation between a pair of conductive pads having a side length of 50 μm to 100 μm in a bridge shape. And a conductive state in which the electrical resistance value obtained by crystallizing the phase change material by irradiating laser light having a length crossing the pledge of the phase change material is changed from 50Ω to 100Ω, and the pair of magnetic disk heads When measuring the electrical resistance value between the pads in a state where it is arranged on the processing means, the phase change material is made amorphous by irradiating the phase change material with a laser beam having a length crossing the side having the width of 20 μm to 50 μm. By setting the electrical resistance value to 100 KΩ in a non-conductive state, the magnetic disk head is brought into a conductive state during transfer between a pair of pads, and is in a non-conductive state during measurement. The Rukoto, it is possible to easily prevent the breakdown of the GMR element in the processing step, it is possible to increase the production efficiency.

図4は本発明の1実施形態を示す模式的な工程図であって、従来例を描いた図6に対応している。
本図4の(A)は移送中の状態を、(B)は加工工程における測定中の状態を、(C)は移送中の状態を、それぞれ表している。
後に図1及び図3を参照して詳しく述べるように、2個のリード側パッド6rの間に相変化材料(9a,9b)がブリッジ状に設けられて、双方のパッド間を機械的に接続している。
FIG. 4 is a schematic process diagram showing an embodiment of the present invention and corresponds to FIG. 6 depicting a conventional example.
4A shows the state during transfer, FIG. 4B shows the state during measurement in the processing step, and FIG. 4C shows the state under transfer.
As will be described in detail later with reference to FIGS. 1 and 3, a phase change material (9a, 9b) is provided in a bridge shape between the two lead-side pads 6r to mechanically connect the two pads. doing.

前記の相変化材料は、結晶状態とアモルファス状態との間を可逆的に変化することができ、こうした相変化に伴って諸種の物理的特性が変化する。例えば反射率、屈折率、透過率などの光学的性状が変化し、磁気抵抗、電気抵抗などの電磁気学的性状も変化する(本発明は、これらの中で電気抵抗値の変化を利用する)。
このように相変化する物質としては、GeSbTeや、AgInSbTeなどが推奨される。その他にも相変化する物質は沢山有るが、比較的迅速容易に分子の配列状態(相)が変わり、常温・常圧で安定な(変化しない)ものとしては、上記の金属化合物が適当である。
The phase change material can reversibly change between a crystalline state and an amorphous state, and various physical properties change with the phase change. For example, optical properties such as reflectance, refractive index, and transmittance change, and electromagnetic properties such as magnetoresistance and electrical resistance also change (the present invention uses changes in electrical resistance values among these). .
As such a phase change material, GeSbTe, AgInSbTe, or the like is recommended. There are many other substances that undergo phase change, but the above metal compounds are suitable for those in which the molecular alignment (phase) changes relatively quickly and easily and is stable (does not change) at room temperature and pressure. .

図4(A)の移送中においては、前記相変化材料9を結晶状態(9a)ならしめておく(結晶化させる手段については、図1,図2を参照して後に詳述する)。この結晶状態においては相変化材料の電気抵抗が低いので、2個のリード側パッド6rは電気的に接続導通されており、磁気ディスク用ヘッド(半製品)1が振動を受けたりしても、内部の電子的構成部分(図示省略)に生じた静電気が結晶状態の相変化材料9aによってシャントされ、静電破壊が防止される。   During the transfer of FIG. 4A, the phase change material 9 is kept in a crystalline state (9a) (means for crystallizing will be described in detail later with reference to FIGS. 1 and 2). In this crystalline state, since the electric resistance of the phase change material is low, the two lead-side pads 6r are electrically connected and connected, and even if the magnetic disk head (semi-finished product) 1 receives vibration, Static electricity generated in the internal electronic components (not shown) is shunted by the crystalline phase change material 9a, and electrostatic breakdown is prevented.

図4(B)の測定中においては、前記相変化材料9をアモルファス状態(9b)ならしめておく(アモルファス化させる手段については、図1,図2を参照して後に詳述する)。このアモルファス状態においては相変化材料の電気抵抗が高いので、2個のリード側パッド6rが電気的に切り離されているものと見做すことができ、これらのパッドにプローブピン7を接触させて電気的測定を行なう操作の邪魔にならない。
測定を終えれば、同図4(C)移送中のように、相変化材料を結晶化(9a)させておく。これにより、移送中の静電破壊が防止される。
During the measurement of FIG. 4B, the phase change material 9 is kept in an amorphous state (9b) (means for making it amorphous will be described in detail later with reference to FIGS. 1 and 2). In this amorphous state, since the electric resistance of the phase change material is high, it can be considered that the two lead-side pads 6r are electrically separated, and the probe pin 7 is brought into contact with these pads. It does not interfere with the operation to perform electrical measurement.
When the measurement is completed, the phase change material is crystallized (9a) as in the transfer shown in FIG. This prevents electrostatic breakdown during transfer.

図1は本発明の1実施形態を示す模式的な正面図であって、説明の便宜上、図示したように直交座標軸を想定する。X軸は2個のリード側パッド6rが相互に対向している方向であり、Z軸は上記リード側パッド6rのパッド面に垂直な方向である。Y軸は紙面に直角である。
先に述べたように2個のリード側パッド6rの間隔寸法は20〜50μmであるから、
相変化材料9のX軸方向の長さ寸法は上記の間隔に応じて定まる。本例におけるY軸方向の幅寸法は20〜50μmであり、Z軸方向の厚さ寸法は0.1〜5μmである。
相変化材料ブリッジの製作方法は、公知の製作方法を適宜に選定して利用することができる。前述のごとく厚さ寸法5μm以下であれば、スパッタ蒸着技法を適用して容易にかつ安価に成膜することができる。
FIG. 1 is a schematic front view showing an embodiment of the present invention. For convenience of explanation, orthogonal coordinate axes are assumed as shown in FIG. The X axis is the direction in which the two lead-side pads 6r face each other, and the Z-axis is the direction perpendicular to the pad surface of the lead-side pad 6r. The Y axis is perpendicular to the page.
As described above, the distance between the two lead-side pads 6r is 20 to 50 μm.
The length dimension of the phase change material 9 in the X-axis direction is determined according to the interval. In this example, the width dimension in the Y-axis direction is 20 to 50 μm, and the thickness dimension in the Z-axis direction is 0.1 to 5 μm.
As a manufacturing method of the phase change material bridge, a publicly known manufacturing method can be appropriately selected and used. As described above, when the thickness is 5 μm or less, it is possible to form a film easily and inexpensively by applying the sputter deposition technique.

相変化材料の相(分子配列状態)は、その熱履歴によって定まる。従って、相変化材料9の相を変化させて電気抵抗を制御するには、該相変化材料を所望のごとく加熱・冷却しなければならない。
本実施形態においては、レーザ光で加熱して昇温させ、放冷(自然冷却)によって降温させる。
レーザ光束10はコリメートレンズ11で集光され、相変化材料9に集中照射され、該相変化材料9を昇温させる。
The phase (molecular arrangement state) of the phase change material is determined by its thermal history. Therefore, in order to control the electrical resistance by changing the phase of the phase change material 9, the phase change material must be heated and cooled as desired.
In the present embodiment, the temperature is raised by heating with laser light, and the temperature is lowered by cooling (natural cooling).
The laser beam 10 is collected by a collimating lens 11 and concentratedly irradiated onto the phase change material 9 to raise the temperature of the phase change material 9.

図2は本実施形態における装置全体の模式的な配置図である。ただし、作用効果を分かり易くするように模式化して描いてあるので、本実施形態の構造を写実的に表したものではない。
レーザ発光器12はレーザ光束10を投射して相変化材料9に集中させる(焦点付近の状態については、図3を参照して後述する)。
制御パルス発生器13は、2種類のパルス信号を送り出し、パルス切替器14で切り替え制御してレーザ発光器12に与える。
FIG. 2 is a schematic layout diagram of the entire apparatus according to the present embodiment. However, since the function and effect are schematically illustrated so as to be easily understood, the structure of the present embodiment is not realistically represented.
The laser emitter 12 projects the laser beam 10 and concentrates it on the phase change material 9 (the state near the focal point will be described later with reference to FIG. 3).
The control pulse generator 13 sends out two types of pulse signals, and controls the switching by the pulse switch 14 to give to the laser emitter 12.

前記制御パルス発生器13は、パルス幅が短くて大出力のレーザパルスを発生させる信号PSと、パルス幅が長くて小出力のレーザパルスを発生させる信号PLとを送り出す。
パルス切替器14は、上記2種類のパルス信号を選択してレーザ発光器12に与える。
このように、パルス幅を制御してレーザパルスのエネルギーを制御する技術は、Qスイッチと呼ばれて公知である。
The control pulse generator 13 sends out a signal PS for generating a high-power laser pulse with a short pulse width and a signal PL for generating a low-power laser pulse with a long pulse width.
The pulse switch 14 selects the two types of pulse signals and supplies them to the laser emitter 12.
A technique for controlling the energy of a laser pulse by controlling the pulse width is known as a Q switch.

パルス幅が長くて小出力のレーザパルスを照射すると、相変化材料9は結晶化して電気抵抗が減少する。本実施形態では50〜100オームになり、静電破壊を防止するために十分なシャント機能を果たすことができる状態になった。
パルス幅が短くて大出力のレーザパルスを照射すると、相変化材料9はアモルファス化して電気抵抗が増加する。本実施形態では100キロオーム以上になり、電気的測定を妨げない準絶縁状態になった。
前述のようにして測定を行った後、相変化材料で接続した箇所を高出力レーザで破断して、完全にオフ(絶縁)状態にしておくことが望ましい。
When a laser pulse with a long pulse width and a small output is irradiated, the phase change material 9 crystallizes and the electric resistance decreases. In the present embodiment, the pressure is 50 to 100 ohms, and a sufficient shunt function can be achieved to prevent electrostatic breakdown.
When a laser pulse with a short pulse width and a high output is irradiated, the phase change material 9 becomes amorphous and the electrical resistance increases. In this embodiment, it became 100 kilohms or more, and it became the semi-insulating state which does not disturb an electrical measurement.
After the measurement as described above, it is desirable that the portion connected by the phase change material is broken by a high-power laser and is completely turned off (insulated).

図3は、前記の実施形態におけるレーザ光の焦点付近を模式的に描いた斜視図であり、付記してある座標軸X,Y,Zは先に図1について述べた直交3軸である。
レーザ光束10はコリメートレンズ11によって平行光束となり、シリンドリカルレンズ15によって調光されて、相変化材料のブリッジ9付近に集光される。その焦点は、Y軸方向に長い伸長焦点16となる。
本実施形態において、伸長焦点16のX軸方向の幅寸法は約1μmである。Y軸方向の長さ寸法は、相変化材料のブリッジ9を幅方向に覆い得るよう、余裕をもって適宜に設定すれば良い。
FIG. 3 is a perspective view schematically showing the vicinity of the focal point of the laser beam in the above-described embodiment, and the coordinate axes X, Y, and Z added are the three orthogonal axes described above with reference to FIG.
The laser light beam 10 is converted into a parallel light beam by the collimating lens 11, adjusted by the cylindrical lens 15, and condensed near the bridge 9 of the phase change material. The focal point is an elongated focal point 16 that is long in the Y-axis direction.
In the present embodiment, the width dimension of the extension focal point 16 in the X-axis direction is about 1 μm. The length dimension in the Y-axis direction may be appropriately set with a margin so that the phase change material bridge 9 can be covered in the width direction.

本発明を実施する際、波長810nmのレーザ光を発生する半導体レーザを用いると好結果が得られる。ただし、これに限定されるものではない。
通常の場合、レーザ発光器の出力は2〜5W程度のもので足りる。したがって、本発明装置は比較的安価に作成することができる。
In practicing the present invention, good results can be obtained by using a semiconductor laser that generates laser light having a wavelength of 810 nm. However, it is not limited to this.
In a normal case, the output of the laser emitter is about 2 to 5 W. Therefore, the device of the present invention can be made at a relatively low cost.

本発明の原理を表した模式的な正面断面図。1 is a schematic front sectional view showing the principle of the present invention. 本発明の1実施形態における構成部材の配置を示す模式的な斜視図。The typical perspective view which shows arrangement | positioning of the structural member in one Embodiment of this invention. 上記実施形態における焦点付近を描いた拡大斜視図。The expansion perspective view which drew the focus vicinity in the said embodiment. 本発明方法の1実施形態における概要的な工程図。The schematic process drawing in one embodiment of the method of the present invention. 磁気ディスク用ヘッドの一般的な構造を説明するための模式的な斜視図。FIG. 3 is a schematic perspective view for explaining a general structure of a magnetic disk head. 従来技術における磁気ディスク用ヘッドの加工工程図。FIG. 6 is a process diagram of a magnetic disk head in the prior art.

符号の説明Explanation of symbols

1…磁気ディスク用ヘッド、6r…リード側パッド、6w…ライト側パッド、9…相変化材料、10…レーザ光束、11…コリメートレンズ、12…レーザ発光器、13…制御パルス発生器、14…パルス切替器、15…シリンドリカルレンズ、16…伸長焦点。
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk head, 6r ... Read side pad, 6w ... Write side pad, 9 ... Phase change material, 10 ... Laser beam, 11 ... Collimator lens, 12 ... Laser emitter, 13 ... Control pulse generator, 14 ... Pulse switch, 15 ... cylindrical lens, 16 ... extension focus.

Claims (4)

巨大磁気抵抗効果素子に接続され、一辺長が50μmから100μmの一対のパッドを20μmから50μmの間隔を空けて一面に配置した立体形状の磁気ディスク用ヘッドを加工手段間で移送し、前記一対のパッド間の電気抵抗値を加工手段に配置した状態で測定する磁気ディスク用ヘッドの加工方法であって、
前記一対のパッドを接続する長さが20μmから50μmの長さの辺と、厚さが0.1から5μmの辺と、幅が20μmから50μmの辺とから成り、レーザ光の照射によって電気抵抗値が変化する立体形状の相変化材料をブリッジ状に設ける工程と、
前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射し、相変化材料を結晶化させて電気的抵抗値を50Ωから100Ωとした導通状態にする導通工程と、
前記導通工程により相変化材料を結晶化させた磁気ディスク用ヘッドを次の加工手段に移送する移送工程と、
前記移送工程の後、前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射し、相変化材料をアモルファス化して電気的抵抗値を100KΩとした非導通状態にする非導通工程と、
前記非導通工程の後、前記一対のパッド間の電気的抵抗値を測定する測定工程とを含むことを特徴とする磁気ディスク用ヘッドの加工方法。
A three-dimensional magnetic disk head connected to a giant magnetoresistive element and having a pair of pads each having a side length of 50 μm to 100 μm arranged on one side with an interval of 20 μm to 50 μm is transferred between processing means, A method of processing a magnetic disk head for measuring an electrical resistance value between pads in a state of being arranged in a processing means,
The pair of pads is connected to a side having a length of 20 μm to 50 μm, a side having a thickness of 0.1 to 5 μm, and a side having a width of 20 μm to 50 μm. Providing a three-dimensional phase change material whose value changes in a bridge shape;
And conducting step width of the phase change material is irradiated with a laser beam having a length transverse to 50μm sides from 20 [mu] m, the phase change material is crystallized into a conductive state in which a 100Ω electrical resistance value 50Ω, the
A transfer step of transferring the magnetic disk head crystallized from the phase change material by the conduction step to the next processing means;
After the transfer step, the phase change material is irradiated with a laser beam having a length that crosses a side having a width of 20 μm to 50 μm, and the phase change material is amorphized so that the electrical resistance value becomes 100 KΩ. A non-conducting process;
And a measuring step of measuring an electrical resistance value between the pair of pads after the non-conducting step.
前記相変化材料として、AgInSbTeを用いることを特徴とする請求項1に記載の磁気ディスク用ヘッドの加工方法。   2. The method of processing a magnetic disk head according to claim 1, wherein AgInSbTe is used as the phase change material. 巨大磁気抵抗効果素子に接続され、一辺長が50μmから100μmの導電性の一対のパッドを20μmから50μmの間隔を空けて一面に配置した立体形状の磁気ディスク用ヘッドを加工手段間で移送し、前記一対のパッド間の電気抵抗値を加工手段に配置した状態で測定する磁気ディスク用ヘッドの加工装置であって、
前記一対のパッドを接続する長さが20μmから50μmの長さの辺と、厚さが0.1から5μmの辺と、幅が20μmから50μmの辺とから成り、レーザ光の照射によって電気抵抗値が変化する立体形状の相変化材料をブリッジ状に設ける相変化材料加工手段と、
前記磁気ディスク用ヘッドを移送する移送手段と、
前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射して相変化材料を結晶化させて電気的抵抗値を50Ωから100Ωとした導通状態とし、前記相変化材料を結晶化させた磁気ディスク用ヘッドを移送手段によって移送した後に前記相変化材料の幅が20μmから50μmの辺を横断する長さのレーザ光を照射し、相変化材料をアモルファス化して電気的抵抗値を100KΩとした非導通状態とするレーザ照射手段と、
前記レーザ照射手段が相変化材料を非導通工状態とした前記一対のパッド間の電気的抵抗値を測定する測定手段とを備えることを特徴とする磁気ディスク用ヘッドの加工装置。
A three-dimensional magnetic disk head connected to a giant magnetoresistive element and having a pair of conductive pads each having a side length of 50 μm to 100 μm arranged on one side with an interval of 20 μm to 50 μm is transferred between processing means, A magnetic disk head processing apparatus for measuring an electrical resistance value between the pair of pads in a state of being disposed in a processing means,
The pair of pads is connected to a side having a length of 20 μm to 50 μm, a side having a thickness of 0.1 to 5 μm, and a side having a width of 20 μm to 50 μm. Phase change material processing means for providing a three-dimensional phase change material whose value changes in a bridge shape;
Transfer means for transferring the magnetic disk head;
And a conductive state in which the width is set to 100Ω electrical resistance value which is crystallized phase change material is irradiated with a laser beam having a length transverse to 50μm sides from 20μm from 50Ω of the phase change material, the phase change material After the magnetic disk head crystallized is transferred by the transfer means, the phase change material is irradiated with a laser beam having a length that crosses the side having a width of 20 μm to 50 μm, and the phase change material is amorphized to make an electrical resistance. A laser irradiating means for non-conducting with a value of 100 KΩ;
An apparatus for processing a head for a magnetic disk, comprising: a measuring means for measuring an electrical resistance value between the pair of pads in which the laser irradiation means places the phase change material in a non-conductive state.
前記相変化材料加工手段が、相変化材料としてAgInSbTeを用いることを特徴とする請求項3に記載の磁気ディスク用ヘッドの加工装置。   4. The magnetic disk head processing apparatus according to claim 3, wherein the phase change material processing means uses AgInSbTe as the phase change material.
JP2005281095A 2005-09-28 2005-09-28 Electronic circuit member processing method, magnetic disk head processing method, and apparatus Expired - Fee Related JP5299806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281095A JP5299806B2 (en) 2005-09-28 2005-09-28 Electronic circuit member processing method, magnetic disk head processing method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281095A JP5299806B2 (en) 2005-09-28 2005-09-28 Electronic circuit member processing method, magnetic disk head processing method, and apparatus

Publications (2)

Publication Number Publication Date
JP2007095139A JP2007095139A (en) 2007-04-12
JP5299806B2 true JP5299806B2 (en) 2013-09-25

Family

ID=37980690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281095A Expired - Fee Related JP5299806B2 (en) 2005-09-28 2005-09-28 Electronic circuit member processing method, magnetic disk head processing method, and apparatus

Country Status (1)

Country Link
JP (1) JP5299806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5911358B2 (en) * 2012-04-09 2016-04-27 三菱電機株式会社 Rare earth permanent magnet, method of manufacturing rare earth permanent magnet, and motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307309A (en) * 2000-04-24 2001-11-02 Hitachi Ltd Magnetic head, method for manufacturing the same, magnetic head wafer substrate, magnetic head assembly and magnetic disk device
JP2002158418A (en) * 2000-11-22 2002-05-31 Seiko Epson Corp Wiring board and its manufacturing method
US6667900B2 (en) * 2001-12-28 2003-12-23 Ovonyx, Inc. Method and apparatus to operate a memory cell
JP2005018847A (en) * 2003-06-24 2005-01-20 Shinka Jitsugyo Kk Method for manufacturing magnetoresistive head and method for manufacturing head gimbal assembly provided with the head
JP2005093619A (en) * 2003-09-16 2005-04-07 Sumio Hosaka Recording element
US8264926B2 (en) * 2003-12-26 2012-09-11 Panasonic Corporation Information recording medium with power calibration area

Also Published As

Publication number Publication date
JP2007095139A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4745163B2 (en) Dual wire integrated WAMR / HAMR write head
US7009138B2 (en) Laser processing method, laser welding method, and laser processing apparatus
CN100524627C (en) Semiconductor structure processing using multiple laser beam spots
US6146813A (en) Method and shunting and deshunting an electrical component and a shuntable/shunted electrical component
US8000175B2 (en) Thermally assisted magnetic head having a semiconductor surface-emitting laser
CN103477427A (en) Methods and systems for laser processing a workpiece using a plurality of tailored laser pulse shapes
KR20180030588A (en) USE, METHOD AND SYSTEM FOR LASER-TRANSFERABLE ADDRESSABLE ARRAY
JP2004288350A (en) Method and device for manufacturing magnetic head device, and the magnetic head device
JP5299806B2 (en) Electronic circuit member processing method, magnetic disk head processing method, and apparatus
JP2009087499A (en) Thermal assist magnetic recording element, and magnetic head and magnetic recording device using the same
JP4859572B2 (en) Probe card manufacturing method
US6846991B2 (en) Electrical component and a shuntable/shunted electrical component and method for shunting and deshunting
TWI732505B (en) Phase-change memory
US20140063111A1 (en) Pattern printing apparatus, pattern printing method, and test apparatus
JP5258945B2 (en) Soldering method and soldering apparatus
JPS63127444A (en) Production of optical head
US20170023617A1 (en) Shaping of contact structures for semiconductor test, and associated systems and methods
US20170219743A1 (en) Laser-machined optical components and related methods for pick and bond assembly
JP2005340631A (en) Piezoelectric element component and electronic equipment
JP2007319921A (en) Laser beam machining apparatus and laser beam machining method
JP2003177438A (en) Optical switch and driving method of the switch
JP2006332099A (en) Print coil substrate, objective lens drive, optical pickup and optical disc drive
US20060038970A1 (en) Exposure method and exposure apparatus
JP6117125B2 (en) Ambient temperature ball bonding
JP4037119B2 (en) Optical pickup device, micropositioning mechanism, micropositioning method and optical axis alignment method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120425

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees