JP5296638B2 - LED mounting structure, manufacturing method thereof, and LED mounting substrate - Google Patents

LED mounting structure, manufacturing method thereof, and LED mounting substrate Download PDF

Info

Publication number
JP5296638B2
JP5296638B2 JP2009197990A JP2009197990A JP5296638B2 JP 5296638 B2 JP5296638 B2 JP 5296638B2 JP 2009197990 A JP2009197990 A JP 2009197990A JP 2009197990 A JP2009197990 A JP 2009197990A JP 5296638 B2 JP5296638 B2 JP 5296638B2
Authority
JP
Japan
Prior art keywords
led mounting
led
layer
metal layer
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009197990A
Other languages
Japanese (ja)
Other versions
JP2011049437A (en
Inventor
庸介 石原
秀樹 広津留
秀雄 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009197990A priority Critical patent/JP5296638B2/en
Publication of JP2011049437A publication Critical patent/JP2011049437A/en
Application granted granted Critical
Publication of JP5296638B2 publication Critical patent/JP5296638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide: an LED mounting structure with a small linear expansion coefficient difference to LED and an excellent thermal conductivity; a method of manufacturing the LED mounting structure; and a substrate for mounting LED for manufacturing the LED mounting structure. <P>SOLUTION: The LED mounting substrate is made by impregnating aluminum alloy into a porous body made of one or more types of particles chosen from the group consisting of silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, with the fogging cast method. The aluminum alloy on the surface is etched to the surface roughness (Ra) of 0.5-10 &mu;m after processing to 0.01-0.5 &mu;m with a plate thickness of 0.05-0.5 mm. One or more types of metal layers chosen from the group consisting of Ni, Co, Pd, Cu, Ag, Au, Pt, Sn are formed. The area of 50-90% of the entire surface is made by exposing ceramic particles. The LED mounting structure using the substrate and the method of manufacturing the structure are also provided. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、LED搭載構造体、その製造方法、及びLED搭載用基板に関する。   The present invention relates to an LED mounting structure, a manufacturing method thereof, and an LED mounting substrate.

LED(発光ダイオード)は、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs、GaN等のIII−V族半導体結晶を用いて製造される。たとえば、サファイア基板等の単結晶成長基板上に、GaN等のバッファー層を形成し、その上にGaNをエピタキシャル成長させる方法が提案されている(特許文献1)。しかし、この方法にあっては、サファイア基板とGaNとの線膨張係数差のために、エピタキシャル成長後のサファイア基板に反りが発生し、基板が割れることがあった。さらには、サファイア基板を構成する単結晶サファイアの熱伝導率が40W/mK程度であるので、GaN等のIII−V族半導体素子で発生する熱を十分に放熱することができなかった。このため、大電流を流す高出力LEDでは素子の温度が上昇して発光効率と素子寿命の低下を招いた。   An LED (light emitting diode) is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN. For example, a method has been proposed in which a buffer layer such as GaN is formed on a single crystal growth substrate such as a sapphire substrate, and GaN is epitaxially grown thereon (Patent Document 1). However, in this method, due to the difference in coefficient of linear expansion between the sapphire substrate and GaN, the sapphire substrate after epitaxial growth may be warped and the substrate may be cracked. Furthermore, since the single crystal sapphire constituting the sapphire substrate has a thermal conductivity of about 40 W / mK, the heat generated in the III-V group semiconductor element such as GaN cannot be sufficiently dissipated. For this reason, in the high-power LED in which a large current flows, the temperature of the element rises, resulting in a decrease in luminous efficiency and element life.

放熱性を改善するため、単結晶成長基板上にIII−V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性の基板を接合し、その後、単結晶成長基板を除去する方法が提案されているが(特許文献2)、III−V族半導体結晶との線膨張係数差が大きく、高出力LED用には十分満足できるものではなかった。   In order to improve heat dissipation, there is a method in which a III-V group semiconductor crystal is epitaxially grown on a single crystal growth substrate, then a high thermal conductivity substrate is joined through a metal layer, and then the single crystal growth substrate is removed. Although it has been proposed (Patent Document 2), the difference in linear expansion coefficient from the III-V group semiconductor crystal is large, which is not satisfactory for high-power LEDs.

特公平5−73252号公報Japanese Patent Publication No. 5-73252 特開2006−128710号公報JP 2006-128710 A

本発明の目的は、III−V族半導体結晶から構成されているLED(以下、単にLEDともいう。)との線膨張率差が小さくしかも熱伝導性に優れた、LED搭載構造体と、LED搭載構造体の製造方法と、LED搭載構造体を製造するためのLED搭載用基板を提供することである。   An object of the present invention is to provide an LED mounting structure having a small difference in linear expansion coefficient from an LED made of a III-V group semiconductor crystal (hereinafter also simply referred to as LED) and excellent in thermal conductivity, and an LED. It is providing the manufacturing method of a mounting structure, and the board | substrate for LED mounting for manufacturing a LED mounting structure.

本発明は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子からなり、気孔率が10〜50体積%、3点曲げ強度が50MPa以上である多孔体に、溶湯鍛造法にて含浸圧力30MPa以上でアルミニウム合金を含浸し、板厚0.05〜0.5mmで、表面粗さ(Ra)0.01〜0.5μmに、切断及び/又は研削加工した後、表面のアルミニウム合金を0.5〜10μmエッチング除去し、Ni,Co,Pd,Cu,Ag,Au,Pt,Snの中から選ばれる1種類以上の金属層を厚みが0.5〜10μmとなるように形成し、且つ、全表面の50%〜90%の面積が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子が露出してなることを特徴とするLED搭載用基板である。   The present invention provides a porous body composed of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, having a porosity of 10 to 50% by volume and a three-point bending strength of 50 MPa or more. The aluminum alloy was impregnated with a molten forging method at an impregnation pressure of 30 MPa or more, and was cut and / or ground to a plate thickness of 0.05 to 0.5 mm and a surface roughness (Ra) of 0.01 to 0.5 μm. Thereafter, the aluminum alloy on the surface is removed by etching to 0.5 to 10 μm, and one or more metal layers selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn are formed to have a thickness of 0.5 to 10 μm. And at least one type of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite is exposed in an area of 50% to 90% of the entire surface. It is the board | substrate for LED mounting characterized by these.

本発明のLED搭載用基板にあっては、(1)3点曲げ強度が50MPa以上であること、(2)温度25℃の熱伝導率が150〜500W/mKであること、(3)温度25℃〜150℃の線熱膨張係数が4〜9×10−6/Kであること、(4)体積固有抵抗が10−9〜10−5Ω・mであること、(5)温度25℃の5規定のHCl水溶液又は75℃の10規定のNaOH水溶液に1分間浸漬したときに、いずれの場合も、すくなくとも一面の質量減少が0.2mg/cm以下であること、から選ばれた少なくとも1つの特性を備えていることが好ましい。 In the LED mounting substrate of the present invention, (1) the three-point bending strength is 50 MPa or more, (2) the thermal conductivity at a temperature of 25 ° C. is 150 to 500 W / mK, and (3) the temperature. The linear thermal expansion coefficient at 25 ° C. to 150 ° C. is 4 to 9 × 10 −6 / K, (4) the volume resistivity is 10 −9 to 10 −5 Ω · m, and (5) the temperature is 25 When immersed in a 5N HCl aqueous solution at 5 ° C. or a 10N NaOH aqueous solution at 75 ° C. for 1 minute, in any case, the weight loss of at least one surface was selected to be 0.2 mg / cm 2 or less. It preferably has at least one characteristic.

また、本発明は、上記本発明のLED搭載用基板9の少なくとも一面に、金属層8又は金属層8と金属層7、反射層6、LED5及び透明導電層4を順次有しており、この透明導電層に電極(図示せず)が取り付けられてなることを特徴とするLED搭載構造体である。   Moreover, this invention has the metal layer 8 or the metal layer 8, the metal layer 7, the reflection layer 6, LED5, and the transparent conductive layer 4 in order on at least one surface of the board | substrate 9 for LED mounting of the said invention, An LED mounting structure comprising an electrode (not shown) attached to a transparent conductive layer.

さらに、本発明は以下の工程を順次経ることを特徴とする上記本発明のLED搭載構造体の製造方法である。
(ア)単結晶成長基板1の表面にn型III−V族半導体のバッファー層2又は無機化合物の表面コーティグ層3を形成させた後、LED5をエピタキシャル成長させる工程
(イ)LED5のp型III−V族半導体層53の表面に金属層の反射層6を、更に必要に応じてこの反射層6の表面に金属層7を形成する一方、LED搭載用基板9の表面に金属層8を形成する工程
(ウ)上記反射層6又は上記金属層7と、上記金属層8とを接面させ、加熱して接合体を製造する工程
(エ)上記単結晶成長基板1と上記バッファー層2又は上記表面コーティグ層3を除去する工程
(オ)露出したLED5のn型III−V族半導体層51表面を加工してから、透明導電層4とこの透明導電層4に電極(図示せず)を形成させた後、所望形状に切断する工程
Furthermore, the present invention is the above-described method for manufacturing an LED mounting structure according to the present invention, wherein the following steps are sequentially performed.
(A) Step of epitaxially growing LED 5 after forming buffer layer 2 of n-type III-V semiconductor or surface coating layer 3 of inorganic compound on the surface of single crystal growth substrate 1 (a) p-type III- of LED 5 A reflective layer 6 of a metal layer is formed on the surface of the group V semiconductor layer 53, and a metal layer 7 is formed on the surface of the reflective layer 6 as necessary, while a metal layer 8 is formed on the surface of the LED mounting substrate 9. Step (c) Step of manufacturing the joined body by bringing the reflective layer 6 or the metal layer 7 and the metal layer 8 into contact with each other and heating (d) The single crystal growth substrate 1 and the buffer layer 2 or the above Step of removing surface coating layer 3 (e) After processing the exposed surface of n-type III-V semiconductor layer 51 of LED 5, an electrode (not shown) is formed on transparent conductive layer 4 and transparent conductive layer 4. And then cut into the desired shape Process

本発明のLED搭載構造体の製造方法にあっては、(6)単結晶成長基板の材質が、
単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siのいずれかであること、(7)表面コーティグ層の材質が、AlN、SiC、GaN及びGaAsから選ばれた少なくとも一種の無機化合物であること、(8)バッファー層2及びLED5を構成するIII−V族半導体が、GaN、GaAs、GaPのいずれかであること、(9)反射層6、金属層7及び金属層8の材質が、インジウム、アルミニウム、金、銀及びこれらの合金から選ばれた少なくとも1種の金属であること、(10)透明導電層4の材質が、酸化インジウム錫、酸化カドミウム錫、酸化インジウム亜鉛、酸化アルミニウム亜鉛、酸化錫亜鉛、酸化錫アンチモニーから選ばれた少なくとも1種の金属であること、(11)切断を、レーザー照射、エッチング及び研削から選ばれた少なくとも1つの方法で行うこと、から選ばれた少なくとも1つの実施態様を有していることが好ましい。
In the manufacturing method of the LED mounting structure of the present invention, (6) the material of the single crystal growth substrate is:
(7) The material of the surface coating layer is at least one inorganic compound selected from AlN, SiC, GaN and GaAs, and any one of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. (8) The group III-V semiconductor constituting the buffer layer 2 and the LED 5 is one of GaN, GaAs, and GaP. (9) The material of the reflective layer 6, the metal layer 7, and the metal layer 8 is (10) the material of the transparent conductive layer 4 is indium tin oxide, cadmium tin oxide, indium zinc oxide, aluminum oxide, and at least one metal selected from indium, aluminum, gold, silver and alloys thereof. It is at least one metal selected from zinc, zinc oxide, and tin oxide antimony. (11) Cutting, laser irradiation, and etching And be carried out in at least one method selected from grinding, it has at least one embodiment selected from the preferred.

本発明によれば、LEDとの線膨張率差の小さい、高熱伝導性のLED搭載用基板が提供される。本発明のLED搭載用基板は、LED搭載構造体の製造時に使用される酸とアルカリ水溶液に対する耐薬品性に優れ、しかも導電性も大であるので電極の形成が容易となる。本発明のLED搭載構造体は、放熱性、信頼性に優れた高出力のものであり、単位面積当たりの発光量の増加が可能となる。本発明のLED搭載構造体の製造方法によれば、本発明のLED搭載構造体を容易に製造することができる。また、本発明のLED搭載構造体は、全表面の50%〜90%の面積が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子が露出したLED搭載用基板9を用いた構造であり、LED搭載用基板9と、その表面に形成され
た金属層8の剥離による収率低下を抑えることができる。
ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for LED mounting with a small thermal expansion coefficient with LED and a small thermal conductivity is provided. The LED mounting substrate of the present invention is excellent in chemical resistance against acid and alkaline aqueous solutions used in the manufacture of the LED mounting structure, and also has high conductivity, so that the electrode can be easily formed. The LED mounting structure of the present invention has a high output with excellent heat dissipation and reliability, and the amount of light emission per unit area can be increased. According to the manufacturing method of the LED mounting structure of the present invention, the LED mounting structure of the present invention can be easily manufactured. Further, the LED mounting structure of the present invention has an LED mounting in which one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite are exposed in an area of 50% to 90% of the entire surface. It is a structure using the substrate 9 for an LED, and the yield fall by peeling of the board | substrate 9 for LED mounting and the metal layer 8 formed in the surface can be suppressed.

実施例1で製造された接合体の概略断面図Schematic sectional view of the joined body manufactured in Example 1 実施例2〜10で製造された接合体の概略断面図Schematic sectional view of the joined body manufactured in Examples 2 to 10 実施例1〜10で製造されたLED搭載構造体の概略断面図Schematic sectional view of the LED mounting structure manufactured in Examples 1-10 比較例1で製造された従来構造のLED搭載構造体の概略断面図Schematic cross-sectional view of a conventional LED mounting structure manufactured in Comparative Example 1

本発明のLED搭載構造体の製造方法に用いる単結晶成長基板1は、後工程でエピタキシャル成長させるLED5との格子定数の差が小さく、かつ欠陥の少ないものが使用される。成長層の結晶性と均一性を確保し、エピタキシャル成長時の雰囲気に対する耐久性を高める点から、単結晶材料が好ましく、なかでも単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siのいずれかであることが特に好ましい。また、単結晶成長基板の格子定数をLEDのそれに可及的に近づけるため、AlN、SiC、GaN及びGaAsから選ばれた少なくとも1種の無機化合物による表面コーティング層3を有していることが好ましい。また、バッファー層2及びLED5を構成するIII−V族半導体としては、LEDの変換効率の点から、GaN、GaAs、GaPのいずれかであることが好ましい。これらは、最適発光波長に応じて選択される。なお、通常、LED5は、n型III−V族半導体層51、発光層52及びp型III−V族半導体層53で構成されているが、本発明では何もこの構造には限定されない。   As the single crystal growth substrate 1 used in the method for manufacturing an LED mounting structure of the present invention, a substrate having a small difference in lattice constant from the LED 5 to be epitaxially grown in a later step and having few defects is used. Single crystal materials are preferred from the standpoint of ensuring the crystallinity and uniformity of the growth layer and enhancing the durability against the atmosphere during epitaxial growth. Among them, any of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si is preferable. It is particularly preferable. Further, in order to make the lattice constant of the single crystal growth substrate as close as possible to that of the LED, it is preferable to have a surface coating layer 3 made of at least one inorganic compound selected from AlN, SiC, GaN and GaAs. . The group III-V semiconductor constituting the buffer layer 2 and the LED 5 is preferably GaN, GaAs, or GaP from the viewpoint of LED conversion efficiency. These are selected according to the optimum emission wavelength. In general, the LED 5 includes an n-type III-V group semiconductor layer 51, a light emitting layer 52, and a p-type III-V group semiconductor layer 53. However, the present invention is not limited to this structure.

本発明のLED搭載構造体の製造方法においては、まず、単結晶成長基板の表面にLEDをエピタキシャル成長させる(ア工程)。具体的には、単結晶成長基板1の表面にn型III−V族半導体のバッファー層2又は無機化合物の表面コーティグ層3を形成してからLED5をエピタキシャル成長させる。LEDは、例えばn型III−V族半導体層51と発光層52とp型III−V族半導体層53とを、例えば有機金属気相成長法(MOCVD法)、ハライド気相エピタキシャル法(HVPE法)等によってエピタキシャル成長させることが好ましい。MOCVD法によれば、結晶性の良いIII−V族半導体結晶を成長させることができ、HVPE法によれば、結晶成長速度が速く、効率よくIII−V族半導体結晶を成長させることができる。エピタキシャル成長させたLEDは、発光特性を更に向上させるために、その表面をエッチングや研磨等の処理を施すこともできる。   In the method for manufacturing an LED mounting structure of the present invention, first, an LED is epitaxially grown on the surface of a single crystal growth substrate (A process). Specifically, after the buffer layer 2 of n-type III-V group semiconductor or the surface coating layer 3 of an inorganic compound is formed on the surface of the single crystal growth substrate 1, the LED 5 is epitaxially grown. The LED includes, for example, an n-type III-V group semiconductor layer 51, a light emitting layer 52, and a p-type group III-V semiconductor layer 53, for example, metal organic vapor phase epitaxy (MOCVD method), halide vapor phase epitaxy (HVPE method). ) Or the like. According to the MOCVD method, a III-V group semiconductor crystal with good crystallinity can be grown, and according to the HVPE method, a crystal growth rate is fast and the group III-V semiconductor crystal can be efficiently grown. The epitaxially grown LED can be subjected to a treatment such as etching or polishing in order to further improve the light emission characteristics.

ア工程で用いられる単結晶成長基板1としては、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siのいずれかであることが好ましく、その厚みは0.1〜1.0mmであることが好ましい。また、バッファー層2の厚みは0.1〜0.8μm、表面コーティグ層3の厚みは0.1〜0.8μm、LED5の厚みは0.6〜15μmであることが好ましい。なお、n型III−V族半導体層51、発光層52、p型III−V族半導体層53の厚みは、一般的には、それぞれ0.3〜10μm、0.1〜0.5μm、0.3〜10μmである。   The single crystal growth substrate 1 used in the step A is preferably any of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si, and has a thickness of 0.1 to 1.0 mm. It is preferable. Moreover, it is preferable that the thickness of the buffer layer 2 is 0.1 to 0.8 μm, the thickness of the surface coating layer 3 is 0.1 to 0.8 μm, and the thickness of the LED 5 is 0.6 to 15 μm. The thicknesses of the n-type group III-V semiconductor layer 51, the light emitting layer 52, and the p-type group III-V semiconductor layer 53 are generally 0.3 to 10 μm, 0.1 to 0.5 μm, and 0, respectively. .3 to 10 μm.

ついで、LEDをエピタキシャル成長させた単結晶成長基板と、本発明のLED搭載用基板とを接合する。本発明のLED搭載用基板については後述する。すなわち、LED5のp型III−V族半導体層53の表面に金属層の反射層6を、必要に応じてこの反射層6の表面に更に金属層7を形成する一方、LED搭載用基板9の表面には金属層8を形成してから(イ工程)、上記反射層6又は上記金属層7と、上記金属層8とを接面させ、加熱して接合体を製造する(ウ工程)。   Next, the single crystal growth substrate on which the LEDs are epitaxially grown and the LED mounting substrate of the present invention are joined. The LED mounting substrate of the present invention will be described later. That is, a reflective layer 6 of a metal layer is formed on the surface of the p-type III-V group semiconductor layer 53 of the LED 5 and a metal layer 7 is further formed on the surface of the reflective layer 6 as necessary. After the metal layer 8 is formed on the surface (a step), the reflective layer 6 or the metal layer 7 and the metal layer 8 are brought into contact with each other and heated to produce a joined body (c step).

反射層6と金属層8が同種金属で構成されているときは、金属層7は必ずしも必要でないが、異種金属で構成されているときは、反射層6の表面には金属層8と同種の金属層7を有させることが好ましい。反射層6、金属層7及び金属層8の形成には、蒸着法、スパッタリング法等が採用される。これらの層の金属種は、インジウム、アルミニウム、金、銀及びこれらの合金であることが好ましい。とくに、反射層6と金属層8は同種の金属種で構成されていることが好ましい。反射層6、金属層7及び金属層8の厚みは、極端に厚いと密着性が低下する恐れがあるので、それぞれ0.5〜10μmであることが好ましく、それぞれ0.5〜2μmであることが特に好ましい。これらの厚みにあっても、反射層6の厚みは金属層8の厚みと同じであるか、又は10%以内で厚いか薄い方が好ましい。   When the reflective layer 6 and the metal layer 8 are made of the same kind of metal, the metal layer 7 is not always necessary. However, when the reflective layer 6 and the metal layer 8 are made of a different kind of metal, the surface of the reflective layer 6 is of the same kind as the metal layer 8. It is preferable to have the metal layer 7. For the formation of the reflective layer 6, the metal layer 7, and the metal layer 8, a vapor deposition method, a sputtering method, or the like is employed. The metal species of these layers are preferably indium, aluminum, gold, silver and alloys thereof. In particular, the reflective layer 6 and the metal layer 8 are preferably composed of the same kind of metal. Since the thickness of the reflective layer 6, the metal layer 7 and the metal layer 8 is extremely thick, there is a possibility that the adhesion may be lowered. Therefore, the thickness is preferably 0.5 to 10 μm, and each 0.5 to 2 μm. Is particularly preferred. Even in these thicknesses, the thickness of the reflective layer 6 is preferably the same as the thickness of the metal layer 8, or is preferably thicker or thinner within 10%.

加熱は20MPa以下で加圧しながら行うことが好ましい。加熱温度は反射層6、金属層7、金属層8の種類によって250℃〜550℃の範囲から選択される。   Heating is preferably performed while applying pressure at 20 MPa or less. The heating temperature is selected from the range of 250 ° C. to 550 ° C. depending on the types of the reflective layer 6, the metal layer 7, and the metal layer 8.

ついで、上記接合体から単結晶成長基板1とバッファー層2又は表面コーティグ層3が除去される(エ工程)。単結晶成長基板の除去は単結晶成長基板側からレーザー照射、研磨、エッチング等によって行われる。バッファー層はエッチング等によって、表面コーティグ層は研削加工等によって除去される。この工程によって接合体は符号5〜9からなる中間体に変わる。   Subsequently, the single crystal growth substrate 1 and the buffer layer 2 or the surface coating layer 3 are removed from the joined body (process D). The removal of the single crystal growth substrate is performed by laser irradiation, polishing, etching, or the like from the single crystal growth substrate side. The buffer layer is removed by etching or the like, and the surface coating layer is removed by grinding or the like. By this step, the joined body is changed to an intermediate body consisting of reference numerals 5-9.

その後、上記中間体の、露出したLED5のn型のIII−V族半導体層51を表面加工してから、透明導電層4とこの透明導電層4に電極(図示せず)を形成した後、所望形状に切断すれば本発明のLED搭載構造体となる(オ工程)。   Then, after surface-treating the n-type III-V semiconductor layer 51 of the exposed LED 5 of the intermediate body, after forming an electrode (not shown) on the transparent conductive layer 4 and the transparent conductive layer 4, If it cut | disconnects in a desired shape, it will become the LED mounting structure of this invention (e process).

表面加工は、ICPドライエッチング等によって行われることが好ましく、これによって透明導電層の形成に適した表面へと平坦化される。透明導電層は電流分散のために形成するものであり、電子ビーム蒸着法、スパッタ法等によって、0.05〜0.8μmの厚みに形成される。材質は、酸化インジウム錫、酸化カドミウム錫、酸化インジウム亜鉛、酸化アルミニウム亜鉛、酸化錫亜鉛、酸化錫アンチモニーから選ばれた少なくとも1種の金属であることが好ましい。   The surface processing is preferably performed by ICP dry etching or the like, whereby the surface is flattened to a surface suitable for forming the transparent conductive layer. The transparent conductive layer is formed for current dispersion, and is formed to a thickness of 0.05 to 0.8 μm by an electron beam evaporation method, a sputtering method, or the like. The material is preferably at least one metal selected from indium tin oxide, cadmium tin oxide, indium zinc oxide, aluminum zinc oxide, zinc zinc oxide, and tin antimony oxide.

電極の形成には蒸着法、スパッタリング法等が採用される。電極材料はAu、Ag、Al等から選択される。切断はレーザーカット、ダイシングから選ばれた少なくとも1つの方法によって行われる。   An evaporation method, a sputtering method, etc. are employ | adopted for formation of an electrode. The electrode material is selected from Au, Ag, Al and the like. Cutting is performed by at least one method selected from laser cutting and dicing.

つぎに、本発明のLED搭載用基板について説明する。   Next, the LED mounting substrate of the present invention will be described.

LED搭載用基板として欠くことのできない要件は、(a)LEDをエピタキシャル成長させた単結晶成長基板と、LED搭載用基板とを接合する際に、耐え得る強度を有すること、(b)接合面にボイドや異物等の介在物がなく接合面が平坦になること、(c)放熱性が良好であること、及び(d)適度な熱伝導率と線膨張係数を有すること、である。   Indispensable requirements for an LED mounting substrate are (a) having a strength that can be tolerated when bonding a single crystal growth substrate on which an LED is epitaxially grown and an LED mounting substrate, and (b) a bonding surface. That is, there are no inclusions such as voids and foreign matters, the joining surface is flat, (c) heat dissipation is good, and (d) it has appropriate thermal conductivity and linear expansion coefficient.

(a)は、LED搭載用基板の3点曲げ強度を50〜450MPaにすることによって、(b)は、表面粗さ(Ra)を0.01〜0.5μmとすることによって、(c)は、板厚を0.05〜0.5mmとすることによって、そして(d)は、気孔率が10〜50体積%の炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子からなる多孔体にアルミニウム合金を含浸させることによって、満たさせることができる。好ましい3点曲げ強度は200〜400MPaであり、好ましい表面粗さ(Ra)は0.01〜0.2μmである。好ましい板厚は0.08〜0.3mmである。好ましい熱伝導率は150〜500W/mK(温度25℃)である。好ましい線膨張係数は4〜9×10−6/K(温度25℃〜150℃)であり、更に好ましくは4.5〜8×10−6/K(温度25℃〜150℃)である。
(A) is that the three-point bending strength of the LED mounting substrate is 50 to 450 MPa, (b) is that the surface roughness (Ra) is 0.01 to 0.5 μm, (c) 1 is selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite having a porosity of 10 to 50% by volume by setting the plate thickness to 0.05 to 0.5 mm. It can be filled by impregnating a porous body composed of more than one kind of particles with an aluminum alloy. A preferable three-point bending strength is 200 to 400 MPa, and a preferable surface roughness (Ra) is 0.01 to 0.2 μm. A preferable plate thickness is 0.08 to 0.3 mm. A preferable thermal conductivity is 150 to 500 W / mK (temperature 25 ° C.). The linear expansion coefficient is preferably 4 to 9 × 10 −6 / K (temperature 25 ° C. to 150 ° C.), more preferably 4.5 to 8 × 10 −6 / K (temperature 25 ° C. to 150 ° C.).

3点曲げ強度は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の粒度とその含有量によって増減させることができ、表面粗さ(Ra)と板厚は、加工条件によって増減させることができる。熱伝導率と線膨張係数は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子からなる多孔体の気孔率とアルミニウム合金の含浸量によって増減させることができる。   The three-point bending strength can be increased or decreased depending on the particle size and content of silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, and the surface roughness (Ra) and the plate thickness can be increased or decreased depending on the processing conditions. . The thermal conductivity and the linear expansion coefficient can be increased or decreased depending on the porosity of the porous body made of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite and the impregnation amount of the aluminum alloy. .

本発明のLED搭載用基板において、3点曲げ強度が50MPa未満であると、LED搭載構造体を製造する各工程で生じる応力に耐えらなくなる恐れがある。450MPaをこえて高強度化する利点はあまりない。表面粗さ(Ra)が0.01μm未満であると、加工が困難となり、コスト向上に繋がり、0.5μmをこえると、LEDとLED搭載用基板との密着性が低下する恐れがある。板厚が0.05mm未満であると、LED搭載構造体を製造する各工程でのハンドリングが困難となり、0.5mmをこえると最終形状への加工代が増加する。   In the LED mounting substrate of the present invention, if the three-point bending strength is less than 50 MPa, there is a fear that the stress generated in each step of manufacturing the LED mounting structure cannot be endured. There is not much advantage in increasing the strength beyond 450 MPa. If the surface roughness (Ra) is less than 0.01 μm, processing becomes difficult, leading to an increase in cost, and if it exceeds 0.5 μm, the adhesion between the LED and the LED mounting substrate may be reduced. If the plate thickness is less than 0.05 mm, handling in each step of manufacturing the LED mounting structure becomes difficult, and if it exceeds 0.5 mm, the processing cost to the final shape increases.

LED搭載用基板の線膨張係数(温度25℃〜150℃)が4〜9×10−6/Kの範囲を外れると、LEDとの線膨張係数差により接合後に反りが発生する恐れがあり、またLED搭載構造体として使用する際に接合層に剥離や、更にはLEDが割れる恐れがある。また、熱伝導率(温度25℃)が150W/mK未満であると、LEDで発生する熱を十分に放熱することができず、特に大電流を流す必要のある高出力LEDでは、LEDの温度が上がり発光効率の低下、それに伴う素子寿命の低下が起こる恐れがある。一方、500W/mKをこえてもよいが、LED搭載用基板の材料が高価になる。 If the linear expansion coefficient of the LED mounting substrate (temperature 25 ° C. to 150 ° C.) is out of the range of 4 to 9 × 10 −6 / K, warpage may occur after bonding due to the difference in linear expansion coefficient with the LED. Further, when used as an LED mounting structure, there is a possibility that the bonding layer may be peeled off or the LED may be broken. Further, if the thermal conductivity (temperature 25 ° C.) is less than 150 W / mK, the heat generated by the LED cannot be sufficiently dissipated, and in particular for a high-power LED that needs to pass a large current, the LED temperature As a result, the luminous efficiency may be reduced, and the device life may be reduced accordingly. On the other hand, although it may exceed 500 W / mK, the material for the LED mounting substrate becomes expensive.

本発明のLED搭載用基板の体積固有抵抗は10−5Ω・m未満であることが好ましく、これをこえると、発光効率の低下等が起こる恐れがある。体積固有抵抗の下限値は、材料入手の容易性の点から10ー9Ω・mであることが好ましい。体積固有抵抗はアルミニウム合金の含有量によって増減させることができる。 The volume specific resistance of the LED mounting substrate of the present invention is preferably less than 10 −5 Ω · m, and if it exceeds this, the luminous efficiency may be lowered. The lower limit of the volume resistivity is preferably 10 −9 Ω · m from the viewpoint of easy material availability. The volume resistivity can be increased or decreased depending on the content of the aluminum alloy.

本発明のLED搭載用基板は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子が50〜90体積%、アルミニウム合金が10〜50体積%で構成されていることが好ましく、特に炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子が65〜85体積%、アルミニウム合金が15〜35体積%で構成されていることが好ましい。炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子からなる多孔体の気孔率が10体積%未満であると、アルミニウム合金を十分に含浸させることができずに熱伝導率の低下となり、50体積%をこえるとLED搭載用基板の線膨張係数が大きくなる恐れがある。   The LED mounting substrate of the present invention is composed of 50 to 90% by volume of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, and 10 to 50% by volume of an aluminum alloy. In particular, it is preferable that one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite are 65 to 85% by volume, and an aluminum alloy is 15 to 35% by volume. preferable. If the porosity of the porous body composed of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite is less than 10% by volume, the aluminum alloy cannot be sufficiently impregnated. If the thermal conductivity is reduced and the volume exceeds 50% by volume, the linear expansion coefficient of the LED mounting substrate may be increased.

本発明のLED搭載用基板には、LED発光素子製造プロセスでの耐薬品特性が必要であり、耐薬品性とは、具体的には、温度25℃の5規定のHCl水溶液又は温度75℃の10規定のNaOH水溶液に1分間浸漬したとき、少なくとも一面の単位面積当たりの質量減少量が0.2mg/cm以下が好ましく、更に好ましくは、重量減少量が0.1mg/cm以下である。温度25℃の5規定のHCl水溶液又は温度75℃の10規定のNaOH水溶液に1分間浸漬したときの単位面積当たりの質量減少量が0.2mg/cmを超えると、LED搭載用基板中の金属成分の溶出に伴う熱伝導率等の特性低下が発生すると共に、レーザーカット又はダイシングにて所定形状に切断する際にチッピングが発生し、LED発光素子の歩留まりが低下するために好ましくない。 The LED mounting substrate of the present invention requires chemical resistance characteristics in the LED light emitting device manufacturing process. Specifically, the chemical resistance is a 5N HCl aqueous solution at a temperature of 25 ° C. or a temperature of 75 ° C. When immersed in a 10 N aqueous NaOH solution for 1 minute, the amount of mass reduction per unit area of at least one surface is preferably 0.2 mg / cm 2 or less, and more preferably the weight reduction amount is 0.1 mg / cm 2 or less. . When the mass loss per unit area when immersed in a 5N HCl aqueous solution at a temperature of 25 ° C. or a 10N NaOH aqueous solution at a temperature of 75 ° C. for 1 minute exceeds 0.2 mg / cm 2 , This is not preferable because characteristics such as thermal conductivity are reduced due to elution of the metal component, and chipping occurs when cutting into a predetermined shape by laser cutting or dicing, and the yield of LED light emitting elements is reduced.

本発明のLED搭載用基板は、基板自体が導電性を有しているので、LEDに電極を形成することが容易となる。サファイア基板等の基板にあっては、LEDの上部をエッチング等で除去してから、同一面側に電極を形成する必要があるが、本発明のLED搭載用基板を用いればこの操作は不要となる。その結果、LEDの単位面積当たりの発光量を増加させることができる。   Since the board | substrate for LED mounting of this invention has electroconductivity itself, it becomes easy to form an electrode in LED. In the case of a substrate such as a sapphire substrate, it is necessary to form an electrode on the same surface side after removing the upper part of the LED by etching or the like, but this operation is not necessary if the LED mounting substrate of the present invention is used. Become. As a result, the amount of light emission per unit area of the LED can be increased.

LED搭載用基板の製法は、含浸法と粉末冶金法の2種に大別される。このうち、熱伝導率等の特性面から実際に商品化されているのは、含浸法によるものである。含浸法にも種々の製法があり、常圧で行う方法と、高圧下で行う方法(高圧鍛造法)がある。高圧鍛造法には、溶湯鍛造法とダイキャスト法がある。本発明に好適な方法は、高圧下で含浸を行う高圧鍛造法であり、熱伝導率等の特性に優れた緻密な複合体を得るには溶湯鍛造法が好ましい。溶湯鍛造法は、高圧容器内に、セラミックス粉末又は成形体を装填し、これにアルミニウム合金等の溶湯を高温、高圧下で含浸させて複合材料を得る方法である。 The manufacturing method of the LED mounting substrate is roughly classified into two types: an impregnation method and a powder metallurgy method. Of these, what is actually commercialized in terms of characteristics such as thermal conductivity is the impregnation method. There are various impregnation methods, and there are a method performed at normal pressure and a method performed under high pressure (high pressure forging method). High pressure forging methods include a molten metal forging method and a die casting method. A method suitable for the present invention is a high-pressure forging method in which impregnation is performed under high pressure, and a molten forging method is preferable to obtain a dense composite having excellent characteristics such as thermal conductivity. The molten metal forging method is a method in which a ceramic material or a compact is loaded into a high-pressure vessel, and a molten material such as an aluminum alloy is impregnated at high temperature and high pressure to obtain a composite material.

以下、溶湯鍛造法による製法例を説明する。原料であるセラミックスは、熱伝導率が高く、線熱膨張係数の小さい材料を用いる必要がある。本発明では、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上を用いる。本発明のLED搭載用基板材料は、これらのセラミックスとアルミニウム合金を複合化することにより、熱伝導率及び線熱膨張係数を調整することができる。 Hereafter, the example of a manufacturing method by the molten metal forging method is demonstrated. It is necessary to use a material having a high thermal conductivity and a low linear thermal expansion coefficient as the raw material ceramics. In the present invention, at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite is used. The board | substrate material for LED mounting of this invention can adjust a thermal conductivity and a linear thermal expansion coefficient by compounding these ceramics and aluminum alloys.

セラミックスは、粉末のまま複合化することもできるが、セラミックス粉末と例えばメチルセルロース、シリカゾル等のバインダーを用いて成形体を作製するか、さらに成形した後、焼結し、気孔率が10〜50体積%のセラミックス粒子多孔体(以下、プリフォームともいう。)を製造し、これにアルミニウム合金を含浸させることによって複合化させることが好ましい。 Ceramics can be compounded as powder, but a molded body is prepared using ceramic powder and a binder such as methylcellulose, silica sol, etc., or further molded and then sintered, and the porosity is 10 to 50 volume. % Ceramic particle porous body (hereinafter also referred to as a preform) is preferably combined with an aluminum alloy impregnated.

プリフォームの気孔率の調整は、セラミックス粉末の粒度、成形圧力、焼結条件等によって行うことができる。プリフォームへの成形方法は、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法を採用することができる。プリフォームは、必要に応じて平板状や円柱状に加工して用いる。板厚が0.05〜0.5mmのLED搭載用基板を製造するためには、3点曲げ強度が50MPa以上のプリフォームを用いることが好ましい。プリフォームの3点曲げ強度は、バインダー及び焼成条件によって制御できる。プリフォームの強度が低いと、研削加工等で板厚を0.05mm〜0.5mmの板条に加工する際に、反りが発生することがある。 The porosity of the preform can be adjusted according to the particle size of the ceramic powder, the molding pressure, the sintering conditions, and the like. As a method for forming the preform, a general method for forming ceramic powder, such as press molding or cast molding, can be employed. The preform is processed into a flat plate shape or a cylindrical shape as needed. In order to produce an LED mounting substrate having a plate thickness of 0.05 to 0.5 mm, it is preferable to use a preform having a three-point bending strength of 50 MPa or more. The three-point bending strength of the preform can be controlled by the binder and firing conditions. If the strength of the preform is low, warping may occur when processing the plate thickness to 0.05 mm to 0.5 mm by grinding or the like.

プリフォームは、離型剤を塗布した治具等で固定し、複数個を積層してボルト−ナット等で連結して積層体とする。プリフォームを固定する治具は、鉄製や黒鉛製の治具を用いることができる。また、個々の治具は、離型剤を塗布した離型板を挟んで積層し、積層体とすることもできる。離型板としては、ステンレス板やセラミックス板を使用することがで、溶湯鍛造法にてアルミニウム合金が含浸されない緻密体であれば特に制限はない。また、治具や離型板に塗布する離型剤については、黒鉛、窒化ホウ素、アルミナ等の離型剤が使用できる。更に、好ましくは、治具や離型板表面をアルミナゾル等によりコーティングした後、離型剤を塗布することが好ましい。   The preform is fixed with a jig or the like coated with a release agent, and a plurality of layers are laminated and connected with bolts and nuts to form a laminated body. As a jig for fixing the preform, an iron or graphite jig can be used. Moreover, each jig | tool can also be laminated | stacked on both sides of the release plate which apply | coated the mold release agent, and it can also be set as a laminated body. As the release plate, a stainless plate or a ceramic plate can be used, and there is no particular limitation as long as it is a dense body that is not impregnated with an aluminum alloy by a molten metal forging method. Moreover, about the mold release agent apply | coated to a jig | tool or a mold release plate, mold release agents, such as graphite, boron nitride, an alumina, can be used. Furthermore, it is preferable to apply a release agent after coating the surface of a jig or a release plate with alumina sol or the like.

得られた積層体は、温度600〜800℃程度で加熱後、高圧容器内に1個または2個以上配置し、積層体の温度低下を防ぐために出来るだけ速やかに、融点以上に加熱したアルミニウム合金の溶湯を給湯して30MPa以上の圧力で加圧し、アルミニウム合金をプリフォームの空隙中に含浸させることで、LED搭載用基板材料が得られる。なお、含浸時の歪み除去の目的で、含浸品のアニール処理を行うこともある。   The obtained laminated body is heated at a temperature of about 600 to 800 ° C., and then one or two or more pieces are placed in a high-pressure vessel, and the aluminum alloy is heated to the melting point or more as quickly as possible to prevent the temperature of the laminated body from decreasing. The substrate material for LED mounting is obtained by supplying the molten metal and pressurizing it with a pressure of 30 MPa or more and impregnating the aluminum alloy in the gaps of the preform. For the purpose of removing distortion during impregnation, the impregnated product may be annealed.

積層体の加熱温度は、温度600℃未満では、アルミニウム合金の複合化が不十分となり、得られるLED搭載用基板材料の熱伝導率等の特性が低下してしまう。また、加熱温度が800℃を超えると、アルミニウム合金との複合化時に、セラミックス粉末の表面の酸化が起こり、得られるLED搭載用基板材料の熱伝導率等の特性が低下してしまう。更に、含浸時の圧力に関しては、30MPa未満では、アルミニウム合金の複合化が不十分となり、得られるLED搭載用基板材料の熱伝導率等の特性が低下してしまい好ましくない。好ましくは、含浸圧力は、50MPa以上である。   When the heating temperature of the laminated body is less than 600 ° C., the composite of the aluminum alloy becomes insufficient, and the characteristics such as the thermal conductivity of the obtained LED mounting substrate material are deteriorated. On the other hand, when the heating temperature exceeds 800 ° C., the surface of the ceramic powder is oxidized at the time of compounding with the aluminum alloy, and the characteristics such as the thermal conductivity of the obtained LED mounting substrate material are deteriorated. Furthermore, regarding the pressure at the time of impregnation, if it is less than 30 MPa, the composite of the aluminum alloy becomes insufficient, and the characteristics such as the thermal conductivity of the obtained LED mounting substrate material deteriorate, which is not preferable. Preferably, the impregnation pressure is 50 MPa or more.

本発明のLED搭載用基板材料中のアルミニウム合金は、アルミニウムを70質量%以上含有するアルミニウム合金である。アルミニウムの含有量が70質量%未満では、アルミニウム合金の熱伝導率が低下し好ましくない。また、アルミニウム合金は、含浸時にプリフォームの空隙内に十分に浸透するために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを5〜25質量%含有したアルミニウム合金が挙げられる。更にマグネシウムを含有させることは、セラミックス粒子と金属部分との結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば銅等が含まれていても良い。 The aluminum alloy in the LED mounting substrate material of the present invention is an aluminum alloy containing 70% by mass or more of aluminum. If the aluminum content is less than 70% by mass, the thermal conductivity of the aluminum alloy is lowered, which is not preferable. The aluminum alloy preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated. Examples of such an aluminum alloy include an aluminum alloy containing 5 to 25% by mass of silicon. Further, it is preferable to contain magnesium because the bond between the ceramic particles and the metal portion becomes stronger. The metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, copper or the like may be included.

次に、得られたLED搭載用基板材料の加工方法の例を説明する。得られたLED搭載用基板材料が円柱状の形状である場合、円筒研削盤等によりダイヤモンド砥石を用いて所定寸法に外形加工した後、マルチワイヤーソー、内周刃切断機等で最終形状より0.1〜0.5mm程度厚い板厚に切断加工する。切断方法については、特に限定はないが、切断代が少なく量産性に適したマルチワイヤーソーでの切断が好適である。マルチワイヤーソーでの切断は、遊離砥粒タイプ及びダイヤモンド等の研削材を付着したワイヤーを用いた加工が採用できる。切断加工後の板状のLED搭載用基板材料は、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜0.5mm、且つ、表面粗さ(Ra)が0.01〜0.5μmになるように面加工を行う。面加工に際しては、表面粗さを、更に小さくするために、両面研削盤、ロータリー研削盤、平面研削盤等で面加工した後、ラップ盤で仕上げ加工を行うこともある。また、LED発光素子の製造工程で、本発明のLED搭載用基板をIII−V族半導体結晶と接合後に研磨加工する場合は、片面(接合面)のみに、所定の表面粗さまで面加工を行うこともある。 Next, an example of a method for processing the obtained LED mounting substrate material will be described. When the obtained LED mounting substrate material has a columnar shape, the outer shape is processed to a predetermined size using a diamond grindstone with a cylindrical grinder or the like, and then the final shape is reduced to 0 from the final shape with a multi-wire saw, an inner peripheral cutting machine or the like. Cut to a thickness of about 1 to 0.5 mm. The cutting method is not particularly limited, but it is preferable to cut with a multi-wire saw having a small cutting margin and suitable for mass production. Cutting with a multi-wire saw can employ processing using a loose abrasive type and a wire to which an abrasive such as diamond is attached. The plate-shaped LED mounting substrate material after the cutting process is a processing machine such as a double-sided grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine, and has a plate thickness of 0.05 to 0.5 mm and a surface roughness. Surface processing is performed so that (Ra) becomes 0.01 to 0.5 μm. In the surface processing, in order to further reduce the surface roughness, the surface processing may be performed by a lapping machine after the surface processing is performed by a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or the like. In addition, when the LED mounting substrate of the present invention is polished after being bonded to the III-V group semiconductor crystal in the manufacturing process of the LED light emitting element, surface processing is performed only on one side (bonding surface) to a predetermined surface roughness. Sometimes.

得られたLED搭載用基板材料が板状である場合、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜0.5mm、且つ、表面粗さ(Ra)が0.01〜0.5μmになるように面加工を行った後、ウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行う。得られたLED搭載用基板材料が板状である場合、先にウォータージェット加工機、放電加工機、レーザー加工機、ダイシングマシン、円筒研削盤等で所定形状に外周加工を行い、その後両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.05〜0.5mm、且つ、表面粗さ(Ra)が0.01〜0.5μmになるように面加工を行うこともできる。 When the obtained LED mounting substrate material is plate-shaped, the thickness of the plate is 0.05 to 0.5 mm and the surface is roughened by a processing machine such as a double-sided grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine. After surface processing is performed so that the thickness (Ra) is 0.01 to 0.5 μm, the outer periphery is processed into a predetermined shape by a water jet processing machine, an electric discharge processing machine, a laser processing machine, a dicing machine, a cylindrical grinding machine, or the like. Do. When the obtained LED mounting substrate material is plate-shaped, the outer periphery is first processed into a predetermined shape by a water jet processing machine, electric discharge processing machine, laser processing machine, dicing machine, cylindrical grinder, etc., and then a double-sided grinding machine , Surface processing with a processing machine such as a rotary grinding machine, a surface grinding machine and a lapping machine so that the plate thickness is 0.05 to 0.5 mm and the surface roughness (Ra) is 0.01 to 0.5 μm. Can also be done.

次に、板状のLED搭載用基板材料は、表面を洗浄後、表面のアルミニウム合金を酸又はアルカリにより0.5〜10μmエッチング除去し、アルミニウム合金上に0.5〜10μmのNi、Co,Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上の金属層を形成し、且つ、全表面の50%以上の面積が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子が露出した構造とする。エッチング量が0.5μm以下では、金属層が凸となり、表面粗さが増大してしまい好ましくない。一方エッチング量が10μm以上では、アルミニウム合金上に十分に金属層を形成することができず、耐薬品性が低下して好ましくない。金属層が0.5μm以下では、金属層のピンホールが発生し、耐薬品性が低下して好ましくない。一方、金属層が10μmを超えると、金属層が凸となり、表面粗さが増大してしまい好ましくない。また、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子の露出が全表面積の50%以下では、LED搭載用基板9と、その表面に形成された金属層8の剥離による収率低下が生じ、好ましくない。エッチング量に関しては、1〜4μmが好ましく、金属層厚に関しては、好ましくは1〜4μmであり、また、金属層の表面は、表面のセラミックス粒子の露出面と等しい、又は低くなることが好ましい。金属層の材質は、Ni、Co,Pd、Cu、Ag、Au、Pt、Snの中から選ばれる1種以上を含む金属が採用でき、これらの複合金属も使用可能である。金属層を付与する手法としては、無電解めっき又は電解めっきによることが一般的である。めっき以外の蒸着法等の手法により、板状のLED搭載用基板材料の表面に、上述した金属を被覆することも可能である。 Next, after the surface of the plate-shaped LED mounting substrate material is cleaned, the surface aluminum alloy is removed by etching with an acid or alkali by 0.5 to 10 μm, and 0.5 to 10 μm of Ni, Co, One or more metal layers selected from Pd, Cu, Ag, Au, Pt, and Sn are formed, and an area of 50% or more of the entire surface is made of silicon carbide, aluminum nitride, silicon nitride, diamond, and graphite A structure in which one or more kinds of particles selected from the above are exposed. When the etching amount is 0.5 μm or less, the metal layer becomes convex and the surface roughness increases, which is not preferable. On the other hand, if the etching amount is 10 μm or more, the metal layer cannot be sufficiently formed on the aluminum alloy, and the chemical resistance is lowered, which is not preferable. If the metal layer is 0.5 μm or less, pinholes in the metal layer are generated and the chemical resistance is lowered, which is not preferable. On the other hand, when the metal layer exceeds 10 μm, the metal layer becomes convex and the surface roughness increases, which is not preferable. Further, when the exposure of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite is 50% or less of the total surface area, the LED mounting substrate 9 and the metal layer formed on the surface thereof Yield reduction due to peeling of 8 occurs, which is not preferable. The etching amount is preferably 1 to 4 μm, the metal layer thickness is preferably 1 to 4 μm, and the surface of the metal layer is preferably equal to or lower than the exposed surface of the ceramic particles on the surface. As the material of the metal layer, a metal containing one or more selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn can be used, and these composite metals can also be used. As a method for providing the metal layer, electroless plating or electrolytic plating is generally used. It is also possible to cover the surface of the plate-like LED mounting substrate material with the above-described metal by a method such as vapor deposition other than plating.

炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子の露出面積は、SEM写真を画像解析することにより求められる。具体的には、倍率50倍のSEM画像から、0.2mm×0.2mmのエリアを無作為に10
視野選び露出面積を画像解析により算出し、その平均を露出面積とする。
The exposed area of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond, and graphite can be obtained by image analysis of an SEM photograph. Specifically, an area of 0.2 mm × 0.2 mm is randomly selected from an SEM image with a magnification of 50 times.
The field of view selection exposure area is calculated by image analysis, and the average is defined as the exposure area.

実施例1
(LED搭載用基板の製造方法)
炭化珪素(以下、SiCという)粉末A(大平洋ランダム社製、NG−60、平均粒子径200μm)1800g、炭化珪素粉末B(大平洋ランダム社製、NG−600、平均粒子径20μm)900g、炭化珪素粉末C(大平洋ランダム社製、NC−6000、平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
Example 1
(Manufacturing method of LED mounting substrate)
1800 g of silicon carbide (hereinafter referred to as SiC) powder A (manufactured by Taiyo Random Co., Ltd., NG-60, average particle diameter 200 μm), silicon carbide powder B (manufactured by Taiyo Random Co., Ltd., NG-600, average particle diameter 20 μm) 900 g, 300 g of silicon carbide powder C (manufactured by Taiyo Random Co., Ltd., NC-6000, average particle size 2 μm) and 150 g of a molded binder (methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd., “Metroses”) are weighed and stirred for 30 minutes. After mixing, it was press-molded into a cylindrical shape with a size of Φ55 mm × 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to produce a compact.

得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で2時間焼成して、気孔率が20%のSiCプリフォームを作製した。得られたSiCプリフォームを、マシニングセンターでダイヤモンド製の砥石を用いて、外形寸法がΦ52mm×100mmの形状に加工した。さらに、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は120MPaであった。   The obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then baked in an argon atmosphere at a temperature of 2100 ° C. for 2 hours to produce a SiC preform having a porosity of 20%. The obtained SiC preform was processed into a shape having an outer dimension of Φ52 mm × 100 mm using a diamond grindstone at a machining center. Further, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. The three-point bending strength was 120 MPa.

得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法:70mm×70mm×100mm(内径寸法:Φ52.5mm×100mm)の筒状の黒鉛治具に挿入して構造体とした。次に、70mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×100mmの形状となる様に構造体4個を離型板を挟んで積層して、両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板を剥がし、旋盤で黒鉛治具部分を除去してΦ52mm×100mm形状のLED搭載用基板材料を得た。得られたLED搭載用基板材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 A boron nitride mold release agent was applied to the obtained SiC preform and inserted into a cylindrical graphite jig having an outer dimension of 70 mm × 70 mm × 100 mm (inner diameter: Φ52.5 mm × 100 mm) to obtain a structure. . Next, a release plate is prepared by applying a graphite release material to a 70 mm × 100 mm × 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm × 140.8 mm × 100 mm. Laminated with the plates sandwiched, 12 mm thick iron plates were placed on both sides and connected with 8 M10 bolts to form one laminate. Next, the laminate is preheated to a temperature of 700 ° C. in an electric furnace and then placed in a pre-heated press mold having an inner diameter of Φ400 mm × 300 mmH, and contains 12% by mass of silicon and 1% by mass of magnesium. The molten metal (temperature: 800 ° C.) was poured and pressurized at 100 MPa for 25 minutes to impregnate the SiC preform with the aluminum alloy. After cooling to room temperature, it was cut along the shape of the release plate with a wet band saw, the release plate was peeled off, and the graphite jig part was removed with a lathe to obtain a substrate material for LED mounting of Φ52 mm × 100 mm shape . The obtained LED mounting substrate material was annealed at a temperature of 530 ° C. for 3 hours in order to remove distortion during impregnation.

次に、得られたLED搭載用基板材料から、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、温度25℃〜150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で、3点曲げ強度を曲げ強度試験機で、体積固有抵抗を4端子法(JIS R1637に準拠)で測定した。その結果、温度25℃〜150℃の熱膨張係数は4.9×10-6/K、温度25℃での熱伝導率は250W/mK、3点曲げ強度は350MPa、体積固有抵抗は8×10-7Ω・mであった。 Next, from the obtained LED mounting substrate material, a thermal expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), three-point bending strength by grinding. A test specimen for measurement (3 mm × 4 mm × 40 mm) and a test specimen for measuring volume resistivity (50 mm × 50 mm × 5 mm) were prepared. Using each test specimen, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. was measured with a thermal dilatometer (manufactured by Seiko Denshi Kogyo; TMA300), and the thermal conductivity at a temperature of 25 ° C. was measured with a laser flash method (manufactured by ULVAC; TC3000), a three-point bending strength was measured with a bending strength tester, and a volume resistivity was measured with a four-terminal method (based on JIS R1637). As a result, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. is 4.9 × 10 −6 / K, the thermal conductivity at a temperature of 25 ° C. is 250 W / mK, the three-point bending strength is 350 MPa, and the volume resistivity is 8 ×. 10 −7 Ω · m.

LED搭載用基板材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×100mmの円柱形状に外周加工を行った。得られた円柱形状のLED搭載用基板材料を、マルチワイヤーソーでダイヤモンド砥粒を用い、切断切り込み速度0.2mm/minで、板厚0.2mmの円板状に切断加工を行った。円板状のLED搭載用基板材料を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.12mmに研削加工した後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.1mmでまで研磨加工を行った後、純水中、次にイソプロピルアルコール中で超音波洗浄を行い、乾燥してLED搭載用基板を作製した。表面粗さ(Ra)を表面粗さ計で測定した結果、Ra0.04μmであった。   The substrate material for LED mounting was processed into a cylindrical shape of Φ50.8 mm × 100 mm using a diamond grindstone with a cylindrical grinder. The obtained cylindrical LED mounting substrate material was cut into a disk shape with a plate thickness of 0.2 mm at a cutting cutting speed of 0.2 mm / min using diamond abrasive grains with a multi-wire saw. A disk-shaped LED mounting substrate material is ground to a thickness of 0.12 mm using a # 600 diamond whetstone with a double-side grinding machine, and then a diamond thickness of 0.1 mm with a lapping machine. After the polishing process, an ultrasonic cleaning was performed in pure water and then in isopropyl alcohol, followed by drying to produce an LED mounting substrate. As a result of measuring the surface roughness (Ra) with a surface roughness meter, it was Ra 0.04 μm.

次に、このLED搭載用基板材料を、NaOH溶液により表面のアルミニウム合金部を2μmエッチング除去し、アルミニウム合金上に無電解Ni−Pめっきを行い、1.5μm厚のめっき層を形成させ、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の80%の面積が炭化珪素が露出した構造であることを確認した。得られた、LED搭載用基板材料の特性値は、めっき層金属の物性値とめっき前のLED搭載用基板材料の物性値から、計算により算出した。その結果を表1に示す。また、メッキ後のLED搭載用基板材料を温度25℃の5規定のHCl水溶液又は、温度75℃の10NのNaOH水溶液に1分間浸漬した後、蒸留水で角水溶液を洗い流し、拭取った後の質量を測定し、単位面積当たり、の質量減少量を算出した。更に、めっき後のLED搭載用基板材料の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表1に示す。 Next, this LED mounting substrate material is etched away by 2 μm of the aluminum alloy portion on the surface with an NaOH solution, electroless Ni-P plating is performed on the aluminum alloy, and a 1.5 μm thick plating layer is formed. As a result of randomly analyzing 10 fields of view of an area of 0.2 mm × 0.2 mm from a 50 × SEM photograph, it was confirmed that 80% of the entire surface had a structure in which silicon carbide was exposed. The characteristic value of the obtained LED mounting substrate material was calculated by calculation from the physical property value of the plating layer metal and the physical property value of the LED mounting substrate material before plating. The results are shown in Table 1. Also, after the LED mounting substrate material after plating was immersed in a 5N HCl aqueous solution at a temperature of 25 ° C. or a 10N NaOH aqueous solution at a temperature of 75 ° C. for 1 minute, the angular aqueous solution was washed away with distilled water and wiped off. The mass was measured, and the mass reduction amount per unit area was calculated. Furthermore, the surface roughness (Ra) of the LED mounting substrate material after plating was measured with a surface roughness meter. The results are shown in Table 1.


(LED搭載構造体の製造)
図1に示すように、板厚が0.5mmの単結晶成長基板(単結晶サファイア基板)1に、アンモニアガスとトリメチルガリウムを使用し、キャリアガスとして水素と窒素の混合ガスを用いて、温度1100℃でMOCVD法により、n型III−V族半導体のバッファー層(n型GaNバッファー層)2を0.3μm形成させた後、LED5を4.1μmエピタキシャル成長させた。LED5は、n型III−V族半導体層(n型GaN半導体層)51が2μm、発光層(GaN発光層)52が0.1μm、及びp型III−V族半導体層(p型GaN半導体層)53が2μmで構成されていた。
(Manufacture of LED mounting structure)
As shown in FIG. 1, ammonia gas and trimethyl gallium are used for a single crystal growth substrate (single crystal sapphire substrate) 1 having a thickness of 0.5 mm, and a mixed gas of hydrogen and nitrogen is used as a carrier gas. After forming an n-type III-V group semiconductor buffer layer (n-type GaN buffer layer) 0.3 μm at 1100 ° C. by MOCVD, LED 5 was epitaxially grown 4.1 μm. The LED 5 has an n-type III-V group semiconductor layer (n-type GaN semiconductor layer) 51 of 2 μm, a light-emitting layer (GaN light-emitting layer) 52 of 0.1 μm, and a p-type III-V group semiconductor layer (p-type GaN semiconductor layer). 53) was composed of 2 μm.

つぎに、LED5のp型GaN半導体層53の表面に、銀/錫合金(Ag3.5質量%、Sn96.5質量%)の金属層の反射層6を2μmの厚さに真空蒸着した。一方、上記で製造された本発明のLED搭載用基板9の表面にも、同様の方法で銀/錫合金((Ag3.5質量%、Sn96.5質量%)の金属層8を2μmの厚さに蒸着した。   Next, a reflective layer 6 of a metal layer of silver / tin alloy (Ag 3.5 mass%, Sn 96.5 mass%) was vacuum deposited on the surface of the p-type GaN semiconductor layer 53 of the LED 5 to a thickness of 2 μm. On the other hand, a metal layer 8 of silver / tin alloy ((Ag 3.5% by mass, Sn 96.5% by mass)) having a thickness of 2 μm was also formed on the surface of the LED mounting substrate 9 of the present invention produced above by the same method. Vapor deposited.

上記反射層6と上記金属層8とを接面させて積層し、温度400℃で、5MPaの加圧下で5分間保持した。得られた接合体は、単結晶成長基板(単結晶サファイア基板)側より、出力40MW/cm2の窒素ガスレーザーを照射し単結晶サファイア基板を剥離した。また、このレーザー照射により、n型GaNバッファー層2がGaと窒素に分解されて発生した窒素ガスにより単結晶サファイア基板が剥離された。 The reflective layer 6 and the metal layer 8 were laminated in contact with each other, and held at a temperature of 400 ° C. under a pressure of 5 MPa for 5 minutes. The obtained bonded body was irradiated with a nitrogen gas laser having an output of 40 MW / cm 2 from the single crystal growth substrate (single crystal sapphire substrate) side to peel off the single crystal sapphire substrate. In addition, the single crystal sapphire substrate was peeled off by the nitrogen gas generated when the n-type GaN buffer layer 2 was decomposed into Ga and nitrogen by this laser irradiation.

その後、露出したn型GaNバッファー層2をエッチングにより除去した後、LED5の表面に酸化インジウム錫(Sn4.5質量%)の透明導電層9を0.4μmの厚みに形成した。その後、この透明導電層にn型電極としてAuを蒸着してから、ダイシングにより1mm□に切断して本発明のLED搭載構造体を製造した(図3参照、但し電極は図示せず)。 Thereafter, the exposed n-type GaN buffer layer 2 was removed by etching, and a transparent conductive layer 9 of indium tin oxide (Sn 4.5 mass%) was formed on the surface of the LED 5 to a thickness of 0.4 μm. Thereafter, Au was vapor-deposited on the transparent conductive layer as an n-type electrode, and then cut into 1 mm □ by dicing to manufacture the LED mounting structure of the present invention (see FIG. 3, but the electrode is not shown).

実施例2〜12、比較例1
実施例1で作製したΦ50.8mm×0.1mmtのLED搭載用基板材料を、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解めっき処理を行い、アルミニウム合金上に表2に示す金属層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の80%の面積が炭化珪素が露出した構造であることを確認した。得られたLED搭載用基板材料の特性値を表2に示す。メッキ後のLED搭載用基板材料を温度25℃の5規定のHCl水溶液又は、温度75℃の10NのNaOH水溶液に1分間浸漬した後、蒸留水で角水溶液を洗い流し、拭取った後の質量を測定し、単位面積当たり、の質量減少量を算出した。更に、めっき後のLED搭載用基板材料の表面粗さ(Ra)を表面粗さ計で測定した。その結果を表3に示す。
Examples 2 to 12, Comparative Example 1
The substrate material for LED mounting of Φ50.8 mm × 0.1 mmt produced in Example 1 was subjected to electroless plating treatment by etching away the surface aluminum alloy part with NaOH solution, and the metals shown in Table 2 on the aluminum alloy As a result of forming a layer and analyzing 10 fields of view of a 0.2 mm x 0.2 mm area of an SEM photograph at a magnification of 50 times, 80% of the entire surface has a structure in which silicon carbide is exposed. confirmed. Table 2 shows the characteristic values of the obtained LED mounting substrate material. After immersing the plated LED substrate material in a 5N HCl aqueous solution at a temperature of 25 ° C. or a 10N NaOH aqueous solution at a temperature of 75 ° C. for 1 minute, wash the angular aqueous solution with distilled water, and then wipe the mass after wiping. Measured and calculated a mass loss per unit area. Furthermore, the surface roughness (Ra) of the LED mounting substrate material after plating was measured with a surface roughness meter. The results are shown in Table 3.


実施例13〜16、比較例2〜4
(LED搭載用基板の製造)
炭化珪素粉末D(大平洋ランダム社製、NG−80、平均粒子径:150μm)1300g、炭化珪素粉末E(屋久島電工社製、GC−1000F、平均粒子径:10μm)700g、シリカゾル(日産化学社製:スノーテックス)300gを秤取し、攪拌混合機で30分間混合した後、Φ60mm×55mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が35%のSiCプリフォームを得た。得られたSiCプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×50mmの形状に加工した。得られたSiCプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、50MPaであった。
Examples 13-16, Comparative Examples 2-4
(Manufacture of LED mounting substrates)
1300 g of silicon carbide powder D (manufactured by Taiyo Random Co., Ltd., NG-80, average particle size: 150 μm), 700 g of silicon carbide powder E (manufactured by Yakushima Electric Works, GC-1000F, average particle size: 10 μm), silica sol (Nissan Chemical Co., Ltd.) (Product: Snowtex) 300 g was weighed and mixed with a stirrer / mixer for 30 minutes, and then pressed into a cylindrical shape with a size of Φ60 mm × 55 mm at a surface pressure of 30 MPa to prepare a molded body. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then fired in a nitrogen atmosphere at a temperature of 1400 ° C. for 2 hours to obtain a SiC preform having a porosity of 35%. The obtained SiC preform was processed into a shape having an outer dimension of Φ52 mm × 50 mm using a diamond grindstone at a machining center. From the obtained SiC preform, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 50 MPa.

得られたSiCプリフォームに窒化硼素の離型剤を塗布し、外形寸法70mm×70mm×50mm(内径寸法:Φ52.5mm×50mm)の筒状の鉄製治具に挿入し構造体とした。次に、70mm×70mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、140.8mm×140.8mm×50mmの形状となる様に構造体4個を離型板を挟んで積層した。両側にセラミックス繊維含有量が10体積%、厚み10mmのセラミックスボードを挟んで、厚12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。 A boron nitride mold release agent was applied to the obtained SiC preform and inserted into a cylindrical iron jig having an outer dimension of 70 mm × 70 mm × 50 mm (inner diameter: Φ52.5 mm × 50 mm) to obtain a structure. Next, a release plate is produced by applying a graphite release material to a 70 mm × 70 mm × 0.8 mmt stainless plate, and the four structures are released so as to have a shape of 140.8 mm × 140.8 mm × 50 mm. They were stacked with a plate in between. A ceramic board having a ceramic fiber content of 10% by volume and a thickness of 10 mm is sandwiched between both sides, an iron plate having a thickness of 12 mm is disposed, and connected with eight M10 bolts to form a single laminate.

次に、積層体を電気炉で、表3に示す温度に予備加熱した後、あらかじめ加熱しておいた内径Φ400mm×300mmHのプレス型内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度:800℃)を注ぎ、表3の圧力で25分間加圧してSiCプリフォームにアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、離型板及び鉄製治具を剥がした後、機械加工により両端のセラミックス繊維を10体積%含有するアルミニウム合金層を除去してΦ52.5mm×50mm形状のLED搭載用基板材料を得た。得られたLED搭載用基板材料は、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行った。 Next, the laminate was preheated to the temperature shown in Table 3 with an electric furnace, and then placed in a preheated press mold having an inner diameter of Φ400 mm × 300 mmH, containing 12% by mass of silicon and 1% by mass of magnesium. A molten aluminum alloy (temperature: 800 ° C.) was poured, and the SiC preform was impregnated with the aluminum alloy by applying pressure at the pressure shown in Table 3 for 25 minutes. After cooling to room temperature, cut along the shape of the release plate with a wet band saw, peel off the release plate and iron jig, and then machine the aluminum alloy layer containing 10% by volume of ceramic fibers at both ends. The substrate material for LED mounting of the shape of (PHI) 52.5mm * 50mm was obtained by removing. The obtained LED mounting substrate material was annealed at a temperature of 530 ° C. for 3 hours in order to remove distortion during impregnation.


次に、得られたLED搭載用基板材料より、研削加工により熱膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(50mm×50mm×5mm)を作製した。それぞれの試験体を用いて、実施例1と同様の方法で、温度25℃〜150℃の熱膨張係数、温度25℃での熱伝導率、3点曲げ強度、体積固有抵抗を測定した。比較例2は、試験体加工時に形状が保持出来ず、特性評価が出来なかった。 Next, from the obtained LED mounting substrate material, a thermal expansion coefficient measurement specimen (diameter 3 mm, length 10 mm), thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), three-point bending strength by grinding. A test specimen for measurement (3 mm × 4 mm × 40 mm) and a test specimen for measuring volume resistivity (50 mm × 50 mm × 5 mm) were prepared. Using each specimen, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., the three-point bending strength, and the volume resistivity were measured in the same manner as in Example 1. In Comparative Example 2, the shape could not be maintained at the time of processing the specimen, and the characteristics could not be evaluated.

得られたLED搭載用基板材料を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×50mmの円柱形状に外周加工を行った。次に、円柱形状のLED搭載用基板材料を、内周刃切断機でダイヤモンド製の刃を用い、切断切り込み速度5mm/minで、板厚0.25mmの円板状に切断加工を行った。円板状のLED搭載用基板材料を、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.2mmに研削加工を行い、LED搭載用基板材料を作製した。   The obtained LED mounting substrate material was subjected to outer periphery processing into a cylindrical shape of Φ50.8 mm × 50 mm using a diamond grindstone with a cylindrical grinder. Next, the cylindrical LED mounting substrate material was cut into a disk shape with a plate thickness of 0.25 mm at a cutting cutting speed of 5 mm / min using a diamond blade with an inner peripheral cutting machine. The disk-shaped substrate material for mounting an LED was ground to a plate thickness of 0.2 mm using a # 800 diamond grindstone with a double-sided grinding machine to produce an LED-mounting substrate material.

次に、このLED搭載用基板材料の表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解めっき処理を行い、アルミニウム合金上に表4に示す金属層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の65%の面積が炭化珪素が露出した構造であることを確認した。得られたLED搭載用基板材料の物性値を表4に示す。また、実施例1と同様の評価を行った結果を表4に示す。 Next, after cleaning the surface of this LED mounting substrate material, the aluminum alloy part on the surface is removed by etching with a NaOH solution, electroless plating treatment is performed, and a metal layer shown in Table 4 is formed on the aluminum alloy. As a result of 10 field-of-view image analysis of an area of 0.2 mm × 0.2 mm randomly from a 50 × SEM photograph, it was confirmed that 65% of the entire surface had a structure in which silicon carbide was exposed. Table 4 shows physical property values of the obtained LED mounting substrate material. Table 4 shows the results of the same evaluation as in Example 1.


(LED搭載構造体の製造)
図2に示すように、板厚が0.5mmの単結晶成長基板(単結晶サファイア基板)1に、CVD法でSiCからなる表面コーティング層3を2μm形成した後、アンモニアガスと塩化ガリウムを使用し、キャリアガスとして水素ガスを用い、温度1050℃でHVPE法により、厚みが4.1μmのLED5をエピタキシャル成長させた。LED5は、n型III−V族半導体層(n型GaN半導体層)51が2μm、発光層(GaN発光層)52が0.1μm、及びp型III−V族半導体層(p型GaN半導体層)53が2μmで構成されていた。
(Manufacture of LED mounting structure)
As shown in FIG. 2, after forming a surface coating layer 3 made of SiC by a CVD method on a single crystal growth substrate (single crystal sapphire substrate) 1 having a plate thickness of 0.5 mm, ammonia gas and gallium chloride are used. Then, hydrogen gas was used as a carrier gas, and an LED 5 having a thickness of 4.1 μm was epitaxially grown at a temperature of 1050 ° C. by the HVPE method. The LED 5 has an n-type III-V group semiconductor layer (n-type GaN semiconductor layer) 51 of 2 μm, a light-emitting layer (GaN light-emitting layer) 52 of 0.1 μm, and a p-type III-V group semiconductor layer (p-type GaN semiconductor layer). 53) was composed of 2 μm.

つぎに、LED5のp型GaN半導体層53の表面に、真空蒸着法で、銀を0.5μmの厚さに蒸着して反射層6を形成した後、Au/錫合金(Au80質量%、Sn20質量%)を1.5μmの厚さに蒸着して金属層7を形成した。実施例2〜10、LED搭載用基板9の表面にも、同様の方法でAu/錫合金を1.5μmの厚さに蒸着して金属層8を形成した。金属層7と金属層8を接面させて積層し、温度500℃で、5MPaの加圧下で5分間保持し接合体を製造した。   Next, the reflective layer 6 is formed by vapor-depositing silver to a thickness of 0.5 μm on the surface of the p-type GaN semiconductor layer 53 of the LED 5 by a vacuum vapor deposition method, and then Au / tin alloy (Au 80 mass%, Sn20). The metal layer 7 was formed by vapor deposition to a thickness of 1.5 μm. Examples 2 to 10 and also on the surface of the LED mounting substrate 9, a metal layer 8 was formed by vapor-depositing an Au / tin alloy to a thickness of 1.5 μm by the same method. The metal layer 7 and the metal layer 8 were laminated in contact with each other, and the bonded body was manufactured by holding at a temperature of 500 ° C. under a pressure of 5 MPa for 5 minutes.

得られた接合体を、酸処理して単結晶成長基板(単結晶サファイア基板)1をエッチング除去した後、研削加工により表面コーティング層3を完全に除去した。ついで、露出したLED5の表面をエッチングにより表面粗化した後、酸化インジウム錫(Sn4.5質量%)の透明導電層4を0.2μmの厚みに形成した。その後、n型電極としてAuを蒸着しレーザー加工してLED搭載構造体を製造した(図3参照、但し電極は図示せず)。 The obtained bonded body was acid-treated to remove the single crystal growth substrate (single crystal sapphire substrate) 1 by etching, and then the surface coating layer 3 was completely removed by grinding. Next, the surface of the exposed LED 5 was roughened by etching, and then a transparent conductive layer 4 of indium tin oxide (Sn 4.5 mass%) was formed to a thickness of 0.2 μm. Thereafter, Au was vapor-deposited as an n-type electrode, and laser processing was performed to manufacture an LED mounting structure (see FIG. 3, but the electrode is not shown).

実施例17
炭化珪素粉末A(平均粒子径:200μm)1800g、炭化珪素粉末B(平均粒子径:20μm)900g、窒化アルミニウム粉末(トクヤマ社製、Fグレード、平均粒子径:2μm)300g、及び成形バインダー(メチルセルロース)150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
Example 17
1800 g of silicon carbide powder A (average particle size: 200 μm), 900 g of silicon carbide powder B (average particle size: 20 μm), 300 g of aluminum nitride powder (F grade, average particle size: 2 μm), and molding binder (methylcellulose) ) 150 g was weighed and mixed for 30 minutes with a stirring mixer, then press-molded into a cylindrical shape having a size of Φ55 mm × 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to prepare a compact.

得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度1950℃で2時間焼成して、気孔率が15%のプリフォームを得た。得られたプリフォームを、マシニングセンターでダイヤモンド砥石を用い、外形寸法が、Φ52mm×100mmの形状に加工した。研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、125MPaであった。 The obtained molded body was degreased in an air atmosphere at a temperature of 600 ° C. for 2 hours and then calcined in an argon atmosphere at a temperature of 1950 ° C. for 2 hours to obtain a preform having a porosity of 15%. The obtained preform was processed into a shape with an outer dimension of Φ52 mm × 100 mm using a diamond grindstone at a machining center. A three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 125 MPa.

得られたプリフォームを実施例1と同様の方法で処理してΦ52mm×100mm形状のLED搭載用基板材料を得た。得られたLED搭載用基板材料より、実施例1と同様に試験体を作製し特性評価を行った。 The obtained preform was processed in the same manner as in Example 1 to obtain an LED mounting substrate material having a shape of Φ52 mm × 100 mm. A test body was produced from the obtained LED mounting substrate material in the same manner as in Example 1, and the characteristics were evaluated.

次に、得られたLED搭載用基板材料を、円筒研削盤でダイヤモンドの砥石を用いてΦ50.8mm×100mmの円柱形状に外周加工を行った後、実施例1と同様にして板厚0.15mmの円板状に加工した。次に、円板状のLED搭載用基板材料を、ラップ盤でダイヤモンドの砥粒を用いて板厚0.1mmでまで研磨加工を行ってLED搭載用基板を作製した。 Next, the obtained LED mounting substrate material was processed into a cylindrical shape of Φ50.8 mm × 100 mm using a diamond grindstone with a cylindrical grinder, and then the plate thickness of 0. It was processed into a disk shape of 15 mm. Next, the disk-shaped LED mounting substrate material was polished to a thickness of 0.1 mm by using diamond abrasive grains on a lapping machine to produce an LED mounting substrate.

次に、このLED搭載用基板材料の表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解Ni―Pめっきを行い、アルミニウム合金上に表4に記載の厚のめっき層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の85%の面積がセラミックス粒子が露出した構造であることを確認した。得られたLED搭載用基板材料の物性値を表4に示す。また、実施例1と同様の評価を行った結果を表4に示す。 Next, after cleaning the surface of this LED mounting substrate material, the aluminum alloy part on the surface is removed by etching with a NaOH solution, electroless Ni—P plating is performed, and a plating layer having a thickness shown in Table 4 is formed on the aluminum alloy. As a result of 10-field image analysis of an area of 0.2 mm x 0.2 mm at random, an SEM photograph with a magnification of 50 times confirmed that 85% of the entire surface had a structure with exposed ceramic particles did. Table 4 shows physical property values of the obtained LED mounting substrate material. Table 4 shows the results of the same evaluation as in Example 1.

実施例18
窒化アルミニウム粉末(平均粒子径2μm)2880g、酸化イットリウム粉末(信越レア・アース社製、UUグレード、平均粒子径1μm)120g、及び成形バインダー(メチルセルロース)150g、純水150gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
Example 18
Weigh out 2880 g of aluminum nitride powder (average particle size 2 μm), 120 g of yttrium oxide powder (manufactured by Shin-Etsu Rare Earth, UU grade, average particle size 1 μm), 150 g of molded binder (methylcellulose), and 150 g of pure water, and mix by stirring. After mixing with a machine for 30 minutes, it was press-molded into a cylindrical shape having a size of Φ55 mm × 110 mm at a surface pressure of 10 MPa, and then CIP-molded at a molding pressure of 100 MPa to produce a compact.

得られた成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、窒素雰囲気下、温度1780℃で4時間焼成して、気孔率が22%のプリフォームを得た。得られたプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×100mmの形状に加工した。得られたプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。3点曲げ強度は90MPaであった。 The obtained molded body was degreased at a temperature of 600 ° C. for 2 hours in an air atmosphere and then baked for 4 hours at a temperature of 1780 ° C. in a nitrogen atmosphere to obtain a preform having a porosity of 22%. The obtained preform was processed into a shape having an outer dimension of Φ52 mm × 100 mm using a diamond grindstone at a machining center. From the obtained preform, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. The three-point bending strength was 90 MPa.

次に、得られたプリフォームを、アルミニウム合金の代わりに純アルミニウムを使用した以外は、実施例1と同様の方法で処理してΦ52mm×100mm形状のLED搭載用基板材料を得た。得られたLED搭載用基板材料より、実施例1と同様に試験体を作製し特性評価を行った。 Next, the obtained preform was processed in the same manner as in Example 1 except that pure aluminum was used in place of the aluminum alloy, to obtain a substrate material for LED mounting having a shape of Φ52 mm × 100 mm. A test body was produced from the obtained LED mounting substrate material in the same manner as in Example 1, and the characteristics were evaluated.

次に、LED搭載用基板材料を、円筒研削盤でダイヤモンドの砥石を用いてΦ50.8mm×100mmの円柱形状に外周加工を行った後、実施例1と同様にして板厚0.15mmに加工した。得られた円板状のLED搭載用基板材料は、ラップ盤でダイヤモンドの砥粒を用いて板厚0.1mmまで研磨加工を行ってLED搭載用基板材料基板を作製した。 Next, the substrate material for LED mounting was processed into a cylindrical shape of Φ50.8 mm × 100 mm using a diamond grinder with a cylindrical grinder, and then processed into a plate thickness of 0.15 mm in the same manner as in Example 1. did. The obtained disk-shaped LED mounting substrate material was polished to a plate thickness of 0.1 mm using diamond abrasive grains on a lapping machine to produce an LED mounting substrate material substrate.

次に、このLED搭載用基板材料の表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解Ni―Pめっきを行い、アルミニウム合金上に表4に記載の厚のめっき層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の78%の面積が炭化珪素が露出した構造であることを確認した。得られたLED搭載用基板材料の物性値を表4に示す。また、実施例1と同様の評価を行った結果を表4に示す。 Next, after cleaning the surface of this LED mounting substrate material, the aluminum alloy part on the surface is removed by etching with a NaOH solution, electroless Ni—P plating is performed, and a plating layer having a thickness shown in Table 4 is formed on the aluminum alloy. As a result of analyzing 10 fields of view of a 0.2mm x 0.2mm area randomly in an SEM photograph with a magnification of 50 times, it was confirmed that 78% of the entire surface had a structure in which silicon carbide was exposed. did. Table 4 shows physical property values of the obtained LED mounting substrate material. Table 4 shows the results of the same evaluation as in Example 1.

実施例19
窒化珪素粉末(電気化学工業社製、NP−200、平均粒子径:1μm)2790g、酸化イットリウム粉末(平均粒子径:1μm)150g、酸化マグネシウム粉末(岩谷化学社製、MJ−30、平均粒子径:1μm)60gを秤取し、攪拌混合機で30分間混合した後、Φ55mm×10mmの寸法の円板状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を作製した。
Example 19
2790 g of silicon nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., NP-200, average particle size: 1 μm), 150 g of yttrium oxide powder (average particle size: 1 μm), magnesium powder (MJ-30, manufactured by Iwatani Chemical Co., Ltd.) : 1μm) Weighing 60g, mixing with a stirrer / mixer for 30 minutes, press-molding it into a disk with a size of Φ55mm × 10mm at a surface pressure of 10MPa, then CIP molding at a molding pressure of 100MPa to produce a compact did.

得られた成形体を、0.9MPaの窒素加圧雰囲気下、温度1880℃で4時間焼成して、気孔率が13%のプリフォームを得た。得られたプリフォームは、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×5mmの形状に加工した。得られたプリフォームより、研削加工により3点曲げ強度測定用試験体(3mm×4mm×40mm)を作製し、3点曲げ強度を測定した。その結果、3点曲げ強度が、150MPaであった。 The obtained molded body was baked for 4 hours at a temperature of 1880 ° C. in a nitrogen-pressurized atmosphere of 0.9 MPa to obtain a preform having a porosity of 13%. The obtained preform was processed into a shape with an outer dimension of Φ52 mm × 5 mm using a diamond grindstone at a machining center. From the obtained preform, a three-point bending strength measurement specimen (3 mm × 4 mm × 40 mm) was prepared by grinding, and the three-point bending strength was measured. As a result, the three-point bending strength was 150 MPa.

次に、得られたプリフォームを実施例1と同様の方法で処理してΦ52mm×10mm形状のLED搭載用基板材料を得た。得られたLED搭載用基板材料より、実施例1と同様に試験体を作製し特性評価を行った。 Next, the obtained preform was processed in the same manner as in Example 1 to obtain an LED mounting substrate material having a shape of Φ52 mm × 10 mm. A test body was produced from the obtained LED mounting substrate material in the same manner as in Example 1, and the characteristics were evaluated.

得られたLED搭載用基板材料を、ウォータージェット加工機でΦ50.8mm×5mmの円板形状に外周加工を行った。次に、平面研削盤で#230のダイヤモンド砥石を用いて板厚0.22mmの円板形状に研削加工後、#800のダイヤモンド砥石を用いて板厚0.2mmまで研削加工を行ってLED搭載用基板を作製した。 The obtained LED mounting substrate material was subjected to peripheral processing into a disk shape of Φ50.8 mm × 5 mm with a water jet processing machine. Next, use a # 230 diamond grindstone with a surface grinder to grind into a disk shape with a plate thickness of 0.22 mm, then use a # 800 diamond grindstone to grind to a plate thickness of 0.2 mm and mount the LED A substrate was prepared.

次に、このLED搭載用基板材料の表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解Ni―Pめっきを行い、アルミニウム合金上に表4記載の厚のめっき層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の87%の面積がセラミックス粒子が露出した構造であることを確認した。得られたLED搭載用基板材料の物性値を表4に示す。また、実施例1と同様の評価を行った結果を表4に示す。 Next, after cleaning the surface of the LED mounting substrate material, the aluminum alloy portion on the surface is removed by etching with a NaOH solution, electroless Ni-P plating is performed, and a plating layer having a thickness described in Table 4 is formed on the aluminum alloy. As a result of 10-field image analysis of an area of 0.2 mm × 0.2 mm randomly formed on an SEM photograph at a magnification of 50 times, it was confirmed that 87% of the entire surface had a structure in which ceramic particles were exposed. . Table 4 shows physical property values of the obtained LED mounting substrate material. Table 4 shows the results of the same evaluation as in Example 1.

実施例20
ダイヤモンド粉末A(Diamond Innovations社製、MBG−600、平均粒子径:120μm)7gとダイヤモンド粉末B(Diamond Innovations社製、MBG−600、平均粒子径:15μm)3gを、アルミナ製の乳鉢で10分間混合した後、外形寸法70mm×70mm×20mm(内径寸法Φ52.5mm×20mm)の筒状の黒鉛治具(1)に、外形寸法Φ52.4mm×9mmの黒鉛治具(2)を挿入した後、ダイヤモンドの混合粉末10gを充填し、更に、ダイヤモンドの混合粉末の上面に黒鉛治具(2)を挿入して構造体とした。次に、70mm×70mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、この構造体を、離型板を挟んで積層し、上下に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。
Example 20
7 g of diamond powder A (Diamond Innovations, MBG-600, average particle size: 120 μm) and 3 g of diamond powder B (Diamond Innovations, MBG-600, average particle size: 15 μm) for 10 minutes in an alumina mortar. After mixing, after inserting a graphite jig (2) having an outer dimension Φ52.4 mm × 9 mm into a cylindrical graphite jig (1) having an outer dimension 70 mm × 70 mm × 20 mm (inner diameter Φ52.5 mm × 20 mm) Then, 10 g of the diamond mixed powder was filled, and a graphite jig (2) was further inserted on the upper surface of the diamond mixed powder to obtain a structure. Next, a release plate is prepared by applying a graphite release material to a 70 mm × 70 mm × 0.8 mmt stainless steel plate, and this structure is laminated with the release plate interposed therebetween, and an iron plate having a thickness of 12 mm is disposed above and below. And it connected with eight bolts of M10, and it was set as one laminated body.

次に、この積層体を実施例1と同様の方法で処理して、70mm×70mm×20mmの形状で周囲が黒鉛治具に囲まれたLED搭載用基板材料を得た。得られたLED搭載用基板材料は、黒鉛治具に囲まれた構造となっており、アルミニウム−ダイヤモンドからなるLED搭載用基板材料が露出するまで、両主面側(70mm×70mm)より、平面研削盤でダイヤモンド砥石を用いて研削加工を行い、70mm×70mm×2mmtの板状形状に加工した。次に、ウォータージェット加工機で、Φ50.8mm×2mmの円板形状に外周加工を行った。 Next, this laminate was processed in the same manner as in Example 1 to obtain an LED mounting substrate material having a shape of 70 mm × 70 mm × 20 mm and surrounded by a graphite jig. The obtained LED mounting substrate material has a structure surrounded by a graphite jig and is flat from both main surface sides (70 mm × 70 mm) until the LED mounting substrate material made of aluminum-diamond is exposed. Grinding was performed using a diamond grindstone in a grinder, and the plate was processed into a plate shape of 70 mm × 70 mm × 2 mmt. Next, the outer periphery was processed into a disk shape of Φ50.8 mm × 2 mm with a water jet processing machine.

次に、得られたLED搭載用基板材料より、研削加工により熱膨張係数測定用試験体(2mm×3mm×10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(2mm×4mm×40mm)、体積固有抵抗測定用試験体(35mm×35mm×2mm)を作製した。それぞれの試験体を用いて、実施例1と同様にして評価を行った。 Next, from the obtained LED mounting substrate material, a thermal expansion coefficient measurement specimen (2 mm × 3 mm × 10 mm), a thermal conductivity measurement specimen (25 mm × 25 mm × 1 mm), three-point bending strength by grinding. A test specimen for measurement (2 mm × 4 mm × 40 mm) and a test specimen for measuring volume resistivity (35 mm × 35 mm × 2 mm) were prepared. Evaluation was performed in the same manner as in Example 1 using each specimen.

得られたLED搭載用基板材料を、平面研削盤で#230のダイヤモンド砥石を用いて板厚0.16mmの円板形状に研削加工後、#400のダイヤモンド砥石を用いて板厚0.15mmでまで研削加工を行ってLED搭載用基板材料基板を作製した。 The obtained LED mounting substrate material was ground into a disk shape of 0.16 mm thickness using a # 230 diamond grindstone with a surface grinder, and then with a # 400 diamond grindstone thickness of 0.15 mm. A substrate material substrate for mounting LED was prepared by grinding up to.

次に、このLED搭載用基板材料の表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解Ni―Pめっきを行い、アルミニウム合金上に表4記載の厚のめっき層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の59%の面積がダイヤモンド粒子が露出した構造であることを確認した。得られたLED搭載用基板材料の物性値を表4に示す。また、実施例1と同様の評価を行った結果を表4に示す。 Next, after cleaning the surface of the LED mounting substrate material, the aluminum alloy portion on the surface is removed by etching with a NaOH solution, electroless Ni-P plating is performed, and a plating layer having a thickness described in Table 4 is formed on the aluminum alloy. As a result of forming an SEM photograph of 50 times magnification and analyzing an image of 10 fields of view of a 0.2 mm × 0.2 mm area at random, it was confirmed that 59% of the entire surface had a structure in which diamond particles were exposed. . Table 4 shows physical property values of the obtained LED mounting substrate material. Table 4 shows the results of the same evaluation as in Example 1.

実施例21
100mm×100mm×0.8mmtのステンレス板に黒鉛離型材を塗布して離型板を作製し、形状100mm×100mm×100mmの等方性黒鉛成形体(東海カーボン社製G458/気孔率:13体積%)を、離型板を挟んで両側に12mm厚みの鉄板を配置して、M10のボルト8本で連結して一つの積層体とした。次に、この積層体を実施例1と同様の方法で処理して100mm×100mm×100mmの形状のLED搭載用基板材料を得た。得られたLED搭載用基板材料より、実施例1と同様に試験体を作製し特性評価を行った。
Example 21
A release plate is prepared by applying a graphite release material to a 100 mm × 100 mm × 0.8 mmt stainless plate, and isotropic graphite molded body having a shape of 100 mm × 100 mm × 100 mm (G458 manufactured by Tokai Carbon Co., Ltd./porosity: 13 volumes) %) Was placed on both sides of a release plate, and 12 mm thick iron plates were arranged and connected with eight M10 bolts to form a single laminate. Next, this laminate was processed in the same manner as in Example 1 to obtain an LED mounting substrate material having a shape of 100 mm × 100 mm × 100 mm. A test body was produced from the obtained LED mounting substrate material in the same manner as in Example 1, and the characteristics were evaluated.

得られたLED搭載用基板材料は、ダイヤモンドソーで切断加工後、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×100mmの円柱形状に外周加工を行った。得られたLED発光素子用円柱形状のLED搭載用基板材料を、マルチワイヤーソーでダイヤモンド砥粒を用いて、切断切り込み速度0.5mm/minで板厚0.4mmの円板状に切断加工した。得られたLED発光素子用円板状のLED搭載用基板材料を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.3mmに研削加工を行ってLED搭載用基板とした。 The obtained LED mounting substrate material was cut with a diamond saw and then subjected to outer periphery processing into a cylindrical shape of Φ50.8 mm × 100 mm using a diamond grindstone with a cylindrical grinder. The obtained cylindrical LED mounting substrate material for LED light-emitting elements was cut into a disk shape having a plate thickness of 0.4 mm at a cutting cutting speed of 0.5 mm / min using diamond abrasive grains with a multi-wire saw. . The obtained disk-shaped LED mounting substrate material for LED light-emitting elements was ground to a plate thickness of 0.3 mm using a # 600 diamond grindstone with a double-sided grinder to obtain an LED mounting substrate.

次に、このLED搭載用基板材料の表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解Ni―Pめっきを行い、アルミニウム合金上に表4に記載の厚のめっき層を形成し、倍率50倍のSEM写真を0.2mm×0.2mmのエリアを無作為に10視野画像解析した結果、全表面の87%の面積が黒鉛が露出した構造であることを確認した。得られたLED搭載用基板材料の物性値を表4に示す。また、実施例1と同様の評価を行った結果を表4に示す。 Next, after cleaning the surface of this LED mounting substrate material, the aluminum alloy part on the surface is removed by etching with a NaOH solution, electroless Ni—P plating is performed, and a plating layer having a thickness shown in Table 4 is formed on the aluminum alloy. As a result of 10-field image analysis of an area of 0.2 mm × 0.2 mm at random with a 50 × magnification SEM photograph, it was confirmed that 87% of the entire surface had a structure with exposed graphite. . Table 4 shows physical property values of the obtained LED mounting substrate material. Table 4 shows the results of the same evaluation as in Example 1.

1 単結晶成長基板
2 n型III−V族半導体のバッファー層
3 無機化合物の表面コーティング層
4 透明導電層
5 LED
51 n型III−V族半導体層
52 発光層
53 p型III−V族半導体層
6 反射層
7 反射層6表面の金属層
8 LED搭載用基板9表面の金属層
9 LED搭載用基板
DESCRIPTION OF SYMBOLS 1 Single crystal growth substrate 2 Buffer layer of n-type III-V semiconductor 3 Surface coating layer of inorganic compound 4 Transparent conductive layer 5 LED
51 n-type III-V group semiconductor layer 52 light emitting layer 53 p-type group III-V semiconductor layer 6 reflective layer 7 metal layer on the surface of the reflective layer 6 8 metal layer on the surface of the LED mounting substrate 9 9 substrate for LED mounting

Claims (14)

炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子からなり、気孔率が10〜50体積%、3点曲げ強度が50MPa以上である多孔体に、溶湯鍛造法にて含浸圧力30MPa以上でアルミニウム合金を含浸し、板厚0.05〜0.5mmで、表面粗さ(Ra)0.01〜0.5μmに、切断及び/又は研削加工した後、表面のアルミニウム合金を0.5〜10μmエッチング除去し、
Ni,Co,Pd,Cu,Ag,Au,Pt,Snの中から選ばれる1種類以上の金属層を厚みが0.5〜10μmとなるように形成し、且つ、全表面の50%〜90%の面積が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上の粒子が露出してなることを特徴とするLED搭載用基板。
Forging a porous body made of one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, having a porosity of 10 to 50% by volume and a three-point bending strength of 50 MPa or more. After impregnating an aluminum alloy with an impregnation pressure of 30 MPa or more, cutting and / or grinding to a surface thickness (Ra) of 0.01 to 0.5 μm with a plate thickness of 0.05 to 0.5 mm, Etching and removing the aluminum alloy by 0.5-10 μm
One or more metal layers selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn are formed to have a thickness of 0.5 to 10 μm, and 50% to 90% of the entire surface. % Is a substrate for mounting an LED, wherein one or more kinds of particles selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite are exposed.
3点曲げ強度が50MPa以上であることを特徴とする請求項1記載のLED搭載用基板。   The LED mounting substrate according to claim 1, wherein the three-point bending strength is 50 MPa or more. 温度25℃の熱伝導率が150〜500W/mKであることを特徴とする請求項1又は2に記載のLED搭載用基板。 The board | substrate for LED mounting of Claim 1 or 2 whose heat conductivity of the temperature of 25 degreeC is 150-500 W / mK. 温度25℃〜150℃の線熱膨張係数が4〜9×10-6/Kであることを特徴とする請求項1〜3のいずれかに記載のLED搭載用基板。 4. The LED mounting substrate according to claim 1, wherein the linear thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. is 4 to 9 × 10 −6 / K. 体積固有抵抗が10-9〜10-5Ω・mであることを特徴とする請求項1〜4のいずれかに記載のLED搭載用基板。 5. The LED mounting substrate according to claim 1, wherein the volume resistivity is 10 −9 to 10 −5 Ω · m. 温度25℃の5規定のHCl水溶液又は75℃の10規定のNaOH水溶液に1分間浸漬したときに、少なくとも一面の質量減少が0.2mg/cm以下であることを特徴とする請求項1〜5のいずれかに記載のLED搭載用基板。 The mass reduction of at least one surface is 0.2 mg / cm 2 or less when immersed in a 5N HCl aqueous solution at a temperature of 25 ° C or a 10N NaOH aqueous solution at 75 ° C for 1 minute. The board | substrate for LED mounting in any one of 5. 請求項1〜6のいずれかに記載のLED搭載用基板(9)の少なくとも一面に、金属層(8)又は金属層(8)と金属層(7)、反射層(6)、LED素子(5)及び透明導電層(4)を順次有しており、この透明導電層(4)に電極(図示せず)が取り付けられてなることを特徴とするLED搭載構造体。   A metal layer (8) or a metal layer (8) and a metal layer (7), a reflective layer (6), an LED element (at least on one surface of the LED mounting substrate (9) according to any one of claims 1 to 6. 5) and a transparent conductive layer (4), and an LED mounting structure comprising an electrode (not shown) attached to the transparent conductive layer (4). 以下の工程を順次経ることを特徴とする請求項7記載のLED搭載構造体の製造方法。
(ア)単結晶成長基板(1)の表面にn型III−V族半導体のバッファー層(2)又は無機化合物の表面コーティグ層(3)を形成させた後、LED(5)をエピタキシャル成長させる工程
(イ)LED(5)のp型III−V族半導体層(53)の表面に金属層の反射層(6)を、必要に応じて更にこの反射層(6)の表面に金属層(7)を形成する一方、LED搭載用基板(9)の表面には金属層(8)を形成する工程
(ウ)上記反射層(6)又は上記金属層(7)と、上記金属層(8)とを接面させ、加熱して接合体を製造する工程
(エ)上記単結晶成長基板(1)と上記バッファー層(2)又は上記表面コーティグ層(3)を除去する工程
(オ)露出したLED(5)のn型III−V族半導体層(51)表面を加工してから、透明導電層(4)とこの透明導電層(4)に電極(図示せず)とを形成させた後、所望形状に切断する工程
8. The method for manufacturing an LED mounting structure according to claim 7, wherein the following steps are sequentially performed.
(A) Step of epitaxially growing the LED (5) after forming the buffer layer (2) of the n-type III-V semiconductor or the surface coating layer (3) of the inorganic compound on the surface of the single crystal growth substrate (1) (A) A reflective layer (6) of a metal layer is provided on the surface of the p-type III-V group semiconductor layer (53) of the LED (5), and a metal layer (7) is further provided on the surface of the reflective layer (6) as necessary. ), While forming the metal layer (8) on the surface of the LED mounting substrate (9). (C) The reflective layer (6) or the metal layer (7) and the metal layer (8). And (d) exposing the single crystal growth substrate (1) and the buffer layer (2) or the surface coating layer (3). After processing the surface of the n-type III-V semiconductor layer (51) of the LED (5), A step of forming a transparent conductive layer (4) and an electrode (not shown) on the transparent conductive layer (4) and then cutting the electrode into a desired shape
単結晶成長基板(1)の材質が、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siのいずれかであることを特徴とする請求項8に記載のLED搭載構造体の製造方法。   The method for manufacturing an LED mounting structure according to claim 8, wherein the material of the single crystal growth substrate (1) is any one of single crystal sapphire, single crystal silicon carbide, single crystal GaAs, and single crystal Si. . 表面コーティグ層(3)の材質が、AlN、SiC、GaN及びGaAsから選ばれた少なくとも一種の無機化合物であることを特徴とする請求項8又は9に記載のLED搭載構造体の製造方法。   The method for manufacturing an LED mounting structure according to claim 8 or 9, wherein the material of the surface coating layer (3) is at least one inorganic compound selected from AlN, SiC, GaN and GaAs. バッファー層(2)及びLED(5)を構成するIII−V族半導体が、GaN、GaAs、GaPのいずれかであることを特徴とする請求項8〜10のいずれかに記載のLED搭載構造体の製造方法。   The LED mounting structure according to any one of claims 8 to 10, wherein the group III-V semiconductor constituting the buffer layer (2) and the LED (5) is any one of GaN, GaAs, and GaP. Manufacturing method. 反射層(6)、金属層(7)及び金属層(8)の材質が、インジウム、アルミニウム、金、銀及びこれらの合金から選ばれた少なくとも1種の金属であることを特徴とする請求項8〜11のいずれかに記載のLED搭載構造体の製造方法。   The material of the reflective layer (6), metal layer (7) and metal layer (8) is at least one metal selected from indium, aluminum, gold, silver and alloys thereof. The manufacturing method of the LED mounting structure in any one of 8-11. 透明導電層(4)の材質が、酸化インジウム錫、酸化カドミウム錫、酸化インジウム亜鉛、酸化アルミニウム亜鉛、酸化錫亜鉛、酸化錫アンチモニーから選ばれた少なくとも1種の金属であることを特徴とする請求項8〜12のいずれかに記載のLED搭載構造体の製造方法。   The material of the transparent conductive layer (4) is at least one metal selected from indium tin oxide, cadmium tin oxide, indium zinc oxide, aluminum zinc oxide, zinc zinc oxide, and tin antimony oxide. Item 13. A method for manufacturing an LED mounting structure according to any one of Items 8 to 12. 切断を、レーザー照射、エッチング及び研削から選ばれた少なくとも1つの方法で行うことを特徴とする請求項8〜13のいずれかに記載のLED搭載構造体の製造方法。
The method for manufacturing an LED mounting structure according to any one of claims 8 to 13, wherein the cutting is performed by at least one method selected from laser irradiation, etching, and grinding.
JP2009197990A 2009-08-28 2009-08-28 LED mounting structure, manufacturing method thereof, and LED mounting substrate Active JP5296638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197990A JP5296638B2 (en) 2009-08-28 2009-08-28 LED mounting structure, manufacturing method thereof, and LED mounting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197990A JP5296638B2 (en) 2009-08-28 2009-08-28 LED mounting structure, manufacturing method thereof, and LED mounting substrate

Publications (2)

Publication Number Publication Date
JP2011049437A JP2011049437A (en) 2011-03-10
JP5296638B2 true JP5296638B2 (en) 2013-09-25

Family

ID=43835467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197990A Active JP5296638B2 (en) 2009-08-28 2009-08-28 LED mounting structure, manufacturing method thereof, and LED mounting substrate

Country Status (1)

Country Link
JP (1) JP5296638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840786B1 (en) * 2016-06-09 2018-03-21 광운대학교 산학협력단 Manufaturing method for porous GaN using Au nano paticles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013038964A1 (en) * 2011-09-13 2015-03-26 電気化学工業株式会社 Clad material for LED light-emitting element holding substrate and manufacturing method thereof
JP6497616B2 (en) * 2015-03-26 2019-04-10 株式会社アライドマテリアル Heat spreader

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150124A (en) * 1996-03-21 1998-06-02 Furukawa Electric Co Ltd:The Heat generating semiconductor device mounting composite substrate and semiconductor device using the substrate
JP2000336438A (en) * 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
JP2001121251A (en) * 1999-10-26 2001-05-08 Kubota Corp Metal-ceramics composite body
JP2002368168A (en) * 2001-06-13 2002-12-20 Hitachi Ltd Composite member for semiconductor device, insulation- type semiconductor device or non-insulation type semiconductor device using the same
JP2004091862A (en) * 2002-08-30 2004-03-25 Naigai Technos:Kk Composite material with high thermal conductivity, and manufacturing method therefor
JP4110524B2 (en) * 2003-03-20 2008-07-02 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
US7282265B2 (en) * 2003-05-16 2007-10-16 Hitachi Metals, Ltd. Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
JP2005142532A (en) * 2003-10-14 2005-06-02 Matsushita Electric Ind Co Ltd Manufacturing method of nitride semiconductor device
JP4244210B2 (en) * 2004-09-08 2009-03-25 電気化学工業株式会社 Aluminum-ceramic composite and method for producing the same
JP2007005361A (en) * 2005-06-21 2007-01-11 Sharp Corp Light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840786B1 (en) * 2016-06-09 2018-03-21 광운대학교 산학협력단 Manufaturing method for porous GaN using Au nano paticles

Also Published As

Publication number Publication date
JP2011049437A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5713684B2 (en) Composite material substrate for LED light emitting device, method for producing the same, and LED light emitting device
JP5789512B2 (en) LED mounting wafer, manufacturing method thereof, and LED mounting structure using the wafer
KR101986860B1 (en) Heat dissipating component for semiconductor element
JP2021059782A (en) Heat radiation component for semiconductor element
JP7000347B2 (en) Heat dissipation parts for semiconductor devices
JP6621736B2 (en) Aluminum-diamond composite and heat dissipation component using the same
JP5296638B2 (en) LED mounting structure, manufacturing method thereof, and LED mounting substrate
JP6105262B2 (en) Aluminum-diamond composite heat dissipation parts
JP2012038948A (en) Metal matrix composite substrate for led light emitting device, method for manufacturing the same, and led light emitting device
JP2010109081A (en) Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
JP5881280B2 (en) Manufacturing method of LED light emitting element holding substrate and manufacturing method of LED light emitting element
TWI491082B (en) Method for manufacturing a led chip bonding body
JP2010267892A (en) Led mounting structure, method of manufacturing the same, and led mounting substrate
JP2013012623A (en) Led light-emitting element holding substrate and manufacturing method thereof and led light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R151 Written notification of patent or utility model registration

Ref document number: 5296638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250