JP5286899B2 - Microwave processing equipment - Google Patents

Microwave processing equipment Download PDF

Info

Publication number
JP5286899B2
JP5286899B2 JP2008101182A JP2008101182A JP5286899B2 JP 5286899 B2 JP5286899 B2 JP 5286899B2 JP 2008101182 A JP2008101182 A JP 2008101182A JP 2008101182 A JP2008101182 A JP 2008101182A JP 5286899 B2 JP5286899 B2 JP 5286899B2
Authority
JP
Japan
Prior art keywords
microwave
unit
power
heated
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008101182A
Other languages
Japanese (ja)
Other versions
JP2009252619A (en
Inventor
等隆 信江
健治 安井
義治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008101182A priority Critical patent/JP5286899B2/en
Publication of JP2009252619A publication Critical patent/JP2009252619A/en
Application granted granted Critical
Publication of JP5286899B2 publication Critical patent/JP5286899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

本発明は、半導体素子を用いて構成したマイクロ波発振部を備えたマイクロ波処理装置に関するものである。   The present invention relates to a microwave processing apparatus including a microwave oscillating unit configured using a semiconductor element.

従来のこの種のマイクロ波処理装置は、一般には電子レンジに代表されるようにマイクロ波発生部にマグネトロンと称される真空管を用いている。   In the conventional microwave processing apparatus of this type, a vacuum tube called a magnetron is generally used for a microwave generation section as represented by a microwave oven.

このマイクロ波発生部を半導体素子を用いて構成する時の主要な課題は、第一はスピード加熱を実践できる大電力化、第二は供給可能な商用電源電力の下で大電力動作をさせるための高効率動作、第三は一般消費者がご購入し使用していただけ価値の提供である。   The main issues when constructing this microwave generator using semiconductor elements are that the first is to increase the power to be able to practice speed heating, and the second is to operate at a high power under the commercial power supply that can be supplied. The third is the provision of value that can be purchased and used by general consumers.

第一の課題に対しては、複数給電方式が提案されている。たとえば、加熱室を6面以上の多面体に形成し、各面の一部あるいは全部の面から放射アンテナを加熱室内に突出して配置したものがある(例えば、特許文献1参照)。   For the first problem, a multiple power feeding method has been proposed. For example, there is one in which the heating chamber is formed in a polyhedron having six or more surfaces, and a radiation antenna is disposed so as to protrude from a part or all of each surface into the heating chamber (for example, see Patent Document 1).

そして、互いの放射アンテナを異なる面に配したことで互いの干渉を防止できるとしている。さらには放射アンテナがそれぞれ異なる方向を向いているので放射された電波は加熱室内のあらゆる方向に伝搬し、壁面にて反射して散乱するため、加熱室内で電波は均一に分布するとしている。   And it is supposed that mutual interference can be prevented by arranging the mutual radiation antennas on different surfaces. Furthermore, since the radiating antennas are directed in different directions, the radiated radio wave propagates in all directions in the heating chamber and is reflected and scattered by the wall surface, so that the radio wave is uniformly distributed in the heating chamber.

また、マイクロ波発生部を複数の出力を有する構成としその出力を加熱室壁面に分散配置し、これらの発生部のうち少なくとも二つの壁面に配した発生部の出力を時分割動作させるものがある(例えば、特許文献2参照)。   In addition, there is a configuration in which the microwave generation unit has a plurality of outputs, the outputs are distributed on the heating chamber wall surface, and the output of the generation unit arranged on at least two wall surfaces among these generation units is operated in a time-sharing manner. (For example, refer to Patent Document 2).

そして、動作させるために選択したマイクロ波発生部を時分割動作させることで干渉による発生部の破壊を防止し同時動作させることができるとしている。また、直交関係にある壁面に配置した発生部は加熱室と発生部との結合を適当に選ぶことで互いに干渉しないように励振させることができ同時発振が可能であるとしている。   Then, the microwave generation unit selected for operation is operated in a time-sharing manner to prevent the generation unit from being destroyed due to interference and to be operated simultaneously. In addition, the generators arranged on the orthogonal wall surfaces can be excited so as not to interfere with each other by appropriately selecting the coupling between the heating chamber and the generator, and can be simultaneously oscillated.

また、第二の課題に対しては、SiやGaAsに対してバンドギャップが大きく高電圧高温動作が可能なSiCやGaNを用いた半導体素子の進化があげられる。さらには、第三の課題に対して、均一加熱の促進や被加熱物が受けるマイクロ波の受熱効率の向上をベースとした省エネルギ化がある。   The second problem is the evolution of semiconductor elements using SiC and GaN, which have a large band gap with respect to Si and GaAs and can operate at high voltage and high temperature. Furthermore, for the third problem, there is energy saving based on promotion of uniform heating and improvement of heat receiving efficiency of microwaves received by the object to be heated.

また受熱効率向上に対しては、被加熱物を収納した加熱室からマイクロ波発生部側に戻ってくる反射電力を検出し、その反射電力信号に基づいて、たとえば反射電力が最小になる発振周波数を追尾させるものがある(例えば、特許文献3参照)。
特開昭52−193242号公報 特開昭53−5445号公報 特開昭56−96486号公報
For improving the heat receiving efficiency, the reflected power returning to the microwave generator from the heating chamber containing the object to be heated is detected, and based on the reflected power signal, for example, the oscillation frequency that minimizes the reflected power (For example, refer to Patent Document 3).
JP-A-52-193242 Japanese Patent Laid-Open No. 53-5445 JP-A-56-96486

しかしながら、前記従来の半導体素子を用いたマイクロ波発振部の構成は、加熱室内に供給できるマイクロ波電力量は大きくできるが、加熱室内に収納される様々な形状・量の被加熱物のすべてに対して、供給したマイクロ波を効率よく受熱させることは従来の各種技術を総合的に組み合したとしても困難である。この困難さは加熱室から反射してマイクロ波発振部側に戻ってくるマイクロ波電力によって半導体素子を熱破壊に至らしめる重要な実用課題を有する。   However, the configuration of the microwave oscillating unit using the conventional semiconductor element can increase the amount of microwave power that can be supplied into the heating chamber, but it can be applied to all the objects to be heated in various shapes and amounts stored in the heating chamber. On the other hand, it is difficult to efficiently receive the supplied microwave even if various conventional technologies are combined. This difficulty has an important practical problem of causing the semiconductor element to be thermally destroyed by the microwave power reflected from the heating chamber and returning to the microwave oscillating unit.

本発明は、上記従来の課題を解決するもので、加熱室側から戻ってくる反射電力に対して半導体素子を熱破壊から防止しながら、さまざまな形状・種類・量の異なる被加熱物を効率よく加熱するマイクロ波処理装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and efficiently reduces the heat of various shapes, types, and quantities while preventing the semiconductor element from being thermally damaged by the reflected power returning from the heating chamber side. An object of the present invention is to provide a microwave processing apparatus that heats well.

前記従来の課題を解決するために、本発明のマイクロ波処理装置は、被加熱物を収納する加熱室と、マイクロ波を発生させる半導体素子を用いたマイクロ波発振部と前記マイクロ波発振部が発生するマイクロ波を増幅するマイクロ波増幅部とで構成したマイクロ波発生部と、前記マイクロ波増幅部の出力を前記加熱室に供給する給電部と、前記給電部が前記加熱室から受け取る電力量を検出する反射電力検出部と、前記反射電力検出部の検出信号に基づいて前記マイクロ波発振部の発振周波数および前記マイクロ波発生部の出力電力に対応する前記マイクロ波増幅部の駆動電圧を選択制御する制御部とを備え、前記制御部は、被加熱物の加熱開始前に前記マイクロ波増幅部の駆動電圧を選択制御して前記マイクロ波発生部を第1の出力電力で動作させる中において前記マイクロ波発振部の発振周波数を周波数可変範囲全体にわたって変化させたときに前記反射電力検出部から得られる反射電力が最小となる周波数を選定し、さらにその周波数における反射電力値と被加熱物を加熱実行する予定の第2の出力電力に対応する前記マイクロ波増幅部の駆動電圧群の値に基づいて前記マイクロ波増幅部に生じる電力損失量を演算し、演算した電力損失量が第1の規定値以下となる最大の駆動電圧値を抽出した後、選定した周波数および抽出した駆動電圧を前記マイクロ波増幅部に印加した第2の出力電力とでもって被加熱物の加熱実行開始
を行うものであり、被加熱物の加熱開始時にまず発振周波数をスイープさせて周波数対反射電力量の特性を把握し、反射電力が最小を呈する発振周波数を加熱動作周波数として選択することで給電部への反射電力を最小化できる。この反射電力最小の周波数にて被加熱物の加熱動作を開始するが、この時にマイクロ波増幅部の電力損失量をその駆動電力と反射電力から演算して求め、この電力損失量とマイクロ波増幅部に用いている半導体素子が熱破壊することなく安定に動作できる第1の規定値とを比較し、第1の規定値を超過している場合はマイクロ波増幅部の駆動電力を低減制御し電力損失量を第1の規定値以下になるように制御することで、半導体素子の熱破壊を防止しながらさまざまな形状・種類・量の異なる被加熱物を効率よく加熱することができる。
In order to solve the above-described conventional problems, a microwave processing apparatus according to the present invention includes a heating chamber that houses an object to be heated, a microwave oscillating unit that uses a semiconductor element that generates microwaves, and the microwave oscillating unit. A microwave generation unit configured with a microwave amplification unit that amplifies the generated microwave, a power supply unit that supplies the output of the microwave amplification unit to the heating chamber, and an electric energy that the power supply unit receives from the heating chamber selection and reflected power detector for detecting the driving voltage of the microwave amplification parts corresponding to the output power of the oscillation frequency and the microwave generation part of the microwave oscillation unit based on a detection signal of the reflected power detecting section and a control unit for controlling, the control unit, the microwave generation part by selecting controlling the drive voltage of the microwave amplification parts before the start of heating of the heated object at a first output power The frequency at which the reflected power obtained from the reflected power detection unit is minimized when the oscillation frequency of the microwave oscillating unit is changed over the entire frequency variable range during the operation, and the reflected power value at that frequency and A power loss amount calculated by calculating a power loss amount generated in the microwave amplifying unit based on a value of a driving voltage group of the microwave amplifying unit corresponding to the second output power scheduled to be heated to be heated is calculated. maximum after extracting the driving voltage value, the heating running of the object to be heated with the selected frequency and the extracted driving voltage and a second output power applied to the microwave amplifier unit but equal to or less than the first predetermined value start
It is intended to perform, feeding unit by grasping the characteristics of frequency versus the reflected power amount by sweeping the first oscillation frequency at the start of heating of the heated object, selecting the oscillation frequency reflected power exhibits the minimum as a heating operation frequency The reflected power to the can be minimized. The heating operation of the object to be heated is started at the frequency with the minimum reflected power. At this time, the power loss amount of the microwave amplifier is calculated from the drive power and the reflected power, and the power loss amount and the microwave amplification are obtained. Compared with the first specified value at which the semiconductor element used in the unit can operate stably without thermal destruction, and if it exceeds the first specified value, the drive power of the microwave amplifying unit is reduced and controlled. By controlling the power loss amount to be equal to or less than the first specified value, it is possible to efficiently heat objects to be heated having various shapes, types, and amounts while preventing thermal destruction of the semiconductor element.

本発明のマイクロ波処理装置は、加熱室側から戻ってくる反射電力信号とマイクロ波増幅部の駆動電力に基づくマイクロ波増幅部の半導体素子の電力損失量を演算し、半導体素子が熱破壊しないように発振周波数の制御および/またはマイクロ波増幅部の駆動電力を低減制御することで、さまざまな形状・種類・量の異なる被加熱物を所望の状態に加熱するマイクロ波処理装置を提供することができる。   The microwave processing apparatus of the present invention calculates the power loss amount of the semiconductor element of the microwave amplifying unit based on the reflected power signal returning from the heating chamber side and the driving power of the microwave amplifying unit, and the semiconductor element is not thermally destroyed. Providing a microwave processing apparatus that heats various objects of different shapes, types, and quantities to a desired state by controlling the oscillation frequency and / or reducing and controlling the driving power of the microwave amplifier as described above Can do.

第1の発明は、被加熱物を収納する加熱室と、マイクロ波を発生させる半導体素子を用いたマイクロ波発振部と前記マイクロ波発振部が発生するマイクロ波を増幅するマイクロ波増幅部とで構成したマイクロ波発生部と、前記マイクロ波増幅部の出力を前記加熱室に供給する給電部と、前記給電部が前記加熱室から受け取る電力量を検出する反射電力検出部と、前記反射電力検出部の検出信号に基づいて前記マイクロ波発振部の発振周波数および前記マイクロ波発生部の出力電力に対応する前記マイクロ波増幅部の駆動電圧を選択制御する制御部とを備え、前記制御部は、被加熱物の加熱開始前に前記マイクロ波増幅部の駆動電圧を選択制御して前記マイクロ波発生部を第1の出力電力で動作させる中において前記マイクロ波発振部の発振周波数を周波数可変範囲全体にわたって変化させたときに前記反射電力検出部から得られる反射電力が最小となる周波数を選定し、さらにその周波数における反射電力値と被加熱物を加熱実行する予定の第2の出力電力に対応する前記マイクロ波増幅部の駆動電圧群の値に基づいて前記マイクロ波増幅部に生じる電力損失量を演算し、演算した電力損失量が第1の規定値以下となる最大の駆動電圧値を抽出した後、選定した周波数および抽出した駆動電圧を前記マイクロ波増幅部に印加した第2の出力電力とでもって被加熱物の加熱実行開始を行うものであり、被加熱物の加熱開始時にまず発振周波数をスイープさせて周波数対反射電力量の特性を把握し、反射電力が最小を呈する発振周波数を加熱動作周波数として選択することで給電部への反射電力を最小化できる。この反射電力最小の周波数にて被加熱物の加熱動作を開始するマイクロ波発生部の第2の出力電力を事前に決める。この時にマイクロ波増幅部の電力損失量をこの第2の出力電力に対応するマイクロ波増幅部の駆動電圧群の値と第1の出力電力のもとで得られた最小の反射電力から演算して求め、この電力損失量とマイクロ波増幅部に用いている半導体素子が熱破壊することなく安定に動作できる第1の規定値とを比較し、第1の規定値以下となる最大の駆動電圧値を抽出し、それによる第2の出力電力で動作させることで、半導体素子の熱破壊を防止しながらさまざまな形状・種類・量の異なる被加熱物を効率よく加熱することができる。加熱室内に供給する出力を低減させることで反射電力も低減できマイクロ波発生部を熱破壊から確実に保護することができる。 According to a first aspect of the present invention, there is provided a heating chamber that houses an object to be heated, a microwave oscillation unit that uses a semiconductor element that generates microwaves, and a microwave amplification unit that amplifies the microwaves generated by the microwave oscillation units. A configured microwave generation unit; a power supply unit that supplies the output of the microwave amplification unit to the heating chamber; a reflected power detection unit that detects an amount of power received by the power supply unit from the heating chamber; and the reflected power detection A control unit that selectively controls the driving voltage of the microwave amplification unit corresponding to the oscillation frequency of the microwave oscillation unit and the output power of the microwave generation unit based on the detection signal of the unit, the control unit, The oscillation frequency of the microwave oscillating unit is controlled while the microwave generating unit is operated with the first output power by selectively controlling the driving voltage of the microwave amplifying unit before heating the object to be heated. The frequency at which the reflected power obtained from the reflected power detection unit is minimized when the number is changed over the entire frequency variable range is selected, and the reflected power value at the frequency and the second to be heated are scheduled to be executed. The amount of power loss generated in the microwave amplification unit is calculated based on the value of the drive voltage group of the microwave amplification unit corresponding to the output power of the maximum, and the calculated power loss amount is equal to or less than the first specified value. After extracting the drive voltage value, heating execution of the object to be heated is started with the selected frequency and the extracted output voltage applied to the microwave amplification unit with the second output power . At the start of heating, the oscillation frequency is first swept to grasp the characteristics of the frequency vs. reflected power, and the oscillation frequency that exhibits the minimum reflected power is selected as the heating operating frequency. Morphism power can be minimized. The second output power of the microwave generator that starts the heating operation of the object to be heated is determined in advance at the frequency at which the reflected power is minimum . At this time, the power loss amount of the microwave amplification unit is calculated from the value of the drive voltage group of the microwave amplification unit corresponding to the second output power and the minimum reflected power obtained under the first output power. This power loss amount is compared with the first specified value at which the semiconductor element used in the microwave amplifying unit can operate stably without thermal destruction, and the maximum drive voltage that is equal to or less than the first specified value By extracting the value and operating with the second output power thereby, it is possible to efficiently heat objects to be heated having various shapes, types, and amounts while preventing thermal destruction of the semiconductor element . By reducing the output supplied to the heating chamber, the reflected power can be reduced, and the microwave generator can be reliably protected from thermal destruction .

第2の発明は、被加熱物を収納する加熱室と、マイクロ波を発生させる半導体素子を用いたマイクロ波発振部と前記マイクロ波発振部が発生するマイクロ波を複数分配する電力分配部と前記電力分配部の出力をそれぞれ増幅する複数のマイクロ波増幅部と前記電力分配部の出力に設けた位相可変器で構成したマイクロ波発生部と、前記マイクロ波増幅部の出力を前記加熱室にそれぞれ供給する複数の給電部と、前記給電部が前記加熱室から受け
取る電力量をそれぞれ検出する複数の反射電力検出部と、前記反射電力検出部のそれぞれの検出信号に基づいて前記マイクロ波発振部の発振周波数と前記位相可変部の位相量および前記マイクロ波発生部の出力電力に対応する前記マイクロ波増幅部のそれぞれの駆動電圧を選択制御する制御部とを備え、前記制御部は、被加熱物の加熱開始前に、前記位相可変器を制御して前記マイクロ波増幅部のそれぞれの出力の位相差を無しとし、前記マイクロ波増幅部の駆動電圧を選択制御して前記マイクロ波発生部を第1の出力電力で動作させる中において前記マイクロ波発振部の発振周波数を周波数可変範囲全体にわたって変化させたときに前記反射電力検出部から得られる反射電力が最小となる周波数を選定し、さらにその周波数において前記位相可変器の位相量を可変制御する中で得られる最小の反射電力を呈する位相量に前記位相可変器の位相量を選択し、この反射電力値と被加熱物を加熱実行する予定の第2の出力電力に対応する前記マイクロ波増幅部の駆動電圧群の値に基づいて前記マイクロ波増幅部のそれぞれに生じる電力損失量を演算し、演算した電力損失量が第1の規定値以下となる最大の駆動電圧値を抽出した後、選定した周波数と位相量および抽出した駆動電圧を前記マイクロ波増幅部のそれぞれに印加した第2の出力電力とでもって被加熱物の加熱実行開始を行うものであり、複数の給電部を備え、この場合も被加熱物の加熱開始時にまず発振周波数をスイープさせて周波数対反射電力量の特性を把握し、反射電力が最小を呈する発振周波数を加熱動作周波数として選択することに加えてこの加熱動作周波数のもとで位相可変器を制御しさらに最小の反射電力を呈する位相量を選択することで給電部への反射電力をさらに最小化できる。この反射電力最小の周波数と位相量にて被加熱物の加熱動作を開始するマイクロ波発生部の第2の出力電力を事前に決める。この時に個々の給電部に接続されたそれぞれのマイクロ波増幅部の電力損失量をこの第2の出力電力に対応するマイクロ波増幅部の駆動電圧群の値と第1の出力電力のもとで得られた最小の反射電力からそれぞれ演算して求め、この電力損失量とマイクロ波増幅部に用いている半導体素子が熱破壊することなく安定に動作できる第1の規定値とを比較し、第1の規定値以下となる最大の駆動電圧値を抽出し、それによる第2の出力電力で動作させることで、半導体素子の熱破壊を防止しながらさまざまな形状・種類・量の異なる被加熱物を効率よく加熱することができる。加熱室内に供給する出力を低減させることで反射電力も低減できマイクロ波発生部を熱破壊から確実に保護することができる。
According to a second aspect of the present invention, there is provided a heating chamber that houses an object to be heated, a microwave oscillation unit that uses a semiconductor element that generates microwaves, a power distribution unit that distributes a plurality of microwaves generated by the microwave oscillation unit, A plurality of microwave amplifying units each amplifying the output of the power distribution unit, a microwave generation unit configured with a phase shifter provided at the output of the power distribution unit, and an output of the microwave amplification unit to the heating chamber, respectively A plurality of power feeding units to be supplied, a plurality of reflected power detection units for detecting the amount of power received by the power feeding unit from the heating chamber, and the microwave oscillation unit based on respective detection signals of the reflected power detection unit Bei a control unit for selecting controls respective driving voltages of the microwave amplifier unit corresponding to the output power of the phase amount and the microwave generation part of the the oscillation frequency phase variable parts The control unit may, prior to the start of heating of the heated object, wherein by controlling the phase changing and without a phase difference between respective outputs of the microwave amplification parts, selects and controls the drive voltage of the microwave amplification parts When the microwave generating unit is operated with the first output power, the reflected power obtained from the reflected power detecting unit is minimized when the oscillation frequency of the microwave oscillating unit is changed over the entire frequency variable range. And selecting the phase amount of the phase shifter as the phase amount that exhibits the minimum reflected power obtained by variably controlling the phase amount of the phase shifter at the frequency, and the reflected power value the power loss occurring in each of the microwave amplification parts based on the value of the driving voltage group of the microwave amplification part corresponding to the second output power plan to run heats an object Calculated, and the calculated power loss is applied after extracting the maximum drive voltage value equal to or less than the first predetermined value, the selected frequencies and the phase amount and the extracted drive voltage to each of the microwave amplification parts The heating power of the object to be heated is started with the output power of 2 and provided with a plurality of power supply units. In this case, the oscillation frequency is first swept at the start of heating of the object to be heated, so that Understand the characteristics, select the oscillation frequency that exhibits the minimum reflected power as the heating operation frequency , and control the phase shifter under this heating operation frequency to select the phase amount that exhibits the minimum reflected power. Thus, the reflected power to the power feeding unit can be further minimized. The second output power of the microwave generator that starts the heating operation of the object to be heated is determined in advance with the minimum frequency and phase amount of the reflected power . At this time, the power loss amount of each microwave amplifying unit connected to each power feeding unit is determined based on the value of the driving voltage group of the microwave amplifying unit corresponding to the second output power and the first output power. By calculating each from the obtained minimum reflected power, the amount of power loss is compared with the first specified value at which the semiconductor element used in the microwave amplification section can operate stably without thermal destruction, Extracting the maximum drive voltage value that is less than the specified value of 1 and operating it with the second output power thereby, the object to be heated in various shapes, types, and quantities while preventing thermal destruction of the semiconductor element Can be efficiently heated. By reducing the output supplied to the heating chamber, the reflected power can be reduced, and the microwave generator can be reliably protected from thermal destruction.

第3の発明は、特に第1または第2の発明のマイクロ波増幅部を配置した空間の温度を検出する温度検出部を設け、温度検出部の検出信号に基づいて、対象となるマイクロ波増幅部の第1の規定値をそれぞれ演算し補正することとしたものであり、本装置が置かれた環境に対応する第1の規定値に補正することで、グローバルな地域に対応した装置を提供できる。   According to a third aspect of the present invention, there is provided a temperature detection unit for detecting the temperature of the space in which the microwave amplification unit of the first or second invention is arranged, and the target microwave amplification is based on the detection signal of the temperature detection unit. The first specified value of each part is calculated and corrected, and the device corresponding to the global region is provided by correcting to the first specified value corresponding to the environment where the device is placed. it can.

第4の発明は、特に第1または第2の発明のマイクロ波増幅部を駆動する電力を検出する駆動電力検出部を設け、制御部は、被加熱物の加熱実行中において、反射電力検知部から得られる反射電力と前記駆動電力検出部からえられる駆動電力に基づいて前記マイクロ波増幅部の電力損失量を演算し、演算した電力損失量が第1の規定値以下かどうかを判定し、規定値以下の場合は加熱を継続し、規定値を超過している場合は、第1の規定値以下となるマイクロ波増幅器の最大の駆動電圧値に変更して被加熱物の加熱実行を行うものであり、被加熱物の加熱実行中においても第1の規定値以下になるように駆動電圧を変更することで、反射電力の大きい被加熱物の加熱においてもマイクロ波発生部を熱破壊から確実に保護して被加熱物の加熱の実行をさせることができる。 According to a fourth aspect of the present invention, there is provided a drive power detection unit that detects power for driving the microwave amplification unit of the first or second invention , and the control unit is a reflected power detection unit during execution of heating of the object to be heated. Calculating the power loss amount of the microwave amplification unit based on the reflected power obtained from the driving power obtained from the driving power detection unit, and determining whether the calculated power loss amount is equal to or less than a first specified value, If the specified value is below the specified value, heating is continued. If the specified value is exceeded, the object is heated by changing to the maximum drive voltage value of the microwave amplifier that is equal to or less than the first specified value. By changing the drive voltage so that it is less than or equal to the first specified value even during the heating of the object to be heated, the microwave generator can be protected from thermal destruction even when heating the object to be heated with a large reflected power. Securely protect the heated object It is possible to the line.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるマイクロ波処理装置の構成図、図2は図1
の実装構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a microwave processing apparatus according to a first embodiment of the present invention, and FIG.
FIG.

図1および図2において、マイクロ波発生部10は半導体素子を用いて構成したマイクロ波発振部11、マイクロ波発振部11の出力信号を電力分配する電力分配部12、電力分配部12のそれぞれの出力を後段の半導体素子を用いて構成した初段マイクロ波増幅部13a、13bに導くマイクロ波伝送路14a、14b、初段マイクロ波増幅部13a、13bのそれぞれの出力をさらに増幅する半導体素子を用いて構成した主マイクロ波増幅部15a、15b、主マイクロ波増幅部15a,15bの出力をマイクロ波発生部10の出力部16a、16bに導くマイクロ波伝送路17a、17b、マイクロ波伝送路14bに挿入配置した位相可変器18、マイクロ波伝送路17a、17bに挿入配置した少なくとも反射電力を検出する反射電力検出部19a、19bとで構成している。   1 and 2, the microwave generation unit 10 includes a microwave oscillation unit 11 configured using semiconductor elements, a power distribution unit 12 that distributes the output signal of the microwave oscillation unit 11, and a power distribution unit 12. Using semiconductor elements that further amplify the respective outputs of the microwave transmission paths 14a and 14b and the first-stage microwave amplification sections 13a and 13b that lead the output to the first-stage microwave amplification sections 13a and 13b that are configured by using the subsequent-stage semiconductor elements. Inserted into the microwave transmission paths 17a and 17b and the microwave transmission path 14b for guiding the outputs of the constructed main microwave amplification sections 15a and 15b and the main microwave amplification sections 15a and 15b to the output sections 16a and 16b of the microwave generation section 10. Reflected power for detecting at least reflected power inserted and disposed in the arranged phase shifter 18 and the microwave transmission paths 17a and 17b. Detector 19a, is constituted by the 19b.

初段マイクロ波増幅部13a,13bおよび主マイクロ波増幅部15a、15bは、低誘電損失材料から構成した誘電体基板20の片面に形成した導電体パターンにて回路を構成し、各マイクロ波増幅部の増幅素子である半導体素子を良好に動作させるべく各半導体素子の入力側と出力側にそれぞれ整合回路を配している。また、主マイクロ波増幅部15a、15bの半導体素子は、GaN材料を利用したノーマリーオン型の電界効果トランジスタを用いている。   The first stage microwave amplifying units 13a and 13b and the main microwave amplifying units 15a and 15b constitute a circuit with a conductor pattern formed on one side of a dielectric substrate 20 made of a low dielectric loss material, and each microwave amplifying unit Matching circuits are arranged on the input side and the output side of each semiconductor element in order to make the semiconductor element, which is the amplifying element, operate satisfactorily. Further, normally-on field effect transistors using a GaN material are used as the semiconductor elements of the main microwave amplifiers 15a and 15b.

マイクロ波伝送路14a、14b、17a、17bは、誘電体基板20の片面に設けた導電体パターンによって特性インピーダンスが50Ωの伝送回路を形成している。電力分配器12は、3dBブランチラインカプラー構成とし、特性インピーダンス50Ωでその電気長λ/4(λは使用周波数帯の中央周波数の実効波長)からなるマイクロストリップ線路12a、12dと、特性インピーダンス35.35Ωで電気長λ/4のマイクロストリップ線路12b、12cで構成している。   The microwave transmission paths 14 a, 14 b, 17 a, and 17 b form a transmission circuit having a characteristic impedance of 50Ω by a conductor pattern provided on one surface of the dielectric substrate 20. The power distributor 12 has a 3 dB branch line coupler configuration, has a characteristic impedance of 50Ω, and has an electrical length of λ / 4 (λ is an effective wavelength of the center frequency of the used frequency band), and a characteristic impedance of 35. The microstrip lines 12b and 12c are 35Ω and have an electrical length of λ / 4.

この構成により、マイクロ波発振部11の出力電力は、電力分配器12により略1/2ずつ分配された出力を生じる。また、マイクロ波伝送路14bを伝送するマイクロ波信号を基準にするとマイクロ波伝送路14aを伝送するマイクロ波信号は、90度位相が遅れた信号として伝送する。位相可変器18は、略180度の位相遅延を行うもので、これにより初段マイクロ波増幅部13a、13bのそれぞれに入力するマイクロ波の位相差は、最大略180度を形成できる。   With this configuration, the output power of the microwave oscillating unit 11 generates an output that is distributed approximately ½ by the power distributor 12. When the microwave signal transmitted through the microwave transmission path 14b is used as a reference, the microwave signal transmitted through the microwave transmission path 14a is transmitted as a signal delayed by 90 degrees in phase. The phase shifter 18 performs a phase delay of about 180 degrees, and as a result, the maximum phase difference of the microwaves input to the first stage microwave amplifying units 13a and 13b can be about 180 degrees.

一方、被加熱物を収納するとともにマイクロ波発生部10の出力が供給される加熱室100を備える。この加熱室100は、被加熱物を出し入れする扉(図示していない)を一面に配し、それ以外の壁面は金属材料で構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。加熱室100内の下方には、加熱室底壁面101と所定の間隔をもって被加熱物を載置する低誘電損失材料からなる載置板102を配する。また加熱室100の対向する壁面である左右の壁面103、104のそれぞれの略中央には、給電部である放射手段105、106を配置している。   On the other hand, a heating chamber 100 in which an object to be heated is accommodated and the output of the microwave generator 10 is supplied is provided. The heating chamber 100 has a door (not shown) for taking in and out the object to be heated on one side, the other wall surfaces are made of a metal material, and the supplied microwave is confined inside. Yes. Below the heating chamber 100, a mounting plate 102 made of a low dielectric loss material on which the object to be heated is mounted with a predetermined distance from the heating chamber bottom wall surface 101 is disposed. Further, radiating means 105 and 106 that are power feeding portions are arranged at substantially the center of the left and right wall surfaces 103 and 104 that are opposite walls of the heating chamber 100.

マイクロ波発生部10のマイクロ波発振部11は、2400MHzから2500MHzの周波数を発生する周波数可変機能を備える。そしてマイクロ波発生部10の出力16a、16bと放射手段105、106とは同軸線路21a、21bで接続されている。   The microwave oscillating unit 11 of the microwave generating unit 10 has a frequency variable function for generating a frequency from 2400 MHz to 2500 MHz. The outputs 16a and 16b of the microwave generator 10 and the radiation means 105 and 106 are connected by coaxial lines 21a and 21b.

また、マイクロ波増幅部13a、15aおよび13b、15bはそれぞれ増幅回路を一体化し、熱伝導が大きい金属材料で構成した放熱部30a、30bとともにユニット構成として加熱室100の左右の壁面103、104に適当な隙間を持たせて対向配置させている。この放熱部30a、30bには内部に水を通流させる通流路を配して冷却部31a、31bを構成している。また、各冷却部31a、31bに通流させる水は、水タンク3
2、送水ポンプ33および通流管34を配設して送水ポンプ33を動作させることで行っている。通流管34および水タンク32には、放熱フィン34a、32aを配設し、送水する水を冷却させる構成としている。さらに、水タンク32に向かって冷却風を送る冷却ファン35を設けている。
The microwave amplifying parts 13a, 15a and 13b, 15b are integrated with the amplifying circuit, respectively, and are combined with the heat radiating parts 30a, 30b made of a metal material having a large heat conduction to the left and right wall surfaces 103, 104 of the heating chamber 100 as a unit configuration. They are arranged opposite each other with an appropriate gap. The heat radiating portions 30a and 30b are provided with flow passages for allowing water to flow into the cooling portions 31a and 31b. Further, the water to be passed through the cooling units 31a and 31b is the water tank 3
2, the water pump 33 and the flow pipe 34 are disposed and the water pump 33 is operated. The flow pipe 34 and the water tank 32 are provided with radiating fins 34a and 32a to cool the water to be supplied. Further, a cooling fan 35 that sends cooling air toward the water tank 32 is provided.

また、マイクロ波増幅部のユニットが配された空間の温度を検出する温度検出部36a、36b、放熱部30a、30bの温度を検出する温度検出部37a、37bを配している。   In addition, temperature detection units 36a and 36b that detect the temperature of the space in which the units of the microwave amplification units are arranged, and temperature detection units 37a and 37b that detect the temperatures of the heat dissipation units 30a and 30b are arranged.

また、主マイクロ波増幅部15a、15bを動作させる駆動電力を供給する駆動電源部22を配する。初段マイクロ波増幅部、マイクロ波発振部などの駆動電源部は図示せず説明も省略する。駆動電源部22は、主マイクロ波増幅部15a、15bに用いる電界効果トランジスタに対して、ドレイン電圧Vd1、Vd2およびゲート電圧Vg1、Vg2を供給し、その半導体素子の動作電力を検出する駆動電力検出部38a、38bを備える。ゲート電圧Vg1、Vg2はマイナス電圧である。   In addition, a drive power supply unit 22 that supplies drive power for operating the main microwave amplification units 15a and 15b is provided. The drive power supply units such as the first stage microwave amplifying unit and the microwave oscillating unit are not shown and will not be described. The drive power supply unit 22 supplies drain voltages Vd1 and Vd2 and gate voltages Vg1 and Vg2 to the field effect transistors used in the main microwave amplifiers 15a and 15b, and detects drive power of the semiconductor element. The parts 38a and 38b are provided. The gate voltages Vg1 and Vg2 are negative voltages.

また、マイクロ波発生部10および冷却部31a、31bの特性を確保するための制御部23を配する。この制御部23は、マイクロ波発生部10の反射電力検出部19a、19b、駆動電力検出部38a、38bおよび温度検出部36a、36b、37a、37bが検出した信号を受け取り、各種の処理を行った後、マイクロ波発振部11の発振周波数の可変制御、位相可変器18の位相可変制御、駆動電源部22が主マイクロ波増幅器15a、15bのそれぞれに供給する駆動電圧制御、冷却ファン35の動作制御を行う。   Moreover, the control part 23 for ensuring the characteristics of the microwave generation part 10 and the cooling parts 31a and 31b is arranged. The control unit 23 receives signals detected by the reflected power detection units 19a and 19b, the drive power detection units 38a and 38b, and the temperature detection units 36a, 36b, 37a, and 37b of the microwave generation unit 10, and performs various processes. After that, variable control of the oscillation frequency of the microwave oscillating unit 11, phase variable control of the phase variable unit 18, drive voltage control that the drive power supply unit 22 supplies to each of the main microwave amplifiers 15a and 15b, and operation of the cooling fan 35 Take control.

反射電力検出部19a、19bは、結合度が約40dBの方向性結合器で構成し、反射電力の約1/10000の電力量を抽出する。この電力信号はそれぞれ、検波ダイオード(図示していない)で整流化しコンデンサ(図示していない)で平滑処理し、その出力信号を制御部23に入力させている。   The reflected power detectors 19a and 19b are configured by directional couplers having a coupling degree of about 40 dB, and extract an amount of power that is about 1/10000 of the reflected power. The power signals are rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and the output signal is input to the control unit 23.

以上のように構成されたマイクロ波処理装置について、以下その動作と作用とを図3を参照しながら説明する。   The operation and action of the microwave processing apparatus configured as described above will be described below with reference to FIG.

まず被加熱物を加熱室100に収納し、その加熱条件を操作部(図示していない)から入力し、加熱開始キーを押す。加熱開始信号を受けた制御部23の制御出力信号によりマイクロ波発生部10を第1の出力電力、たとえば100W未満、に設定して動作を開始する(S11)。このとき制御部23は、マイクロ波発振部11の初期の発振周波数は、たとえば2450MHzに設定する信号を供給し、発振を開始させる。以降、所定の駆動電源電圧を初段マイクロ波増幅部13a、13bに供給し初段マイクロ波増幅部を動作させ、次に主マイクロ波増幅部15a、15bに所定駆動電圧を供給し主マイクロ波増幅部を動作させる。このときの各主マイクロ波増幅部に供給する駆動電圧は主マイクロ波増幅部のそれぞれがたとえば50Wのマイクロ波電力を出力する電圧である。また、位相可変器18は位相遅延90度に制御している。この結果、マイクロ波発生部10の2つの出力は位相差無しの状態となっている。   First, the object to be heated is stored in the heating chamber 100, the heating condition is input from an operation unit (not shown), and the heating start key is pressed. In response to the heating start signal, the microwave generator 10 is set to a first output power, for example, less than 100 W, according to the control output signal of the controller 23, and the operation is started (S11). At this time, the control unit 23 supplies a signal for setting the initial oscillation frequency of the microwave oscillating unit 11 to 2450 MHz, for example, and starts oscillation. Thereafter, a predetermined drive power supply voltage is supplied to the first-stage microwave amplifiers 13a and 13b to operate the first-stage microwave amplifier, and then a predetermined drive voltage is supplied to the main microwave amplifiers 15a and 15b. To work. The driving voltage supplied to each main microwave amplifying unit at this time is a voltage at which each main microwave amplifying unit outputs microwave power of 50 W, for example. Further, the phase variable device 18 is controlled to a phase delay of 90 degrees. As a result, the two outputs of the microwave generator 10 are in a state with no phase difference.

次にS12では、マイクロ波発振部11の発振周波数を初期の2450MHzから0.1MHzピッチ(たとえば、10ミリ秒で1MHz)で低い周波数側に変化させ、周波数可変範囲の下限である2400MHzに到達すると1MHzピッチで周波数を高く変化させ、2450MHzに到達すると再び0.1MHzピッチで周波数可変範囲の上限である2500MHzまで変化させる。この周波数可変の中で反射電力検出器19a、19bから得られる反射電力を記憶し、S13に進む。S13では、二つ反射電力検出器から得た反射電力の合計値が最小となる周波数(f1)を選定する。次のS14では、反射電力最
小の周波数における各給電部が受ける反射電力値に基づいて被加熱物を加熱実行する時に生じるマイクロ波増幅部のそれぞれの電力損失量(予め既定した駆動電圧および検出した反射電力量に対応して流れるであろう駆動電流の推定値に基づいて計算)を演算し第1の規定値と比較する。この第1の規定値は、マイクロ波発生部に組み込まれた放熱構成に基づいて決定したマイクロ波増幅部の半導体素子が許容する最大熱損失量としている。なお、この規定値は、絶対値とする方法と、マイクロ波増幅部の出力に対する相対比率値とする方法のいずれでも構わない。
Next, in S12, when the oscillation frequency of the microwave oscillating unit 11 is changed from the initial 2450 MHz to the lower frequency side at a 0.1 MHz pitch (for example, 1 MHz in 10 milliseconds), and reaches the lower limit of the frequency variable range, 2400 MHz. The frequency is changed high at 1 MHz pitch, and when it reaches 2450 MHz, it is changed again to 2500 MHz, which is the upper limit of the frequency variable range, at 0.1 MHz pitch. The reflected power obtained from the reflected power detectors 19a and 19b in the variable frequency is stored, and the process proceeds to S13. In S13, the frequency (f1) that minimizes the total value of the reflected power obtained from the two reflected power detectors is selected. In next S14, the respective power loss amounts (predetermined drive voltage and detected value) of the microwave amplifying unit generated when the object to be heated is heated based on the reflected power value received by each power feeding unit at the frequency with the minimum reflected power. (Calculated based on the estimated value of the drive current that will flow corresponding to the amount of reflected power) is calculated and compared with the first specified value. The first specified value is the maximum amount of heat loss allowed by the semiconductor element of the microwave amplifying unit determined based on the heat dissipation configuration incorporated in the microwave generating unit. The specified value may be either an absolute value method or a relative ratio value with respect to the output of the microwave amplifying unit.

そして各給電部の反射電力値に基づいて演算した加熱動作時の半導体素子の電力損失値と第1の規定値との比較において、規定値以下の場合は、S15に進む。一方、第1の規定値を超過している場合には、S16に進み、第1の規定値以下になる各主マイクロ波増幅器15a、15bに供給する駆動電圧を抽出する。この抽出にあたり、駆動電圧は、マイクロ波発生部10の定格出力に対して、100%、90%、75%、60%、15%(これは第1の出力電力の発生時に使用する)の5段階の駆動電圧群を用意しており、この駆動電圧群の中から第1の規定値を超過することなく最大出力を発生できる駆動電圧が抽出される。なお、主マイクロ波増幅器ごとに駆動電圧は最適選択する。この駆動電圧の抽出処理を終えるとS15に進む。   Then, in the comparison between the power loss value of the semiconductor element during the heating operation calculated based on the reflected power value of each power feeding unit and the first specified value, if the value is less than the specified value, the process proceeds to S15. On the other hand, if the first specified value is exceeded, the process proceeds to S16, and the drive voltage supplied to each of the main microwave amplifiers 15a and 15b that is equal to or lower than the first specified value is extracted. In this extraction, the driving voltage is 100%, 90%, 75%, 60%, and 15% of the rated output of the microwave generation unit 10 (this is used when the first output power is generated). A stage drive voltage group is prepared, and a drive voltage capable of generating the maximum output without exceeding the first specified value is extracted from the drive voltage group. The driving voltage is optimally selected for each main microwave amplifier. When this drive voltage extraction process is completed, the process proceeds to S15.

S15では、被加熱物の加熱条件から高速加熱か均一加熱仕上げかを判定し、均一加熱の場合はS17に進み、高速加熱の場合はS23に進む。   In S15, it is determined whether it is high-speed heating or uniform heating finish from the heating condition of the object to be heated. If uniform heating, the process proceeds to S17, and if high-speed heating, the process proceeds to S23.

まず均一加熱の場合を説明する。   First, the case of uniform heating will be described.

S17ではマイクロ波発生部10を定格出力(または低減させた出力)である第2の出力電力を発生するように主マイクロ波増幅器15a、15bの駆動電圧を設定する。なお、この時の駆動電圧はS16を経由した処理の場合は、S16で決定した駆動電圧に設定される。   In S17, the drive voltages of the main microwave amplifiers 15a and 15b are set so that the microwave generator 10 generates the second output power that is the rated output (or the reduced output). Note that the drive voltage at this time is set to the drive voltage determined in S16 in the case of processing via S16.

S18では、S13で抽出された発振周波数(f1)とS17で決定された第2の出力電力でもって被加熱物の本加熱が開始される。S19では、被加熱物の均一加熱を行うために位相可変器18を制御し給電部から供給されるマイクロ波の位相差を変化させる。   In S18, the main heating of the article to be heated is started with the oscillation frequency (f1) extracted in S13 and the second output power determined in S17. In S19, in order to uniformly heat the object to be heated, the phase shifter 18 is controlled to change the phase difference of the microwave supplied from the power feeding unit.

S20では、変化させた位相差の下で各主マイクロ波増幅部の電力損失値が上述の第1の規定値以下かどうかを判定する。第1の規定値以下の場合はS21に進む。第1の規定値を超過している場合は、S22に進み、第1の規定値以下になるように対象の主マイクロ波増幅部の駆動電圧を最適な駆動電圧に変更し、S21に進む。   In S20, it is determined whether the power loss value of each main microwave amplifying unit is equal to or less than the first specified value under the changed phase difference. If it is equal to or less than the first specified value, the process proceeds to S21. If it exceeds the first specified value, the process proceeds to S22, the drive voltage of the target main microwave amplification unit is changed to an optimum drive voltage so as to be equal to or less than the first specified value, and the process proceeds to S21.

S21では、被加熱物の仕上り程度を判定するものであり、たとえば赤外線量検出手段を備えるものにあっては、被加熱物の表面温度を抽出し、目標の仕上り温度に到達しているかどうかを比較判定する。目標温度未達の場合は、S19に戻る。目標温度に到達しているとマイクロ波発生部10の動作を停止させて加熱を終了をする。   In S21, the degree of finish of the object to be heated is determined. For example, in the case of an apparatus equipped with infrared ray detection means, the surface temperature of the object to be heated is extracted to determine whether the target finish temperature has been reached. Judge by comparison. If the target temperature has not been reached, the process returns to S19. When the target temperature is reached, the operation of the microwave generator 10 is stopped and the heating is terminated.

次に高速加熱の場合を説明する。   Next, the case of high-speed heating will be described.

S23ではS13で抽出された発振周波数(f1)のもとで位相可変器18を制御して位相差を変化させ、この位相差可変制御において最小の反射電力を呈する位相差に位相可変器18を設定してS24に進む。   In step S23, the phase variable unit 18 is controlled under the oscillation frequency (f1) extracted in step S13 to change the phase difference. In this phase difference variable control, the phase variable unit 18 is set to the phase difference exhibiting the minimum reflected power. Set and proceed to S24.

S24では、マイクロ波発生部10を定格出力(または低減させた出力)である第2の出力電力を発生するように主マイクロ波増幅器15a、15bの駆動電圧を設定する。な
お、この時の駆動電圧はS16を経由した処理の場合は、S16で決定した駆動電圧に設定される。
In S24, the drive voltages of the main microwave amplifiers 15a and 15b are set so that the microwave generator 10 generates the second output power that is the rated output (or the reduced output). Note that the drive voltage at this time is set to the drive voltage determined in S16 in the case of processing via S16.

S25では、S13で抽出された発振周波数(f1)とS23で設定された位相差とS24で決定された第2の出力電力でもって被加熱物の本加熱が開始される。   In S25, the main heating of the object to be heated is started with the oscillation frequency (f1) extracted in S13, the phase difference set in S23, and the second output power determined in S24.

S26では各反射検出部および各温度検出部が検出した信号を制御部が取り込み、S27に進む。S27では主マイクロ波増幅部のそれぞれの電力損失量を演算する。また演算した電力損失量を第1の規定値(場合によっては後述する補正された第1の規定値)と比較し、第1の規定値以下かどうかを判定する。第1の規定値以下の場合はS31に進む。第1の規定値を超過している場合は、S28に進む。   In S26, the control unit captures signals detected by the reflection detection units and the temperature detection units, and the process proceeds to S27. In S27, each power loss amount of the main microwave amplifier is calculated. Further, the calculated power loss amount is compared with a first specified value (a corrected first specified value, which will be described later in some cases), and it is determined whether or not it is equal to or less than the first specified value. If it is equal to or less than the first specified value, the process proceeds to S31. If the first specified value is exceeded, the process proceeds to S28.

S28では冷却能力を高めるために冷却ファン35を動作させ、S29に進む。S29では再び各反射検出部および各温度検出部が検出した信号を制御部が取り込み、S30に進む。S30では主マイクロ波増幅部のそれぞれの電力損失量を演算する。また演算した電力損失量を第1の規定値(場合によっては後述する補正された第1の規定値)と比較し、第1の規定値以下かどうかを判定する。第1の規定値以下の場合はS31に進む。第1の規定値を超過している場合は、S32に進む。   In S28, the cooling fan 35 is operated to increase the cooling capacity, and the process proceeds to S29. In S29, the control unit again takes in the signals detected by each reflection detection unit and each temperature detection unit, and the process proceeds to S30. In S30, each power loss amount of the main microwave amplifier is calculated. Further, the calculated power loss amount is compared with a first specified value (a corrected first specified value, which will be described later in some cases), and it is determined whether or not it is equal to or less than the first specified value. If it is equal to or less than the first specified value, the process proceeds to S31. If the first specified value is exceeded, the process proceeds to S32.

S32では第1の規定値を超過した対象のマイクロ波増幅器の駆動電圧を制御し半導体素子が被る電力損失量を低減させる駆動電圧に設定し、S29に進む。   In S32, the drive voltage of the target microwave amplifier that exceeds the first specified value is controlled to be set to a drive voltage that reduces the amount of power loss experienced by the semiconductor element, and the process proceeds to S29.

そしてS31では、被加熱物の仕上り程度を判定するものであり、たとえば赤外線量検出手段を備えるものにあっては、被加熱物の表面温度を抽出し、目標の仕上り温度に到達しているかどうかを比較判定する。目標温度未達の場合は、S26に戻る。目標温度に到達しているとマイクロ波発生部10の動作を停止させて加熱を終了する。   In S31, the degree of finish of the object to be heated is determined. For example, in the case of an apparatus equipped with infrared ray detection means, the surface temperature of the object to be heated is extracted and whether or not the target finish temperature has been reached. Are compared. If the target temperature has not been reached, the process returns to S26. When the target temperature is reached, the operation of the microwave generator 10 is stopped and the heating is finished.

以上、加熱制御内容について説明したが、ここの制御における作用について以下に述べる。周波数を変化させることにより、各給電部105、106から被加熱物が収納された加熱室100側を見たときの負荷インピーダンスを変化させることができる。そして、最適な周波数を選択することで各給電部からマイクロ波発生部10側を見たときの電源インピーダンスに負荷インピーダンスを近づけることで各給電部への反射電力を低減できる。また各給電部から供給された複数のマイクロ波の位相差を変化させることでそれぞれのマイクロ波が加熱室空間内でぶつかり合うタイミングや被加熱物に入射して電力吸収されるタイミングが変化し各給電部への反射電力を変化させることができる。これらの制御を最適に組合わせることで、各給電部から放射するマイクロ波のエネルギを効率よく被加熱物に供給させることができる。   The contents of the heating control have been described above, but the operation in this control will be described below. By changing the frequency, it is possible to change the load impedance when the heating chamber 100 side in which the object to be heated is stored is viewed from the power feeding units 105 and 106. Then, by selecting the optimum frequency, the reflected power to each power supply unit can be reduced by bringing the load impedance closer to the power supply impedance when the microwave generation unit 10 is viewed from each power supply unit. In addition, by changing the phase difference of the plurality of microwaves supplied from each power supply unit, the timing at which each microwave collides in the heating chamber space and the timing at which power is absorbed by entering the object to be heated are changed. The reflected power to the power feeding unit can be changed. By optimally combining these controls, the microwave energy radiated from each power feeding section can be efficiently supplied to the object to be heated.

また、最適な発振周波数を抽出した後にさらに位相可変器18を制御することで、より反射電力の少ない給電方法を抽出させている。これにより、マイクロ波発生部10の出力を低減を極力抑え、さらには冷却ファンを動作させて冷却能力をアップし半導体素子を熱破壊から保護する中での最大出力電力を加熱室に供給して高速加熱を実現させている。   Further, after the optimum oscillation frequency is extracted, the phase shifter 18 is further controlled to extract a feeding method with less reflected power. As a result, the output of the microwave generator 10 is suppressed as much as possible, and the cooling fan is operated to increase the cooling capacity and supply the maximum output power to protect the semiconductor element from thermal destruction to the heating chamber. High-speed heating is realized.

また、位相可変器18を電力分配部12と増幅部13bの間に設けた構成により、増幅部出力間、しいては各給電部105、106から加熱室100内に供給するマイクロ波の位相差を確実に制御させることができる。   Further, the phase variable device 18 is provided between the power distribution unit 12 and the amplification unit 13b, so that the phase difference of the microwaves supplied between the amplification unit outputs, that is, the power supply units 105 and 106 into the heating chamber 100 is provided. Can be reliably controlled.

また、マイクロ波発生部10の出力可変は、主マイクロ波増幅部15a、15bの駆動電圧を可変制御させる構成からなり、反射電力が第1の規定値を超過の場合は駆動電圧を低減して増幅器出力電力を低減し、増幅動作に伴う熱損失量を減少させるとともに加熱室
へ供給される電力が低減されることに付随して反射電力も低減させることで増幅部の半導体素子が被る熱損失を許容最大値以下にして装置の信頼性を確保することができる。
The output of the microwave generator 10 is configured to variably control the drive voltage of the main microwave amplifiers 15a and 15b. When the reflected power exceeds the first specified value, the drive voltage is reduced. Heat loss incurred by the semiconductor element of the amplifier by reducing the output power of the amplifier, reducing the amount of heat loss associated with the amplification operation, and reducing the reflected power accompanying the reduction of the power supplied to the heating chamber The reliability of the apparatus can be ensured by setting the value to be equal to or less than the allowable maximum value.

また、この駆動電圧の可変制御に当たっては、マイクロ波増幅部に用いる半導体素子としてノーマリーオン型の電界効果トランジスタを用いることで、電流が大きいドレイン電源系の制御に代えてゲート電源系を制御対象にしたことで、電圧可変部材を低電力部材で構成できるとともに制御に伴う回路のコンパクト化と制御の容易性を実現させることができる。   In the variable control of the driving voltage, a normally-on field effect transistor is used as a semiconductor element used in the microwave amplifying unit, so that the gate power supply system can be controlled instead of controlling the drain power supply system with a large current. As a result, the voltage variable member can be formed of a low-power member, and the circuit can be made compact and easy to control.

さらには給電部105、106は、加熱室100を構成する対向壁面103、104にそれぞれ配置した構成からなるものであり、これにより被加熱物を異なる方向から加熱することができる。   Furthermore, the power feeding units 105 and 106 are configured to be respectively disposed on the opposing wall surfaces 103 and 104 that constitute the heating chamber 100, thereby heating the object to be heated from different directions.

またマイクロ波増幅部を配置した空間の温度を検出する温度検出部36a、36bを設け、その検出信号に基づいて、対象となるマイクロ波増幅部の第1の規定値をそれぞれ演算し補正することにより、本装置が置かれた環境(地域性・季節性など)に対応する第1の規定値に補正することで、グローバルな地域とオールシーズン使用に対応した装置を提供できる。   Also, temperature detection units 36a and 36b for detecting the temperature of the space where the microwave amplification unit is arranged are provided, and the first specified value of the target microwave amplification unit is calculated and corrected based on the detection signal. Thus, by correcting to the first specified value corresponding to the environment (locality, seasonality, etc.) in which this apparatus is placed, it is possible to provide a device that supports global regions and all-season use.

(実施の形態2)
次に図2に示したマイクロ波増幅部のユニット構成要素である熱伝導が大きい金属材料で構成した放熱部30a、30bの温度を検出する温度検出部37a、37bを利用した制御内容について説明する。
(Embodiment 2)
Next, the contents of control using the temperature detectors 37a and 37b that detect the temperatures of the heat radiating parts 30a and 30b made of a metal material having a large thermal conductivity, which is a unit component of the microwave amplifier shown in FIG. 2, will be described. .

放熱部30a、30bの温度として第2の規定値を用いる。この第2の規定値は、マイクロ波増幅器が許容する電力損失に対して、その電力損失を生じた時に半導体素子を熱破壊から確実に保護する最大温度値として予め制御部23内の記憶部に記憶させている。   The second specified value is used as the temperature of the heat radiating portions 30a and 30b. The second specified value is stored in advance in the storage unit in the control unit 23 as a maximum temperature value that reliably protects the semiconductor element from thermal destruction when the power loss occurs with respect to the power loss allowed by the microwave amplifier. I remember it.

そして、上述の実施の形態1の中の加熱制御フローチャートで説明した第2の出力電力で本格加熱を開始した以降に、この放熱部の温度検出部の検出信号を用いる。これは駆動電力および反射電力に基づく電力損失の演算をすることなく半導体素子の熱破壊に対する危険性を判定でき、対象のマイクロ波増幅器の駆動電圧を制御し半導体素子が被る電力損失量を低減させる駆動電圧に設定するものである。   And after starting full-scale heating with the 2nd output electric power demonstrated with the heating control flowchart in the above-mentioned Embodiment 1, the detection signal of the temperature detection part of this thermal radiation part is used. This can determine the risk of thermal destruction of a semiconductor element without calculating power loss based on drive power and reflected power, and controls the drive voltage of the target microwave amplifier to reduce the amount of power loss that the semiconductor element suffers. The driving voltage is set.

また放熱部の温度信号に基づいて、マイクロ波増幅部の電力損失量を放熱させる放熱部が確実に動作していることを検知して、装置の信頼性を保証させることができる。さらに、反射電力の大きい被加熱物の加熱において、マイクロ波増幅部の冷却能力を高くするべく冷却ファンを動作させた場合に、放熱物の温度信号に基づいてその冷却ファンが確実に動作していることを判断することができる。   Further, based on the temperature signal of the heat radiating section, it can be detected that the heat radiating section that radiates the power loss amount of the microwave amplifying section is operating reliably, and the reliability of the apparatus can be guaranteed. In addition, when heating an object to be heated with a large amount of reflected power, if the cooling fan is operated to increase the cooling capacity of the microwave amplification section, the cooling fan operates reliably based on the temperature signal of the radiator. Can be judged.

またマイクロ波増幅部に生じる電力損失量を放熱させる放熱部を設け、その放熱部の温度に基づいて第1の規定値をそれぞれ補正することにより、放熱部の性能バラツキに対応した第1の規定値に補正することで、装置の信頼性を保証させることができる。   In addition, by providing a heat radiating part that radiates the amount of power loss generated in the microwave amplifying part, and correcting the first specified value based on the temperature of the heat radiating part, the first stipulation corresponding to the performance variation of the heat radiating part. By correcting the value, the reliability of the apparatus can be guaranteed.

以上のように、本発明にかかるマイクロ波処理装置は、加熱室側から戻ってくる反射電力信号とマイクロ波増幅部の駆動電力に基づくマイクロ波増幅部の半導体素子の電力損失量を演算し、半導体素子が熱破壊しないように発振周波数の制御および/またはマイクロ波増幅部の駆動電力を低減制御することで、さまざまな形状・種類・量の異なる被加熱物を所望の状態に加熱するマイクロ波処理装置を提供できるので、電子レンジで代表される
ような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。
As described above, the microwave processing apparatus according to the present invention calculates the power loss amount of the semiconductor element of the microwave amplification unit based on the reflected power signal returning from the heating chamber side and the driving power of the microwave amplification unit, Microwave that heats objects to be heated in various shapes, types, and quantities to a desired state by controlling the oscillation frequency and / or reducing and controlling the driving power of the microwave amplifier so that the semiconductor element is not thermally destroyed. Since the processing apparatus can be provided, the present invention can be applied to uses such as a heating apparatus using a dielectric heating as typified by a microwave oven, a garbage processing machine, or a microwave power source of a plasma power source as a semiconductor manufacturing apparatus.

本発明の実施の形態1におけるマイクロ波処理装置の構成図Configuration diagram of microwave processing apparatus according to Embodiment 1 of the present invention 本発明の実施の形態1におけるマイクロ波処理装置の実装構成図Mounting configuration diagram of the microwave processing apparatus according to Embodiment 1 of the present invention 本発明の実施の形態1におけるマイクロ波処理装置の制御フローチャートControl flow chart of microwave processing apparatus in Embodiment 1 of the present invention 図3の分岐先の制御フローチャートFIG. 3 branch destination control flowchart

10 マイクロ波発生部
11 マイクロ波発振部
12 電力分配部
13a、13b、15a、15b マイクロ波増幅部
19a、19b 反射電力検出部
22 駆動電源部
23 制御部
30a、30b 放熱部
31a、31b、34 通流部(冷却手段)
32 水タンク(冷却手段)
33 送水ポンプ(冷却手段)
35 冷却ファン
36a、36b 空間の温度検出部
37a、37b 放熱部の温度検出部
38a、38b 駆動電力検出部
100 加熱室
105、106 放射手段(給電部)
Vg1、Vg2 ゲート電圧
DESCRIPTION OF SYMBOLS 10 Microwave generation part 11 Microwave oscillation part 12 Power distribution part 13a, 13b, 15a, 15b Microwave amplification part 19a, 19b Reflected power detection part 22 Drive power supply part 23 Control part 30a, 30b Heat radiation part 31a, 31b, 34 Flow section (cooling means)
32 Water tank (cooling means)
33 Water pump (cooling means)
35 Cooling fans 36a and 36b Temperature detectors 37a and 37b Temperature detectors 38a and 38b of the heat radiating unit Drive power detector 100 Heating chamber 105 and 106 Radiating means (power supply unit)
Vg1, Vg2 Gate voltage

Claims (4)

被加熱物を収納する加熱室と、マイクロ波を発生させる半導体素子を用いたマイクロ波発振部と前記マイクロ波発振部が発生するマイクロ波を増幅するマイクロ波増幅部とで構成したマイクロ波発生部と、前記マイクロ波増幅部の出力を前記加熱室に供給する給電部と、前記給電部が前記加熱室から受け取る電力量を検出する反射電力検出部と、前記反射電力検出部の検出信号に基づいて前記マイクロ波発振部の発振周波数および前記マイクロ波発生部の出力電力に対応する前記マイクロ波増幅部の駆動電圧を選択制御する制御部とを備え、
前記制御部は、被加熱物の加熱開始前に前記マイクロ波増幅部の駆動電圧を選択制御して前記マイクロ波発生部を第1の出力電力で動作させる中において前記マイクロ波発振部の発振周波数を周波数可変範囲全体にわたって変化させたときに前記反射電力検出部から得られる反射電力が最小となる周波数を選定し、さらにその周波数における反射電力値と被加熱物を加熱実行する予定の第2の出力電力に対応する前記マイクロ波増幅部の駆動電圧群の値に基づいて前記マイクロ波増幅部に生じる電力損失量を演算し、演算した電力損失量が第1の規定値以下となる最大の駆動電圧値を抽出した後、選定した周波数および抽出した駆動電圧を前記マイクロ波増幅部に印加した第2の出力電力とでもって被加熱物の加熱実行開始を行うマイクロ波処理装置。
A microwave generating unit comprising a heating chamber for storing an object to be heated, a microwave oscillating unit using a semiconductor element that generates a microwave, and a microwave amplifying unit for amplifying the microwave generated by the microwave oscillating unit A power supply unit that supplies the output of the microwave amplification unit to the heating chamber, a reflected power detection unit that detects the amount of power that the power supply unit receives from the heating chamber, and a detection signal of the reflected power detection unit A control unit that selectively controls the driving voltage of the microwave amplification unit corresponding to the oscillation frequency of the microwave oscillation unit and the output power of the microwave generation unit ,
The control unit selectively controls a driving voltage of the microwave amplifying unit before starting heating of the object to be heated and operates the microwave generating unit with the first output power. The frequency at which the reflected power obtained from the reflected power detector is minimized when the frequency is changed over the entire frequency variable range is selected, and the reflected power value at the frequency and the second heating target to be heated are executed. Based on the value of the drive voltage group of the microwave amplification unit corresponding to the output power, the amount of power loss generated in the microwave amplification unit is calculated, and the maximum drive in which the calculated power loss amount is equal to or less than a first specified value. after extracting the voltage value, a microwave for heating the execution start of the object to be heated with the selected frequency and the extracted driving voltage and a second output power applied to the microwave amplifier unit Management apparatus.
被加熱物を収納する加熱室と、マイクロ波を発生させる半導体素子を用いたマイクロ波発振部と前記マイクロ波発振部が発生するマイクロ波を複数分配する電力分配部と前記電力分配部の出力をそれぞれ増幅する複数のマイクロ波増幅部と前記電力分配部の出力に設けた位相可変器で構成したマイクロ波発生部と、前記マイクロ波増幅部の出力を前記加熱室にそれぞれ供給する複数の給電部と、前記給電部が前記加熱室から受け取る電力量をそれぞれ検出する複数の反射電力検出部と、前記反射電力検出部のそれぞれの検出信号に基づいて前記マイクロ波発振部の発振周波数と前記位相可変部の位相量および前記マイクロ波発生部の出力電力に対応する前記マイクロ波増幅部のそれぞれの駆動電圧を選択制御する制御部とを備え、
前記制御部は、被加熱物の加熱開始前に、前記位相可変器を制御して前記マイクロ波増幅部のそれぞれの出力の位相差を無しとし、前記マイクロ波増幅部の駆動電圧を選択制御して前記マイクロ波発生部を第1の出力電力で動作させる中において前記マイクロ波発振部
の発振周波数を周波数可変範囲全体にわたって変化させたときに前記反射電力検出部から得られる反射電力が最小となる周波数を選定し、さらにその周波数において前記位相可変器の位相量を可変制御する中で得られる最小の反射電力を呈する位相量に前記位相可変器の位相量を選択し、この反射電力値と被加熱物を加熱実行する予定の第2の出力電力に対応する前記マイクロ波増幅部の駆動電圧群の値に基づいて前記マイクロ波増幅部のそれぞれに生じる電力損失量を演算し、演算した電力損失量が第1の規定値以下となる最大の駆動電圧値を抽出した後、選定した周波数と位相量および抽出した駆動電圧を前記マイクロ波増幅部のそれぞれに印加した第2の出力電力とでもって被加熱物の加熱実行開始を行うマイクロ波処理装置。
A heating chamber for storing an object to be heated, a microwave oscillating unit using a semiconductor element for generating microwaves, a power distributing unit for distributing a plurality of microwaves generated by the microwave oscillating unit, and outputs of the power distributing unit A plurality of microwave amplifying units each amplifying, a microwave generating unit configured by a phase shifter provided at the output of the power distribution unit, and a plurality of power feeding units supplying the output of the microwave amplifying unit to the heating chamber, respectively When a plurality of reflected power detection unit the power supply unit detects each power amount received from the heating chamber, wherein an oscillation frequency of the on the basis of the respective detection signals of the reflected power detecting section and the microwave oscillation unit phase varying A control unit that selectively controls each driving voltage of the microwave amplification unit corresponding to the phase amount of the unit and the output power of the microwave generation unit ,
The control unit controls the phase shifter to eliminate the phase difference between the outputs of the microwave amplifying unit before the heating of the object to be heated, and selectively controls the driving voltage of the microwave amplifying unit. The microwave oscillating unit while operating the microwave generating unit with the first output power
While selecting the frequency at which the reflected power obtained from the reflected power detection unit is minimized when the oscillation frequency is changed over the entire frequency variable range, and further variably controlling the phase amount of the phase variable at that frequency The phase amount of the phase shifter is selected as the phase amount exhibiting the minimum reflected power to be obtained, and the microwave amplification unit corresponding to the reflected power value and the second output power scheduled to heat the object to be heated is used. Based on the value of the drive voltage group, the amount of power loss generated in each of the microwave amplification units is calculated, and the maximum drive voltage value at which the calculated power loss amount is equal to or less than the first specified value is extracted and then selected. A microwave processing apparatus that starts heating an object to be heated with a second output power in which a frequency, a phase amount, and an extracted drive voltage are applied to each of the microwave amplifiers .
マイクロ波増幅部を配置した空間の温度を検出する温度検出部を設け、温度検出部の検出信号に基づいて、対象となるマイクロ波増幅部の第1の規定値をそれぞれ演算し補正することとした請求項1または2に記載のマイクロ波処理装置。 Providing a temperature detection unit for detecting the temperature of the space in which the microwave amplification unit is disposed, and calculating and correcting the first specified value of the target microwave amplification unit based on the detection signal of the temperature detection unit; The microwave processing apparatus according to claim 1 or 2. マイクロ波増幅部を駆動する電力を検出する駆動電力検出部を設け、制御部は、被加熱物の加熱実行中において、反射電力検知部から得られる反射電力と前記駆動電力検出部からえられる駆動電力に基づいて前記マイクロ波増幅部の電力損失量を演算し、演算した電力損失量が第1の規定値以下かどうかを判定し、規定値以下の場合は加熱を継続し、規定値を超過している場合は、第1の規定値以下となるマイクロ波増幅器の最大の駆動電圧値に変更して被加熱物の加熱実行を行う請求項1または2に記載のマイクロ波処理装置。
A drive power detection unit that detects power for driving the microwave amplification unit is provided, and the control unit receives the reflected power obtained from the reflected power detection unit and the drive obtained from the drive power detection unit while the object to be heated is being heated. Calculates the power loss amount of the microwave amplification unit based on the power, determines whether the calculated power loss amount is less than or equal to the first specified value, and if it is less than the specified value, continues heating and exceeds the specified value If it is, the microwave processing apparatus according to claim 1 or 2, wherein the object to be heated is heated by changing to a maximum drive voltage value of the microwave amplifier that is equal to or less than the first specified value .
JP2008101182A 2008-04-09 2008-04-09 Microwave processing equipment Expired - Fee Related JP5286899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101182A JP5286899B2 (en) 2008-04-09 2008-04-09 Microwave processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101182A JP5286899B2 (en) 2008-04-09 2008-04-09 Microwave processing equipment

Publications (2)

Publication Number Publication Date
JP2009252619A JP2009252619A (en) 2009-10-29
JP5286899B2 true JP5286899B2 (en) 2013-09-11

Family

ID=41313122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101182A Expired - Fee Related JP5286899B2 (en) 2008-04-09 2008-04-09 Microwave processing equipment

Country Status (1)

Country Link
JP (1) JP5286899B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146143A (en) * 2010-01-12 2011-07-28 Panasonic Corp Microwave processing device
JP5304729B2 (en) * 2010-06-01 2013-10-02 パナソニック株式会社 Storage device and storage method thereof
CN113347750B (en) * 2020-02-18 2023-06-16 青岛海尔电冰箱有限公司 Control method for heating unit, heating unit and refrigerating and freezing device
WO2023157511A1 (en) * 2022-02-18 2023-08-24 パナソニックホールディングス株式会社 Oscillator and electric device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838554Y2 (en) * 1977-07-07 1983-08-31 三菱電機株式会社 High frequency heating device
JPS58106792A (en) * 1981-12-18 1983-06-25 松下電器産業株式会社 High frequency heater
JPS6132388A (en) * 1984-07-23 1986-02-15 松下電器産業株式会社 High frequency heater
JPH0671182B2 (en) * 1986-11-25 1994-09-07 三菱電機株式会社 Frequency conversion amplifier
JPH05283942A (en) * 1992-03-31 1993-10-29 Nec Corp Protection circuit for high output amplifier
JP3737549B2 (en) * 1995-09-21 2006-01-18 東芝マイクロエレクトロニクス株式会社 Gain control circuit and variable gain power amplifier
JPH11233294A (en) * 1998-02-18 1999-08-27 Jeol Ltd High-frequency power source
JP4271457B2 (en) * 2003-02-07 2009-06-03 株式会社ダイヘン High frequency power supply
JP4248285B2 (en) * 2003-03-31 2009-04-02 新電元工業株式会社 High frequency generator
JP4935188B2 (en) * 2006-05-25 2012-05-23 パナソニック株式会社 Microwave equipment
JP4860395B2 (en) * 2006-07-28 2012-01-25 パナソニック株式会社 Microwave processing apparatus and microwave processing method

Also Published As

Publication number Publication date
JP2009252619A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5104048B2 (en) Microwave processing equipment
JP5167678B2 (en) Microwave processing equipment
JP5400885B2 (en) Microwave heating device
JP4935188B2 (en) Microwave equipment
JP4860395B2 (en) Microwave processing apparatus and microwave processing method
JP5142364B2 (en) Microwave processing equipment
WO2010134307A1 (en) Microwave heating device and microwave heating method
JP5064924B2 (en) Microwave processing equipment
US9307583B2 (en) Cooking apparatus and operating method thereof
JP5286905B2 (en) Microwave processing equipment
US9574777B2 (en) Cooking apparatus
JP2008108491A (en) Microwave treatment device
JP5286899B2 (en) Microwave processing equipment
JP5262250B2 (en) Microwave processing equipment
JP4940922B2 (en) Microwave processing equipment
JP5239229B2 (en) Microwave heating device
JP4839994B2 (en) Microwave equipment
JP2009238402A (en) Microwave processor
JP2009181728A (en) Microwave processing device
JP5286898B2 (en) Microwave processing equipment
JP5471029B2 (en) Microwave processing equipment
JP2010192359A (en) Microwave processing device
JP2010073383A (en) Microwave heating apparatus
JP2010177006A (en) Microwave processing apparatus
JP2010272216A (en) Microwave treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5286899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees