JP5292236B2 - Damping damper for damping and damping structure of building structure - Google Patents

Damping damper for damping and damping structure of building structure Download PDF

Info

Publication number
JP5292236B2
JP5292236B2 JP2009206977A JP2009206977A JP5292236B2 JP 5292236 B2 JP5292236 B2 JP 5292236B2 JP 2009206977 A JP2009206977 A JP 2009206977A JP 2009206977 A JP2009206977 A JP 2009206977A JP 5292236 B2 JP5292236 B2 JP 5292236B2
Authority
JP
Japan
Prior art keywords
damping
screw
damper
vibration
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009206977A
Other languages
Japanese (ja)
Other versions
JP2011058529A (en
Inventor
正夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Latex Co Ltd
Original Assignee
Fuji Latex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Latex Co Ltd filed Critical Fuji Latex Co Ltd
Priority to JP2009206977A priority Critical patent/JP5292236B2/en
Publication of JP2011058529A publication Critical patent/JP2011058529A/en
Application granted granted Critical
Publication of JP5292236B2 publication Critical patent/JP5292236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a vibration control damper which dynamically copes with a frequency change in a simple constitution. <P>SOLUTION: The vibration damper is equipped with: a joint 13 having a first screw-coupling part 15a and a second screw-coupling part 17a which respectively have inverted-screw structures inverted with respect to each other at both ends; a first arm 15 which is screw-coupled to the joint 13 via the first screw-coupling part 15a; and a second arm 17 which is screw-coupled to the joint 13 via the second screw-coupling part 17a. The joint 13 has a mass part 31 having an inertia mass body. The mass part 31 dynamically buffers a vibration energy inputted into the first arm 15 and the second arm 17 by friction forces of both the screw-coupling parts 15a, 17a when the vibration energy is converted into a turning force of the joint 13 via the first and second screw-coupling parts 15a, 17a. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、例えば、建築構造物などの振動エネルギを緩衝して制振させる制振用ダンパ及び建築構造物の制振構造に関する。   The present invention relates to a vibration damper and a vibration control structure for a building structure, for example, for damping and damping vibration energy of a building structure or the like.

従来、流体の粘性抵抗によって振動エネルギを緩衝して制振させるフリクションダンパが知られている。   2. Description of the Related Art Conventionally, there is known a friction damper that damps vibrations by buffering vibration energy using a viscous resistance of a fluid.

例えば、シリンダ内を一対のシリンダ室に区画するピストンと、ピストンを貫通して前記一対のシリンダ室を連通する減衰流路と、前記減衰流路に設けられてオイルを通過させて減衰する絞り機構となどを備えた制振用ダンパが公知である(特許文献1参照)。   For example, a piston that divides the inside of the cylinder into a pair of cylinder chambers, a damping channel that passes through the piston and communicates with the pair of cylinder chambers, and a throttle mechanism that is provided in the damping channel and attenuates by passing oil A vibration damping damper having the above and the like is known (see Patent Document 1).

しかしながら、振動エネルギの周波数の変化に動的に対応可能な特許文献1に係る制振用ダンパでは、流体(オイル)洩れを防止するための構造が複雑になるという問題があった。   However, the damping damper according to Patent Document 1 that can dynamically cope with changes in the frequency of vibration energy has a problem that the structure for preventing fluid (oil) leakage is complicated.

これに対し、ねじ機構の摩擦抵抗によって制振を図るフリクションダンパがある。このものでは、流体の洩れ等を考慮する必要がなく、その構造が比較的簡易である。しかし、単にねじ機構の摩擦抵抗を利用するため、振動エネルギの周波数の変化に動的に対応できない。   On the other hand, there is a friction damper that suppresses vibration by the frictional resistance of the screw mechanism. In this case, there is no need to consider fluid leakage and the structure is relatively simple. However, since it simply uses the frictional resistance of the screw mechanism, it cannot dynamically respond to changes in the frequency of vibration energy.

特開2004−346950号公報JP 2004-346950 A

発明が解決しようとする課題は、従来技術に係る制振用ダンパでは、その構造が複雑であるか、振動エネルギの周波数の変化に動的に対応できなかった点である。   The problem to be solved by the invention is that the damping damper according to the prior art has a complicated structure or cannot dynamically cope with a change in frequency of vibration energy.

本発明は、簡素な構成をもって周波数の変化に動的に対応可能な制振用ダンパを得ることを目的として、相互に逆ねじ構造となる第1ねじ結合部及び第2ねじ結合部を両端にそれぞれ有する継手部と、前記継手部に前記第1ねじ結合部を介してねじ結合される第1腕部と、前記継手部に前記第2ねじ結合部を介してねじ結合される第2腕部と、を備え、前記継手部は、慣性質量体を有するマス部を備え、前記マス部は、前記第1腕部及び前記第2腕部に入力された振動エネルギを、前記第1ねじ結合部及び前記第2ねじ結合部を介して前記継手部の回動力に変換する時の前記両ねじ結合部の摩擦力により動的に緩衝する、ことを最も主要な特徴とする。   The present invention aims at obtaining a damping damper capable of dynamically responding to a change in frequency with a simple configuration, and has a first screw coupling portion and a second screw coupling portion which are mutually reverse screw structures at both ends. A joint portion having the first arm portion that is screw-coupled to the joint portion via the first screw coupling portion; and a second arm portion that is screw-coupled to the joint portion via the second screw coupling portion. The joint portion includes a mass portion having an inertial mass body, and the mass portion transmits vibration energy input to the first arm portion and the second arm portion to the first screw coupling portion. In addition, the most important feature is to dynamically buffer the frictional force of the two screw coupling portions when converted into the rotational force of the joint portion via the second screw coupling portion.

本発明に係る制振用ダンパによれば、簡素な構成をもって周波数の変化に動的に対応可能なコストパフォーマンスの高い制振用ダンパを得ることができる。   According to the vibration damper according to the present invention, it is possible to obtain a vibration damper with high cost performance that can dynamically cope with a change in frequency with a simple configuration.

実施例1に係る制振用ダンパの全体構成を示す横断面図である(実施例1)。It is a cross-sectional view showing the overall configuration of a vibration damper according to the first embodiment (first embodiment). 実施例1に係る制振用ダンパのうち継手部の長さを変えた変形例を示す説明図であり、(A)は短軸の継手部としたダンパの横断面図、(B)は中位の軸長の継手部としたダンパの横断面図、(C)は長軸の継手部としたダンパの横断面図である(実施例1の変形例)。It is explanatory drawing which shows the modification which changed the length of the joint part among the dampers for damping | damping which concern on Example 1, (A) is a cross-sectional view of the damper made into the joint part of a short shaft, (B) is medium FIG. 6C is a cross-sectional view of a damper that is a joint portion having a long axial length, and FIG. 9C is a cross-sectional view of a damper that is a long-axis joint portion (modified example of Example 1). 実施例1に係る制振用ダンパのうち腕部の長さ寸法を変えた変形例の全体構成を示す横断面図である(実施例1の変形例)。It is a cross-sectional view which shows the whole structure of the modification which changed the length dimension of the arm part among the dampers for damping | damping which concern on Example 1 (modified example of Example 1). 実施例1に係る制振用ダンパの動作説明に供する図であり、(A),(B)は圧縮方向の振動エネルギが両腕部に入力されたときの継手部の回動動作を示す説明図、(C),(D)は伸長方向の振動エネルギが両腕部に入力されたときの継手部の回動動作を示す説明図である(実施例1)。It is a figure with which it uses for operation | movement description of the damper for damping | damping which concerns on Example 1, (A), (B) is explanatory drawing which shows rotation operation | movement of a joint part when the vibration energy of a compression direction is input into both arm parts. (C), (D) is explanatory drawing which shows the rotation operation | movement of a joint part when the vibrational energy of an extending | stretching direction is input into both the arm parts (Example 1). 実施例1に係る制振用ダンパの制振特性を示す説明図であり、(A)は実施例1に係る制振用ダンパの制振特性を比較例と対比して示す説明図、(B)は腕部のストローク位置と加速度の関係を経時的に示す説明図である(実施例1)。It is explanatory drawing which shows the damping characteristic of the damping damper concerning Example 1, (A) is explanatory drawing which shows the damping characteristic of the damping damper concerning Example 1 in contrast with a comparative example, (B () Is an explanatory view showing the relationship between the stroke position of the arm and the acceleration over time (Example 1). 実施例2〜5に係る制振用ダンパの説明に供する横断面図であり、(A)は実施例2の説明図、(B)は実施例3の説明図、(C)は実施例4の説明図、(D)は実施例5の説明図である(実施例2〜5)。It is a cross-sectional view for explaining the damping damper according to Examples 2 to 5, (A) is an explanatory diagram of Example 2, (B) is an explanatory diagram of Example 3, and (C) is Example 4. (D) is explanatory drawing of Example 5 (Examples 2-5). 制振用ダンパの使用状態を示す説明図であり、(A)は建築構造物の枠組みのうち四隅に渡って制振用ダンパを取り付けた例を示す説明図、(B)は建築構造物の枠組みのうち対角線状並びに隅部に渡って制振用ダンパを取り付けた例を示す説明図である。It is explanatory drawing which shows the use condition of the damper for damping | damping, (A) is explanatory drawing which shows the example which attached the damper for damping over four corners among the frameworks of a building structure, (B) is a building structure It is explanatory drawing which shows the example which attached the damper for damping over the diagonal form and corner part among frames.

簡素な構成をもって周波数の変化に動的に対応可能な制振用ダンパを得るといった目的を、第1腕部及び第2腕部に入力された振動エネルギを、第1ねじ結合部及び第2ねじ結合部を介して継手部の回動力に変換する時の前記両ねじ結合部の摩擦力による緩衝と動的に緩衝するマス部によって実現した。   For the purpose of obtaining a damping damper capable of dynamically responding to a change in frequency with a simple configuration, vibration energy input to the first arm portion and the second arm portion is used as the first screw coupling portion and the second screw. It realized by the mass part which buffered by the frictional force of the both screw joint part, and dynamically buffered when converting into the turning power of a joint part via a joint part.

本発明の実施例1に係る制振用ダンパについて、図面を参照して説明する。
[実施例1に係る制振用ダンパの全体構成]
図1は、実施例1に係る制振用ダンパの全体構成を示す横断面図、図2は、実施例1に係る制振用ダンパのうち継手部の長さを変えた変形例を示す説明図であり、(A)は短軸の継手部としたダンパの横断面図、(B)は中位の軸長の継手部としたダンパの横断面図、(C)は長軸の継手部としたダンパの横断面図、図3は、実施例1に係る制振用ダンパのうち腕部の長さ寸法を変えた変形例の全体構成を示す横断面図である。
A vibration damper according to Embodiment 1 of the present invention will be described with reference to the drawings.
[Overall Configuration of Damping Damper According to Embodiment 1]
FIG. 1 is a cross-sectional view showing the overall configuration of the vibration damper according to the first embodiment, and FIG. 2 is a diagram illustrating a modification in which the length of the joint portion is changed in the vibration damper according to the first embodiment. FIG. 4A is a transverse cross-sectional view of a damper having a short shaft joint portion, FIG. 5B is a cross sectional view of a damper having a middle shaft length joint portion, and FIG. FIG. 3 is a cross-sectional view showing an overall configuration of a modified example in which the length of the arm portion is changed in the vibration damping damper according to the first embodiment.

図1に示すように、実施例1に係る制振用ダンパ11は、継手部13と、この継手部13の両端にそれぞれ設けた第1腕部15及び第2腕部17を備える。   As shown in FIG. 1, the vibration damper 11 according to the first embodiment includes a joint portion 13 and a first arm portion 15 and a second arm portion 17 provided at both ends of the joint portion 13.

前記継手部13は、例えば合成樹脂や金属などの硬質材料により円筒状に形成されている。この継手部13の両端には、円板状のフランジ部19,21を一体に有する円柱状の封止部23,25がそれぞれ固着されている。これらフランジ部19,21及び封止部23,25は、例えば合成樹脂や金属などの硬質材料からなる。   The joint portion 13 is formed in a cylindrical shape from a hard material such as synthetic resin or metal. Cylindrical sealing portions 23 and 25 having disk-like flange portions 19 and 21 integrally are fixed to both ends of the joint portion 13, respectively. The flange portions 19 and 21 and the sealing portions 23 and 25 are made of a hard material such as synthetic resin or metal.

前記フランジ部19,21の外径寸法は、前記継手部13の外径寸法と略同等に形成されている。前記封止部23,25の外径寸法は、前記継手部13の内径寸法よりも僅かに小さく形成されている。従って、前記継手部13の両端は、前記封止部23,25によって封止されている。   The outer diameter dimensions of the flange portions 19 and 21 are formed substantially equal to the outer diameter dimension of the joint portion 13. The outer diameter dimension of the sealing portions 23 and 25 is slightly smaller than the inner diameter dimension of the joint portion 13. Therefore, both ends of the joint portion 13 are sealed by the sealing portions 23 and 25.

前記封止部23,25には、前記継手部13の軸線方向に沿う通孔23a,25aがそれぞれ開設されている。前記通孔23a,25aの内側壁には、相互に逆ねじ構造となる第1ねじ部(例えば雌ねじの溝)23b及び第2ねじ部(例えば雌ねじの溝)25bがそれぞれ設けられている。   In the sealing parts 23 and 25, through holes 23a and 25a are formed along the axial direction of the joint part 13, respectively. A first screw portion (for example, a female screw groove) 23b and a second screw portion (for example, a female screw groove) 25b each having a reverse screw structure are provided on the inner side walls of the through holes 23a and 25a.

前記第1腕部15は、例えば合成樹脂や金属などの硬質材料からなる。この第1腕部15は、前記第1ねじ部23bに係合する第1係合部(例えば雄ねじ)15aを介して前記継手部13の前記封止部23にねじ結合されている。前記第1ねじ部(例えば雌ねじの溝)23b及び前記第1係合部(例えば雄ねじ)15aは、本発明の第1ねじ結合部に相当する。   The first arm portion 15 is made of a hard material such as synthetic resin or metal. The first arm portion 15 is screwed to the sealing portion 23 of the joint portion 13 via a first engagement portion (for example, a male screw) 15a that engages with the first screw portion 23b. The first screw portion (for example, female screw groove) 23b and the first engagement portion (for example, male screw) 15a correspond to the first screw coupling portion of the present invention.

前記第1腕部15のうち前記ねじ結合側とは異なる側の端部には、例えば建築構造物の枠組みのうち隅部などの取付対象に取り付けるための第1取付部27が設けられている。この第1取付部27には、例えばボルト等の締結具を挿通するための孔27aが開設されている。   A first attachment portion 27 for attaching to an attachment object such as a corner of a framework of a building structure is provided at an end portion of the first arm portion 15 on a side different from the screw coupling side. . The first mounting portion 27 is provided with a hole 27a for inserting a fastener such as a bolt.

前記第2腕部17は、例えば合成樹脂や金属などの硬質材料からなる。この第2腕部17は、前記第1腕部15と同様に、前記第2ねじ部25bに係合する第2係合部(例えば雄ねじ)17aを介して前記継手部13の前記封止部25にねじ結合されている。前記第2ねじ部(例えば雌ねじの溝)25b及び前記第2係合部(例えば雄ねじ)17aは、本発明の第2ねじ結合部に相当する。   The second arm portion 17 is made of a hard material such as synthetic resin or metal. Like the first arm portion 15, the second arm portion 17 is connected to the sealing portion of the joint portion 13 via a second engagement portion (for example, a male screw) 17a that engages with the second screw portion 25b. 25 is screwed together. The second screw portion (for example, female screw groove) 25b and the second engagement portion (for example, male screw) 17a correspond to the second screw coupling portion of the present invention.

前記第1ねじ結合部15a,23b及び前記第2ねじ結合部17a,25bのリード寸法及びリード角は、相互に共通に設定されている。   The lead dimensions and lead angles of the first screw coupling portions 15a and 23b and the second screw coupling portions 17a and 25b are set in common.

前記第2腕部17のうち前記ねじ結合側とは異なる側の端部には、前記取付対象に取り付けるための第2取付部29が設けられている。この第2取付部29には、例えばボルト等の締結具を挿通するための孔29aが開設されている。   A second attachment portion 29 for attachment to the attachment object is provided at an end portion of the second arm portion 17 on a side different from the screw coupling side. The second attachment portion 29 is provided with a hole 29a for inserting a fastener such as a bolt.

前記第1腕部15及び前記第2腕部17に入力された振動エネルギを動的に緩衝するために、前記継手部13は、慣性質量体を有するマス部31を備える。   In order to dynamically buffer the vibration energy input to the first arm portion 15 and the second arm portion 17, the joint portion 13 includes a mass portion 31 having an inertial mass body.

前記マス部31は、例えば合成樹脂や金属などの硬質材料により円筒状に形成されている。慣性質量体としての機能(慣性能率)を高める観点からは、前記マス部31は、金属等の比重の大きい材料からなるのが好ましい。このマス部31は、図1に示すように、前記継手部13における回動軸方向中央付近の外側壁に密着して設けられている。   The mass portion 31 is formed in a cylindrical shape from a hard material such as synthetic resin or metal. From the viewpoint of increasing the function (inertia rate) as an inertial mass body, the mass portion 31 is preferably made of a material having a large specific gravity such as metal. As shown in FIG. 1, the mass portion 31 is provided in close contact with the outer wall near the center in the rotational axis direction of the joint portion 13.

ところで、上記実施例1では、前記継手部13に、これとは別体の前記マス部31を設ける例をあげて説明した。ただし、本発明はこの例に限定されるものではない。例えば、前記継手部13に、前記マス部31を一体に設ける構成を採用してもよい。   By the way, in the said Example 1, the joint part 13 was given and demonstrated as an example which provided the said mass part 31 different from this. However, the present invention is not limited to this example. For example, a configuration in which the mass portion 31 is integrally provided in the joint portion 13 may be employed.

また、上記実施例1では、前記継手部13の長さについては、特段の記載をしていない。ところが、実施例1に係る制振用ダンパ11が実際に取り付けられる、建築構造物の枠組み等の現場では、長さ調整に対応すべき強い要請が現実に存在する。   Moreover, in the said Example 1, about the length of the said joint part 13, there is no special description. However, in the field of a building structure framework or the like where the vibration damping damper 11 according to the first embodiment is actually attached, there is actually a strong demand that should correspond to the length adjustment.

こうした実情を踏まえて、図2(A)〜(C)に示す実施例1の変形例では、例えば、短軸のもの、中位の軸長のもの、及び長軸のものといったように、相互に長さの異なる複数の継手部13A,13B,13Cを用意しておく。そして、制振用ダンパの使用時には、前記継手部13A,13B,13Cのバリエーションのうち、取付対象の実情に合致した長さの継手部を選んで、同継手部が組み込まれた制振用ダンパを取付対象に取り付ける。   In view of such circumstances, in the modification of the first embodiment shown in FIGS. 2A to 2C, for example, a short axis, a medium axis length, and a long axis, A plurality of joint portions 13A, 13B, and 13C having different lengths are prepared. And when using the damper for damping, the damper for damping which incorporated the joint part by choosing the joint part of the length which matched the actual situation of the attachment object among the variations of the joint parts 13A, 13B, and 13C. Is attached to the mounting target.

このようにすれば、継手部を長さの異なるものに適宜交換することによって、制振用ダンパの長さ調整の要請に対応可能である。   If it does in this way, it can respond to the request | requirement of the length adjustment of the damper for damping | damping by replacing | exchanging a coupling | joint part to what has a different length suitably.

また、上記の長さ調整機構に代えてまたは加えて、図3に示す実施例1のさらなる変形例では、例えば、短軸のもの、中位の軸長のもの、及び長軸のものといったように、相互に長さの異なる複数の腕部15,17を用意しておく。そして、制振用ダンパの使用時には、前記腕部15,17のバリエーションのうち、取付対象の実情に合致した長さの腕部15A,17Aを選んで、同腕部15A,17Aが組み込まれた制振用ダンパを取付対象に取り付ける。   Further, in place of or in addition to the length adjusting mechanism described above, in a further modification of the first embodiment shown in FIG. 3, for example, a short axis, a medium axial length, and a long axis In addition, a plurality of arm portions 15 and 17 having different lengths are prepared. When the vibration damper is used, the arm portions 15A and 17A having the length matching the actual situation of the attachment target are selected from the variations of the arm portions 15 and 17, and the arm portions 15A and 17A are incorporated. Attach the damping damper to the installation target.

このようにすれば、前記第1腕部15及び前記第2腕部17のうち少なくともいずれか一方を長さの異なるものに適宜交換することによって、制振用ダンパの長さ調整の要請に対応可能である。   By doing so, it is possible to respond to a request for adjusting the length of the damping damper by appropriately replacing at least one of the first arm portion 15 and the second arm portion 17 with a different length. Is possible.

さらに、上記実施例1では、前記第1ねじ部23bとして雌ねじの溝を採用する一方、この第1ねじ部23bに係合する第1係合部15aとして前記雌ねじの溝に対応する雄ねじを採用する例をあげて説明した。ただし、本発明はこの例に限定されるものではない。例えば、前記第1ねじ部23bとして雄ねじを採用する一方、この第1ねじ部23bに係合する第1係合部15aとして前記雄ねじに対応する雌ねじの溝を採用してもよい。   Further, in the first embodiment, a female screw groove is adopted as the first screw portion 23b, while a male screw corresponding to the female screw groove is adopted as the first engaging portion 15a that engages with the first screw portion 23b. An example was given. However, the present invention is not limited to this example. For example, a male screw may be employed as the first screw portion 23b, while a female screw groove corresponding to the male screw may be employed as the first engagement portion 15a that engages with the first screw portion 23b.

しかも、上記実施例1では、前記第2ねじ部25bとして雌ねじの溝を採用する一方、この第2ねじ部25bに係合する第2係合部17aとして前記雌ねじの溝に対応する雄ねじを採用する例をあげて説明した。ただし、本発明はこの例に限定されるものではない。例えば、前記第2ねじ部25bとして雄ねじを採用する一方、この第2ねじ部25bに係合する第2係合部17aとして前記雄ねじに対応する雌ねじの溝を採用してもよい。
[実施例1に係る制振用ダンパの動作]
次に、実施例1に係る制振用ダンパの動作について、図4及び図5を参照して説明する。
In the first embodiment, a female screw groove is used as the second screw portion 25b, while a male screw corresponding to the female screw groove is used as the second engagement portion 17a that engages with the second screw portion 25b. An example was given. However, the present invention is not limited to this example. For example, a male screw may be adopted as the second screw portion 25b, and a female screw groove corresponding to the male screw may be adopted as the second engaging portion 17a that engages with the second screw portion 25b.
[Operation of Damping Damper According to Embodiment 1]
Next, the operation of the vibration damper according to the first embodiment will be described with reference to FIGS. 4 and 5.

図4は、実施例1に係る制振用ダンパの動作説明に供する図であり、(A),(B)は圧縮方向の振動エネルギが両腕部に入力されたときの継手部の回動動作を示す説明図、(C),(D)は伸長方向の振動エネルギが両腕部に入力されたときの継手部の回動動作を示す説明図、図5は、実施例1に係る制振用ダンパの制振特性を示す説明図であり、(A)は実施例1に係る制振用ダンパの制振特性を比較例と対比して示す説明図、(B)は腕部のストローク位置と加速度の関係を経時的に示す説明図である。   FIGS. 4A and 4B are diagrams for explaining the operation of the vibration damper according to the first embodiment. FIGS. 4A and 4B illustrate the rotation of the joint when vibration energy in the compression direction is input to both arms. FIG. 5 is an explanatory view showing the operation, FIG. 5C is an explanatory view showing the turning operation of the joint portion when the vibration energy in the extending direction is inputted to both arm portions, and FIG. It is explanatory drawing which shows the damping characteristic of a vibration damper, (A) is explanatory drawing which shows the damping characteristic of the damping damper which concerns on Example 1 in contrast with a comparative example, (B) is the stroke of an arm part. It is explanatory drawing which shows the relationship between a position and acceleration with time.

前提として、実施例1に係る制振用ダンパ11が、例えば後述する図7(A)に示すように、ある建築構造物の枠組みのうち隅部に渡って設けてあるものとする。また、前記建築構造物の地域で地震が発生したとする。   As a premise, it is assumed that the damping damper 11 according to the first embodiment is provided across the corners of a framework of a certain building structure as shown in FIG. Further, it is assumed that an earthquake occurs in the area of the building structure.

上記地震の発生によって前記建築構造物の枠組みに歪みが生じる。同時にこの地震の振動エネルギが、前記第1腕部15及び前記第2腕部17に入力される。   Due to the occurrence of the earthquake, the framework of the building structure is distorted. At the same time, vibration energy of this earthquake is input to the first arm portion 15 and the second arm portion 17.

前記入力された振動エネルギは、前記第1腕部15及び前記第2腕部17を軸方向に沿って往復運動させるように作用する。ところが、前記第1腕部15及び前記第2腕部17のそれぞれは、逆ねじ構造の第1及び第2ねじ結合部15a,23b,17a,25bを介して前記継手部13にねじ結合されている。このため、前記軸方向に沿う往復運動の力は、前記第1及び第2ねじ結合部15a,23b,17a,25bにおけるリードの作用によって、前記マス部31を備えた前記継手部13の回動力に変換される。   The input vibration energy acts to reciprocate the first arm portion 15 and the second arm portion 17 along the axial direction. However, each of the first arm portion 15 and the second arm portion 17 is screwed to the joint portion 13 via the first and second screw coupling portions 15a, 23b, 17a, and 25b having a reverse screw structure. Yes. For this reason, the force of the reciprocating motion along the axial direction is the rotational force of the joint portion 13 including the mass portion 31 by the action of the leads in the first and second screw coupling portions 15a, 23b, 17a, and 25b. Is converted to

仮に、前記地震の振動エネルギのうち圧縮力が、前記第1腕部15及び前記第2腕部17に入力されたとする。このケースでは、前記圧縮力は、図4(A),(B)に示すように、前記第1及び第2ねじ結合部15a,23b,17a,25bにおけるリードの作用によって、前記継手部13を右側面から視て反時計回りに回転させる回動力に変換される。その結果、前記マス部31を備えた前記継手部13は、右側面から視て反時計回りに回転する。   Suppose that a compressive force out of the vibration energy of the earthquake is input to the first arm portion 15 and the second arm portion 17. In this case, as shown in FIGS. 4A and 4B, the compressive force is applied to the joint portion 13 by the action of the leads in the first and second screw coupling portions 15a, 23b, 17a, and 25b. It is converted into a rotational force that rotates counterclockwise as viewed from the right side. As a result, the joint portion 13 including the mass portion 31 rotates counterclockwise as viewed from the right side surface.

上記とは逆に、前記地震の振動エネルギのうち伸展力が、前記第1腕部15及び前記第2腕部17に入力されたとする。このケースでは、前記伸展力は、図4(C),(D)に示すように、前記第1及び第2ねじ結合部15a,23b,17a,25bにおけるリードの作用によって、前記継手部13を右側面から視て時計回りに回転させる回動力に変換される。その結果、前記マス部31を備えた前記継手部13は、右側面から視て時計回りに回転する。   Contrary to the above, it is assumed that the extension force of the vibration energy of the earthquake is input to the first arm portion 15 and the second arm portion 17. In this case, as shown in FIGS. 4C and 4D, the extension force is applied to the joint portion 13 by the action of the leads in the first and second screw coupling portions 15a, 23b, 17a, and 25b. It is converted into a rotational force that rotates clockwise as viewed from the right side. As a result, the joint portion 13 including the mass portion 31 rotates clockwise as viewed from the right side.

前記マス部31を備えた前記継手部13が回転すると、このマス部31の慣性能率によって、図5(A)に示すように、同回転時の角加速度に比例した回転抵抗力が生じる。この回転抵抗力が、前記第1及び第2ねじ結合部15a,23b,17a,25bにおけるリードに作用する。その結果、前記第1及び第2ねじ結合部15a,23b,17a,25bには、軸方向の大きな抗力が生じる。この抗力が、前記第1及び第2ねじ結合部15a,23b,17a,25bにおける摩擦力を生み、前記抗力をさらに増幅させる。このように前記マス部31と相俟って生じた摩擦力が、前記第1腕部15及び前記第2腕部17に入力された前記地震の振動エネルギを動的に緩衝することによって制振がなされる。   When the joint portion 13 provided with the mass portion 31 rotates, a rotational resistance force proportional to the angular acceleration during the rotation is generated due to the inertia performance factor of the mass portion 31 as shown in FIG. This rotational resistance acts on the leads in the first and second screw coupling portions 15a, 23b, 17a, and 25b. As a result, a large axial drag is generated in the first and second screw coupling portions 15a, 23b, 17a, and 25b. This drag generates a frictional force in the first and second screw coupling portions 15a, 23b, 17a, and 25b, and further amplifies the drag. The frictional force generated in combination with the mass portion 31 thus dampens the vibration energy of the earthquake input to the first arm portion 15 and the second arm portion 17 by dynamically buffering the vibration. Is made.

この増幅作用の大きさは、前記第1及び第2ねじ結合部15a,23b,17a,25bにおけるリード寸法、リード角、第1及び第2ねじ結合部の摩擦係数、ねじ(第1ねじ部15a及び第2ねじ部17a)の有効径などの各種パラメータを調整することによって、適宜設定することができる。   The magnitude of this amplifying action is the lead size, lead angle, friction coefficient of the first and second screw coupling portions, screw (first screw portion 15a) in the first and second screw coupling portions 15a, 23b, 17a and 25b. And it can set suitably by adjusting various parameters, such as an effective diameter of the 2nd screw part 17a).

ちなみに、ねじ機構の摩擦抵抗によって振動エネルギを緩衝し制振させる比較例に係るフリクションダンパ(不図示)では、図5(A)に示すように、前記継手部に相当する部材が回転しても、一定の回転抵抗力しか生じない。このため、振動エネルギの周波数の変化に対応することができず、十分な制振特性が得られない。   Incidentally, in the friction damper (not shown) according to the comparative example in which the vibration energy is buffered and suppressed by the frictional resistance of the screw mechanism, as shown in FIG. 5A, even if the member corresponding to the joint portion rotates. Only a certain rotational resistance force is generated. For this reason, it cannot respond to the change of the frequency of vibration energy, and a sufficient damping characteristic cannot be obtained.

これに対し、実施例1に係る制振ダンパ11では、上述した通り、前記継手部13の回転時の角加速度に比例した回転抵抗力が生じる。そして、同回転抵抗力を増幅することで生じた摩擦力が、前記第1腕部15及び前記第2腕部17に入力された前記地震の振動エネルギを動的に緩衝することによって制振がなされる。   In contrast, in the vibration damper 11 according to the first embodiment, as described above, a rotational resistance force proportional to the angular acceleration during rotation of the joint portion 13 is generated. The frictional force generated by amplifying the rotation resistance force dynamically suppresses the vibration energy of the earthquake input to the first arm portion 15 and the second arm portion 17 to suppress vibration. Made.

また、例えば第1腕部15のストローク位置と加速度(ストローク位置を二次微分したもの)の時間軸上における関係は、図5(B)に示すように、相互に逆位相の関係となる。このことからも、実施例1に係る制振ダンパ11では、例えば第1腕部15のストローク運動を原位置(腕部に対して圧縮力または伸展力が入力されていない状態下での腕部の位置)に復帰させる力が作用することがわかる。   Further, for example, the relationship between the stroke position and acceleration of the first arm portion 15 (second-order differentiation of the stroke position) on the time axis is an inverse phase relationship as shown in FIG. Also from this, in the vibration damper 11 according to the first embodiment, for example, the stroke movement of the first arm portion 15 is performed at the original position (the arm portion in a state where no compression force or extension force is input to the arm portion). It can be seen that a force for returning to the position of () is applied.

従って、実施例1に係る制振ダンパ11によれば、振動エネルギの周波数の変化に動的に対応した、きわめて優れた制振効果を得ることができる。   Therefore, according to the vibration damping damper 11 according to the first embodiment, it is possible to obtain a very excellent vibration damping effect that dynamically responds to changes in the frequency of vibration energy.

また、実施例1の変形例に係る制振ダンパ11では、相互に長さの異なる複数の継手部13A,13B,13Cを用意しておく。制振用ダンパの使用時には、前記継手部13A,13B,13Cのバリエーションのうち、取付対象の実情に合致した長さの継手部を選んで、同継手部が組み込まれた制振用ダンパ11を取付対象に取り付ける構成を採用することとした。   In the vibration damper 11 according to the modification of the first embodiment, a plurality of joint portions 13A, 13B, and 13C having different lengths are prepared. When using the damper for vibration damping, the coupling part having a length matching the actual condition of the object to be mounted is selected from the variations of the joint parts 13A, 13B, and 13C, and the damping damper 11 incorporating the joint part is selected. It was decided to adopt a configuration for mounting on the mounting target.

実施例1の変形例に係る制振ダンパ11によれば、取付対象の実情に合わせて継手部を長さの異なるものに適宜交換することによって、制振用ダンパの長さ調整の要請に的確に対応することができる。   According to the vibration damper 11 according to the modification of the first embodiment, the joint portion is appropriately replaced with one having a different length in accordance with the actual condition of the attachment target, so that the request for adjusting the length of the vibration damper can be accurately met. It can correspond to.

さらに、上記の長さ調整機構に代えてまたは加えて、実施例1のさらなる変形例に係る制振ダンパ11では、相互に長さの異なる複数の腕部15,17を用意しておく。制振用ダンパの使用時には、前記腕部15,17のバリエーションのうち、取付対象の実情に合致した長さの腕部15A,17Aを選んで、同腕部15A,17Aが組み込まれた制振用ダンパ11を取付対象に取り付ける構成を採用することとした。   Further, in place of or in addition to the above-described length adjusting mechanism, a plurality of arm portions 15 and 17 having different lengths are prepared in the vibration damper 11 according to a further modification of the first embodiment. When the vibration damper is used, the arm portions 15A and 17A having a length matching the actual condition of the attachment target are selected from the variations of the arm portions 15 and 17, and the arm portions 15A and 17A are incorporated. The structure which attaches the damper 11 for attachment to a mounting object was adopted.

実施例1のさらなる変形例に係る制振ダンパ11によれば、取付対象の実情に合わせて、前記第1腕部15及び前記第2腕部17のうち少なくともいずれか一方を長さの異なるものに適宜交換することによって、制振用ダンパの長さ調整、特に微調整の要請に的確に対応することができる。   According to the vibration damper 11 according to the further modification of the first embodiment, the length of at least one of the first arm portion 15 and the second arm portion 17 is different depending on the actual situation of the attachment target. By appropriately exchanging them, it is possible to accurately respond to the demand for adjusting the length of the damping damper, particularly for fine adjustment.

そして、前記実施例1の変形例に係る長さ調整手法を組み合わせて適用した制振ダンパ11によれば、取付対象の実情に合わせて、継手部を長さの異なるものに適宜交換すると共に、前記第1腕部15及び前記第2腕部17のうち少なくともいずれか一方を長さの異なるものに適宜交換することによって、制振用ダンパの大雑把な長さ調整及び微調整の両要請に的確に対応することができる。
[実施例2〜5に係る制振用ダンパの説明]
次に、本発明の実施例2〜5に係る制振用ダンパについて、図6(A)〜(D)を参照して説明する。
And according to the damping damper 11 applied in combination with the length adjustment method according to the modified example of the first embodiment, according to the actual situation of the mounting target, the joint portion is appropriately replaced with one having a different length, By appropriately exchanging at least one of the first arm portion 15 and the second arm portion 17 with a different length, it is possible to accurately satisfy both requests for rough length adjustment and fine adjustment of the damping damper. It can correspond to.
[Description of Damping Damper According to Examples 2 to 5]
Next, damping dampers according to Embodiments 2 to 5 of the present invention will be described with reference to FIGS.

図6は、実施例2〜5に係る制振用ダンパの説明に供する横断面図であり、(A)は実施例2の説明図、(B)は実施例3の説明図、(C)は実施例4の説明図、(D)は実施例5の説明図である。   6A and 6B are cross-sectional views for explaining the vibration dampers according to Examples 2 to 5. FIG. 6A is an explanatory diagram of Example 2, FIG. 6B is an explanatory diagram of Example 3, and FIG. Is an explanatory diagram of the fourth embodiment, (D) is an explanatory diagram of the fifth embodiment.

なお、実施例1に係る制振用ダンパ11と、実施例2〜5に係る制振用ダンパ51,61,71,81との主な相違点は、後者では、前記封止部23,25が継手部13の両端に一体に形成されている点、並びに継手部13に対するマス部31の取付構造である。   The main difference between the damping damper 11 according to the first embodiment and the damping dampers 51, 61, 71, 81 according to the second to fifth embodiments is that the sealing portions 23, 25 are used in the latter. These are the points formed integrally at both ends of the joint part 13 and the attachment structure of the mass part 31 to the joint part 13.

従って、実施例1に係る制振用ダンパ11と、実施例2〜5に係る制振用ダンパ51,61,71,81との間で共通の部材には共通の符合を付し、その重複した説明を省略する。これと同時に、比較対象となる実施例間の相違点に着目し、同相違点を中心に説明する。   Therefore, the same reference numerals are given to the common members between the damping damper 11 according to the first embodiment and the damping dampers 51, 61, 71, 81 according to the second to fifth embodiments, and the duplication thereof. The description that has been made will be omitted. At the same time, paying attention to the difference between the examples to be compared, the difference will be mainly described.

初めに、実施例2に係る制振用ダンパ51について説明する。   First, the vibration damper 51 according to the second embodiment will be described.

実施例1に係る制振用ダンパ11では、前記継手部13に、これとは別体の前記マス部31を設ける構成を採用しているのに対し、実施例2に係る制振用ダンパ51では、継手部13−2に対してマス部31−2を一体に設ける構成を採用している。具体的には、例えば金属製または合成樹脂製の継手部13−2それ自体がマス部31−2を構成している。   In the vibration damper 11 according to the first embodiment, a configuration in which the mass portion 31 is provided separately from the joint portion 13 is used. On the other hand, the vibration damper 51 according to the second embodiment is used. Then, the structure which provides the mass part 31-2 integrally with respect to the coupling part 13-2 is employ | adopted. Specifically, for example, the joint portion 13-2 made of metal or synthetic resin itself constitutes the mass portion 31-2.

実施例2に係る制振用ダンパ51によれば、きわめて簡素な構成をもって周波数の変化に動的に対応可能なコストパフォーマンスの高い制振用ダンパを得ることができる。   According to the vibration damper 51 according to the second embodiment, it is possible to obtain a vibration damper with high cost performance that can dynamically cope with a change in frequency with a very simple configuration.

次に、実施例3に係る制振用ダンパ61について説明する。   Next, a vibration damper 61 according to the third embodiment will be described.

実施例1に係る制振用ダンパ11では、前記継手部13の軸方向中央付近の外側壁に密着させて筒状の前記マス部31を設ける構成を採用しているのに対し、実施例3に係る制振用ダンパ61では、継手部13−3の軸方向全長にわたって同継手部13−3の軸方向から視て非対称のマス部31−3を設ける構成を採用している。このマス部31−3は、正面視で矩形形状に形成されている。   In the vibration damper 11 according to the first embodiment, the configuration in which the cylindrical mass portion 31 is provided in close contact with the outer wall near the center in the axial direction of the joint portion 13 is employed. In the vibration damper 61 according to the above, a configuration is adopted in which the asymmetric mass portion 31-3 is provided over the entire axial length of the joint portion 13-3 as viewed from the axial direction of the joint portion 13-3. The mass portion 31-3 is formed in a rectangular shape when viewed from the front.

実施例3に係る制振用ダンパ61では、非対称の前記マス部31−3の回動によって生じる遠心力が、前記第1及び第2ねじ結合部15a,23b,17a,25bにおけるリードに作用する。すると、前記第1及び第2ねじ結合部15a,23b,17a,25bには軸方向の抗力が生じる。この抗力が、前記第1及び第2ねじ結合部15a,23b,17a,25bにおける摩擦力を生み、前記抗力をさらに増幅させる。こうして生じた摩擦力が、前記第1腕部15及び前記第2腕部17に入力された前記地震の振動エネルギを動的に緩衝することによって制振がなされる。   In the damping damper 61 according to the third embodiment, the centrifugal force generated by the asymmetric mass portion 31-3 rotating acts on the leads in the first and second screw coupling portions 15a, 23b, 17a, and 25b. . Then, axial drag is generated in the first and second screw coupling portions 15a, 23b, 17a, and 25b. This drag generates a frictional force in the first and second screw coupling portions 15a, 23b, 17a, and 25b, and further amplifies the drag. The frictional force generated in this way is controlled by dynamically buffering the vibration energy of the earthquake input to the first arm portion 15 and the second arm portion 17.

従って、実施例3に係る制振用ダンパ61では、非対称の前記マス部31−3の回動によって生じる遠心力の大小を調整することによって、振動エネルギの周波数変化への対応のバリエーションを確保することができる。   Therefore, in the vibration damper 61 according to the third embodiment, the variation of the response to the frequency change of the vibration energy is ensured by adjusting the magnitude of the centrifugal force generated by the rotation of the asymmetric mass portion 31-3. be able to.

実施例3に係る制振用ダンパ61によれば、簡素な構成をもって周波数の変化に動的に対応可能なコストパフォーマンスの高い制振用ダンパを得ることができる。   According to the vibration damper 61 according to the third embodiment, it is possible to obtain a vibration damper with high cost performance that can dynamically cope with a change in frequency with a simple configuration.

次に、実施例4に係る制振用ダンパ71について説明する。   Next, a vibration damper 71 according to the fourth embodiment will be described.

実施例3に係る制振用ダンパ61では、前記継手部13−3の軸方向全長にわたって同継手部13−3の軸方向から視て非対称のマス部31−3を設ける構成を採用しているのに対し、実施例4に係る制振用ダンパ71では、継手部13−4の軸方向全長にわたって前記マス部31−3と比べてサイズの大きいマス部31−4を設ける構成を採用している。なお、継手部13−4の外径サイズも、前記継手部13−3と比べて大径に形成されている。   The damping damper 61 according to the third embodiment employs a configuration in which an asymmetric mass portion 31-3 is provided over the entire axial length of the joint portion 13-3 as viewed from the axial direction of the joint portion 13-3. On the other hand, the damping damper 71 according to the fourth embodiment employs a configuration in which a mass portion 31-4 having a size larger than that of the mass portion 31-3 is provided over the entire axial length of the joint portion 13-4. Yes. In addition, the outer diameter size of the joint part 13-4 is also formed larger than the joint part 13-3.

実施例4に係る制振用ダンパ71では、実施例3と同様に、非対称の前記マス部31−4の回動によって生じる遠心力の大小を調整することによって、振動エネルギの周波数変化への対応のバリエーションを確保することができる。   In the vibration damping damper 71 according to the fourth embodiment, as in the third embodiment, by adjusting the magnitude of the centrifugal force generated by the rotation of the asymmetric mass portion 31-4, it is possible to cope with the frequency change of vibration energy. Variations can be ensured.

実施例4に係る制振用ダンパ71によれば、実施例3と同様に、簡素な構成をもって周波数の変化に動的に対応可能なコストパフォーマンスの高い制振用ダンパを得ることができる。   According to the damping damper 71 according to the fourth embodiment, as in the third embodiment, it is possible to obtain a damping damper with high cost performance capable of dynamically responding to a change in frequency with a simple configuration.

最後に、実施例5に係る制振用ダンパ81について説明する。   Finally, a vibration damper 81 according to the fifth embodiment will be described.

実施例1に係る制振用ダンパ11では、前記継手部13の軸方向中央付近の外側壁に密着させて筒状の前記マス部31を設ける構成を採用しているのに対し、実施例5に係る制振用ダンパ81では、継手部13−5の軸方向中央付近の外側壁に密着させて筒状のマス部31−5Aを設けるところまでは、実施例1と同じである。   In the vibration damper 11 according to the first embodiment, a configuration in which the cylindrical mass portion 31 is provided in close contact with the outer wall near the center in the axial direction of the joint portion 13 is employed. The vibration damping damper 81 according to this embodiment is the same as the first embodiment until the cylindrical mass portion 31-5A is provided in close contact with the outer wall near the center in the axial direction of the joint portion 13-5.

ところが、実施例5に係る制振用ダンパ81では、前記筒状のマス部31−5Aに積層させて、例えばゴム等の弾性素材からなる筒状の弾性部33を設ける。さらに、この弾性部33に積層させて、筒状のマス部31−5Bを設ける構成を採用している。   However, in the vibration damper 81 according to the fifth embodiment, the cylindrical elastic portion 33 made of an elastic material such as rubber is provided so as to be laminated on the cylindrical mass portion 31-5A. Furthermore, the structure which laminates | stacks on this elastic part 33, and provides the cylindrical mass part 31-5B is employ | adopted.

実施例5に係る制振用ダンパ81では、弾性部33を介して設けられたマス部31−5Bが、ダイナミックダンパとして機能する。   In the vibration damper 81 according to the fifth embodiment, the mass portion 31-5B provided via the elastic portion 33 functions as a dynamic damper.

実施例5に係る制振用ダンパ81によれば、簡素な構成をもって長さ調整の要請に容易に対応可能でありながら、振動エネルギの周波数の変化に動的かつ的確に対応可能なコストパフォーマンスの高い制振用ダンパを得ることができる。
[建築構造物の制振構造]
次に、建築構造物の制振構造について、図7を参照して説明する。
According to the vibration damper 81 according to the fifth embodiment, it is possible to easily respond to a request for length adjustment with a simple configuration, but to have a cost performance capable of dynamically and accurately responding to changes in the frequency of vibration energy. A high damping damper can be obtained.
[Vibration control structure of building structure]
Next, the vibration control structure of a building structure will be described with reference to FIG.

図7は、制振用ダンパの使用状態を示す説明図であり、(A)は建築構造物の枠組みのうち四隅に渡って制振用ダンパを取り付けた例を示す説明図、(B)は建築構造物の枠組みのうち対角線状並びに隅部に渡って制振用ダンパを取り付けた例を示す説明図である。   FIG. 7 is an explanatory view showing the use state of the vibration damper, (A) is an explanatory view showing an example in which the vibration damper is attached to the four corners of the framework of the building structure, and (B). It is explanatory drawing which shows the example which attached the damper for damping over the diagonal form and corner part among the frameworks of a building structure.

例えば木造家屋などの建築構造物111では、矩形状の枠組み101のうち、図7(A)に示すように、短軸仕様の継手部13が組み込まれた制振用ダンパ11を、四隅のそれぞれに渡って筋交い状に取り付ける。具体的には、各隅を形成する二辺のうち適所(例えば隅部を頂点とする二等辺三角形を形成する位置等)に、制振用ダンパ11の第1及び第2取付部27,29を、ボルト等の締結手段によって取り付ける。   For example, in a building structure 111 such as a wooden house, as shown in FIG. 7A, a damping damper 11 in which a short shaft specification joint 13 is incorporated in each of the four corners of a rectangular frame 101. Attach it in a brace shape. Specifically, the first and second attachment portions 27 and 29 of the vibration damper 11 are arranged at appropriate positions (for example, positions where isosceles triangles having corners as vertices are formed) out of two sides forming each corner. Are attached by fastening means such as bolts.

このようにすれば、矩形状の枠組み101のうち四隅の補強効果と、制振用ダンパ11が有する振動エネルギの周波数変化に動的に対応した制振効果とが相俟って、堅固でありながらしなやかさを併せ持つ、きわめて優れた制振効果を発揮可能な建築構造物を具現化することができる。   In this way, the reinforcement effect of the four corners of the rectangular frame 101 and the vibration suppression effect that dynamically responds to the frequency change of the vibration energy of the vibration damper 11 are strong. However, it is possible to embody a building structure that can exhibit a very excellent vibration-damping effect while having suppleness.

なお、四隅に取り付ける制振用ダンパ11の制振特性は、全て又は複数個が同じものであってもよいし、全てが異なる制振特性を有するものであってもよい。   The damping characteristics of the damping dampers 11 attached to the four corners may be the same or all or a plurality of damping characteristics may be different.

相互に異なる制振特性(周波数特性)を有する制振用ダンパ11を組み合わせて採用した場合、組み合わされた制振用ダンパ11全体としての制振特性は、個々の制振用ダンパ11毎の振動エネルギの制振特性(周波数特性)を重畳したものとなる。従って、制振効果の周波数特性を全体として平坦にして、振動エネルギの制振特性(周波数特性)向上に寄与することができる。   When the damping dampers 11 having different damping characteristics (frequency characteristics) are employed in combination, the damping characteristics of the combined damping dampers 11 as a whole are the vibrations of the individual damping dampers 11. The energy damping characteristic (frequency characteristic) is superimposed. Therefore, it is possible to flatten the frequency characteristic of the vibration damping effect as a whole and contribute to the improvement of the vibration energy damping characteristic (frequency characteristic).

さらには、四隅に取り付ける制振用ダンパ11の長さは、全て又は複数個が同じものであってもよいし、全てが異なる長さを有するものであってもよい。   Furthermore, the damping dampers 11 attached to the four corners may have the same length or a plurality of lengths, or all may have different lengths.

また、矩形状の枠組み101のうち、図7(B)に示すように、長軸仕様の継手部13が組み込まれた制振用ダンパ11を対角線状(筋交い状)に取り付けると共に、短軸仕様の継手部13が組み込まれた制振用ダンパ11を、下辺103を挟む両下隅のそれぞれに渡って筋交い状に取り付ける構成を採用してもよい。制振用ダンパ11の取り付け方は、前記と同様である。   In addition, as shown in FIG. 7B, among the rectangular frame 101, the damping damper 11 incorporating the joint portion 13 having a long axis specification is attached in a diagonal shape (a brace shape) and a short axis specification. A configuration may be adopted in which the vibration damper 11 incorporating the joint portion 13 is attached in a bracing manner across both lower corners sandwiching the lower side 103. The method of attaching the vibration damper 11 is the same as described above.

このようにすれば、矩形状の枠組み101のうち対角線状及び下辺103を挟む両下隅の補強効果と、制振用ダンパ11が有する振動エネルギの周波数変化に動的に対応した制振効果とが相俟って、堅固でありながらしなやかさを併せ持つ、きわめて優れた制振効果を発揮可能な建築構造物を具現化することができる。   In this way, the reinforcing effect of the lower corners sandwiching the diagonal line and the lower side 103 of the rectangular frame 101 and the damping effect dynamically corresponding to the frequency change of the vibration energy of the damping damper 11 are obtained. Together, it is possible to realize a building structure that is strong yet flexible and that can exhibit an extremely excellent vibration control effect.

本建築構造物の制振構造では、実施例1〜5に係る制振用ダンパのうち、いずれのものを採用してもよい。   In the damping structure of this building structure, you may employ | adopt any thing among the dampers for damping | damping which concern on Examples 1-5.

また、実施例1〜5に係る制振用ダンパのうち、適宜の組み合わせに係るものを採用してもよい。
[その他]
本発明は、上述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、あるいは技術思想に反しない範囲で適宜変更可能であり、そのような変更を伴う制振用ダンパもまた、本発明における技術的範囲の射程に包含される。
Moreover, you may employ | adopt the thing which concerns on an appropriate combination among the damping dampers concerning Examples 1-5.
[Others]
The present invention is not limited to the above-described embodiments, and can be appropriately changed within the scope of the invention that can be read from the claims and the entire specification, or within the scope of the technical idea. Dampers are also included within the scope of the present invention.

すなわち、例えば、実施例1の変形例において、短軸のもの、中位の軸長のもの、及び長軸のものといったように、相互に長さの異なる複数の継手部13A,13B,13Cを用意しておく例をあげて説明した。ただし、本発明はこの例に限定されるものではない。例えば、相互に長さの異なる三種類以上の継手部を、使用状況に応じて用意しておく構成を採用してもよい。   That is, for example, in the modification of the first embodiment, a plurality of joint portions 13A, 13B, and 13C having mutually different lengths, such as a short shaft, a medium shaft length, and a long shaft, are provided. I explained with an example to prepare. However, the present invention is not limited to this example. For example, you may employ | adopt the structure which prepares three or more types of coupling parts from which length mutually differs according to a use condition.

また、例えば、実施例1のさらなる変形例において、短軸のもの、中位の軸長のもの、及び長軸のものといったように、相互に長さの異なる複数の腕部15,17を用意しておく例をあげて説明した。ただし、本発明はこの例に限定されるものではない。例えば、相互に長さの異なる三種類以上の腕部を、使用状況に応じて用意しておく構成を採用してもよい。   Further, for example, in a further modification of the first embodiment, a plurality of arm portions 15 and 17 having different lengths such as a short axis, a medium axis, and a long axis are prepared. I explained with an example. However, the present invention is not limited to this example. For example, you may employ | adopt the structure which prepares three or more types of arm parts from which length differs mutually according to a use condition.

11 実施例1に係る制振用ダンパ
13 継手部
15 第1腕部
15a 第1係合部(第1ねじ結合部)
17 第2腕部
17a 第2係合部(第2ねじ結合部)
23b 第1ねじ部(第1ねじ結合部)
25b 第2ねじ部(第2ねじ結合部)
27 第1取付部
29 第2取付部
31 マス部
33 弾性部
51 実施例2に係る制振用ダンパ
61 実施例3に係る制振用ダンパ
71 実施例4に係る制振用ダンパ
81 実施例5に係る制振用ダンパ
101 建築構造物の枠組み
111 建築構造物
11 Damping damper for vibration damping according to first embodiment 13 Joint portion 15 First arm portion 15a First engagement portion (first screw coupling portion)
17 2nd arm part 17a 2nd engaging part (2nd screw coupling part)
23b First screw portion (first screw coupling portion)
25b Second screw part (second screw coupling part)
27 First mounting portion 29 Second mounting portion 31 Mass portion 33 Elastic portion 51 Damping damper for vibration according to second embodiment 61 Damping damper for vibration according to third embodiment 71 Damping for damping according to fourth embodiment 81 fifth embodiment Damper for vibration control 101 Building framework 111 Building structure

Claims (3)

相互に逆ねじ構造となる第1ねじ結合部及び第2ねじ結合部を両端にそれぞれ有する継手部と、
前記継手部に前記第1ねじ結合部を介してねじ結合される第1腕部と、
前記継手部に前記第2ねじ結合部を介してねじ結合される第2腕部と、
を備え、
前記継手部は、慣性質量体を有するマス部を備え、
前記マス部は、前記第1腕部及び前記第2腕部に入力された振動エネルギを、前記第1ねじ結合部及び前記第2ねじ結合部を介して前記継手部の回動力に変換する時の前記両ねじ結合部の摩擦力により動的に緩衝する、
ことを特徴とする制振用ダンパ。
A joint portion having a first screw coupling portion and a second screw coupling portion at both ends, each having a reverse screw structure;
A first arm portion screwed to the joint portion via the first screw coupling portion;
A second arm portion screwed to the joint portion via the second screw coupling portion;
With
The joint portion includes a mass portion having an inertial mass body,
When the mass portion converts the vibration energy input to the first arm portion and the second arm portion into the rotational force of the joint portion via the first screw coupling portion and the second screw coupling portion. Dynamically buffering by the frictional force of both screw joints
This is a damper for vibration control.
請求項1記載の制振用ダンパであって、
前記マス部は、弾性部を介して前記継手部に設けられている、
ことを特徴とする制振用ダンパ。
The vibration damper according to claim 1,
The mass portion is provided in the joint portion via an elastic portion.
This is a damper for vibration control.
請求項1又は2に記載の制振用ダンパを、建築構造物の枠組みに筋交い状に設けた、
ことを特徴とする建築構造物の制振構造。
The damping damper according to claim 1 or 2 is provided in a brace form in a framework of a building structure.
Damping structure of building structure characterized by that.
JP2009206977A 2009-09-08 2009-09-08 Damping damper for damping and damping structure of building structure Active JP5292236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206977A JP5292236B2 (en) 2009-09-08 2009-09-08 Damping damper for damping and damping structure of building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206977A JP5292236B2 (en) 2009-09-08 2009-09-08 Damping damper for damping and damping structure of building structure

Publications (2)

Publication Number Publication Date
JP2011058529A JP2011058529A (en) 2011-03-24
JP5292236B2 true JP5292236B2 (en) 2013-09-18

Family

ID=43946411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206977A Active JP5292236B2 (en) 2009-09-08 2009-09-08 Damping damper for damping and damping structure of building structure

Country Status (1)

Country Link
JP (1) JP5292236B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084519B2 (en) * 2013-06-13 2017-02-22 東芝三菱電機産業システム株式会社 Damper device
JP6170425B2 (en) * 2013-12-18 2017-07-26 ニッタ株式会社 Friction damper
JP6415138B2 (en) * 2014-07-01 2018-10-31 日本タイロッド工業株式会社 Damping device for tension material
JP6215436B2 (en) * 2016-12-02 2017-10-18 東芝三菱電機産業システム株式会社 Damper device
CN107143188B (en) * 2017-07-05 2019-07-26 北京建筑大学 A kind of Gu Wood construction assembled energy consumption reinforcing member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861942U (en) * 1981-10-21 1983-04-26 トヨタ自動車株式会社 dynamic damper
JPH10274285A (en) * 1997-03-28 1998-10-13 Suzuki Motor Corp Dynamic damper for rotary shaft
JPH11201224A (en) * 1998-01-14 1999-07-27 Sumitomo Constr Co Ltd Damping piece, damping rod and damping device using the same
JP2000087592A (en) * 1998-09-14 2000-03-28 Kajima Corp Small-stroke vibration isolation device
JP2000274474A (en) * 1999-03-25 2000-10-03 Sumitomo Constr Co Ltd Damping arrangement
JP2002138704A (en) * 2000-11-02 2002-05-17 Menseihin Sogo Kikaku:Kk Earthquake damping device having translucent plate
JP4039663B2 (en) * 2002-08-28 2008-01-30 三協オイルレス工業株式会社 Damping device
JP4673271B2 (en) * 2005-09-30 2011-04-20 シナノケンシ株式会社 Dynamic damper and manufacturing method thereof
JP4212610B2 (en) * 2006-07-10 2009-01-21 三井住友建設株式会社 Seismic isolation structure
JP2008175344A (en) * 2007-01-22 2008-07-31 Tokai Rubber Ind Ltd Attaching structure of dynamic damper to rotating shaft, and rotary shaft with dynamic damper
JP2008196606A (en) * 2007-02-13 2008-08-28 Shimizu Corp Rotary inertia mass damper, and its installation structure
JP4832385B2 (en) * 2007-08-29 2011-12-07 三協オイルレス工業株式会社 Attenuator bearing structure

Also Published As

Publication number Publication date
JP2011058529A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5292236B2 (en) Damping damper for damping and damping structure of building structure
JP2014524996A (en) Passive damper
JP6075125B2 (en) Vibration damper device
CN106639473B (en) Rigidity-adjustable particle shock absorber for high-rise civil structure
JP2013181366A (en) Vibration control device
CN111155672B (en) Self-adaptive tuned mass damper based on shear thickening liquid
JP5051590B2 (en) Inertia mass damper
JP5648821B2 (en) Vibration control mechanism
CN116517132A (en) Length-adjustable self-resetting viscous damper
JP3250795B2 (en) Small stroke seismic isolation device
JP5516934B2 (en) Vibration control mechanism
JP6247870B2 (en) Seismic reduction device
JP2007247278A (en) Seismic control damper
JP2010048287A (en) Friction damper
JP2010084834A (en) Simplified dynamic vibration absorber and vibration damping method
JP5423198B2 (en) Vibration control device
JPWO2020116344A1 (en) Eddy current damper
JP5787933B2 (en) Tower structure
JPH11193649A (en) Vibration control wall panel
JP6726381B2 (en) Installation structure of rotary mass damper
JP5358322B2 (en) Vibration control device and specification method of vibration control device
JP6908921B2 (en) Vibration damping damper
JP2005248989A (en) Vibration control damper
JP2005054458A (en) Installation structure of damper
JP4509672B2 (en) Viscous / fluid damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250