JP5293474B2 - Refrigeration cycle apparatus and control method of refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus and control method of refrigeration cycle apparatus Download PDF

Info

Publication number
JP5293474B2
JP5293474B2 JP2009168141A JP2009168141A JP5293474B2 JP 5293474 B2 JP5293474 B2 JP 5293474B2 JP 2009168141 A JP2009168141 A JP 2009168141A JP 2009168141 A JP2009168141 A JP 2009168141A JP 5293474 B2 JP5293474 B2 JP 5293474B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
indoor
pipe
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009168141A
Other languages
Japanese (ja)
Other versions
JP2011021838A (en
Inventor
浩昭 中宗
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009168141A priority Critical patent/JP5293474B2/en
Publication of JP2011021838A publication Critical patent/JP2011021838A/en
Application granted granted Critical
Publication of JP5293474B2 publication Critical patent/JP5293474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device and a method of controlling the refrigerating cycle device capable of promptly recovering a refrigerant when refrigerant leakage is detected. <P>SOLUTION: This refrigerating cycle device includes a liquid pipe 4 as a pipe connecting an indoor heat exchanger 10 and an expansion valve 9, a gas pipe 3 as a pipe connecting a compressor 5 and the indoor heat exchanger 10, and a having a cross-sectional area of a flow channel larger than that of the liquid pipe 4, an inlet valve 14 disposed in a pipe at an inlet side of the compressor 5, a gas pipe valve 13 disposed in the gas pipe 3, an indoor leakage detection sensor 12 disposed indoors to detect the refrigerant leakage, and a control device closing the gas pipe valve 13 when the indoor leakage detection sensor 12 detects the refrigerant leakage, and closes the inlet valve 14 after the refrigerant at an indoor unit 1 side is recovered in the gas pipe 3 through the liquid pipe 4. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、冷媒を用いて空調または給湯行う冷凍サイクル装置および冷凍サイクル装置の制御方法に関するものである。   The present invention relates to a refrigeration cycle apparatus that performs air conditioning or hot water supply using a refrigerant, and a method for controlling the refrigeration cycle apparatus.

冷媒を用いて空調または給湯を行う冷凍サイクル装置においては、室内に冷媒が漏洩すると、居住環境が悪化するおそれがあり、室外に冷媒が漏洩すると、地球温暖化係数の高い冷媒を用いている場合には、当該冷媒が大気中に放出されることになるので、冷媒の漏洩量をできるだけ低減する必要がある。   In a refrigeration cycle apparatus that performs air conditioning or hot water supply using a refrigerant, if the refrigerant leaks into the room, the living environment may deteriorate, and if the refrigerant leaks outside, a refrigerant with a high global warming potential is used. Therefore, since the refrigerant is released into the atmosphere, it is necessary to reduce the leakage amount of the refrigerant as much as possible.

従来の冷凍サイクル装置においては、室内ユニットと室外ユニットとをガス配管および液配管で冷媒回路を形成し、各配管途中にガス配管開閉弁および液配管開閉弁を設け、冷媒の漏洩を検知する漏洩検知装置が冷媒の漏洩を検知したときに液配管開閉弁を閉じ、冷媒をガス配管を介して室外ユニットに回収した後、ガス配管開閉弁を閉じるものがある(例えば、特許文献1)。   In a conventional refrigeration cycle apparatus, a refrigerant circuit is formed by gas piping and liquid piping between an indoor unit and an outdoor unit, and a gas piping opening / closing valve and a liquid piping opening / closing valve are provided in the middle of each piping to detect leakage of the refrigerant. There is one that closes the liquid pipe on / off valve when the detection device detects leakage of the refrigerant, closes the gas pipe on / off valve after collecting the refrigerant in the outdoor unit via the gas pipe (for example, Patent Document 1).

特開平5−118720号公報(第4頁、図1)Japanese Patent Laid-Open No. 5-118720 (page 4, FIG. 1)

上記のような冷凍サイクル装置においては、ガス管側に比べて液管側に多くの冷媒が滞留しているので、冷媒の漏洩を検知したときにガス管を介して冷媒を回収すると、速やかに回収できないという問題がある。   In the refrigeration cycle apparatus as described above, since a larger amount of refrigerant stays on the liquid pipe side than on the gas pipe side, when refrigerant is recovered through the gas pipe when leakage of the refrigerant is detected, There is a problem that it cannot be recovered.

本発明は、かかる問題点を解決するためになされたものであり、冷媒の漏洩を検知したときに速やかに冷媒を回収できる冷凍サイクル装置を提供することを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a refrigeration cycle apparatus that can quickly collect a refrigerant when leakage of the refrigerant is detected.

この発明による冷凍サイクル装置は、冷媒を圧縮する圧縮機、前記冷媒と室内の空気とを熱交換する室内熱交換器、冷媒を膨張する膨張弁および前記冷媒と室外の空気とを熱交換する室外熱交換器が配管で接続され、前記室内熱交換器は室内に設置される室内機に設けられ、前記圧縮機、前記膨張弁および前記室外熱交換器は室外に設置される室外機に設けられる冷凍サイクル装置において、前記室内熱交換器と前記膨張弁との間を接続する配管である液管、前記圧縮機と前記室内熱交換器との間を接続する配管であり、前記液管より大きい流路断面積を有するガス管、前記圧縮機の吸入側の配管に設けられる吸入弁、前記ガス管に設けられるガス管弁、前記室内に設けられ前記冷媒の漏洩を検知する室内漏洩検知センサ、前記室内漏洩検知センサが前記冷媒の漏洩を検知した場合に、前記ガス管弁を閉じ、前記室内機側の冷媒を前記液管を介して前記ガス管に回収した後に前記吸入弁を閉じる制御装置を備えたものである。   The refrigeration cycle apparatus according to the present invention includes a compressor that compresses refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, an expansion valve that expands refrigerant, and an outdoor that exchanges heat between the refrigerant and outdoor air. A heat exchanger is connected by piping, the indoor heat exchanger is provided in an indoor unit installed indoors, and the compressor, the expansion valve, and the outdoor heat exchanger are provided in an outdoor unit installed outdoor. In the refrigeration cycle apparatus, a liquid pipe that is a pipe that connects the indoor heat exchanger and the expansion valve, a pipe that connects the compressor and the indoor heat exchanger, and is larger than the liquid pipe A gas pipe having a flow path cross-sectional area, a suction valve provided in a pipe on the suction side of the compressor, a gas pipe valve provided in the gas pipe, an indoor leak detection sensor provided in the room and detecting leakage of the refrigerant, Indoor leak detection A controller that closes the gas pipe valve when the sensor detects leakage of the refrigerant, and closes the suction valve after the refrigerant on the indoor unit side is collected in the gas pipe via the liquid pipe It is.

また、この発明による冷凍サイクル装置の制御方法は、冷媒を圧縮する圧縮機、前記冷媒と室内の空気とを熱交換する室内熱交換器、冷媒を膨張する膨張弁および前記冷媒と室外の空気とを熱交換する室外熱交換器が配管で接続され、前記室内熱交換器は室内に設置される室内機に設けられ、前記圧縮機、前記膨張弁および前記室外熱交換器は室外に設置される室外機に設けられる冷凍サイクル装置の制御方法において、前記冷凍サイクル装置は、前記室内熱交換器と前記膨張弁との間を接続する配管である液管、前記圧縮機と前記室内熱交換器との間を接続する配管であり、前記液管より大きい流路断面積を有するガス管、前記圧縮機の吸入側の配管に設けられる吸入弁、前記ガス管に設けられるガス管弁、および前記室内に設けられ前記冷媒の漏洩を検知する室内漏洩検知センサを備え、前記制御装置は、前記室内漏洩検知センサが前記冷媒の漏洩を検知した場合に、前記ガス管弁を閉じ、前記室内機側の冷媒を前記液管を介して前記ガス管に回収した後に前記吸入弁を閉じるものである。   The control method of the refrigeration cycle apparatus according to the present invention includes a compressor that compresses a refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, an expansion valve that expands the refrigerant, and the refrigerant and outdoor air. An outdoor heat exchanger for exchanging heat is connected by piping, the indoor heat exchanger is provided in an indoor unit installed indoors, and the compressor, the expansion valve, and the outdoor heat exchanger are installed outdoor. In the control method of the refrigeration cycle apparatus provided in the outdoor unit, the refrigeration cycle apparatus includes a liquid pipe that is a pipe connecting the indoor heat exchanger and the expansion valve, the compressor, and the indoor heat exchanger. A gas pipe having a larger flow passage cross-sectional area than the liquid pipe, a suction valve provided in a pipe on the suction side of the compressor, a gas pipe valve provided in the gas pipe, and the chamber Provided in the above An indoor leakage detection sensor for detecting a leakage of the medium, and the control device closes the gas pipe valve when the indoor leakage detection sensor detects the leakage of the refrigerant, and causes the refrigerant on the indoor unit side to pass through the liquid. The suction valve is closed after being collected in the gas pipe via a pipe.

この発明の冷凍サイクル装置および冷凍サイクル装置の制御方法によれば、冷媒の漏洩を検知したときに速やかに冷媒を回収できる。   According to the refrigeration cycle apparatus and the control method for the refrigeration cycle apparatus of the present invention, the refrigerant can be quickly recovered when the leakage of the refrigerant is detected.

この発明の実施の形態1による冷凍サイクル装置の構成を示す概略図である。It is the schematic which shows the structure of the refrigerating-cycle apparatus by Embodiment 1 of this invention. この発明の実施の形態2による冷凍サイクル装置の構成を示す概略図である。It is the schematic which shows the structure of the refrigerating-cycle apparatus by Embodiment 2 of this invention. この発明の実施の形態3による冷凍サイクル装置の構成を示す概略図である。It is the schematic which shows the structure of the refrigerating-cycle apparatus by Embodiment 3 of this invention. この発明の実施の形態4による冷凍サイクル装置の構成を示す概略図である。It is the schematic which shows the structure of the refrigerating-cycle apparatus by Embodiment 4 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による冷凍サイクル装置の構成を示す概略図である。図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは、明細書の全文において共通することである。
Embodiment 1 FIG.
1 is a schematic diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In the drawings, the same reference numerals are the same or equivalent, and this is common throughout the entire specification.

図1において、冷凍サイクル装置は、室内に設置される室内機1および室外に設置される室外機2を備えている。室内機1には、室内の空気と冷媒とを熱交換する室内熱交換器10および室内熱交換器10に室内の空気を送る室内ファン11が設けられる。室外機2には、室外の空気と冷媒とを熱交換する室外熱交換器7、室外熱交換器7に室外の空気を送る室外ファン8、冷媒を圧縮する圧縮機5、冷媒を膨張する膨張弁9、および暖房運転と冷房運転とで流路を切り替える四方弁6が設けられる。図1の四方弁6において、実線は暖房運転の冷媒回路を示し、破線は冷房運転の冷媒回路を示す。   In FIG. 1, the refrigeration cycle apparatus includes an indoor unit 1 installed indoors and an outdoor unit 2 installed outdoor. The indoor unit 1 is provided with an indoor heat exchanger 10 that exchanges heat between indoor air and refrigerant, and an indoor fan 11 that sends indoor air to the indoor heat exchanger 10. The outdoor unit 2 includes an outdoor heat exchanger 7 that exchanges heat between the outdoor air and the refrigerant, an outdoor fan 8 that sends outdoor air to the outdoor heat exchanger 7, a compressor 5 that compresses the refrigerant, and an expansion that expands the refrigerant. A valve 9 and a four-way valve 6 for switching the flow path between heating operation and cooling operation are provided. In the four-way valve 6 of FIG. 1, a solid line indicates a refrigerant circuit for heating operation, and a broken line indicates a refrigerant circuit for cooling operation.

室内熱交換器10、膨張弁9、室外熱交換器7、四方弁6および圧縮機5は、配管で接続され、冷媒回路を構成している。室内熱交換器10と膨張弁9との間を接続する配管を液管4とし、室内熱交換器10と圧縮機5との間を接続する配管をガス管3とし、冷媒回路の圧力損失を低減するためにガス管3の流路断面積(ここでは、直径)は、液管4の流路断面積(ここでは、直径)に比べて大きくなっている。また、冷凍サイクル装置は、ガス管3の途中に電磁開閉弁であるガス管弁13を設け、圧縮機5の吸入側の配管に電磁開閉弁である吸入弁14を設け、室内機1に冷媒の漏洩を検知する室内漏洩検知センサ12を設けている。また、ガス管弁13は、図1では室内機1側に設置しているが、回収する冷媒量に応じて必要な容積を確保できればよく、室内機1と室外機2との間に設けてもよい。また、通常運転中、ガス管弁13および吸入弁14は、開いた状態になっている。図1には示していないが、冷凍サイクル装置は、圧縮機5、四方弁6、ガス管弁13、吸入弁14、膨張弁9、室外ファン8、室内ファン11および室内漏洩検知センサ12に電気的に接続され、それぞれの機器を制御する制御装置を備えている。   The indoor heat exchanger 10, the expansion valve 9, the outdoor heat exchanger 7, the four-way valve 6 and the compressor 5 are connected by a pipe to constitute a refrigerant circuit. The pipe connecting the indoor heat exchanger 10 and the expansion valve 9 is the liquid pipe 4, the pipe connecting the indoor heat exchanger 10 and the compressor 5 is the gas pipe 3, and the pressure loss of the refrigerant circuit is reduced. In order to reduce, the cross-sectional area (here, the diameter) of the gas pipe 3 is larger than the cross-sectional area (here, the diameter) of the liquid pipe 4. In the refrigeration cycle apparatus, a gas pipe valve 13 that is an electromagnetic on-off valve is provided in the middle of the gas pipe 3, a suction valve 14 that is an electromagnetic on-off valve is provided on the suction side piping of the compressor 5, and the refrigerant is supplied to the indoor unit 1. An indoor leak detection sensor 12 is provided for detecting the leak. Further, although the gas pipe valve 13 is installed on the indoor unit 1 side in FIG. 1, it is sufficient if a necessary volume can be secured according to the amount of refrigerant to be recovered, and it is provided between the indoor unit 1 and the outdoor unit 2. Also good. Further, during normal operation, the gas pipe valve 13 and the suction valve 14 are open. Although not shown in FIG. 1, the refrigeration cycle apparatus is electrically connected to the compressor 5, the four-way valve 6, the gas pipe valve 13, the suction valve 14, the expansion valve 9, the outdoor fan 8, the indoor fan 11, and the indoor leakage detection sensor 12. And a control device for controlling each device.

図1に示す冷凍サイクル装置の通常時の運転動作について説明する。
まず、暖房運転の際の冷凍サイクル装置の動作について説明する。
圧縮機5で圧縮されたガス冷媒は、四方弁6を通り、実線で示すようにガス管3およびガス管弁13を経由して、室内熱交換器10に送られる。室内熱交換器10に送られたガス冷媒は、空気と熱交換し、液化される。室内熱交換器10で液化した冷媒は、液管4を経由して膨張弁9に送られ、膨張弁9で減圧される。膨張弁9で減圧され気液二相となった冷媒は、室外熱交換器7に送られ、空気と熱交換し、気化される。気化した冷媒は、四方弁6および吸入弁14を通り圧縮機5に戻り、上記冷凍サイクルを繰り返す。
The normal operation of the refrigeration cycle apparatus shown in FIG. 1 will be described.
First, the operation of the refrigeration cycle apparatus during the heating operation will be described.
The gas refrigerant compressed by the compressor 5 passes through the four-way valve 6 and is sent to the indoor heat exchanger 10 via the gas pipe 3 and the gas pipe valve 13 as shown by a solid line. The gas refrigerant sent to the indoor heat exchanger 10 exchanges heat with air and is liquefied. The refrigerant liquefied by the indoor heat exchanger 10 is sent to the expansion valve 9 via the liquid pipe 4 and decompressed by the expansion valve 9. The refrigerant that has been depressurized by the expansion valve 9 to become a gas-liquid two-phase is sent to the outdoor heat exchanger 7 to exchange heat with air and to be vaporized. The vaporized refrigerant returns to the compressor 5 through the four-way valve 6 and the suction valve 14, and repeats the refrigeration cycle.

次に、冷房運転の際の冷凍サイクル装置の動作について説明する。
圧縮機5で圧縮されたガス冷媒は、四方弁6を通り、破線で示すように室外熱交換器7に送られる。室外熱交換器7に送られたガス冷媒は、空気と熱交換し、液化される。室外熱交換器7で液化した冷媒は、膨張弁9に送られ、膨張弁9で減圧される。膨張弁9で減圧され気液二相となった冷媒は、液管4を経由して室内熱交換器10に送られ、空気と熱交換し、気化される。気化した冷媒は、ガス管弁13、ガス管3および吸入弁14を通り圧縮機5に戻り、上記冷凍サイクルを繰り返す。
Next, the operation of the refrigeration cycle apparatus during the cooling operation will be described.
The gas refrigerant compressed by the compressor 5 passes through the four-way valve 6 and is sent to the outdoor heat exchanger 7 as indicated by a broken line. The gas refrigerant sent to the outdoor heat exchanger 7 exchanges heat with air and is liquefied. The refrigerant liquefied by the outdoor heat exchanger 7 is sent to the expansion valve 9 and decompressed by the expansion valve 9. The refrigerant that has been depressurized by the expansion valve 9 to become a gas-liquid two-phase is sent to the indoor heat exchanger 10 via the liquid pipe 4, exchanges heat with air, and is evaporated. The vaporized refrigerant returns to the compressor 5 through the gas pipe valve 13, the gas pipe 3, and the suction valve 14, and repeats the refrigeration cycle.

以上に示すとおり、暖房運転の際には、室内熱交換器10の膨張弁9側から液管4内に液冷媒が存在している。また、冷房運転の際には、室内熱交換器10の膨張弁9側から液管4内に気液二相となった冷媒が存在している。一方、ガス管3には、暖房運転および冷房運転のいずれの場合もガス冷媒が存在しており、冷媒の物質量としては、暖房運転および冷房運転のいずれの場合もガス管3よりも液管4の方に多くの冷媒が存在している。   As described above, during the heating operation, liquid refrigerant exists in the liquid pipe 4 from the expansion valve 9 side of the indoor heat exchanger 10. Further, during the cooling operation, the refrigerant that has become a gas-liquid two-phase exists in the liquid pipe 4 from the expansion valve 9 side of the indoor heat exchanger 10. On the other hand, gas refrigerant is present in the gas pipe 3 in both the heating operation and the cooling operation, and the amount of refrigerant is more liquid than the gas pipe 3 in both the heating operation and the cooling operation. There are many refrigerants in the direction of 4.

室内漏洩検知センサ12が冷媒の漏洩を検知した場合の冷凍サイクル装置の動作について、以下に説明する。
(1−1)暖房運転の際、室内漏洩検知センサ12が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12によって冷媒の漏洩が検知されると、制御装置は、ガス管弁13を閉として膨張弁9を全開とする。暖房運転の際に、室内熱交換器10の下流から液管4内に存在している液冷媒は、膨張弁9、室外熱交換器7、吸入弁14および圧縮機5を通り、ガス管3に移動する。室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が所定の値より低くなったと判断した場合、吸入弁14を閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。
The operation of the refrigeration cycle apparatus when the indoor leakage detection sensor 12 detects refrigerant leakage will be described below.
(1-1) When the indoor leakage detection sensor 12 detects refrigerant leakage during heating operation When the refrigerant leakage is detected by the indoor leakage detection sensor 12 installed in the indoor unit 1, the control device The pipe valve 13 is closed and the expansion valve 9 is fully opened. During the heating operation, the liquid refrigerant present in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 passes through the expansion valve 9, the outdoor heat exchanger 7, the suction valve 14 and the compressor 5, and passes through the gas pipe 3. Move to. The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on a signal from a pressure gauge provided on the suction side of the compressor 5. If it is determined that the value is lower than the value, the intake valve 14 is closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and the refrigerant is between the gas pipe valve 13 and the suction valve 14, that is, the part mainly composed of the gas pipe 3. To be recovered.

(1−2)冷房運転の際、室内漏洩検知センサ12が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12によって冷媒の漏洩が検知されると、制御装置は、圧縮機5を停止しガス管弁13を閉とした後、四方弁6を暖房運転に切り替えて膨張弁9を全開にし、圧縮機5を運転する。冷房運転の際に、室内熱交換器10の下流から液管4内に存在している気液二相の冷媒は、膨張弁9、室外熱交換器7、吸入弁14および圧縮機5を通り、ガス管3に移動する。室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が所定の値より低くなったと判断した場合、吸入弁14を閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入側電磁弁14との間、すなわちガス管3を主とする部分に回収される。なお、圧縮機5を一旦停止したが、圧縮機5を停止せず、四方弁6を暖房運転に切り替えるだけでもよい。
(1-2) When the indoor leakage detection sensor 12 detects the leakage of the refrigerant during the cooling operation When the leakage of the refrigerant is detected by the indoor leakage detection sensor 12 installed in the indoor unit 1, the control device compresses the refrigerant. After the machine 5 is stopped and the gas pipe valve 13 is closed, the four-way valve 6 is switched to the heating operation, the expansion valve 9 is fully opened, and the compressor 5 is operated. During the cooling operation, the gas-liquid two-phase refrigerant present in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 passes through the expansion valve 9, the outdoor heat exchanger 7, the suction valve 14, and the compressor 5. To the gas pipe 3. The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on a signal from a pressure gauge provided on the suction side of the compressor 5. If it is determined that the value is lower than the value, the intake valve 14 is closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13 and the suction valve 14 moves between the gas pipe valve 13 and the suction side electromagnetic valve 14, that is, the gas pipe 3 is mainly used. It is collected in the part to be. In addition, although the compressor 5 was once stopped, you may just switch the four-way valve 6 to heating operation, without stopping the compressor 5. FIG.

本実施の形態に示す冷凍サイクル装置およびその制御方法では、液管4内に存在している液冷媒または気液二相の冷媒が膨張弁9を介してガス管3側に速やかに移動するので、室内機1の冷媒を速やかにガス管3に回収できる。したがって、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒を速やかに回収できるので、回収動作中の漏洩冷媒量も低減できる効果もある。さらに、本実施の形態に示す冷凍サイクル装置およびその制御方法では、冷媒を液管4よりも流路断面積の大きいガス管3側に回収するため、より多くの冷媒をガス管3に回収することが可能である。
また、本実施の形態では、冷凍サイクル装置は、R410A等の暖房運転の際に室内熱交換器10(冷房運転の際に室外熱交換器7)で凝縮液化する冷媒を使用するとして記載した。二酸化炭素などの凝縮液化せずに超臨界状態となる冷媒でも、本実施の形態に示す冷凍サイクル装置は、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒を速やかに回収できるので回収動作中の漏洩冷媒量も低減できる効果がある。
In the refrigeration cycle apparatus and its control method shown in the present embodiment, the liquid refrigerant or the gas-liquid two-phase refrigerant existing in the liquid pipe 4 quickly moves to the gas pipe 3 side through the expansion valve 9. The refrigerant of the indoor unit 1 can be quickly collected in the gas pipe 3. Therefore, since the refrigerant existing on the liquid pipe 4 side having a larger amount of material than the gas refrigerant existing on the gas pipe 3 side can be recovered quickly, the leakage refrigerant amount during the recovery operation can also be reduced. Furthermore, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the refrigerant is recovered to the gas pipe 3 side having a larger flow path cross-sectional area than the liquid pipe 4, so that more refrigerant is recovered to the gas pipe 3. It is possible.
In the present embodiment, the refrigeration cycle apparatus is described as using a refrigerant that condenses and liquefies in the indoor heat exchanger 10 (the outdoor heat exchanger 7 in the cooling operation) during the heating operation such as R410A. Even in a refrigerant that is in a supercritical state without being liquefied, such as carbon dioxide, the refrigeration cycle apparatus shown in the present embodiment is present on the liquid pipe 4 side having a larger amount of material than the gas refrigerant present on the gas pipe 3 side. Since the refrigerant can be collected quickly, there is an effect of reducing the amount of refrigerant leaked during the collecting operation.

なお、本実施の形態では、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力に基づいて冷媒の回収等を判断したが、事前に実験で圧縮機5の吸入圧力が第1の所定値または第2の所定値になるまでの時間を測定し、当該所定の時間を経過した場合に、冷媒の回収等を判断してもよい。
また、本実施の形態では、四方弁6を設け、冷房運転と暖房運転とを切り替える冷凍サイクル装置を示したが、四方弁を設けずに暖房運転のみを行う冷凍サイクル装置においても、同様の構成および動作によって、本実施の形態に示す冷凍サイクル装置と同様の効果を奏する。
In the present embodiment, the recovery of the refrigerant or the like is determined based on the suction pressure of the compressor 5 based on the signal from the pressure gauge provided on the suction side of the compressor 5. The time until the suction pressure reaches the first predetermined value or the second predetermined value may be measured, and when the predetermined time has elapsed, recovery of the refrigerant or the like may be determined.
Further, in the present embodiment, the four-way valve 6 is provided and the refrigeration cycle apparatus that switches between the cooling operation and the heating operation is shown. However, the same configuration is applied to the refrigeration cycle apparatus that performs only the heating operation without providing the four-way valve. And by the operation, the same effect as the refrigeration cycle apparatus shown in the present embodiment can be obtained.

実施の形態2.
図2は、この発明の実施の形態2による冷凍サイクル装置の構成を示す概略図である。本実施の形態に示す冷凍サイクル装置は、室外機2にも制御装置に電気的に接続された室外漏洩検知センサ22を設けており、その他の構成および機能は、実施の形態1に示す冷凍サイクル装置と同様である。したがって、この実施の形態2による冷凍サイクル装置の通常時の運転動作は、実施の形態1に示す冷凍サイクル装置と同様である。
室内漏洩検知センサ12および室外漏洩検知センサ22の両方が冷媒の漏洩を検知した場合の冷凍サイクル装置の動作について、以下に説明する。なお、室内漏洩検知センサ12のみが冷媒の漏洩を検知した場合の冷凍サイクル装置の動作は、実施の形態1に示した冷凍サイクル装置の動作と同様である。
Embodiment 2. FIG.
FIG. 2 is a schematic diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the refrigeration cycle apparatus shown in the present embodiment, the outdoor unit 2 is also provided with the outdoor leakage detection sensor 22 electrically connected to the control device, and the other configurations and functions are the refrigeration cycle shown in the first embodiment. It is the same as the device. Therefore, the normal operation of the refrigeration cycle apparatus according to the second embodiment is the same as that of the refrigeration cycle apparatus shown in the first embodiment.
The operation of the refrigeration cycle apparatus when both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect refrigerant leakage will be described below. Note that the operation of the refrigeration cycle apparatus when only the indoor leakage detection sensor 12 detects the leakage of the refrigerant is the same as the operation of the refrigeration cycle apparatus shown in the first embodiment.

(2−1)暖房運転の際、室内漏洩検知センサ12および室外漏洩検知センサ22の両方が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12および室外機2に設置された室外漏洩検知センサ22によって冷媒の漏洩が検知されると、制御装置は、ガス管弁13を閉として膨張弁9を全開とする。暖房運転の際には、室内熱交換器10の下流から液管4内に存在している液冷媒は、膨張弁9、室外熱交換器7、吸入弁14および圧縮機5を通り、ガス管3に移動する。室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が所定の値より低くなったと判断した場合、吸入弁14を閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。
なお、暖房運転の際、室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、上記動作で冷媒を回収できる。
(2-1) When the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 both detect refrigerant leakage during heating operation, the indoor leakage detection sensor 12 installed in the indoor unit 1 and the outdoor unit 2 are installed. When the leakage of the refrigerant is detected by the outdoor leakage detection sensor 22, the control device closes the gas pipe valve 13 and fully opens the expansion valve 9. During the heating operation, the liquid refrigerant present in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 passes through the expansion valve 9, the outdoor heat exchanger 7, the suction valve 14 and the compressor 5, and passes through the gas pipe. Move to 3. The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on a signal from a pressure gauge provided on the suction side of the compressor 5. If it is determined that the value is lower than the value, the intake valve 14 is closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and the refrigerant is between the gas pipe valve 13 and the suction valve 14, that is, the part mainly composed of the gas pipe 3. To be recovered.
In the heating operation, the refrigerant can be recovered by the above operation even when only the outdoor leak detection sensor 22 detects the refrigerant leak.

(2−2)冷房運転の際、室内漏洩検知センサ12および室外漏洩検知センサ22の両方が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12および室外機2に設置された室外漏洩検知センサ22によって冷媒の漏洩が検知されると、制御装置は、圧縮機5を停止しガス管弁13を閉とした後、四方弁6を暖房運転に切り替えて膨張弁9を全開にし、圧縮機5を運転する。冷房運転の際に、室内熱交換器10の下流から液管4内に存在している気液二相の冷媒は、膨張弁9、室外熱交換器7、吸入弁14および圧縮機5を通り、ガス管3に移動する。室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が所定の値より低くなったと判断した場合、吸入弁14を閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。なお、圧縮機5を一旦停止したが、圧縮機5を停止せず、四方弁6を暖房運転に切り替えるだけでもよい。
なお、冷房運転の際、室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、上記動作で冷媒を回収できる。
(2-2) When cooling operation is performed, both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect refrigerant leakage. The indoor leakage detection sensor 12 installed in the indoor unit 1 and the outdoor unit 2 are installed. When the leakage of the refrigerant is detected by the outdoor leakage detection sensor 22, the control device stops the compressor 5 and closes the gas pipe valve 13, then switches the four-way valve 6 to the heating operation and fully opens the expansion valve 9. And the compressor 5 is operated. During the cooling operation, the gas-liquid two-phase refrigerant present in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 passes through the expansion valve 9, the outdoor heat exchanger 7, the suction valve 14, and the compressor 5. To the gas pipe 3. The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on a signal from a pressure gauge provided on the suction side of the compressor 5. If it is determined that the value is lower than the value, the intake valve 14 is closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and the refrigerant is between the gas pipe valve 13 and the suction valve 14, that is, the part mainly composed of the gas pipe 3. To be recovered. In addition, although the compressor 5 was once stopped, you may just switch the four-way valve 6 to heating operation, without stopping the compressor 5. FIG.
In the cooling operation, even when only the outdoor leakage detection sensor 22 detects the leakage of the refrigerant, the refrigerant can be collected by the above operation.

本実施の形態に示す冷凍サイクル装置およびその制御方法では、実施の形態1に示す冷凍サイクル装置およびその制御方法と同様の効果がある。また、本実施の形態に示す冷凍サイクル装置およびその制御方法では、室内漏洩検知センサ12と室外漏洩検知センサ22との両方が冷媒の漏洩を検知した場合、および室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、液管4内に存在している液冷媒が膨張弁9を介してガス管3側に速やかに移動するので、室内漏洩検知センサ12と室外漏洩検知センサ22との両方が冷媒の漏洩を検知した場合、および室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、室内機1の冷媒を速やかにガス管3に回収できる。また、本実施の形態に示す冷凍サイクル装置およびその制御方法では、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒を速やかに回収できるので、回収動作中の漏洩冷媒量も低減できる効果もある。さらに、本実施の形態に示す冷凍サイクル装置およびその制御方法では、室内漏洩検知センサ12と室外漏洩検知センサ22との両方が冷媒の漏洩を検知した場合、および室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、冷媒を液管4よりも流路断面積の大きいガス管3側に回収するため、より多くの冷媒をガス管3に回収することが可能である。   The refrigeration cycle apparatus and its control method shown in the present embodiment have the same effects as the refrigeration cycle apparatus and its control method shown in the first embodiment. Further, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, when both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect the leakage of the refrigerant, only the outdoor leakage detection sensor 22 has the refrigerant. Even when a leak is detected, the liquid refrigerant present in the liquid pipe 4 quickly moves to the gas pipe 3 side via the expansion valve 9, so that both the indoor leak detection sensor 12 and the outdoor leak detection sensor 22 When the refrigerant leak is detected and only the outdoor leak detection sensor 22 detects the refrigerant leak, the refrigerant of the indoor unit 1 can be quickly collected in the gas pipe 3. Further, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the refrigerant present on the liquid pipe 4 side having a larger amount of material than the gas refrigerant present on the gas pipe 3 side can be quickly recovered, so that the recovery operation is being performed. This also has the effect of reducing the amount of leakage refrigerant. Furthermore, in the refrigeration cycle apparatus and its control method shown in the present embodiment, when both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect the leakage of the refrigerant, and only the outdoor leakage detection sensor 22 is the refrigerant. Even when leakage is detected, the refrigerant is recovered to the gas pipe 3 side having a larger flow path cross-sectional area than the liquid pipe 4, so that more refrigerant can be recovered to the gas pipe 3.

実施の形態3.
図3は、この発明の実施の形態3による冷凍サイクル装置の構成を示す概略図である。本実施の形態3に示す冷凍サイクル装置では、圧縮機5の吸入側の配管と液管4とを接続するバイパス管16を設け、このバイパス管16にバイパス弁17を設けている。その他の構成および機能は、実施の形態1に示す冷凍サイクル装置と同様である。
Embodiment 3 FIG.
FIG. 3 is a schematic diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. In the refrigeration cycle apparatus shown in the third embodiment, a bypass pipe 16 that connects a pipe on the suction side of the compressor 5 and the liquid pipe 4 is provided, and a bypass valve 17 is provided in the bypass pipe 16. Other configurations and functions are the same as those of the refrigeration cycle apparatus shown in the first embodiment.

図3において、冷凍サイクル装置は、圧縮機5の吸入側であって圧縮機5と吸入弁14との間の配管と室内機1内の液管4とを接続するバイパス管16を備え、バイパス管16に電磁弁であるバイパス弁17が設けられている。このバイパス弁17は、図示しない制御装置と電気的に接続され、この制御装置に制御されている。
図3に示す冷凍サイクル装置の運転動作について説明する。
バイパス電磁弁17は、通常時の運転中は閉となっており、この実施の形態3による冷凍サイクル装置の通常時の運転動作は、実施の形態1に示す冷凍サイクル装置の通常時の運転動作と同様である。
室内漏洩検知センサ12が冷媒の漏洩を検知した場合の冷凍サイクル装置の動作について、以下に説明する。
In FIG. 3, the refrigeration cycle apparatus includes a bypass pipe 16 that connects the pipe between the compressor 5 and the suction valve 14 and the liquid pipe 4 in the indoor unit 1 on the suction side of the compressor 5. The pipe 16 is provided with a bypass valve 17 which is an electromagnetic valve. The bypass valve 17 is electrically connected to and controlled by a control device (not shown).
The operation of the refrigeration cycle apparatus shown in FIG. 3 will be described.
The bypass solenoid valve 17 is closed during normal operation. The normal operation of the refrigeration cycle apparatus according to the third embodiment is the normal operation of the refrigeration cycle apparatus shown in the first embodiment. It is the same.
The operation of the refrigeration cycle apparatus when the indoor leakage detection sensor 12 detects refrigerant leakage will be described below.

(3−1)暖房運転の際、室内漏洩検知センサ12が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12によって冷媒の漏洩が検知されると、制御装置は、ガス管弁13を閉としてバイパス弁17を開とする。暖房運転の際には、室内熱交換器10の下流から液管4内に存在している液冷媒は、バイパス弁17を設けたバイパス管16および圧縮機5を通り、ガス管3に移動する。また、吸入弁14から膨張弁9までの配管に存在している冷媒は、吸入弁14を介してもガス管3に移動する。室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が第1の所定値より低くなったと判断した場合、バイパス弁17および吸入弁14を閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。
(3-1) When the indoor leakage detection sensor 12 detects the leakage of the refrigerant during the heating operation When the leakage of the refrigerant is detected by the indoor leakage detection sensor 12 installed in the indoor unit 1, the control device The pipe valve 13 is closed and the bypass valve 17 is opened. During the heating operation, the liquid refrigerant present in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 passes through the bypass pipe 16 provided with the bypass valve 17 and the compressor 5 and moves to the gas pipe 3. . The refrigerant existing in the pipe from the intake valve 14 to the expansion valve 9 also moves to the gas pipe 3 through the intake valve 14. The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on the signal from the pressure gauge provided on the suction side of the compressor 5. When it is determined that the value is lower than the predetermined value, the bypass valve 17 and the intake valve 14 are closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and the refrigerant is between the gas pipe valve 13 and the suction valve 14, that is, the part mainly composed of the gas pipe 3. To be recovered.

(3−2)冷房運転の際、室内漏洩検知センサ12が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12によって冷媒の漏洩が検知されると、制御装置は、圧縮機5を停止しガス管弁13を閉、バイパス弁17を開とし、膨張弁9を全開とする。冷房運転の際に、室外熱交換器7の下流から膨張弁9に存在している液冷媒は、圧力差によって膨張弁9とバイパス弁17を設けたバイパス管16とを介して圧縮機5の吸入側に速やかに移動する。制御装置は、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が第2の所定の値より高くなったと判断した場合、四方弁6を暖房運転に切り替えて圧縮機5を運転する。なお、圧縮機5を一旦停止したが、圧縮機5を停止せず、四方弁6を暖房運転に切り替えるだけでもよい。
(3-2) When the indoor leakage detection sensor 12 detects the leakage of the refrigerant during the cooling operation When the leakage of the refrigerant is detected by the indoor leakage detection sensor 12 installed in the indoor unit 1, the control device compresses the refrigerant. The machine 5 is stopped, the gas pipe valve 13 is closed, the bypass valve 17 is opened, and the expansion valve 9 is fully opened. During the cooling operation, the liquid refrigerant present in the expansion valve 9 from the downstream side of the outdoor heat exchanger 7 passes through the expansion valve 9 and the bypass pipe 16 provided with the bypass valve 17 due to the pressure difference. Move quickly to the inhalation side. When the control device determines that the suction pressure of the compressor 5 has become higher than the second predetermined value based on a signal from a pressure gauge provided on the suction side of the compressor 5, the control device switches the four-way valve 6 to the heating operation. Then, the compressor 5 is operated. In addition, although the compressor 5 was once stopped, you may just switch the four-way valve 6 to heating operation, without stopping the compressor 5. FIG.

室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が第1の所定値より低くなったと判断した場合、バイパス弁17と吸入弁14とを閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。   The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on the signal from the pressure gauge provided on the suction side of the compressor 5. When it is determined that the value is lower than the predetermined value, the bypass valve 17 and the intake valve 14 are closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and the refrigerant is between the gas pipe valve 13 and the suction valve 14, that is, the part mainly composed of the gas pipe 3. To be recovered.

本実施の形態に示す冷凍サイクル装置およびその制御方法では、暖房運転の際に室内熱交換器10の下流から液管4内に存在している液冷媒がバイパス管16を介してガス管3側に速やかに移動するので、実施の形態1に示す冷凍サイクル装置およびその制御方法よりも室内機1の冷媒を速やかに回収できる。したがって、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒を速やかに回収できるので、回収動作中の漏洩冷媒量も低減できる効果もある。また、本実施の形態に示す冷凍サイクル装置およびその制御方法では、冷房運転の際に室外熱交換器7の下流から膨張弁9内に存在している液冷媒がバイパス電磁弁17を介してガス管3側に速やかに移動するので、実施の形態1に示す冷凍サイクル装置およびその制御方法よりも室外機2の冷媒を速やかに回収できる。したがって、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒をより速やかに回収できるので、回収動作中の漏洩冷媒量もより低減できる効果もある。さらに、本実施の形態に示す冷凍サイクル装置およびその制御方法では、冷媒を液管4よりも流路断面積の大きいガス管3側に回収するため、より多くの冷媒をガス管3に回収することが可能である。   In the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the liquid refrigerant existing in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 during the heating operation passes through the bypass pipe 16 to the gas pipe 3 side. Therefore, the refrigerant of the indoor unit 1 can be recovered more quickly than the refrigeration cycle apparatus and its control method shown in the first embodiment. Therefore, since the refrigerant existing on the liquid pipe 4 side having a larger amount of material than the gas refrigerant existing on the gas pipe 3 side can be recovered quickly, the leakage refrigerant amount during the recovery operation can also be reduced. Further, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the liquid refrigerant present in the expansion valve 9 from the downstream of the outdoor heat exchanger 7 during the cooling operation is passed through the bypass electromagnetic valve 17. Since it moves to the pipe 3 side quickly, the refrigerant of the outdoor unit 2 can be recovered more quickly than the refrigeration cycle apparatus and its control method shown in the first embodiment. Accordingly, the refrigerant present on the liquid pipe 4 side having a larger amount of substance than the gas refrigerant present on the gas pipe 3 side can be collected more quickly, and the amount of leaked refrigerant during the collecting operation can also be reduced. Furthermore, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the refrigerant is recovered to the gas pipe 3 side having a larger flow path cross-sectional area than the liquid pipe 4, so that more refrigerant is recovered to the gas pipe 3. It is possible.

なお、本実施の形態では、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力に基づいて冷媒の回収等を判断したが、事前に実験で圧縮機5の吸入圧力が第1の所定値または第2の所定値になるまでの時間を測定し、当該所定の時間を経過した場合に、冷媒の回収等を判断してもよい。また、圧縮機5の吸入圧力が第1の所定値および第2の所定値は、同じ値であってもよいし、異なる値であってもよい。さらに、冷媒の回収等を一方は圧力計からの信号によって判断し、他方は所定の時間の経過によって判断してもよい。   In the present embodiment, the recovery of the refrigerant or the like is determined based on the suction pressure of the compressor 5 based on the signal from the pressure gauge provided on the suction side of the compressor 5. The time until the suction pressure reaches the first predetermined value or the second predetermined value may be measured, and when the predetermined time has elapsed, recovery of the refrigerant or the like may be determined. Further, the first predetermined value and the second predetermined value of the suction pressure of the compressor 5 may be the same value or different values. Furthermore, one of the refrigerant recovery and the like may be determined by a signal from a pressure gauge, and the other may be determined by elapse of a predetermined time.

実施の形態4.
図4は、この発明の実施の形態4による冷凍サイクル装置の構成を示す概略図である。本実施の形態に示す冷凍サイクル装置は、室外機2にも制御装置に電気的に接続された室外漏洩検知センサ22を設けており、その他の構成および機能は、実施の形態3に示す冷凍サイクル装置と同様である。
図4に示す冷凍サイクル装置の運転動作について説明する。
バイパス電磁弁17は、通常時の運転中は閉となっており、冷凍サイクル装置の通常時の運転動作は、実施の形態1に示す冷凍サイクル装置の通常時の運転動作と同様である。
室内漏洩検知センサ12および室外漏洩検知センサ22の両方が冷媒の漏洩を検知した場合の冷凍サイクル装置の動作について、以下に説明する。なお、室内漏洩検知センサ12のみが冷媒の漏洩を検知した場合の冷凍サイクル装置の動作は、実施の形態3に示した冷凍サイクル装置の動作と同様である。
Embodiment 4 FIG.
FIG. 4 is a schematic diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. In the refrigeration cycle apparatus shown in the present embodiment, the outdoor unit 2 is also provided with an outdoor leakage detection sensor 22 electrically connected to the control device, and the other configurations and functions are the refrigeration cycle shown in the third embodiment. It is the same as the device.
The operation of the refrigeration cycle apparatus shown in FIG. 4 will be described.
The bypass solenoid valve 17 is closed during normal operation, and the normal operation of the refrigeration cycle apparatus is the same as the normal operation of the refrigeration cycle apparatus shown in the first embodiment.
The operation of the refrigeration cycle apparatus when both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect refrigerant leakage will be described below. Note that the operation of the refrigeration cycle apparatus when only the indoor leakage detection sensor 12 detects refrigerant leakage is the same as the operation of the refrigeration cycle apparatus shown in the third embodiment.

(4−1)暖房運転の際に、室内漏洩検知センサ12および室外漏洩検知センサ22の両方が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12および室外機2に設置された室外漏洩検知センサ22によって冷媒の漏洩が検知されると、制御装置は、ガス管弁13を閉としてバイパス電磁弁17を開とする。暖房運転の際には、室内熱交換器10の下流から液管4内に存在している液冷媒は、バイパス弁17および圧縮機5を通り、ガス管3に移動する。また、吸入弁14から膨張弁9までの配管に存在している冷媒は、室外熱交換器7および吸入弁14を介してもガス管3に移動する。室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入圧力が所定の値より低くなったと判断した場合、バイパス弁17および吸入弁14を閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、ガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。
なお、暖房運転の際、室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、上記動作で冷媒を回収できる。
(4-1) When both indoor leakage detection sensor 12 and outdoor leakage detection sensor 22 detect refrigerant leakage during heating operation, installed in indoor leakage detection sensor 12 and outdoor unit 2 installed in indoor unit 1 When the leakage of the refrigerant is detected by the outdoor leakage detection sensor 22, the control device closes the gas pipe valve 13 and opens the bypass electromagnetic valve 17. During the heating operation, the liquid refrigerant existing in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 moves to the gas pipe 3 through the bypass valve 17 and the compressor 5. The refrigerant existing in the pipe from the intake valve 14 to the expansion valve 9 also moves to the gas pipe 3 through the outdoor heat exchanger 7 and the intake valve 14. When the refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4 and the control device determines that the suction pressure of the compressor 5 has become lower than a predetermined value, the bypass valve 17 and the suction valve 14 are turned on. Closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant (between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and is recovered between the gas pipe valve 13 and the suction valve 14, that is, in a portion mainly including the gas pipe 3. Is done.
In the heating operation, the refrigerant can be recovered by the above operation even when only the outdoor leak detection sensor 22 detects the refrigerant leak.

(4−2)冷房運転の際、室内漏洩検知センサ12および室外漏洩検知センサ22の両方が冷媒の漏洩を検知した場合
室内機1に設置された室内漏洩検知センサ12および室外機2に設置された室外漏洩検知センサ22によって冷媒の漏洩が検知されると、制御装置は、圧縮機5を停止しガス管弁13を閉、バイパス電磁弁17と開とし、膨張弁9を全開とする。冷房運転の際に室外熱交換器7の下流から膨張弁9に存在している液冷媒は、圧力差によって膨張弁9とバイパス電磁弁17を設けたバイパス管16とを介して圧縮機5の吸入側に速やかに移動する。制御装置は、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が第2の所定値より高くなったと判断した場合、四方弁6を暖房運転に切り替えて圧縮機5を運転する。なお、蒸気は圧縮機5を一旦停止したが、圧縮機5を停止せず、四方弁6を暖房運転に切り替えるだけでもよい。
(4-2) When cooling operation is performed, both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect refrigerant leakage. The indoor leakage detection sensor 12 installed in the indoor unit 1 and the outdoor unit 2 are installed. When the refrigerant leakage is detected by the outdoor leakage detection sensor 22, the control device stops the compressor 5, closes the gas pipe valve 13, opens the bypass solenoid valve 17, and opens the expansion valve 9 fully. The liquid refrigerant present in the expansion valve 9 from the downstream of the outdoor heat exchanger 7 during the cooling operation passes through the expansion valve 9 and the bypass pipe 16 provided with the bypass electromagnetic valve 17 due to the pressure difference. Move quickly to the inhalation side. When the control device determines that the suction pressure of the compressor 5 has become higher than the second predetermined value based on a signal from a pressure gauge provided on the suction side of the compressor 5, the control device switches the four-way valve 6 to the heating operation. The compressor 5 is operated. In addition, although the steam stopped the compressor 5 once, you may only switch the four-way valve 6 to heating operation, without stopping the compressor 5. FIG.

室内機1側の冷媒を液管4を介してガス管3に回収し、制御装置が、圧縮機5の吸入側に設けられた圧力計からの信号によって、圧縮機5の吸入圧力が第1の所定値より低くなったと判断した場合、バイパス弁17と吸入弁14とを閉とする。以上により、吸入弁14の四方弁6側からガス管弁13の室内熱交換器10までの間(吸入弁14−四方弁6−室外熱交換器7−膨張弁9−室内熱交換器10−ガス管弁13の間)の冷媒のほとんどがガス管弁13と吸入弁14との間に移動し、冷媒がガス管弁13と吸入弁14との間、すなわちガス管3を主とする部分に回収される。
なお、冷房運転の際、室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、上記動作で冷媒を回収できる。
The refrigerant on the indoor unit 1 side is collected in the gas pipe 3 via the liquid pipe 4, and the control device determines the suction pressure of the compressor 5 based on the signal from the pressure gauge provided on the suction side of the compressor 5. When it is determined that the value is lower than the predetermined value, the bypass valve 17 and the intake valve 14 are closed. As described above, from the four-way valve 6 side of the suction valve 14 to the indoor heat exchanger 10 of the gas pipe valve 13 (suction valve 14-four-way valve 6-outdoor heat exchanger 7-expansion valve 9-indoor heat exchanger 10- Most of the refrigerant between the gas pipe valve 13) moves between the gas pipe valve 13 and the suction valve 14, and the refrigerant is between the gas pipe valve 13 and the suction valve 14, that is, the part mainly composed of the gas pipe 3. To be recovered.
In the cooling operation, even when only the outdoor leakage detection sensor 22 detects the leakage of the refrigerant, the refrigerant can be collected by the above operation.

本実施の形態に示す冷凍サイクル装置およびその制御方法では、実施の形態3に示す冷凍サイクル装置およびその制御方法と同様の効果がある。また、本実施の形態に示す冷凍サイクル装置およびその制御方法では、室内漏洩検知センサ12と室外漏洩検知センサ22との両方が冷媒の漏洩を検知した場合、および室外漏洩検知センサ22のみが冷媒の漏洩を検知した場合でも、暖房運転の際に室内熱交換器10の下流から液管4内に存在している液冷媒がバイパス管16を介してガス管3側に速やかに移動するので、実施の形態2に示す冷凍サイクル装置およびその制御方法よりも室内機1の冷媒を速やかに回収できる。したがって、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒を速やかに回収できるので、回収動作中の漏洩冷媒量も低減できる効果もある。また、本実施の形態に示す冷凍サイクル装置およびその制御方法では、冷房運転の際に室外熱交換器7の下流から膨張弁9内に存在している液冷媒がバイパス電磁弁17を介してガス管3側に速やかに移動するので、実施の形態2に示す冷凍サイクル装置よりも室外機2の冷媒を速やかに回収できる。したがって、ガス管3側に存在するガス冷媒よりも物質量の多い液管4側に存在する冷媒をより速やかに回収できるので、回収動作中の漏洩冷媒量もより低減できる効果もある。さらに、本実施の形態に示す冷凍サイクル装置およびその制御方法では、冷媒を液管4よりも流路断面積の大きいガス管3側に回収するため、より多くの冷媒をガス管3に回収することが可能である。   The refrigeration cycle apparatus and its control method shown in the present embodiment have the same effects as the refrigeration cycle apparatus and its control method shown in the third embodiment. Further, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, when both the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 detect the leakage of the refrigerant, only the outdoor leakage detection sensor 22 has the refrigerant. Even when leakage is detected, the liquid refrigerant present in the liquid pipe 4 from the downstream of the indoor heat exchanger 10 quickly moves to the gas pipe 3 side via the bypass pipe 16 during the heating operation. The refrigerant of the indoor unit 1 can be recovered more quickly than the refrigeration cycle apparatus and its control method shown in the second embodiment. Therefore, since the refrigerant existing on the liquid pipe 4 side having a larger amount of material than the gas refrigerant existing on the gas pipe 3 side can be recovered quickly, the leakage refrigerant amount during the recovery operation can also be reduced. Further, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the liquid refrigerant present in the expansion valve 9 from the downstream of the outdoor heat exchanger 7 during the cooling operation is passed through the bypass electromagnetic valve 17. Since it moves to the pipe 3 side quickly, the refrigerant of the outdoor unit 2 can be recovered more quickly than the refrigeration cycle apparatus shown in the second embodiment. Accordingly, the refrigerant present on the liquid pipe 4 side having a larger amount of substance than the gas refrigerant present on the gas pipe 3 side can be collected more quickly, and the amount of leaked refrigerant during the collecting operation can also be reduced. Furthermore, in the refrigeration cycle apparatus and the control method thereof shown in the present embodiment, the refrigerant is recovered to the gas pipe 3 side having a larger flow path cross-sectional area than the liquid pipe 4, so that more refrigerant is recovered to the gas pipe 3. It is possible.

上記実施の形態1から4に示す冷凍サイクル装置に使用される室内漏洩検知センサ12および室外漏洩検知センサ22は、冷媒ガスを直接検出するものに限らず、酸素濃度を測定し、この酸素濃度に基づいて冷媒の漏洩を検知するものでもよい。また、室内漏洩検知センサ12および室外漏洩検知センサ22は、運転中の冷媒温度や圧力、圧縮機の入力などから冷媒漏れを間接的に検出する手段であっても良い。さらに、室内漏洩検知センサ12を室内機1に設けたが、必ずしも室内機1に設ける必要はなく、室内に設ければよい。   The indoor leak detection sensor 12 and the outdoor leak detection sensor 22 used in the refrigeration cycle apparatus shown in the first to fourth embodiments are not limited to those that directly detect the refrigerant gas, but measure the oxygen concentration, Based on this, the leakage of the refrigerant may be detected. Further, the indoor leakage detection sensor 12 and the outdoor leakage detection sensor 22 may be means for indirectly detecting refrigerant leakage from the refrigerant temperature and pressure during operation, the input of the compressor, and the like. Furthermore, although the indoor leak detection sensor 12 is provided in the indoor unit 1, it is not necessarily provided in the indoor unit 1, and may be provided indoors.

また、上記本実施の形態1から4に示す冷凍サイクル装置には、フロン系冷媒、または二酸化炭素もしくは炭化水素等の自然冷媒などが使用される。これら冷媒の中でも、漏洩した場合に環境に与える負荷の大きな例えば温暖化係数の大きな冷媒、可燃性のある冷媒などの漏洩対策に特に有効である。   In the refrigeration cycle apparatus shown in the first to fourth embodiments, a chlorofluorocarbon refrigerant or a natural refrigerant such as carbon dioxide or hydrocarbon is used. Among these refrigerants, it is particularly effective for countermeasures against leakage of a refrigerant having a large load on the environment when leaked, for example, a refrigerant having a large global warming potential or a flammable refrigerant.

1 室内機、2 室外機、3 ガス管、4 液管、5 圧縮機、6 四方弁、7 室外熱交換器、8 室外ファン、9 膨張弁、10 室内熱交換器、11 室内ファン、12 室内漏洩検知センサ、13 ガス管弁、14 吸入弁、16 バイパス管、17 バイパス弁、22 室外漏洩検知センサ。   1 indoor unit, 2 outdoor unit, 3 gas pipe, 4 liquid pipe, 5 compressor, 6 four-way valve, 7 outdoor heat exchanger, 8 outdoor fan, 9 expansion valve, 10 indoor heat exchanger, 11 indoor fan, 12 indoor Leakage detection sensor, 13 Gas pipe valve, 14 Suction valve, 16 Bypass pipe, 17 Bypass valve, 22 Outdoor leak detection sensor.

Claims (9)

冷媒を圧縮する圧縮機、前記冷媒と室内の空気とを熱交換する室内熱交換器、冷媒を膨張する膨張弁および前記冷媒と室外の空気とを熱交換する室外熱交換器が配管で接続され、前記室内熱交換器は室内に設置される室内機に設けられ、前記圧縮機、前記膨張弁および前記室外熱交換器は室外に設置される室外機に設けられる冷凍サイクル装置において、
前記室内熱交換器と前記膨張弁との間を接続する配管である液管、
前記圧縮機と前記室内熱交換器との間を接続する配管であり、前記液管より大きい流路断面積を有するガス管、
前記圧縮機の吸入側の配管に設けられる吸入弁、
前記ガス管に設けられるガス管弁、
前記室内に設けられ前記冷媒の漏洩を検知する室内漏洩検知センサ、
前記室内漏洩検知センサが前記冷媒の漏洩を検知した場合に、前記ガス管弁を閉じ、前記室内機側の冷媒を前記液管を介して前記ガス管に回収した後に前記吸入弁を閉じる制御装置を備えたことを特徴とする冷凍サイクル装置。
A compressor that compresses the refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, an expansion valve that expands the refrigerant, and an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air are connected by piping. In the refrigeration cycle apparatus, the indoor heat exchanger is provided in an indoor unit installed indoors, and the compressor, the expansion valve, and the outdoor heat exchanger are provided in an outdoor unit installed outdoors.
A liquid pipe that is a pipe connecting the indoor heat exchanger and the expansion valve;
A gas pipe that connects between the compressor and the indoor heat exchanger, and has a larger cross-sectional area than the liquid pipe;
A suction valve provided in a pipe on the suction side of the compressor;
A gas pipe valve provided in the gas pipe,
An indoor leakage detection sensor provided in the room for detecting leakage of the refrigerant;
A control device that closes the gas pipe valve when the indoor leak detection sensor detects leakage of the refrigerant, and closes the suction valve after collecting the refrigerant on the indoor unit side into the gas pipe via the liquid pipe A refrigeration cycle apparatus comprising:
冷媒を圧縮する圧縮機、前記冷媒と室内の空気とを熱交換する室内熱交換器、冷媒を膨張する膨張弁および前記冷媒と室外の空気とを熱交換する室外熱交換器が配管で接続され、前記室内熱交換器は室内に設置される室内機に設けられ、前記圧縮機、前記膨張弁および前記室外熱交換器は室外に設置される室外機に設けられる冷凍サイクル装置の制御方法において、
前記冷凍サイクル装置は、前記室内熱交換器と前記膨張弁との間を接続する配管である液管、
前記圧縮機と前記室内熱交換器との間を接続する配管であり、前記液管より大きい流路断面積を有するガス管、
前記圧縮機の吸入側の配管に設けられる吸入弁、
前記ガス管に設けられるガス管弁、
および前記室内に設けられ前記冷媒の漏洩を検知する室内漏洩検知センサを備え、
前記制御装置は、前記室内漏洩検知センサが前記冷媒の漏洩を検知した場合に、前記ガス管弁を閉じ、前記室内機側の冷媒を前記液管を介して前記ガス管に回収した後に前記吸入弁を閉じることを特徴とする冷凍サイクル装置の制御方法。
A compressor that compresses the refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, an expansion valve that expands the refrigerant, and an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air are connected by piping. In the control method of the refrigeration cycle apparatus, the indoor heat exchanger is provided in an indoor unit installed indoors, and the compressor, the expansion valve, and the outdoor heat exchanger are provided in an outdoor unit installed outdoor.
The refrigeration cycle apparatus is a liquid pipe that is a pipe connecting the indoor heat exchanger and the expansion valve,
A gas pipe that connects between the compressor and the indoor heat exchanger, and has a larger cross-sectional area than the liquid pipe;
A suction valve provided in a pipe on the suction side of the compressor;
A gas pipe valve provided in the gas pipe,
And an indoor leakage detection sensor provided in the room for detecting leakage of the refrigerant,
The control device closes the gas pipe valve when the indoor leak detection sensor detects the leakage of the refrigerant, collects the refrigerant on the indoor unit side into the gas pipe through the liquid pipe, and then sucks the refrigerant. A control method for a refrigeration cycle apparatus, wherein the valve is closed.
冷凍サイクル装置は、圧縮機の吐出側の配管に設けられ、冷房運転の際には前記圧縮機の吐出側から室外熱交換器へ冷媒が流れるよう流路を構成し、暖房運転の際には前記圧縮機の吐出側から室内熱交換器へ前記冷媒が流れるよう流路を構成する四方弁を備え、
冷房運転の際に室内漏洩検知センサが冷媒の漏洩を検知した場合には、前記四方弁を暖房運転に切り替えることを特徴とする請求項2に記載の冷凍サイクル装置の制御方法。
The refrigeration cycle apparatus is provided in a pipe on the discharge side of the compressor, and configures a flow path so that refrigerant flows from the discharge side of the compressor to the outdoor heat exchanger during the cooling operation, and during the heating operation. Comprising a four-way valve constituting a flow path so that the refrigerant flows from the discharge side of the compressor to the indoor heat exchanger;
The method for controlling a refrigeration cycle apparatus according to claim 2, wherein the four-way valve is switched to heating operation when an indoor leakage detection sensor detects leakage of refrigerant during cooling operation.
室内漏洩検知センサが冷媒の漏洩を検知した場合に膨張弁を全開にすることを特徴とする請求項2または3に記載の冷凍サイクル装置の制御方法。   The control method for a refrigeration cycle apparatus according to claim 2 or 3, wherein the expansion valve is fully opened when the indoor leakage detection sensor detects leakage of the refrigerant. 室内漏洩検知センサが冷媒の漏洩を検知した場合に、ガス管弁を閉じ、所定時間経過後に吸入弁を閉じることを特徴とする請求項2から4のいずれか1項に記載の冷凍サイクル装置の制御方法。   5. The refrigeration cycle apparatus according to claim 2, wherein when the indoor leakage detection sensor detects leakage of the refrigerant, the gas pipe valve is closed and the intake valve is closed after a predetermined time has elapsed. Control method. 冷凍サイクル装置は、圧縮機の吸入側の配管に圧力センサを備え、
室内漏洩検知センサが冷媒の漏洩を検知した場合に、ガス管弁を閉じ、前記圧力センサの値が所定値以下になったときに吸入弁を閉じることを特徴とする請求項2から4のいずれか1項に記載の冷凍サイクル装置の制御方法。
The refrigeration cycle apparatus includes a pressure sensor in a pipe on the suction side of the compressor,
5. The system according to claim 2, wherein when the indoor leakage detection sensor detects refrigerant leakage, the gas pipe valve is closed, and the suction valve is closed when the value of the pressure sensor becomes a predetermined value or less. The control method of the refrigeration cycle apparatus of Claim 1.
冷凍サイクル装置は、圧縮機の吸入側の配管と液管とを接続するバイパス管および前記バイパス管に設けられるバイパス弁を備え、
室内漏洩検知センサが冷媒の漏洩を検知した場合に、前記バイパス弁を開けることを特徴とする請求項2から6のいずれか1項に記載の冷凍サイクル装置の制御方法。
The refrigeration cycle apparatus includes a bypass pipe connecting the pipe on the suction side of the compressor and the liquid pipe and a bypass valve provided in the bypass pipe,
The control method for a refrigeration cycle apparatus according to any one of claims 2 to 6, wherein the bypass valve is opened when the indoor leakage detection sensor detects refrigerant leakage.
冷凍サイクル装置は、室外機に設けられ冷媒の漏洩を検知する室外漏洩検知センサを備え、
前記室外漏洩検知センサが前記冷媒の漏洩を検知した場合に、前記ガス管弁を閉じ、前記室内機側の冷媒を前記液管を介して前記ガス管に回収した後に前記吸入弁を閉じることを特徴とする請求項2から7のいずれか1項に記載の冷凍サイクル装置の制御方法。
The refrigeration cycle apparatus includes an outdoor leakage detection sensor that is provided in the outdoor unit and detects leakage of refrigerant,
When the outdoor leak detection sensor detects leakage of the refrigerant, the gas pipe valve is closed, and after the refrigerant on the indoor unit side is collected in the gas pipe via the liquid pipe, the suction valve is closed. The method for controlling a refrigeration cycle apparatus according to any one of claims 2 to 7, wherein
冷凍サイクル装置は、圧縮機の吐出側の配管に設けられ、冷房運転の際には圧縮機の吐出側から室外熱交換器へ冷媒が流れるよう流路を構成し、暖房運転の際には前記圧縮機の吐出側から室内熱交換器へ前記冷媒が流れるよう流路を構成する四方弁と、室外機に設けられ前記冷媒の漏洩を検知する室外漏洩検知センサとを備え、
暖房運転の際に前記室外漏洩検知センサが前記冷媒の漏洩を検知した場合には、前記ガス管弁を閉じ、前記室内機側の前記冷媒を前記液管を介して前記ガス管に回収した後に前記吸入弁を閉じ、
冷房運転の際に前記室外漏洩検知センサが前記冷媒の漏洩を検知した場合には、前記圧縮機を停止し、前記ガス管弁を閉じて前記バイパス弁を開け、室外機側の前記冷媒を前記ガス管に回収した後に前記四方弁を暖房運転に切り替えることを特徴とする請求項に記載の冷凍サイクル装置の制御方法。
The refrigeration cycle apparatus is provided in a pipe on the discharge side of the compressor, and configures a flow path so that refrigerant flows from the discharge side of the compressor to the outdoor heat exchanger during the cooling operation, and in the heating operation, A four-way valve that configures a flow path so that the refrigerant flows from the discharge side of the compressor to the indoor heat exchanger, and an outdoor leakage detection sensor that is provided in an outdoor unit and detects leakage of the refrigerant ,
When the outdoor leakage detection sensor detects leakage of the refrigerant during heating operation, the gas pipe valve is closed, and the refrigerant on the indoor unit side is collected into the gas pipe via the liquid pipe Close the suction valve,
When the outdoor leak detection sensor in the cooling operation detects the leakage of the refrigerant, the compressor is stopped, opening said bypass valve closes the gas pipe valve, the said refrigerant in the outdoor unit side The method for controlling a refrigeration cycle apparatus according to claim 7 , wherein the four-way valve is switched to heating operation after being collected in a gas pipe.
JP2009168141A 2009-07-16 2009-07-16 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus Active JP5293474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168141A JP5293474B2 (en) 2009-07-16 2009-07-16 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168141A JP5293474B2 (en) 2009-07-16 2009-07-16 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2011021838A JP2011021838A (en) 2011-02-03
JP5293474B2 true JP5293474B2 (en) 2013-09-18

Family

ID=43632070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168141A Active JP5293474B2 (en) 2009-07-16 2009-07-16 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5293474B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762801B2 (en) * 2011-04-01 2015-08-12 株式会社東芝 Refrigerator system with refrigerant leakage prevention function
JP5838660B2 (en) * 2011-08-29 2016-01-06 株式会社ノーリツ Heat pump water heater
GB2547583B (en) * 2014-12-01 2020-12-30 Mitsubishi Electric Corp Air-conditioning apparatus
GB2560455B (en) * 2016-01-07 2020-09-23 Mitsubishi Electric Corp Air-conditioning apparatus
JP6081033B1 (en) * 2016-05-24 2017-02-15 三菱電機株式会社 Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369370A (en) * 1991-06-14 1992-12-22 Hitachi Ltd Air conditioner
JP3162132B2 (en) * 1991-10-30 2001-04-25 株式会社日立製作所 Refrigeration device control method
JPH06180166A (en) * 1992-12-09 1994-06-28 Toshiba Corp Air-conditioner
JP2000097527A (en) * 1998-09-21 2000-04-04 Mitsubishi Heavy Ind Ltd Air conditioner and its control method
JP2002061996A (en) * 2000-08-10 2002-02-28 Sanyo Electric Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2011021838A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5481981B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP6479162B2 (en) Air conditioner
JP2017142039A (en) Air conditioner
JP4797727B2 (en) Refrigeration equipment
WO2007139010A1 (en) Freezing device
JP2017142038A (en) Refrigeration cycle device
JP5293474B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
WO2018003096A1 (en) Air-conditioning device
WO2015097787A1 (en) Air conditioner
CN110325802B (en) Refrigeration cycle device
WO2017122479A1 (en) Refrigeration cycle device and control method for determination of leaks in bypass valve of refrigeration cycle device
JPWO2017191814A1 (en) Refrigeration cycle equipment
JP2006250440A (en) Air conditioning system
US20220065505A1 (en) Multi-air conditioner for heating and cooling and method for controlling multi-air conditioner for heating and cooling
GB2564367A (en) Air-conditioning device
JP2006250480A (en) Refrigeration device
JP2010002112A (en) Refrigerating device
JP2009192096A (en) Air conditioner
JP2007107853A (en) Air conditioner
JP4687326B2 (en) Air conditioner
JP2003106689A (en) Air conditioner
JP2002340390A (en) Air conditioner for multiple rooms
WO2012127834A1 (en) Refrigeration cycle device
JP7168022B2 (en) air conditioner
JP2004061056A (en) Oil level detecting method and device for compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250