JP5292028B2 - Glass - Google Patents

Glass Download PDF

Info

Publication number
JP5292028B2
JP5292028B2 JP2008232748A JP2008232748A JP5292028B2 JP 5292028 B2 JP5292028 B2 JP 5292028B2 JP 2008232748 A JP2008232748 A JP 2008232748A JP 2008232748 A JP2008232748 A JP 2008232748A JP 5292028 B2 JP5292028 B2 JP 5292028B2
Authority
JP
Japan
Prior art keywords
component
glass
ingredient
content
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008232748A
Other languages
Japanese (ja)
Other versions
JP2010064921A (en
Inventor
直雪 後藤
俊剛 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008232748A priority Critical patent/JP5292028B2/en
Priority to EP09813113A priority patent/EP2351716A4/en
Priority to PCT/JP2009/065827 priority patent/WO2010029967A1/en
Priority to CN200980134622.0A priority patent/CN102143922B/en
Publication of JP2010064921A publication Critical patent/JP2010064921A/en
Application granted granted Critical
Publication of JP5292028B2 publication Critical patent/JP5292028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low thermal expansive glass exhibiting a superior clarifying effect without containing an As ingredient and an Sb ingredient and being excellent in chemical durability. <P>SOLUTION: The glass is characterized by including an SiO<SB>2</SB>ingredient, an Al<SB>2</SB>O<SB>3</SB>ingredient, a CeO<SB>2</SB>ingredient and/or an SnO<SB>2</SB>ingredient and &lt;0.1% B<SB>2</SB>O<SB>3</SB>ingredient in terms of oxides and by that the total amount &gamma; of the CeO<SB>2</SB>ingredient and/or the SnO<SB>2</SB>ingredient is satisfied with an equation of &gamma;&ge;0.005&alpha;-5.25 (wherein, &alpha; is liquid phase temperature). It is more favorable that the content of the SiO<SB>2</SB>ingredient is 45-68% and the content of the Al<SB>2</SB>O<SB>3</SB>ingredient is 16-35% in terms of oxides in mass%. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は化学的耐久性が極度に優れ、有害物質の含有量を低減した低熱膨張性ガラスに関する。   The present invention relates to a low thermal expansion glass having extremely excellent chemical durability and a reduced content of harmful substances.

平均線膨張係数の低い低熱膨張性ガラスは精密機器分野における基板材、耐熱ガラス等の幅広い分野で使用されている。このようなガラスは一般的にSiO成分が比較的多いため、製造工程における液相状態でのガラスの粘度が高くなり、清澄化が困難である。そのため、このような低熱膨張性ガラスはAs成分やSb成分を含有させることにより清澄効果を得ていた。As成分またはSb成分は高い清澄効果が得られるため、溶融ガラスの粘性が高く泡が抜けにくい低熱膨張性ガラスの製造には欠かせないものであったが、近年、ガラス成分から有害物質を排除する要求が高まり、As成分、Sb成分を含まない低熱膨張性ガラスが求められている。 Low thermal expansion glass having a low average linear expansion coefficient is used in a wide range of fields such as substrate materials and heat-resistant glass in the precision instrument field. Since such glass generally has a relatively large amount of SiO 2 component, the viscosity of the glass in the liquid phase in the production process is high, and clarification is difficult. Therefore, such a low thermal expansion glass has obtained a clarification effect by containing an As component and an Sb component. The As component or Sb component has a high clarification effect, so it was indispensable for the production of low thermal expansion glass with high viscosity of molten glass and difficult to escape bubbles. Accordingly, there is a demand for low thermal expansion glass that does not contain As and Sb components.

また、近年では低熱膨張性ガラスはその用途において、低熱膨張性と共に高い化学的耐久性を有することが求められつつあるが、B成分は化学的耐久性を悪化させるため、その使用量はなるべく少なくするか、含有させないことが求められている。また、As成分、Sb成分と同様にB成分も有害物質であるという理由からもB成分の使用量削減の要求が高まりつつある。
従来の低熱膨張性ガラスは溶融ガラスの粘性が高く、液相温度が高いため、B成分を含有させることにより、溶融ガラスの粘度をできるだけ低くし、液相温度を下げて成型性を良くしたり、溶解炉の操業温度を低下させたりすることにより生産性を確保していた。
成分は揮発性に富むので、ガラス溶融時のリボイル(再泡)を招き易いが、一方で溶融ガラスの粘性を低下させる効果を有するため、泡が上昇しやすく清澄が容易となりやすい。従って、As成分、Sb成分等の高い清澄効果を有する脱泡剤と共にB成分を含有させる場合にはB成分に起因するリボイルを抑制しつつ、ガラスの粘性を低下させる効果を享受することにより十分な脱泡効果を得ることができた。
しかし、As成分、Sb成分の使用が制限され、B成分もその使用量の削減が求められている状況下においては、ガラスの清澄化そのものが困難なものとなり、近年の要求に対応できる低熱膨張性ガラスの開発は困難を極めている。
Further, in recent years, low thermal expansion glass has been required to have high chemical durability in addition to low thermal expansion, but B 2 O 3 component deteriorates chemical durability. Is required to be reduced or not contained as much as possible. In addition, as with the As component and Sb component, there is a growing demand for reducing the amount of B 2 O 3 component used because the B 2 O 3 component is also a harmful substance.
Conventional low thermal expansion glass has high viscosity of molten glass and high liquidus temperature. Therefore, by containing B 2 O 3 component, the viscosity of molten glass is made as low as possible, and the liquidus temperature is lowered to improve the moldability. Productivity was ensured by improving the temperature or lowering the operating temperature of the melting furnace.
Since the B 2 O 3 component is volatile, it tends to cause reboiling (re-foaming) at the time of melting the glass. . Therefore, when the B 2 O 3 component is contained together with a defoaming agent having a high clarification effect such as an As component, an Sb component, etc., the effect of reducing the viscosity of the glass while suppressing the reboil caused by the B 2 O 3 component A sufficient defoaming effect could be obtained by enjoying
However, under the circumstances where the use of As and Sb components is restricted and the amount of B 2 O 3 component is also required to be reduced, it is difficult to clarify the glass itself, and it has responded to recent demands. Development of low thermal expansion glass that can be made is extremely difficult.

特許文献1に記載のガラスはAs成分、Sb成分の使用を控えた熱膨張係数が38×10−7−1〜52×10−7−1の低熱膨張性ガラスが開示されているが、溶解および徐冷後のガラスの1g当たりの泡数が多く、精密機器分野などへの用途を考慮すると清澄化が十分ではない。また、B成分を含有量しているため化学的耐久性が十分ではない。 The glass described in Patent Document 1 discloses a low thermal expansion glass having a coefficient of thermal expansion of 38 × 10 −7 ° C. −1 to 52 × 10 −7 ° C. −1 with no use of As and Sb components. The number of bubbles per gram of glass after melting and slow cooling is large, and clarification is not sufficient in consideration of applications in the field of precision instruments. Further, since the B 2 O 3 component is contained, the chemical durability is not sufficient.

特許文献2に記載のガラスはAs成分、Sb成分の使用を控え、SnOやFを用いた例が提示されているが、SnOの含有量はガラスを清澄化させる上で充分な量とは言えない。また、フッ素は熔解工程においてFを発生し環境へ悪影響を与え、かつ、ガラス中に残存するため化学的耐久性を損なう欠点がある。
特開2004−284949号公報 特開2005−320234号公報
The glass described in Patent Document 2 refrains from using the As component and the Sb component, and examples using SnO 2 and F have been presented. However, the SnO 2 content is sufficient to clarify the glass. I can't say that. In addition, fluorine generates F 2 in the melting process, has an adverse effect on the environment, and remains in the glass, which impairs chemical durability.
JP 2004-284949 A JP 2005-320234 A

本発明の目的は、As成分、Sb成分を含有しなくとも良好な清澄効果を示し、化学的耐久性に優れた低熱膨張性ガラスを提供することである。   An object of the present invention is to provide a low thermal expansion glass that exhibits a good clarification effect and is excellent in chemical durability even without containing an As component and an Sb component.

本発明者は上記の課題に鑑み、鋭意研究を重ねた結果、SiO成分、Al成分を主要成分として、CeO成分および/またはSnO成分を清澄剤として含有させ、これらの含有量と、ガラスの液相温度とが特定の関係を満たすことによって、As成分、Sb成分を含まずとも、化学的耐久性が高く、高い脱泡性を示すガラスが得られることを見いだした。その具体的な構成は以下の通りである。 As a result of intensive studies in view of the above problems, the present inventor has SiO 2 component, Al 2 O 3 component as a main component, CeO 2 component and / or SnO 2 component as a clarifying agent, It has been found that by satisfying a specific relationship between the amount and the liquidus temperature of the glass, a glass having high chemical durability and high defoaming properties can be obtained without including the As component and the Sb component. The specific configuration is as follows.

(構成1)
酸化物基準でSiO成分、Al成分、CeOおよび/またはSnO成分を含有し、B成分の含有量が0.1%未満であり、
CeO成分または/もしくはSnO成分の合計量γが
γ≧0.005α−5.25 (α;液相温度)の関係を満足することを特徴とするガラス。
(構成2)
酸化物基準の質量%で
SiO成分を45〜68%
Al成分を16〜35%
含有する構成1に記載のガラス。
(構成3)
酸化物基準の質量%で、CeO成分および/またはSnO成分を0.01〜3%含有することを特徴とする構成1または2に記載のガラス。
(構成4)
酸化物基準の質量%で、RO成分(R=Li、Na、K、のいずれか1種以上)が5%未満であることを特徴とする構成1〜3のいずれかに記載のガラス。
(構成5)
酸化物基準の質量%で
成分を0〜10%、および/または
MgO成分を0〜12%、および/または
CaO成分を0〜12%、および/または
SrO成分を0〜8%、および/または
BaO成分を0〜8%、
含有することを特徴とする構成1〜4のいずれかに記載のガラス。
(構成6)
酸化物基準の質量%で、
ZrO成分を0〜5%、
ZnO成分を 0〜5%、
TiO成分を 0〜5%、
成分、La成分、Gd、Nb、Ta、BiおよびWO成分から選ばれる1種以上の合計を0〜7%、
含有することを特徴とする構成1〜5のいずれかに記載のガラス。
(構成7)
0〜300℃における平均線膨張係数が25〜55×10−7−1であることを特徴とする構成1〜6のいずれかに記載のガラス。
(構成8)
F、Cl、Br、I、Pb、As、およびSb元素をガラス構成成分として含有しないことを特徴とする構成1〜7のいずれかに記載のガラス。
(Configuration 1)
It contains SiO 2 component, Al 2 O 3 component, CeO 2 and / or SnO 2 component on the oxide basis, and the content of B 2 O 3 component is less than 0.1%,
A glass characterized in that a total amount γ of CeO 2 component and / or SnO 2 component satisfies a relationship of γ ≧ 0.005α-5.25 (α: liquidus temperature).
(Configuration 2)
45% to 68% of SiO 2 component by mass% based on oxide
Al 2 O 3 component 16-35%
The glass according to constitution 1 to be contained.
(Configuration 3)
The glass according to Configuration 1 or 2, wherein the glass contains 0.01 to 3% of a CeO 2 component and / or a SnO 2 component by mass% based on an oxide.
(Configuration 4)
The glass according to any one of the structures 1 to 3, wherein the R 2 O component (one or more of R = Li, Na, K) is less than 5% by mass% based on the oxide. .
(Configuration 5)
0-10% of P 2 O 5 component in weight percent on the oxide basis, and / or MgO component 0-12%, and / or CaO component 0 to 12%, and / or SrO component 0-8% , And / or BaO component 0-8%,
Glass in any one of the structures 1-4 characterized by containing.
(Configuration 6)
% By mass based on oxide,
0 to 5% of ZrO 2 component,
ZnO component 0-5%,
TiO 2 component 0-5%,
0 to 7% of a total of one or more selected from Y 2 O 3 component, La 2 O 3 component, Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Bi 2 O 3 and WO 3 component,
Glass in any one of the structures 1-5 characterized by containing.
(Configuration 7)
The glass according to any one of Structures 1 to 6, wherein an average linear expansion coefficient at 0 to 300 ° C. is 25 to 55 × 10 −7 ° C. −1 .
(Configuration 8)
The glass according to any one of constitutions 1 to 7, which does not contain F, Cl, Br, I, Pb, As, and Sb elements as glass constituent components.

本発明のガラスは0〜300℃における平均線膨張係数が25〜55×10−7−1の範囲であり、成形後ガラスの100cm当たりの泡数が50個以下と高い脱泡性を示し、かつ優れた化学的耐久性を有する。 The glass of the present invention has an average coefficient of linear expansion at 0 to 300 ° C. in the range of 25 to 55 × 10 −7 ° C. −1 , and has a high defoaming property with 50 or less bubbles per 100 cm 3 of the glass after molding. And has excellent chemical durability.

本発明のガラスを構成する各組成成分について述べる。なお、各成分の含有量は酸化物基準の質量%で示す。ここで、「酸化物基準」とは、本発明のガラスの構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定して、ガラス中に含有される各成分の組成を表記する方法であり、この生成酸化物の質量の総和を100質量%として、ガラス中に含有される各成分の量を表記する。   Each composition component which comprises the glass of this invention is described. In addition, content of each component is shown by the mass% of an oxide basis. Here, the “oxide standard” is contained in the glass on the assumption that oxides, nitrates, etc. used as raw materials of the constituent components of the glass of the present invention are all decomposed and changed into oxides when melted. This is a method of expressing the composition of each component, and the amount of each component contained in the glass is described with the total mass of the generated oxides being 100% by mass.

本発明のガラスは酸化物基準でSiO成分、Al成分、CeOおよび/またはSnO成分を含有し、B成分の含有量が0.1%未満であり、
CeO成分または/もしくはSnO成分の合計量γが、
γ≧0.005α−5.25 (α;液相温度)の関係を満足することを特徴とする。
SiO成分、Al成分は低熱膨張性ガラスの主要成分であり、CeO成分および/またはSnO成分は清澄剤としての効果をもたらす。
また、本発明のガラスにおいては化学的耐久性の低下の原因となるB成分の含有量は0.1%未満である。
そして、SiO成分、Al成分と必要に応じて含有される任意の成分によって決まるガラスの液相温度と、CeOおよび/またはSnO成分の合計量の関係が上記の関係式を満たすように脱泡剤を含有させることにより、As成分、Sb成分を含有しなくとも良好な清澄効果を示し、化学的耐久性に優れた低熱膨張性ガラスを提供することが可能となる。
The glass of the present invention contains SiO 2 component, Al 2 O 3 component, CeO 2 and / or SnO 2 component on an oxide basis, and the content of B 2 O 3 component is less than 0.1%,
The total amount γ of CeO 2 component and / or SnO 2 component is
It satisfies the relationship of γ ≧ 0.005α-5.25 (α; liquidus temperature).
The SiO 2 component and the Al 2 O 3 component are main components of the low thermal expansion glass, and the CeO 2 component and / or the SnO 2 component provide an effect as a fining agent.
In the glass of the present invention, the content of the B 2 O 3 component that causes a decrease in chemical durability is less than 0.1%.
The relationship between the liquid phase temperature of the glass determined by the SiO 2 component, the Al 2 O 3 component and any components contained as necessary, and the total amount of the CeO 2 and / or SnO 2 components is the above relational expression. By including a defoaming agent so as to satisfy the requirements, it is possible to provide a low thermal expansion glass exhibiting a good clarification effect and having excellent chemical durability without containing an As component and an Sb component.

ここで、上記液相温度とは、結晶が存在しないガラス融液を降温していく過程で結晶の析出が始まる温度である。測定は、例えば株式会社米倉製作所製顕微鏡用高温観察ステージMS−TPSを用いて、ガラス融液の温度を降温しながら顕微鏡で観察し、結晶の析出が確認された時の温度を読み取ることにより行えば良い。 Here, the liquidus temperature is a temperature at which precipitation of crystals begins in the process of lowering the temperature of the glass melt in which no crystals exist. The measurement is performed by, for example, using a high temperature observation stage MS-TPS for microscopes manufactured by Yonekura Seisakusho Co., Ltd., by observing with a microscope while lowering the temperature of the glass melt, and reading the temperature when crystal precipitation is confirmed. Just do it.

上記の関係を満たすCeOおよび/またはSnO成分の合計量よりもガラスに含有されるCeOおよび/またはSnO成分の合計量が少ない場合、ガラスの清澄化が十分に行われず、良好な清澄効果を有する低熱膨張性ガラスを得ることが困難となる。 If the total amount of CeO 2 and / or SnO 2 component is contained in the glass than the total amount of CeO 2 and / or SnO 2 component satisfies the above relationship is small, clarification of the glass is not sufficiently performed, good It becomes difficult to obtain a low thermal expansion glass having a fining effect.

ここで、本発明のガラス中におけるCe成分、Sn成分は複数の価数をとりうるが、上記の酸化物基準で換算する場合はそれぞれCeOおよびSnOとして換算し、例えばCeまたはSnO等として換算しない。 Here, the Ce component and the Sn component in the glass of the present invention can take a plurality of valences, but when converted on the basis of the above oxide, they are converted as CeO 2 and SnO 2, respectively, for example, Ce 2 O 3 or Not converted as SnO 2 or the like.

SiO成分はガラスの網目形成成分であり、低熱膨張性に寄与する。
所望の平均線膨張係数を得やすくするためには、SiO成分の含有量の下限を45%とすることが好ましく、47%とすることがより好ましく、49%とすることが最も好ましい。
また、本発明のガラスの溶融温度をより低くし、低温溶融性をより良くするためには、SiO成分の含有量の上限は68%とすることが好ましく、67%とすることがより好ましく、66%とすることが最も好ましい。
The SiO 2 component is a glass network forming component and contributes to low thermal expansion.
In order to easily obtain a desired average linear expansion coefficient, the lower limit of the content of the SiO 2 component is preferably 45%, more preferably 47%, and most preferably 49%.
Moreover, in order to lower the melting temperature of the glass of the present invention and improve the low-temperature melting property, the upper limit of the content of SiO 2 component is preferably 68%, more preferably 67%. 66% is most preferable.

Al成分は本発明においてSiOとともにガラス骨格を形成する成分である。
また、Al成分は耐熱性を向上させるとともに、ガラスの分相を抑制する効果がある。Al成分の含有量が16%未満では分相しやすくなり、上記効果を充分に得ることができない。したがって、この成分の含有量の下限を16%とすることが好ましい。上記効果を充分に得るためにはAl成分の下限を17%とすることがより好ましく、18%とすることが最も好ましい。
またAl成分の含有量が35%を超えると溶融性が著しく低下するので、この成分の含有量の上限は35%とすることが好ましく、34%とすることがより好ましく、33%とすることが最も好ましい。
The Al 2 O 3 component is a component that forms a glass skeleton together with SiO 2 in the present invention.
Further, the Al 2 O 3 component has an effect of improving the heat resistance and suppressing the phase separation of the glass. If the content of the Al 2 O 3 component is less than 16%, phase separation tends to occur and the above effect cannot be obtained sufficiently. Therefore, the lower limit of the content of this component is preferably 16%. In order to sufficiently obtain the above effects, the lower limit of the Al 2 O 3 component is more preferably 17%, and most preferably 18%.
Further, if the content of the Al 2 O 3 component exceeds 35%, the meltability is remarkably lowered, so the upper limit of the content of this component is preferably 35%, more preferably 34%, 33% Is most preferable.

清澄剤として十分な効果を得やすくするためには、CeO成分またはSnO成分の1種以上の合計量は0.01%以上であることが好ましく、0.05%以上であることがより好ましく、0.1%以上であることが最も好ましい。
一方で、CeO成分またはSnO成分の1種以上の合計量が3%を超えるとSnが金属として析出しやすくなる、またはCeOによる可視光の短波長域および紫外線領域の透過率の低下をもたらすため3%以下であることが好ましく、2.8%以下であることがより好ましく、2.5%以下であることが最も好ましい。
前記γ、αの関係式を満たし、かつCeO成分またはSnO成分上記の範囲とすることで高い清澄効果がより得やすくなる。尚、CeO成分またはSnO成分は双方共に含有させても清澄効果が損なわれることはなく、むしろ助長される効果がある。
In order to easily obtain a sufficient effect as a fining agent, the total amount of one or more of the CeO 2 component or the SnO 2 component is preferably 0.01% or more, more preferably 0.05% or more. Preferably, it is most preferably 0.1% or more.
On the other hand, if the total amount of one or more of the CeO 2 component or the SnO 2 component exceeds 3%, Sn is likely to precipitate as a metal, or the visible light short wavelength region and the transmittance in the ultraviolet region are reduced by CeO 2. Is preferably 3% or less, more preferably 2.8% or less, and most preferably 2.5% or less.
By satisfying the relational expression of γ and α and setting the CeO 2 component or SnO 2 component in the above range, a high clarification effect can be obtained more easily. Incidentally, CeO 2 component or SnO 2 component is never fining effect is impaired also be contained in both, the effect to be promoted, rather.

O成分(R=Li、Na、K、のいずれか1種以上)は、ガラスの溶融性を向上させ、かつ、る効果があるので、任意成分として添加することができる。ただし、この成分の含有量が5%を超えると、所望の熱膨張係数を得ることが困難になるので、この成分の含有量の上限は5%とすることが好ましく、4.6%とすることがより好ましく、4.4%とすることが最も好ましい。
尚、上記のLiO成分、NaO成分、KO成分から選択される1種以上の成分を含有させることにより、溶融ガラスの電気伝導性が高くなり、溶融ガラス中に通電することによる直接抵抗加熱が可能となる。直接抵抗加熱による製造を行うことで、バーナーの使用を極力低減することができ、バーナーの燃焼による溶融ガラス中へのOH基の混入を低減し、OH基混入によるガラスの化学的、物理的耐久性の悪化を抑止しやすくなる。
The R 2 O component (one or more of R = Li, Na, K) improves the meltability of the glass and has the effect of being added, so it can be added as an optional component. However, if the content of this component exceeds 5%, it becomes difficult to obtain a desired thermal expansion coefficient. Therefore, the upper limit of the content of this component is preferably 5%, and 4.6%. Is more preferable, and 4.4% is most preferable.
In addition, by including one or more components selected from the above Li 2 O component, Na 2 O component, and K 2 O component, the electrical conductivity of the molten glass is increased, and the molten glass is energized. Direct resistance heating is possible. By manufacturing by direct resistance heating, the use of burners can be reduced as much as possible, the mixing of OH groups into the molten glass due to burner combustion is reduced, and the chemical and physical durability of the glass due to the mixing of OH groups It becomes easy to deter sexual deterioration.

成分は本発明において、ガラス粘性を低下させる効果があるので任意で含有させることができる成分である。ただし含有量が大きくなると、耐酸性が低下しやすくなるともに平均線膨張係数が大きくなりやすくなるので、その含有量の上限は好ましくは10%、より好ましくは9%であり、最も好ましくは8%である。 The P 2 O 5 component is a component that can be optionally contained in the present invention because it has the effect of reducing the glass viscosity. However, as the content increases, the acid resistance tends to decrease and the average linear expansion coefficient tends to increase, so the upper limit of the content is preferably 10%, more preferably 9%, and most preferably 8%. It is.

MgO成分は、本発明において、ガラスの粘性を下げ、失透を抑制する効果があるので任意で含有することができる。ただしMgO成分の含有量が12%を超えると所望の熱膨張係数が得られなくなる。したがって、この成分の含有量の上限は12%とすることが好ましく、11.5%とすることがより好ましく、11%とすることが最も好ましい。   In the present invention, the MgO component can be optionally contained because it has the effect of reducing the viscosity of the glass and suppressing devitrification. However, when the content of the MgO component exceeds 12%, a desired thermal expansion coefficient cannot be obtained. Therefore, the upper limit of the content of this component is preferably 12%, more preferably 11.5%, and most preferably 11%.

CaO成分は低温溶融性を向上させ、失透傾向を抑制しやすくするので任意で含有することができる。
ただし含有量が大きくなると、耐酸性が低下しやすくなるともに平均線膨張係数が大きくなりやすくなるので、その含有量の上限は好ましくは12%、より好ましくは11%、最も好ましくは10.5%である。
The CaO component can be optionally contained because it improves low-temperature meltability and easily suppresses the devitrification tendency.
However, as the content increases, the acid resistance tends to decrease and the average linear expansion coefficient tends to increase, so the upper limit of the content is preferably 12%, more preferably 11%, and most preferably 10.5%. It is.

SrO成分は低温溶融性を向上させやすくするので、任意で添加できる成分である。ただし添加量が多いと平均線膨張係数が大きくなりやすくなるため、その含有量の上限は、好ましくは8%、より好ましくは7.5%であり、最も好ましくは7%である。   The SrO component is a component that can be optionally added because it makes it easier to improve the low-temperature meltability. However, since the average linear expansion coefficient tends to increase when the amount added is large, the upper limit of the content is preferably 8%, more preferably 7.5%, and most preferably 7%.

BaO成分は低温溶融性を向上させやすくするので、任意で添加できる成分である。ただし添加量が多いと平均線膨張係数が大きくなりやすくなるため、その含有量の上限は、好ましくは8%、より好ましくは7.5%であり、最も好ましくは7%である。   The BaO component is a component that can be optionally added because it makes it easier to improve the low-temperature meltability. However, since the average linear expansion coefficient tends to increase when the amount added is large, the upper limit of the content is preferably 8%, more preferably 7.5%, and most preferably 7%.

ZrO成分はガラスの化学的耐久性を向上させる効果があるので任意で添加できる成分である。ただし、含有量が5%を超えると溶融温度が高くなるので、この成分の含有量の上限は5%とすることが好ましく、より好ましくは4%であり、最も好ましくは3.5%である。 The ZrO 2 component is an ingredient that can be optionally added because it has the effect of improving the chemical durability of the glass. However, since the melting temperature increases when the content exceeds 5%, the upper limit of the content of this component is preferably 5%, more preferably 4%, and most preferably 3.5%. .

ZnO成分は低温溶融性を向上させやすくするので、任意で添加できる成分である。ただし添加量が多いと平均線膨張係数が大きくなりやすくなるため、その含有量の上限は、好ましくは5%、より好ましくは4%、最も好ましくは3%である。   The ZnO component is a component that can be optionally added because it facilitates improving the low-temperature meltability. However, since the average linear expansion coefficient tends to increase when the amount added is large, the upper limit of the content is preferably 5%, more preferably 4%, and most preferably 3%.

TiO成分はガラスの化学的耐久性を向上させる効果があるので任意で添加できる成分である。ただし、含有量が5%を超えると溶融温度が高くなるので、この成分の含有量の上限は5%とすることが好ましく、より好ましくは4%であり、最も好ましくは3%である。 Since the TiO 2 component has an effect of improving the chemical durability of the glass, it can be optionally added. However, since the melting temperature increases when the content exceeds 5%, the upper limit of the content of this component is preferably 5%, more preferably 4%, and most preferably 3%.

成分、La成分、Gd、Nb、Ta、BiおよびWOの各成分は液相温度の低下や平均線膨張係数を維持したまま低粘性化の効果を得ることができる。ただし添加量が多いとガラスの安定性を損なうと共に熱膨張係数が上昇してしまうため、これらの成分の1種または2種以上の合計量の上限は好ましくは7%、より好ましくは6%、最も好ましくは5%である。 Y 2 O 3 component, La 2 O 3 component, Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Bi 2 O 3 and WO 3 components maintain a decrease in liquidus temperature and average linear expansion coefficient The effect of lowering the viscosity can be obtained as it is. However, if the amount added is large, the stability of the glass is impaired and the coefficient of thermal expansion increases, so the upper limit of the total amount of one or more of these components is preferably 7%, more preferably 6%, Most preferably, it is 5%.

F、Cl、Br、I、Pb、As、およびSb元素は環境上有害な成分であるため、ガラス構成成分として含有しないことが好ましい。   Since F, Cl, Br, I, Pb, As, and Sb elements are environmentally harmful components, they are preferably not contained as glass constituents.

本発明のガラスは0〜300℃における平均線膨張係数は25〜55×10−7−1の範囲であり、より好ましい態様によれば、52×10−7−1以下、最も好ましい態様によれば50×10−7−1以下も実現可能である。 The average linear expansion coefficient of the glass is at 0 to 300 ° C. of the present invention is in the range of 25~55 × 10 -7-1, according to a more preferred embodiment, 52 × 10 -7-1 or less, the most preferred embodiment According to the above, 50 × 10 −7 ° C. −1 or less can be realized.

以下、本発明に係るガラスについて、具体的な実施例を挙げて説明する。   Hereinafter, the glass according to the present invention will be described with specific examples.

本発明の上記実施例および比較例のガラスは、いずれも表1〜表6に記載の組成となり、かつ、ガラス重量が2,000(g)となるように酸化物、炭酸塩、硝酸塩等の原料を混合した。これを通常の溶解装置を用いて約1300〜1600℃の温度で24〜72hr溶解し攪拌均質化を行い、塊状に成形後、除歪することでガラス成形体を得た。
その後ガラスを10×10×1(cm)の形状に鏡面加工後、顕微鏡にて内部を観察することにより、泡の個数を調べた。尚、検出可能な泡の最小径(直径)は10μmとした。また、得られた各々のガラスについてガラス転移温度(Tg)、0℃〜300℃における平均線膨張係数(α)、液相温度を測定した。それらの値を泡数と共に表に記載する。
The glasses of the above examples and comparative examples of the present invention all have the compositions shown in Tables 1 to 6, and oxides, carbonates, nitrates, etc., so that the glass weight is 2,000 (g). The raw materials were mixed. This was melt | dissolved for 24 to 72 hours at the temperature of about 1300-1600 degreeC using the normal melt | dissolution apparatus, it stirred and homogenized, and after shape | molding to the lump shape, the glass molded object was obtained by carrying out the distortion removal.
Thereafter, the glass was mirror-finished into a shape of 10 × 10 × 1 (cm), and the number of bubbles was examined by observing the inside with a microscope. The minimum detectable bubble diameter was 10 μm. Moreover, about each obtained glass, the glass transition temperature (Tg), the average linear expansion coefficient ((alpha)) in 0 to 300 degreeC, and liquidus temperature were measured. These values are listed in the table along with the number of bubbles.

なお、平均線膨張係数はJOGIS(日本光学硝子工業会規格)16−2003「光学ガラスの常温付近の平均線膨張係数の測定方法」に則り、温度範囲を0℃から300℃に換えて測定した値をいう。
ガラス転移温度はJOGIS(日本光学硝子工業会規格)08−2003「光学ガラスの熱膨張の測定方法」に則り測定した値である。


The average linear expansion coefficient was measured by changing the temperature range from 0 ° C. to 300 ° C. according to JOGIS (Japan Optical Glass Industry Association Standard) 16-2003 “Measuring Method of Average Linear Expansion Coefficient of Optical Glass Near Room Temperature”. Value.
The glass transition temperature is a value measured according to JOGIS (Japan Optical Glass Industry Association Standard) 08-2003 “Measurement Method of Thermal Expansion of Optical Glass”.


Figure 0005292028
Figure 0005292028


























Figure 0005292028
Figure 0005292028






























Figure 0005292028
Figure 0005292028

























Figure 0005292028
Figure 0005292028

























Figure 0005292028
Figure 0005292028

Figure 0005292028
Figure 0005292028

表1〜7に示されるとおり、本発明の結晶化ガラスの実施例は、平均熱膨張計数が0℃〜300℃における平均線膨張係数が31〜47×10−7/℃の範囲であった。また、ガラス転移温度Tg(℃)は、700〜800℃の範囲であった。また本発明の実施例は上記γ、α、の関係式を満たしておりまた、ガラス100cm中に含まれる残存泡数が12〜45個でありと、アンチモン成分、砒素成分を多量に使用した場合の結果と遜色ない清澄特性を示した。 As shown in Tables 1 to 7, in the examples of the crystallized glass of the present invention, the average coefficient of thermal expansion was in the range of 31 to 47 × 10 −7 / ° C. when the average coefficient of thermal expansion was 0 ° C. to 300 ° C. . Moreover, glass transition temperature Tg (degreeC) was the range of 700-800 degreeC. Further embodiments of the present invention also satisfies the gamma, alpha, a relation, the number of remaining bubbles contained in the glass 100 cm 3 is as a 12 to 45 carbon atoms, antimony component, a large amount use of the arsenic component The results of the case were indistinguishable from those of the case.

(比較例)
一方、比較例1〜2においては、ガラス100cm中に含まれる残存泡数を観察したところ、残存泡数は150〜170個であった。比較例1の液相温度は1323℃であるので、上記0.005α−5.25の値は1.365となる。この時比較例1のγの値は0.5であるので、関係式を満たしておらず、十分な脱泡効果が得られないことがわかる。
(Comparative example)
On the other hand, in Comparative Examples 1 and 2, when the number of remaining bubbles contained in 100 cm 3 of glass was observed, the number of remaining bubbles was 150 to 170. Since the liquidus temperature of Comparative Example 1 is 1323 ° C., the value of 0.005α−5.25 is 1.365. At this time, since the value of γ in Comparative Example 1 is 0.5, it is understood that the relational expression is not satisfied and a sufficient defoaming effect cannot be obtained.

Claims (4)

酸化物基準の質量%
SiO成分を45〜68%
Al成分を16〜35%
成分を0〜10%、
MgO成分を0〜12%、
CaO成分を0〜12%、
SrO成分を0〜8%、
BaO成分を0〜8%、
O成分(R=Li、Na、K、のいずれか1種以上)を0〜4.6%、
CeO 成分および/またはSnO成分を0.01〜3%含有し、
成分の含有量が0.1%未満であり、
CeO成分または/もしくはSnO成分の合計量γが
γ≧0.005α−5.25 (α;液相温度)の関係を満足することを特徴とするガラス。
45 to 68% of SiO 2 component by mass% based on oxide,
16 to 35% of Al 2 O 3 component,
0 to 10% of P 2 O 5 component,
0-12% MgO component,
0-12% of CaO component,
0 to 8% of SrO component,
BaO component 0-8%,
0 to 4.6% of R 2 O component (one or more of R = Li, Na, K),
Containing 0.01 to 3% of CeO 2 component and / or SnO 2 component,
The content of B 2 O 3 component is less than 0.1%,
A glass characterized in that a total amount γ of CeO 2 component and / or SnO 2 component satisfies a relationship of γ ≧ 0.005α-5.25 (α: liquidus temperature).
酸化物基準の質量%で、
ZrO成分を0〜5%、
ZnO成分を 0〜5%、
TiO成分を 0〜5%、
成分、La成分、Gd、Nb、Ta、BiおよびWO成分から選ばれる1種以上の合計を0〜7%、
含有することを特徴とする請求項1に記載のガラス。
% By mass based on oxide,
0 to 5% of ZrO 2 component,
ZnO component 0-5%,
TiO 2 component 0-5%,
0 to 7% of a total of one or more selected from Y 2 O 3 component, La 2 O 3 component, Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Bi 2 O 3 and WO 3 component,
It contains, The glass of Claim 1 characterized by the above-mentioned.
0〜300℃における平均線膨張係数が25〜55×10−7−1であることを特徴とする請求項1または2に記載のガラス。 Glass according to claim 1 or 2 average linear expansion coefficient at 0 to 300 ° C. is characterized in that it is a 25~55 × 10 -7-1. F、Cl、Br、I、Pb、As、およびSb元素をガラス構成成分として含有しないことを特徴とする請求項1〜のいずれかに記載のガラス。 The glass according to any one of claims 1 to 3 , which does not contain F, Cl, Br, I, Pb, As, and Sb elements as glass constituent components.
JP2008232748A 2008-09-10 2008-09-10 Glass Expired - Fee Related JP5292028B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008232748A JP5292028B2 (en) 2008-09-10 2008-09-10 Glass
EP09813113A EP2351716A4 (en) 2008-09-10 2009-09-10 Glass
PCT/JP2009/065827 WO2010029967A1 (en) 2008-09-10 2009-09-10 Glass
CN200980134622.0A CN102143922B (en) 2008-09-10 2009-09-10 Glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232748A JP5292028B2 (en) 2008-09-10 2008-09-10 Glass

Publications (2)

Publication Number Publication Date
JP2010064921A JP2010064921A (en) 2010-03-25
JP5292028B2 true JP5292028B2 (en) 2013-09-18

Family

ID=42190834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232748A Expired - Fee Related JP5292028B2 (en) 2008-09-10 2008-09-10 Glass

Country Status (1)

Country Link
JP (1) JP5292028B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414502B (en) * 2008-05-13 2013-11-11 Corning Inc Rare-earth-containing glass material and substrate and device comprising such substrate
CN101913764A (en) * 2010-07-23 2010-12-15 北京工业大学 Alkali-free alumina silicate glass with high strain point
EP3008026B1 (en) * 2013-06-14 2022-07-06 Corning Incorporated Laminated glass article with scratch resistant surface
JP2016155692A (en) * 2013-06-27 2016-09-01 旭硝子株式会社 Alkali-free glass
JP5900560B2 (en) * 2014-09-01 2016-04-06 旭硝子株式会社 Substrate glass and glass substrate
KR20170137031A (en) * 2015-04-03 2017-12-12 니폰 덴키 가라스 가부시키가이샤 Glass
JP6694074B2 (en) 2016-11-14 2020-05-13 Hoya株式会社 Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium and glass spacer for magnetic recording / reproducing apparatus
JP6999806B2 (en) 2018-05-16 2022-01-19 Hoya株式会社 Magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording / playback device, and magnetic recording / playback device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739468B2 (en) * 1997-05-20 2011-08-03 旭硝子株式会社 Alkali-free glass and its clarification method
DE19739912C1 (en) * 1997-09-11 1998-12-10 Schott Glas New alkali-free aluminoborosilicate glass
DE19934072C2 (en) * 1999-07-23 2001-06-13 Schott Glas Alkali-free aluminoborosilicate glass, its uses and processes for its manufacture
JP4677710B2 (en) * 2003-10-17 2011-04-27 東ソー株式会社 Ultraviolet shielding glass, manufacturing method thereof, ultraviolet shielding glass member and apparatus using the same
DE102004022629B9 (en) * 2004-05-07 2008-09-04 Schott Ag Flooded lithium aluminosilicate flat glass with high temperature resistance, which can be preloaded chemically and thermally and its use
JP5070828B2 (en) * 2006-12-14 2012-11-14 旭硝子株式会社 Alkali-free glass and method for producing the same

Also Published As

Publication number Publication date
JP2010064921A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP7177412B2 (en) Alkali-free glass substrate
JP5292028B2 (en) Glass
KR101409591B1 (en) Glass composition, glass substrate for flat panel display using the same, flat panel display, and method of producing glass substrate for flat panel display
TWI359120B (en)
JP5368571B2 (en) High refractive index low dispersion optical glass
JP2005097090A (en) Alkali-free glass substrate
JPWO2011049100A1 (en) Glass plate for substrate, method for producing the same, and method for producing TFT panel
JP2691263B2 (en) Transparent crystallized glass
JP2005053712A (en) Alkali-free glass
WO2010029967A1 (en) Glass
JP7486446B2 (en) Glass
JP2009274902A (en) Glass
JP2011136884A (en) Method for producing optical glass and optical equipment
JPH10130034A (en) Alkali-free glass and its production
JP2005139031A (en) Heat resistant glass
JPH10114538A (en) Alkali-free glass and its production
JP2007070194A (en) Optical glass
JPWO2003072518A1 (en) Optical glass
JP2010030848A (en) Glass
JP5292029B2 (en) Glass
JP2009203154A (en) Glass
JP4219012B2 (en) Optical glass
JP2004299947A (en) Alkali-free glass and its manufacturing method
JP5770973B2 (en) Optical glass and optical element
JP2010030849A (en) Glass

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees