JP5298672B2 - Rolling bearing races and rolling elements - Google Patents

Rolling bearing races and rolling elements Download PDF

Info

Publication number
JP5298672B2
JP5298672B2 JP2008176251A JP2008176251A JP5298672B2 JP 5298672 B2 JP5298672 B2 JP 5298672B2 JP 2008176251 A JP2008176251 A JP 2008176251A JP 2008176251 A JP2008176251 A JP 2008176251A JP 5298672 B2 JP5298672 B2 JP 5298672B2
Authority
JP
Japan
Prior art keywords
area
range
depth
less
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008176251A
Other languages
Japanese (ja)
Other versions
JP2010013712A (en
Inventor
弘樹 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008176251A priority Critical patent/JP5298672B2/en
Publication of JP2010013712A publication Critical patent/JP2010013712A/en
Application granted granted Critical
Publication of JP5298672B2 publication Critical patent/JP5298672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner ring, an outer ring and a rolling body of a rolling bearing, which hardly crack even when they are used under the environment where a lubricating condition is deteriorated by mixing of foreign matter, such as metallic burr and muddy water. <P>SOLUTION: The inner ring is constituted as follows. In the range of 10 &mu;m depth from the surface, the total content of carbon and nitrogen is controlled to be 0.9-1.6 mass%, and the total existing ratio per unit area of nitride and carbo-nitride is controlled to be &ge;0.5 area%. In the range from the surface to the depth of 0.006T (T is the thickness of the thickest position in the diameter direction), the total existing ratio per unit area of the carbide having a &ge;1 &mu;m<SP>2</SP>cross section. the nitride and the carbo-nitride is controlled to be &le;1.0 area%. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は転がり軸受に関する。   The present invention relates to a rolling bearing.

例えば自動車、農業機械、建設機械および鉄鋼機械等のトランスミッションや無段変速機用(トロイダルCVT、ベルトCVT)エンジン補機用(オルタネータ、コンブレッサー、水ポンプ等)に使用される転がり軸受の使用環境は、金属バリなどの異物や泥水が混入して潤滑条件が劣化やすい環境である。
下記の特許文献1には、異物混入潤滑環境下で使用される転がり軸受の寿命を向上させるために、軸受の転がり表面層のCの含有量、残留オーステナイト量、及び炭窒化物の含有量を適性値にすることで、異物により生じる圧痕のエッジ部における応力の集中を緩和し、クラックの発生を抑えることが記載されている。
For example, the usage environment of rolling bearings used for transmissions such as automobiles, agricultural machinery, construction machinery, and steel machinery, and continuously variable transmission (toroidal CVT, belt CVT) engine accessories (alternators, compressors, water pumps, etc.) Is an environment in which foreign matter such as metal burrs and muddy water are mixed and lubrication conditions are likely to deteriorate.
In Patent Document 1 below, in order to improve the life of a rolling bearing used under a foreign matter-mixed lubrication environment, the content of C in the rolling surface layer of the bearing, the amount of retained austenite, and the content of carbonitride are described. It is described that the concentration of stress is reduced at the edge portion of the indentation caused by the foreign matter and the occurrence of cracks is suppressed by setting the value to an appropriate value.

特許文献1において、内輪および外輪は0.1〜0.7wt%の炭素を含む炭素鋼からなる素材を用い、浸炭を含む熱処理により硬化させて、軌道面表層部の残留オーステナイトを20〜45vol%とし、転動体は0.7〜1.1wt%の炭素を含む炭素鋼からなる素材を用い、浸炭を含む熱処理により硬化させて、転動面表層部の残留オーステナイトを20〜45vol%とし、表面層の炭窒化物を3〜15vol%としている。   In Patent Document 1, the inner ring and the outer ring are made of carbon steel containing 0.1 to 0.7 wt% of carbon, and are hardened by heat treatment including carburization, so that the retained austenite on the raceway surface layer is 20 to 45 vol%. The rolling element is made of carbon steel containing 0.7 to 1.1 wt% of carbon, and is hardened by heat treatment including carburization, so that the retained austenite of the rolling surface layer is 20 to 45 vol%, The layer carbonitride is 3 to 15 vol%.

下記の非特許文献1には、潤滑油中の異物による表面損傷とフレーキング発生メカニズム、および残留オーステナイトによる圧痕縁の応力集中低減効果と寿命延長効果などについて記載されている。
特開昭64−55423号公報 ”The Development of Bearing Steels for Long Life Rolling Bearings Under Clean Lunbrication”ASTM−STP(1993)p199−210
Non-Patent Document 1 described below describes surface damage and flaking generation mechanisms due to foreign matters in the lubricating oil, stress concentration reducing effect on the indentation edge due to retained austenite, life extending effect, and the like.
Japanese Patent Laid-Open No. 64-55423 "The Development of Bearing Steels for Long Life Rolling Bears Under Clean Lunics" ASTM-STP (1993) p199-210

上述の文献に記載された技術は、表面起点型剥離を抑えて転がり軸受の寿命を長くすることを目的としている。しかし、浸炭または浸炭窒化層を形成する場合、炭化物が過剰に析出すると表面が割れ易くなる。特に、最近では、軽量化の観点から軸受部品の厚さを薄くすることが求められており、厚さを薄くすることで軸受部品(転がり軸受の軌道輪および転動体)に生じる曲げ応力が大きくなるため、軸受部品が割れ易くなる。
本発明は、金属バリなどの異物や泥水が混入して潤滑条件が劣化しやすい環境で使用される転がり軸受に関し、軸受部品に割れが生じ難くすることを課題とする。
The technique described in the above-mentioned literature aims to extend the life of the rolling bearing by suppressing surface-origin type peeling. However, when forming a carburized or carbonitrided layer, if the carbide precipitates excessively, the surface tends to crack. In recent years, in particular, it has been required to reduce the thickness of bearing parts from the viewpoint of weight reduction, and the bending stress generated in bearing parts (rolling bearing races and rolling elements) is increased by reducing the thickness. As a result, the bearing parts are easily broken.
The present invention relates to a rolling bearing used in an environment in which foreign matters such as metal burrs and muddy water are mixed and the lubrication conditions are likely to deteriorate, and it is an object of the present invention to prevent the bearing parts from being easily cracked.

上記課題を解決するために、本発明の一態様では、環状体の内周面または外周面を軌道面とする転がり軸受の軌道輪の場合には、この軌道輪を、合金鋼からなり、表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率を0.9質量%以上1.6質量%以下とし、窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上1.1面積%以下とし、表面から0.006T(Tは径方向で最も厚い部分の厚さ)の深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率を0.7面積%以下とする。 In order to solve the above-described problems, in one aspect of the present invention, in the case of a rolling bearing bearing ring having an inner circumferential surface or an outer circumferential surface of an annular body as a raceway surface, the bearing ring is made of alloy steel and has a surface. To a depth of 10 μm, the total content of carbon and nitrogen is 0.9 mass% or more and 1.6 mass% or less, and the abundance of nitride and carbonitride per unit area is 0.5 in total. and more area% 1.1 area% or less, in the range from the surface to a depth of 0.006T (thickness of the thickest portion T in the radial direction), the cross-sectional area of 1 [mu] m 2 or more carbides, nitrides, and carbonitrides The total abundance of nitride per unit area is set to 0.7 area% or less.

環状体の軸方向一端面を軌道面とする転がり軸受の軌道輪の場合は、この軌道輪を、合金鋼からなり、表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率を0.9質量%以上1.6質量%以下とし、窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上1.1面積%以下とし、表面から0.01T(Tは軸方向で最も厚い部分の厚さ)の深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率を0.4面積%以下とする。 In the case of a rolling bearing race that uses one end surface in the axial direction of the annular body as the raceway surface, the raceway is made of alloy steel and the total content of carbon and nitrogen is 0 in the range from the surface to a depth of 10 μm. 0.9 mass% to 1.6 mass%, and the total abundance of nitride and carbonitride per unit area is 0.5 area% to 1.1 area% , and 0.01T (T Is the thickness of the thickest part in the axial direction), and the total abundance per unit area of carbide, nitride, and carbonitride having a cross-sectional area of 1 μm 2 or more is 0.4 area% or less. To do.

転がり軸受の転動体の場合には、この転動体を、合金鋼からなり、表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率を0.9質量%以上1.6質量%以下とし、窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上1.1面積%以下とし、表面から10μmの深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率を0.8面積%以下とする。 In the case of a rolling element of a rolling bearing, the rolling element is made of alloy steel, and the total content of carbon and nitrogen is 0.9 mass% or more and 1.6 mass% or less in a range from the surface to a depth of 10 μm. Carbide having a total area of nitride and carbonitride per unit area of 0.5 to 1.1 area% and a cross-sectional area of 1 μm 2 or more in the range from the surface to a depth of 10 μm , Nitride, and carbonitride, the total abundance per unit area is 0.8 area% or less.

本発明の一態様においては、軸受部品(転がり軸受の軌道輪および転動体)を、合金鋼からなり、表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率を0.9質量%以上1.6質量%以下とし、窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上とする。
ここで、合金鋼からなる軸受部品(転がり軸受の軌道輪および転動体)の表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率を0.9質量%以上とすることで、転がり寿命に必要な硬さや残留オーステナイト量を確保することができる。一方、合金鋼からなる軸受部品(転がり軸受の軌道輪および転動体)の表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率が1.6質量%を超えると、靱性が著しく低下して割れ易くなる。
In one aspect of the present invention, the bearing component (the bearing ring and rolling element of the rolling bearing) is made of alloy steel, and the total content of carbon and nitrogen is 0.9 mass% in a range from the surface to a depth of 10 μm. The amount of nitride and carbonitride per unit area is 0.5 area% or more in total.
Here, rolling is performed by setting the total content of carbon and nitrogen to 0.9 mass% or more in the range from the surface of the bearing parts made of alloy steel (the bearing rings and rolling elements of the rolling bearing) to a depth of 10 μm. It is possible to ensure the hardness necessary for life and the amount of retained austenite. On the other hand, if the total content of carbon and nitrogen exceeds 1.6% by mass in the range from the surface of bearing parts made of alloy steel (roller bearing rings and rolling elements) to a depth of 10 μm, the toughness is significantly reduced. And become easy to break.

また、合金鋼からなる軸受部品(転がり軸受の軌道輪および転動体)の表面から10μmの深さまでの範囲で、窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上とすることで、軸受として必要な強度を確保することができる。窒素はマトリックスに固溶して微細な窒化物および炭窒化物を形成することで、マトリックスを強化する。
なお、前記範囲での窒化物と炭窒化物の単位面積当りの存在率の上限値は3.0面積%である。この上限値を超えると軸受部品に割れが生じ易くなる。また、前記範囲での窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上とするためには、前記範囲での窒素含有率を0.3質量%以上にすることが好ましい。
In addition, the total abundance ratio of nitride and carbonitride per unit area is 0.5 area% within the range from the surface of bearing parts made of alloy steel (roller bearing ring and rolling element) to a depth of 10 μm. By setting it as the above, the intensity | strength required as a bearing is securable. Nitrogen strengthens the matrix by solid solution in the matrix to form fine nitrides and carbonitrides.
In addition, the upper limit of the abundance rate per unit area of nitride and carbonitride in the above range is 3.0 area%. If this upper limit is exceeded, cracks are likely to occur in the bearing parts. Further, in order to make the abundance ratio per unit area of nitride and carbonitride in the above range to 0.5 area% or more in total, the nitrogen content in the above range is set to 0.3 mass% or more. It is preferable.

また、転がり軸受の軌道輪が、環状体の内周面または外周面を軌道面とするものの場合は、表面から0.006T(Tは径方向で最も厚い部分の厚さ)の深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率を1.0面積%以下とする。
転がり軸受の軌道輪が、環状体の軸方向一端面を軌道面とするものの(軌道面が板面に形成されているもの)場合は、表面から0.01T(Tは軸方向で最も厚い部分の厚さ)の深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率を1.0面積%以下とする。
Further, in the case where the bearing ring of the rolling bearing has an inner peripheral surface or an outer peripheral surface of the annular body as a raceway surface, a range from the surface to a depth of 0.006T (T is the thickness of the thickest portion in the radial direction). Thus, the total abundance per unit area of carbide, nitride, and carbonitride having a cross-sectional area of 1 μm 2 or more is set to 1.0 area% or less.
When the bearing ring of the rolling bearing has an end surface in the axial direction of the annular body as the race surface (the race surface is formed on the plate surface), 0.01T from the surface (T is the thickest part in the axial direction) The total abundance ratio per unit area of carbides, nitrides, and carbonitrides having a cross-sectional area of 1 μm 2 or more is set to 1.0 area% or less.

転がり軸受の転動体の場合は、表面から10μmの深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率を1.0面積%以下とする。
このように、前記各範囲内で、断面積が1μm2 以上の粗大な炭化物、窒化物、および炭窒化物の合計存在率を1.0面積%以下と低くすることにより、軌道輪および転動体に割れが生じ難くなる。このような存在率にするためには、前記範囲での炭素含有率を1.0質量%以下(1.1質量%未満)、窒素含有率を0.7質量%以下(0.8質量%未満)にすることが好ましい。
In the case of rolling elements of rolling bearings, the total abundance per unit area of carbide, nitride, and carbonitride having a cross-sectional area of 1 μm 2 or more in the range from the surface to a depth of 10 μm is 1.0 area% or less. And
Thus, by reducing the total abundance of coarse carbides, nitrides, and carbonitrides having a cross-sectional area of 1 μm 2 or more within the above ranges to 1.0 area% or less, the races and rolling elements Cracks are less likely to occur. In order to obtain such an abundance ratio, the carbon content in the above range is 1.0 mass% or less (less than 1.1 mass%), and the nitrogen content is 0.7 mass% or less (0.8 mass%). Less).

本発明で使用する合金鋼としては、転がり軸受として必要な強度が得られ、熱処理に係る時間を短くするという観点から、炭素含有率が0.5質量%以上であるものを用いることが好ましい。また、高炭素クロム軸受鋼であるSUJ2を用いることが好ましい。
本発明の軸受部品の製造方法としては、炭素含有率が0.5質量%以上1.0質量%以下の合金鋼からなる素材を、内輪、外輪、または転動体の形状に加工した後、浸炭窒化を施した後、焼入れ焼戻しを行う方法が挙げられる。浸炭窒化は、Rxガス(N2 +H2 +CO)とアンモニアガス、および必要に応じてエンリッチガス(炭化水素ガス)を炉内に入れて、例えば820〜900℃に加熱して1〜5時間保持することで行われる。
As the alloy steel used in the present invention, it is preferable to use steel having a carbon content of 0.5% by mass or more from the viewpoint of obtaining strength required for a rolling bearing and shortening the time required for heat treatment. Moreover, it is preferable to use SUJ2, which is a high carbon chromium bearing steel.
As a method for producing a bearing component of the present invention, a material made of alloy steel having a carbon content of 0.5% by mass or more and 1.0% by mass or less is processed into a shape of an inner ring, an outer ring, or a rolling element, and then carburized. A method of quenching and tempering after nitriding is mentioned. For carbonitriding, Rx gas (N 2 + H 2 + CO), ammonia gas, and if necessary, enrich gas (hydrocarbon gas) are placed in the furnace, heated to 820 to 900 ° C., and held for 1 to 5 hours. It is done by doing.

そして、浸炭窒化の際の炉内残留アンモニア濃度を0.20体積%以上にすることで、前記各範囲での窒化物と炭窒化物の単位面積当りの存在率を合計で0.5面積%以上とすることができる。その上限値は、必要な窒化物および炭窒化物の存在率とコストとの兼ね合いで1.50体積%とする。
なお、転がり寿命の軌道輪および転動体の表層部の硬さは700Hv以上、残留オーステナイト量は15体積%以上40体積%以下とすることが好ましい。
Then, by setting the residual ammonia concentration in the furnace during carbonitriding to 0.20% by volume or more, the abundance ratio per unit area of nitride and carbonitride in each range is 0.5 area% in total. This can be done. The upper limit value is 1.50% by volume in view of the required abundance of nitrides and carbonitrides and cost.
In addition, it is preferable that the hardness of the surface layer portion of the rolling ring and the rolling element of the rolling life is 700 Hv or more, and the amount of retained austenite is 15 volume% or more and 40 volume% or less.

本発明の軸受部品を用いることで、転がり軸受が金属バリなどの異物や泥水が混入して潤滑条件が劣化しやすい環境で使用された場合でも、軸受部品に割れが生じ難くなる。   By using the bearing component of the present invention, even when the rolling bearing is used in an environment where foreign matters such as metal burrs and muddy water are mixed and the lubrication conditions are likely to deteriorate, the bearing component is less likely to crack.

以下、本発明の実施形態について説明する。
[第1実施形態]
図1に示す構造であって、呼び番号6206と6202の玉軸受の内輪1、外輪2、および玉(転動体)3を以下の方法で作製した。
Hereinafter, embodiments of the present invention will be described.
[First Embodiment]
The inner ring 1, outer ring 2, and ball (rolling element) 3 of the ball bearings having the bearing numbers 6206 and 6202 having the structure shown in FIG. 1 were produced by the following method.

Figure 0005298672
Figure 0005298672

内輪1については、先ず、合金成分が表1の各組成である鋼A〜Dからなる円環状の素材を内輪の形状に加工した後、820〜900℃、保持時間1〜5時間、Rxガス+エンリッチガス+アンモニアガス雰囲気の条件で浸炭窒化処理を行い、次いで油焼入れした。なお、炉内のアンモニア(NH3 )ガス濃度は表2および3に示すようにサンプル毎に変えた。6206のサンプルを表2に、6202のサンプルを表3に示す。なお、No. 11のサンプルは、浸炭窒化を行わず「ずぶ焼き」を行った。 For the inner ring 1, first, after processing an annular material made of steels A to D whose alloy components are the compositions shown in Table 1 into the shape of the inner ring, 820 to 900 ° C., holding time 1 to 5 hours, Rx gas Carbonitriding was performed under the conditions of + enrich gas + ammonia gas atmosphere, followed by oil quenching. The ammonia (NH 3 ) gas concentration in the furnace was changed for each sample as shown in Tables 2 and 3. Table 2 shows the samples of 6206 and Table 3 shows the samples of 6202. In addition, the sample of No. 11 was subjected to “zubuki” without carbonitriding.

次に、180〜240℃で2時間保持する焼戻しを行って、内輪の表面から10μmの深さまでの範囲での〔C〕および〔N〕を表2および3に示す各値とした。また、表面硬さを700Hv以上とした。次に、研削加工と超仕上加工を行って、内輪1の軌道面の表面粗さ(Ra)を0.05μm以下にした。
6206の内輪1の径方向で最も厚い部分の厚さTは5.35mmであり、6202の内輪1の径方向で最も厚い部分の厚さTは3.40mmである。
Next, tempering was performed at 180 to 240 ° C. for 2 hours, and [C] and [N] in the range from the surface of the inner ring to a depth of 10 μm were set to the values shown in Tables 2 and 3. Moreover, the surface hardness was 700 Hv or more. Next, grinding and superfinishing were performed to make the surface roughness (Ra) of the raceway surface of the inner ring 1 0.05 μm or less.
The thickness T of the innermost ring 6206 in the radial direction is 5.35 mm, and the thickness T of the innermost ring 6202 in the radial direction is 3.40 mm.

得られた各サンプルの内輪について、表面から深さ10μmの範囲の炭素含有率〔C〕と窒素含有率〔N〕をEPMAを用いた定量分析で測定した。また、表面から深さ10μmの範囲の窒化物と炭窒化物の合計存在率は、次のようにして測定した。
先ず、各サンプルについて、表面を含む軸方向断面を鏡面に仕上げた後、電界放射型走査型電子顕微鏡(FE−SEM)を用い、倍率5000倍で、表面を含む3視野(1視野は15μm×15μm以上の範囲)以上を撮影する。1視野につき表面から深さ10μmまでの領域を2値化処理し、画像解析を用いて、各視野に占める窒化物と炭窒化物の合計面積の割合(面積率)を求め、3視野以上の平均値を測定した。
About the obtained inner ring of each sample, the carbon content [C] and the nitrogen content [N] in the range of 10 μm depth from the surface were measured by quantitative analysis using EPMA. Further, the total abundance ratio of nitride and carbonitride having a depth of 10 μm from the surface was measured as follows.
First, for each sample, the axial cross section including the surface was finished to a mirror surface, and then using a field emission scanning electron microscope (FE-SEM) at a magnification of 5000 times, 3 fields including the surface (1 field is 15 μm × The above image is taken. The area from the surface to a depth of 10 μm per field of view is binarized, and using image analysis, the ratio (area ratio) of the total area of nitride and carbonitride occupying each field of view is obtained. The average value was measured.

また、表面から深さ0.003T(6206で16.05μm、6202で10.2μm)までの範囲(表では、表面からの深さをXで示し、t=0.001Tとして、この範囲をX≦3tと表記):範囲(1) と、表面からの深さが0.003Tより深く0.006T(6206で32.10μm、6202で20.4μm)までの範囲(この範囲を表では3t<X≦6tと表記):範囲(2) と、表面からの深さが0.006Tより深く0.009T(6206で48.45μm、6202で30.6μm)までの範囲(この範囲を表では6t<X≦9tと表記):範囲(3) での、1μm2 以上の炭化物、窒化物、および炭窒化物の合計存在率は、次のようにして測定した。 In addition, the range from the surface to a depth of 0.003T (16.06 μm at 6206, 10.2 μm at 6202) (in the table, the depth from the surface is indicated by X, t = 0.001T, and this range is X ≦ 3t): Range (1) and a range from 0.003T to 0.006T (32.10 μm at 6206, 20.4 μm at 6202) deep from the surface (this range is 3t < X ≦ 6t): Range (2), and a range from the surface to a depth deeper than 0.006T to 0.009T (48.45 μm at 6206, 30.6 μm at 6202) (this range is 6t in the table) <Represented as X ≦ 9 t): The total abundance of carbides, nitrides, and carbonitrides of 1 μm 2 or more in the range (3) was measured as follows.

先ず、各サンプルについて、表面を含む軸方向断面を鏡面に仕上げた後、エッチングして炭化物を現出させた。次に、走査型電子顕微鏡(SEM)を用い、倍率3000倍で、表面を含む3視野(1視野は70μm×70μmの範囲)以上を撮影する。そして、1視野につき範囲(1) 〜(3) 毎に2値化処理してから、各範囲に占める1μm2 以上の炭化物と窒化物と炭窒化物の合計面積の割合を画像解析装置により測定し、範囲(1) 〜(3) 毎に3視野以上の平均値を求めた。 First, for each sample, the axial cross section including the surface was finished to a mirror surface, and then etched to reveal carbides. Next, a scanning electron microscope (SEM) is used to photograph three or more visual fields (one visual field is a range of 70 μm × 70 μm) at a magnification of 3000 times including the surface. Then, after binarizing each range (1) to (3) per field of view, the ratio of the total area of carbide, nitride and carbonitride of 1 μm 2 or more in each range is measured with an image analyzer Then, an average value of three or more fields of view was obtained for each of the ranges (1) to (3).

これらの結果を下記の表2および3に示す。
外輪2と玉3については、先ず、SUJ2からなる素材で外輪および玉を形成した。次に、温度840〜860℃、保持時間1〜5時間、Rxガス+エンリッチガス+アンモニアガス雰囲気の条件で浸炭窒化処理を行った後に油冷却する焼入れを行った後、180〜220℃に2時間保持する焼き戻しを行った。次に、外輪2には、研削加工と超仕上げ加工を行って、外輪2の軌道面の表面粗さ(Ra)を0.05μm以下にした。また、玉3には、バレル加工と超仕上げ加工を行って、表面粗さ(Ra)を0.05μm以下にした。
These results are shown in Tables 2 and 3 below.
For the outer ring 2 and the ball 3, first, the outer ring and the ball were formed of a material made of SUJ2. Next, after performing carbonitriding treatment under conditions of a temperature of 840 to 860 ° C., a holding time of 1 to 5 hours, and an atmosphere of Rx gas + enriched gas + ammonia gas, quenching with oil cooling is performed, and then the temperature is increased to 180 to 220 ° C. Tempering was performed for a period of time. Next, the outer ring 2 was subjected to grinding and superfinishing so that the surface roughness (Ra) of the raceway surface of the outer ring 2 was 0.05 μm or less. Further, the ball 3 was subjected to barrel processing and superfinishing processing so that the surface roughness (Ra) was 0.05 μm or less.

これらの外輪2および玉3とNo. 1〜17の各サンプルの内輪1を用いて6206の玉軸受を組み立てて、下記の条件で転がり寿命試験を行った。この試験は、試験軸受をサンプル毎に10体用意し、回転試験機にかけて回転させ、外輪2および玉3の何れかが破損した場合には交換して継続して回転させた。そして、内輪1が破損するまでの時間を測定し、各10体の結果からL10寿命を求めた。 A ball bearing of 6206 was assembled using the outer ring 2 and the ball 3 and the inner ring 1 of each sample No. 1 to 17, and a rolling life test was performed under the following conditions. In this test, 10 test bearings were prepared for each sample, rotated by a rotation tester, and when either the outer ring 2 or the ball 3 was damaged, it was replaced and continuously rotated. Then, the time until the inner ring 1 was broken was measured, and the L 10 life was determined from the results of 10 bodies.

<試験条件>
試験荷重:6220N
回転速度:3000min-1
潤滑油:VG68
混入異物:硬さHv870、粒径74〜147μmのFe3
混入量:潤滑油中に300ppm
また、各L10寿命からNo. 11のL10寿命を「1」とした相対値を算出した。その結果も下記の表2および3に示す。
<Test conditions>
Test load: 6220N
Rotational speed: 3000min -1
Lubricating oil: VG68
Foreign matter: Fe 3 C with hardness Hv870 and particle size 74-147 μm
Inclusion amount: 300ppm in lubricating oil
Moreover, to calculate the relative value "1" and L 10 life of No. 11 from the L 10 life. The results are also shown in Tables 2 and 3 below.

また、No. 1〜20の各サンプルの内輪1について静的割れ試験を行った。この試験は、図2に示すように、内輪1を水平な台の上に立てて(外周面を接触させて)置き、鉛直方向から荷重を加えて、内輪1に割れが生じる最大荷重を測定した。そして、各サンプルの最大荷重についてNo. 1〜17ではNo. 12の最大荷重を「1」とした相対値を、No. 18〜20ではNo. 20の最大荷重を「1」とした相対値を算出した。その結果も下記の表2および3に示す。   Moreover, the static crack test was done about the inner ring | wheel 1 of each sample of No. 1-20. In this test, as shown in FIG. 2, the inner ring 1 is placed on a horizontal base (with the outer peripheral surface in contact), a load is applied from the vertical direction, and the maximum load at which the inner ring 1 is cracked is measured. did. And the relative value which set the maximum load of No. 12 to "1" in No. 1-17 about the maximum load of each sample, and set the maximum load of No. 20 to "1" in No. 18-20. Was calculated. The results are also shown in Tables 2 and 3 below.

Figure 0005298672
Figure 0005298672

Figure 0005298672
Figure 0005298672

表2の結果から、本発明の実施例に相当するNo. 1、4〜10、15、16のサンプルは、比較例に相当するNo. 11〜14、17のサンプルと比較して、内輪の最大荷重が大きいため割れにくく、L10寿命も長いことが分かる。
また、表3の結果から、本発明の実施例に相当するNo. 18と19のサンプルは、比較例に相当するNo. 20のサンプルと比較して、内輪の最大荷重が大きいため割れにくいことが分かる。
From the results of Table 2, the samples of Nos. 1, 4, 10 to 15, 16 corresponding to the examples of the present invention are compared with the samples of Nos. 11 to 14, 17 corresponding to the comparative examples. difficult to break because the maximum load is larger, longer is seen L 10 life.
Further, from the results of Table 3, the samples No. 18 and 19 corresponding to the examples of the present invention are less likely to be cracked because the maximum load of the inner ring is larger than the sample No. 20 corresponding to the comparative example. I understand.

[第2実施形態]
表1の鋼種Cからなり、直径10mmで長さが15mmの円柱に対して、第1実施形態の内輪に対して施した熱処理と同じ熱処理と仕上げ加工を行って、円筒ころのサンプルNo. 21〜23を得た。また、表1の鋼種Cからなり、直径15mmで長さが20mmの円柱に対して、第1実施形態の内輪に対して施した熱処理と同じ熱処理と仕上げ加工を行って、円筒ころのサンプルNo. 24、25を得た。
[Second Embodiment]
Samples No. 21 of cylindrical rollers were prepared by performing the same heat treatment and finishing as the heat treatment applied to the inner ring of the first embodiment on a cylinder of steel type C in Table 1 having a diameter of 10 mm and a length of 15 mm. ~ 23 were obtained. Further, the cylindrical roller sample No. 1 was obtained by performing the same heat treatment and finishing as the heat treatment applied to the inner ring of the first embodiment on a cylinder of steel type C in Table 1 and having a diameter of 15 mm and a length of 20 mm. 24 and 25 were obtained.

得られた各サンプルの円筒ころについて、表面から深さ10μmの範囲の炭素含有率〔C〕と窒素含有率〔N〕をEPMAを用いた定量分析で測定した。また、表面から深さ10μmの範囲の窒化物と炭窒化物の合計存在率を第1実施形態と同じ方法で測定した。
また、表面から深さ10μmまでの範囲(a) と、表面からの深さが10μmより深く30μmまでの範囲(b) と、表面からの深さが30μmより深く50μm以下範囲(c) での、1μm2 以上の炭化物、窒化物、および炭窒化物の合計存在率を、第1実施形態の範囲(1) 〜(3) についての方法と同様の方法で測定した。
About the obtained cylindrical roller of each sample, the carbon content [C] and the nitrogen content [N] in the range of 10 μm depth from the surface were measured by quantitative analysis using EPMA. Further, the total abundance of nitrides and carbonitrides in the range of 10 μm in depth from the surface was measured by the same method as in the first embodiment.
Further, in the range (a) from the surface to a depth of 10 μm, the depth from the surface to a depth of more than 10 μm to 30 μm (b), and the depth from the surface to a depth of more than 30 μm and a range of 50 μm or less (c). The total abundance of carbides, nitrides, and carbonitrides having a size of 1 μm 2 or more was measured by the same method as that for the ranges (1) to (3) of the first embodiment.

これらの結果を下記の表4に示す。
また、これらのサンプルについて静的割れ試験を行った。この試験は、図3に示すように、水平な台の上に、円筒ころ4の同じサンプルを3つ重ねて置き、鉛直方向から荷重を加えて何れかの円筒ころ4に割れが生じる最大荷重を測定した。そして、各サンプルの最大荷重についてNo. 21と22はNo. 23の最大荷重を「1」とした相対値を、No. 24はNo. 25の最大荷重を「1」とした相対値を算出した。その結果も下記の表4に示す。
These results are shown in Table 4 below.
Moreover, the static crack test was done about these samples. In this test, as shown in FIG. 3, three same samples of cylindrical rollers 4 are placed on a horizontal base, and the maximum load at which any cylindrical roller 4 is cracked by applying a load from the vertical direction. Was measured. As for the maximum load of each sample, No. 21 and 22 calculate the relative value with the maximum load of No. 23 being “1”, and No. 24 is the relative value with the maximum load of No. 25 being “1”. did. The results are also shown in Table 4 below.

Figure 0005298672
Figure 0005298672

この結果から、本発明の実施例に相当するNo. 21、22のサンプルは、比較例に相当するNo. 23のサンプルと比較して、内輪の最大荷重が大きいため割れにくいことが分かる。また、本発明の実施例に相当するNo. 24のサンプルは、比較例に相当するNo. 25のサンプルと比較して、内輪の最大荷重が大きいため割れにくいことが分かる。
[第3実施形態]
環状体の軸方向一端面を軌道面とする転がり軸受としては、図4に示すスラストころ軸受が挙げられる。この軸受は、軸を挿入する筒状部11aを備えた内輪11と、この筒状部11aが遊嵌される円穴12aを有する円板状の外輪12と、円筒状のころ13と、保持器14とで構成されている。内輪11の円板部の内面(環状体の軸方向一端面)11bが内輪軌道面に相当し、円板状の外輪12の内面(環状体の軸方向一端面)12bが外輪軌道面に相当する。
From this result, it can be seen that the No. 21 and 22 samples corresponding to the examples of the present invention are less likely to break because the maximum load of the inner ring is larger than the No. 23 sample corresponding to the comparative example. Further, it can be seen that the sample No. 24 corresponding to the example of the present invention is hard to break because the maximum load of the inner ring is larger than the sample No. 25 corresponding to the comparative example.
[Third Embodiment]
An example of a rolling bearing having one end surface in the axial direction of the annular body as a raceway surface is a thrust roller bearing shown in FIG. This bearing includes an inner ring 11 having a cylindrical portion 11a into which a shaft is inserted, a disk-shaped outer ring 12 having a circular hole 12a into which the cylindrical portion 11a is loosely fitted, a cylindrical roller 13, and a holding member. And a container 14. An inner surface (one axial end surface of the annular body) 11b of the disc portion of the inner ring 11 corresponds to the inner ring raceway surface, and an inner surface (one axial end surface of the annular body) 12b of the disc-shaped outer ring 12 corresponds to the outer ring raceway surface. To do.

このような円板状の軌道輪の割れやすさを調べるために、内径40mm、外径60mm、厚さが2mmの円環体と、内径40mm、外径60mm、厚さが3mmの円環体を用意した。先ず、表1の鋼種Cで各寸法の円環体を作製した後、第1実施形態の内輪に対して施した熱処理と同じ熱処理と仕上げ加工を行って、No. 26〜33の円環体を得た。なお、炉内のアンモニア(NH3 )ガス濃度は、表5に示すようにサンプル毎に変えた。No. 26〜31は厚さが3mmの円環体であり、No. 32と33は厚さが2mmの円環体である。
得られた各サンプルについて、表面から深さ10μmの範囲の炭素含有率〔C〕と窒素含有率〔N〕をEPMAを用いた定量分析で測定した。また、表面から深さ10μmの範囲の窒化物と炭窒化物の合計存在率を第1実施形態と同じ方法で測定した。
In order to investigate the fragility of such a disc-shaped race, an annular body having an inner diameter of 40 mm, an outer diameter of 60 mm, and a thickness of 2 mm, and an annular body having an inner diameter of 40 mm, an outer diameter of 60 mm, and a thickness of 3 mm Prepared. First, after producing an annular body of each size with the steel type C in Table 1, the same heat treatment and finishing as the heat treatment applied to the inner ring of the first embodiment were performed, and the torus Nos. 26 to 33 were performed. Got. The ammonia (NH 3 ) gas concentration in the furnace was changed for each sample as shown in Table 5. Nos. 26 to 31 are toroids having a thickness of 3 mm, and Nos. 32 and 33 are torics having a thickness of 2 mm.
About each obtained sample, the carbon content [C] and nitrogen content [N] of the range of 10 micrometers deep from the surface were measured by the quantitative analysis using EPMA. Further, the total abundance of nitrides and carbonitrides in the range of 10 μm in depth from the surface was measured by the same method as in the first embodiment.

また、表面から深さ0.005T(厚さ3mmの環状体で15μm、厚さ2mmの環状体で10μm)までの範囲(表では、表面からの深さをXで示し、t=0.001Tとして、この範囲をX≦5tと表記):範囲(1) と、表面からの深さが0.005Tより深く0.010T(厚さ3mmの環状体で30μm、厚さ2mmの環状体で20μm)までの範囲(この範囲を表では5t<X≦10tと表記):範囲(2) と、表面からの深さが0.010Tより深く0.015T(厚さ3mmの環状体で45μm、厚さ2mmの環状体で30μm)までの範囲(この範囲を表では10t<X≦15tと表記):範囲(3) での、1μm2 以上の炭化物、窒化物、および炭窒化物の合計存在率は、第1実施形態の範囲(1) 〜(3) についての方法と同様の方法で測定した。 Further, the depth from the surface to a range of 0.005T (15 μm for a 3 mm thick annular body and 10 μm for a 2 mm thick annular body) (in the table, the depth from the surface is indicated by X, t = 0.001T This range is expressed as X ≦ 5t): Range (1) and the depth from the surface is deeper than 0.005T and 0.010T (3 μm thick annular body is 30 μm, 2 mm thick annular body is 20 μm) ) (This range is expressed as 5t <X ≦ 10t in the table): the range (2), the depth from the surface is deeper than 0.010T and 0.015T (45 μm, 3 mm thick annular body, Up to 30 μm for a 2 mm ring (this range is expressed as 10t <X ≦ 15t in the table): the total abundance of carbides, nitrides, and carbonitrides of 1 μm 2 or more in range (3) Is measured by a method similar to the method for ranges (1) to (3) of the first embodiment. It was.

これらの結果を下記の表5に示す。
また、これらの円環体について、図5に示す方法で静的割れ試験を行った。図5(a)はこの試験を説明する正面図であり、図5(b)は平面図である。
この試験は、図5に示すように、水平な台の上に、所定の間隔を開けて二本の丸棒材6を平行に配置し、その上に円環体5を載せて、この環状体5の上に、下の二本の丸棒材6と同じものを、これらと平行で円環体5の直径に沿うように載せ、上側の丸棒材6に鉛直方向から荷重を加え、円環体5に割れが生じる最大荷重を測定した。そして、各サンプルの最大荷重についてNo. 26〜30はNo. 31の最大荷重を「1」とした相対値を、No. 32はNo. 33の最大荷重を「1」とした相対値を算出した。その結果も下記の表5に示す。
These results are shown in Table 5 below.
Moreover, the static crack test was done about these toric bodies by the method shown in FIG. FIG. 5A is a front view for explaining this test, and FIG. 5B is a plan view.
In this test, as shown in FIG. 5, two round bars 6 are arranged in parallel at a predetermined interval on a horizontal base, and an annular body 5 is placed thereon, and this annular shape is placed. The same thing as the two lower round bars 6 is placed on the body 5 so as to be parallel to these along the diameter of the torus 5, and a load is applied to the upper round bar 6 from the vertical direction. The maximum load at which cracks occurred in the torus 5 was measured. And No. 26-30 calculated the relative value which made the maximum load of No. 31 "1", and No. 32 calculated the relative value which made the maximum load of No. 33 "1" about the maximum load of each sample. did. The results are also shown in Table 5 below.

Figure 0005298672
Figure 0005298672

この結果から、厚さ3mmの環状体では、本発明の実施例に相当するNo. 26〜29のサンプルが、比較例に相当するNo. 30、31のサンプルと比較して、最大荷重が大きく、環状体が割れ難いことが分かる。また、厚さ2mmの環状体では、本発明の実施例に相当するNo.32のサンプルは、比較例に相当するNo. 33のサンプルと比較して、最大荷重が大きく、環状体が割れ難いことが分かる。
[浸炭窒化時の炉内アンモニア濃度について]
第1〜第3実施形態の各サンプルの結果を、浸炭窒化時の炉内アンモニア濃度を横軸、表面から10μmまでの深さの窒化物および炭窒化物の合計存在率を縦軸としたグラフにまとめた。このグラフを図6に示す。
From this result, in the annular body having a thickness of 3 mm, the No. 26 to 29 samples corresponding to the examples of the present invention have a larger maximum load than the No. 30 and 31 samples corresponding to the comparative examples. It can be seen that the annular body is difficult to break. In the case of an annular body having a thickness of 2 mm, No. corresponding to the example of the present invention. It can be seen that the sample No. 32 has a larger maximum load than the sample No. 33 corresponding to the comparative example, and the annular body is difficult to break.
[Ammonia concentration in furnace during carbonitriding]
A graph of the results of the samples of the first to third embodiments with the horizontal axis representing the in-furnace ammonia concentration during carbonitriding and the vertical axis representing the total abundance of nitrides and carbonitrides having a depth of 10 μm from the surface. Summarized in This graph is shown in FIG.

このグラフでは、炉内アンモニア(NH3 )濃度が0.20体積%以上であると、表面から10μmまでの深さの窒化物および炭窒化物の合計存在率が0.5面積%以上になっている。よって、表面から10μmまでの深さの窒化物および炭窒化物の合計存在率を0.5面積%以上にするためには、炉内アンモニア(NH3 )濃度を0.20体積%以上とすることが好ましい。
また、炉内アンモニア(NH3 )濃度が1.00体積%を超えると、表面から10μmまでの深さの窒化物および炭窒化物の合計存在率の上昇度合いが飽和しているため、コストの観点から炉内アンモニア(NH3 )濃度を1.50体積%以下にすることが好ましく、より好ましくは1.00体積%以下にする。
In this graph, when the furnace ammonia (NH 3 ) concentration is 0.20% by volume or more, the total abundance of nitrides and carbonitrides having a depth of 10 μm from the surface becomes 0.5 area% or more. ing. Therefore, in order to make the total abundance of nitride and carbonitride having a depth of 10 μm from the surface 0.5 area% or more, the furnace ammonia (NH 3 ) concentration is 0.20 volume% or more. It is preferable.
In addition, when the ammonia (NH 3 ) concentration in the furnace exceeds 1.00% by volume, the increase in the total abundance of nitrides and carbonitrides at a depth of 10 μm from the surface is saturated, so the cost From the viewpoint, the in-furnace ammonia (NH 3 ) concentration is preferably 1.50% by volume or less, and more preferably 1.00% by volume or less.

第1実施形態で軌道輪の試験のために用いた転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing used for the test of a bearing ring in 1st Embodiment. 第1実施形態で行った内輪の割れ試験の方法を説明する図である。It is a figure explaining the method of the crack test of the inner ring performed in 1st Embodiment. 第2実施形態で行った円筒ころの割れ試験の方法を説明する図である。It is a figure explaining the method of the crack test of the cylindrical roller performed in 2nd Embodiment. 第3実施形態で軌道輪の試験のために用いたスラストころ軸受を示す断面図である。It is sectional drawing which shows the thrust roller bearing used for the test of a bearing ring in 3rd Embodiment. 第3実施形態で行った円環体の割れ試験の方法を説明する正面図(a)と平面図(b)である。It is the front view (a) and top view (b) explaining the method of the crack test of the torus performed in 3rd Embodiment. 第1〜第3実施形態の各サンプルの結果を示す、浸炭窒化時の炉内アンモニア濃度を横軸、表面から10μmまでの深さの窒化物および炭窒化物の合計存在率を縦軸としたグラフである。The results of the samples of the first to third embodiments are shown. The horizontal axis represents the in-furnace ammonia concentration during carbonitriding, and the vertical axis represents the total abundance of nitrides and carbonitrides having a depth of 10 μm from the surface. It is a graph.

符号の説明Explanation of symbols

1 内輪
2 外輪
3 玉(転動体)
11 内輪
11a 筒状部
11b 内輪軌道面
12 外輪
12a 円穴
12b 外輪軌道面
13 円筒ころ(転動体)
14 保持器
5 円環体
6 丸棒材
1 Inner ring 2 Outer ring 3 Ball (rolling element)
DESCRIPTION OF SYMBOLS 11 Inner ring 11a Cylindrical part 11b Inner ring raceway surface 12 Outer ring 12a Circular hole 12b Outer ring raceway surface 13 Cylindrical roller (rolling element)
14 Cage 5 Torus 6 Round Bar

Claims (3)

環状体の内周面または外周面を軌道面とする転がり軸受の軌道輪であって、
合金鋼からなり、
表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率が0.9質量%以上1.6質量%以下であり、窒化物と炭窒化物の単位面積当りの存在率が合計で0.5面積%以上1.1面積%以下であり、
表面から0.006T(Tは径方向で最も厚い部分の厚さ)の深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率が0.7面積%以下である転がり軸受の軌道輪。
A bearing ring of a rolling bearing having an inner circumferential surface or an outer circumferential surface of an annular body as a raceway surface,
Made of alloy steel,
In the range from the surface to a depth of 10 μm, the total content of carbon and nitrogen is 0.9 mass% or more and 1.6 mass% or less, and the total abundance of nitride and carbonitride per unit area is 0. .5 area% or more and 1.1 area% or less ,
The total abundance per unit area of carbides, nitrides, and carbonitrides having a cross-sectional area of 1 μm 2 or more in the range from the surface to a depth of 0.006 T (T is the thickness of the thickest portion in the radial direction) Rolling bearing raceway that is 0.7 area% or less.
環状体の軸方向一端面を軌道面とする転がり軸受の軌道輪であって、
合金鋼からなり、
表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率が0.9質量%以上1.6質量%以下であり、窒化物と炭窒化物の単位面積当りの存在率が合計で0.5面積%以上1.1面積%以下であり、
表面から0.01T(Tは軸方向で最も厚い部分の厚さ)の深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率が0.4面積%以下である転がり軸受の軌道輪。
A bearing ring of a rolling bearing having an axial end surface of an annular body as a raceway surface,
Made of alloy steel,
In the range from the surface to a depth of 10 μm, the total content of carbon and nitrogen is 0.9 mass% or more and 1.6 mass% or less, and the total abundance of nitride and carbonitride per unit area is 0. .5 area% or more and 1.1 area% or less ,
The total abundance per unit area of carbides, nitrides, and carbonitrides having a cross-sectional area of 1 μm 2 or more in a range from the surface to a depth of 0.01 T (T is the thickness of the thickest portion in the axial direction) Rolling bearing raceway that is 0.4 area% or less.
合金鋼からなり、
表面から10μmの深さまでの範囲で、炭素と窒素の合計含有率が0.9質量%以上1.6質量%以下であり、窒化物と炭窒化物の単位面積当りの存在率が合計で0.5面積%以上1.1面積%以下であり、
表面から10μmの深さまでの範囲で、断面積が1μm2 以上の炭化物、窒化物、および炭窒化物の単位面積当りの合計存在率が0.8面積%以下である転がり軸受の転動体。
Made of alloy steel,
In the range from the surface to a depth of 10 μm, the total content of carbon and nitrogen is 0.9 mass% or more and 1.6 mass% or less, and the total abundance of nitride and carbonitride per unit area is 0. .5 area% or more and 1.1 area% or less ,
A rolling element of a rolling bearing in which a total abundance per unit area of carbide, nitride, and carbonitride having a cross-sectional area of 1 μm 2 or more is 0.8 area% or less in a range from the surface to a depth of 10 μm.
JP2008176251A 2008-07-04 2008-07-04 Rolling bearing races and rolling elements Active JP5298672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176251A JP5298672B2 (en) 2008-07-04 2008-07-04 Rolling bearing races and rolling elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176251A JP5298672B2 (en) 2008-07-04 2008-07-04 Rolling bearing races and rolling elements

Publications (2)

Publication Number Publication Date
JP2010013712A JP2010013712A (en) 2010-01-21
JP5298672B2 true JP5298672B2 (en) 2013-09-25

Family

ID=41700074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176251A Active JP5298672B2 (en) 2008-07-04 2008-07-04 Rolling bearing races and rolling elements

Country Status (1)

Country Link
JP (1) JP5298672B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590645B2 (en) * 1991-09-19 1997-03-12 日本精工株式会社 Rolling bearing
JP2007056940A (en) * 2005-08-23 2007-03-08 Nsk Ltd Thrust needle roller bearing

Also Published As

Publication number Publication date
JP2010013712A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
JP4810157B2 (en) Rolling bearing
JP2009192071A (en) Roller bearing
JP4998054B2 (en) Rolling bearing
JP5728844B2 (en) Rolling bearing
WO2013084864A1 (en) Machine part, rolling bearing, conical roller bearing and method for manufacturing machine part
JP2011220357A (en) Planetary gear device
JP5372316B2 (en) Rolling member
JP2008151236A (en) Rolling bearing
JP2007100126A (en) Rolling member and ball bearing
JP4857746B2 (en) Rolling support device
JP6336238B2 (en) Tapered roller bearings
JP2008150672A (en) Rolling shaft
JP2011190921A (en) Thrust roller bearing
JP2008232212A (en) Rolling device
JP2010031307A (en) Roller bearing
JP2009204076A (en) Rolling bearing
JP2007314811A (en) Rolling bearing
JP5298672B2 (en) Rolling bearing races and rolling elements
JP2006328514A (en) Rolling supporting device
JP2005337361A (en) Roller bearing
JP5211453B2 (en) Rolling bearing
JP5853409B2 (en) Manufacturing method of rolling bearing
JP5194538B2 (en) Rolling bearing
JP2009191942A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350