JP5286733B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5286733B2
JP5286733B2 JP2007259441A JP2007259441A JP5286733B2 JP 5286733 B2 JP5286733 B2 JP 5286733B2 JP 2007259441 A JP2007259441 A JP 2007259441A JP 2007259441 A JP2007259441 A JP 2007259441A JP 5286733 B2 JP5286733 B2 JP 5286733B2
Authority
JP
Japan
Prior art keywords
power supply
vacuum vessel
electrode
conductor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007259441A
Other languages
Japanese (ja)
Other versions
JP2009088427A (en
Inventor
均 清水
崇 大内
政和 鷁頭
慎 下沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007259441A priority Critical patent/JP5286733B2/en
Publication of JP2009088427A publication Critical patent/JP2009088427A/en
Application granted granted Critical
Publication of JP5286733B2 publication Critical patent/JP5286733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマを利用して薄膜堆積(薄膜形成)やエッチング等の処理を行うプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus that performs processing such as thin film deposition (thin film formation) and etching using plasma.

現在、プラズマを利用した薄膜形成(堆積膜形成)やエッチングは、多くの技術分野で適用されている。その装置構成としては、例えば容量結合型の平行平板プラズマCVD装置もしくはエッチング装置等が挙げられる。真空容器内に流すガスを、例えばSiHに代表される製膜ガスとすれば薄膜が堆積され、例えばCFに代表されるエッチングガスとすればエッチングが行われる。ここでは、SiHを主体としたガスによって基板上にSi系薄膜を形成するプラズマCVD法によって、薄膜太陽電池を製造する例を挙げることとする。 Currently, thin film formation (deposition film formation) and etching using plasma are applied in many technical fields. As the apparatus configuration, for example, a capacitively coupled parallel plate plasma CVD apparatus or an etching apparatus can be used. If the gas flowing into the vacuum vessel is a film forming gas typified by, for example, SiH 4 , a thin film is deposited, and if an etching gas typified by, for example, CF 4 is used, etching is performed. Here, an example will be given in which a thin film solar cell is manufactured by a plasma CVD method in which a Si-based thin film is formed on a substrate with a gas mainly composed of SiH 4 .

図5は、従来の容量結合型の平行平板プラズマCVD装置(プラズマ処理装置の一種)の模式図である。このプラズマ処理装置1は、真空容器2の内部に、高周波電源3および整合回路4から給電線5を通して高周波電力が供給される高周波電極6と、この高周波電極6に対向する接地電極7とが配置されている。真空容器2と給電線5とは、電気的に互いに絶縁されている。なお、接地電極7は、必ずしも接地電位である必要はなく、目的に応じて直流、もしくは高周波電圧の印加が可能な機構が設けられても良い。給電線5と高周波電極6との接続部位は、高周波電極6の中心部である場合が多く、かつ、給電線5と高周波電極6とは垂直に接続される場合が多い。この場合、外部から真空容器2内に電力を供給する機構(高周波電源3と整合回路4を含む)が真空容器2に対して図5の側部位置に配置される。   FIG. 5 is a schematic diagram of a conventional capacitively coupled parallel plate plasma CVD apparatus (a kind of plasma processing apparatus). In the plasma processing apparatus 1, a high-frequency electrode 6 to which high-frequency power is supplied from a high-frequency power source 3 and a matching circuit 4 through a feeder line 5 and a ground electrode 7 facing the high-frequency electrode 6 are disposed inside a vacuum vessel 2. Has been. The vacuum vessel 2 and the power supply line 5 are electrically insulated from each other. The ground electrode 7 is not necessarily at the ground potential, and a mechanism capable of applying a direct current or a high frequency voltage may be provided depending on the purpose. The connection part between the power supply line 5 and the high-frequency electrode 6 is often the center of the high-frequency electrode 6, and the power supply line 5 and the high-frequency electrode 6 are often connected vertically. In this case, a mechanism (including a high-frequency power source 3 and a matching circuit 4) for supplying electric power into the vacuum vessel 2 from the outside is disposed at a side position in FIG.

上述のようなプラズマ処理装置1を用いて薄膜を形成する手順について説明する。
まず、真空容器2内を図示しない排気機構で或る程度の真空まで真空引きを行ない、その後に必要に応じて基板8を加熱する図示しないヒーターによって基板8の加熱を行なう。真空引き直後の場合、真空容器2の内壁面や基板8の表面等に水分等が吸着している場合が多く、これらの不純物が十分に脱ガスされない状態で薄膜形成を行なうと、膜中に大量の不純物が含まれてしまい、膜質の低下につながる。そこで、真空容器2内の脱ガスを促進する目的のために、薄膜形成前に図示しないガス導入ラインからガスを導入し、図示しない圧力制御器と図示しない製膜ガス排気ラインによって真空容器2内を一定の圧力に保持したまま真空容器2内の加熱(ベーキング)を行なう。ベーキング中に流すガスは、H等の熱伝導性が比較的良いガス、He,Ar等の不活性ガス、或いは製膜を行なう際に流す製膜ガス等を採用する。脱ガス後に、基板温度を製膜する際の基板温度に設定し、場合によっては数種類の製膜ガスを適当な流量比で混合した混合ガスを真空容器2内に流して適当な圧力で保持した後に、高周波電極6に電力を供給し、高周波電極6と接地電極7との間にプラズマを発生させて基板8上に薄膜形成を行う。例えば種々の製膜条件で基板上に多層膜を形成し、薄膜太陽電池等を製造する。
A procedure for forming a thin film using the plasma processing apparatus 1 as described above will be described.
First, the inside of the vacuum vessel 2 is evacuated to a certain degree of vacuum by an exhaust mechanism (not shown), and then the substrate 8 is heated by a heater (not shown) that heats the substrate 8 as necessary. Immediately after evacuation, water or the like is often adsorbed on the inner wall surface of the vacuum vessel 2 or the surface of the substrate 8. When a thin film is formed in a state where these impurities are not sufficiently degassed, A large amount of impurities are contained, leading to deterioration of the film quality. Therefore, for the purpose of promoting degassing in the vacuum vessel 2, gas is introduced from a gas introduction line (not shown) before forming the thin film, and the inside of the vacuum vessel 2 is formed by a pressure controller (not shown) and a film forming gas exhaust line (not shown). The inside of the vacuum vessel 2 is heated (baked) while maintaining a constant pressure. As the gas to be flowed during baking, a gas having a relatively good thermal conductivity such as H 2 , an inert gas such as He or Ar, or a film-forming gas to be flowed when film formation is employed. After degassing, the substrate temperature is set to the substrate temperature at the time of film formation. In some cases, a mixed gas in which several kinds of film formation gases are mixed at an appropriate flow rate ratio is flowed into the vacuum vessel 2 and held at an appropriate pressure. Later, power is supplied to the high-frequency electrode 6 and plasma is generated between the high-frequency electrode 6 and the ground electrode 7 to form a thin film on the substrate 8. For example, a multilayer film is formed on a substrate under various film forming conditions to manufacture a thin film solar cell or the like.

ところで、図5に示すプラズマ処理装置1では、外部から真空容器2内に電力を供給する機構(高周波電源3と整合回路4を含む)が真空容器2に対して側部位置に配置されているが、これに限定されるものではない。また、真空容器2の内部には、一組の高周波電極6と接地電極7しか設置できないわけでなく、複数の高周波電極及び複数の接地電極を設置することができる。   By the way, in the plasma processing apparatus 1 shown in FIG. 5, a mechanism (including a high-frequency power source 3 and a matching circuit 4) that supplies electric power from the outside into the vacuum vessel 2 is disposed at a side position with respect to the vacuum vessel 2. However, the present invention is not limited to this. Further, not only a set of the high-frequency electrode 6 and the ground electrode 7 can be installed inside the vacuum vessel 2, but also a plurality of high-frequency electrodes and a plurality of ground electrodes can be installed.

図6は、真空容器内に電力を供給する機構を真空容器に対して上部位置に配置し、真空容器の内部に複数の高周波電極及び複数の接地電極を設置したプラズマ処理装置の模式図である。真空容器2の内部には、高周波電極及び接地電極の組が2組設置されており、各々の高周波電極6a,6bに対して配置された高周波電源3a,3bから整合回路4a,4b及び給電線5a,5bを通してそれぞれ独立に電力を供給することが可能な構成とされている。   FIG. 6 is a schematic view of a plasma processing apparatus in which a mechanism for supplying electric power to the vacuum vessel is disposed at an upper position with respect to the vacuum vessel, and a plurality of high-frequency electrodes and a plurality of ground electrodes are installed inside the vacuum vessel. . Two sets of high-frequency electrodes and ground electrodes are installed inside the vacuum vessel 2, and matching circuits 4a and 4b and feeder lines are provided from the high-frequency power sources 3a and 3b arranged for the respective high-frequency electrodes 6a and 6b. The power can be supplied independently through 5a and 5b.

このような構成を採ることにより、高周波電極及び接地電極の組が一組しかない場合に比べ、処理能力を2倍にすることができる。   By adopting such a configuration, the processing capability can be doubled compared to the case where there is only one set of the high-frequency electrode and the ground electrode.

図6に示すように、給電線5a、5bが高周波電極6a,6bの中心部近傍で接続配置される場合には、給電線5a,5bの形状は、構成上の制約により、図5に示すような直線状の形状にすることができない。図6に示す例では、L状の形状となされている。給電線5a,5bの形状は、外部から真空容器2内に電力を供給する機構を設置する箇所、並びに、給電線5a,5bと高周波電極6a,6bとの接続位置で決まるが、高周波電力を用いる場合には、給電線5a,5bの長さや形状に応じたインダクタンス成分が存在し、整合回路4a,4bと給電線5a,5bとの接続点で過大な電圧が発生するので、給電線5a,5bをできるだけ広く短くして接続することが好ましい。   As shown in FIG. 6, when the feeder lines 5a and 5b are connected and arranged near the center of the high-frequency electrodes 6a and 6b, the shapes of the feeder lines 5a and 5b are shown in FIG. Such a linear shape cannot be obtained. In the example shown in FIG. 6, it is L-shaped. The shapes of the power supply lines 5a and 5b are determined by the location where a mechanism for supplying power from the outside into the vacuum vessel 2 is installed and the connection positions of the power supply lines 5a and 5b and the high-frequency electrodes 6a and 6b. When used, an inductance component according to the length and shape of the feeder lines 5a and 5b exists, and an excessive voltage is generated at the connection point between the matching circuits 4a and 4b and the feeder lines 5a and 5b. , 5b are preferably made as wide and short as possible.

給電線の材質としては銀や銅等、抵抗率の低い金属が選択されることが多く、その形状は線状,板状,或いは円柱状のものが選択されることが多い。電源として高周波電力を用い、給電線が長くなる場合、給電線には高電圧が生じ、真空容器内外で様々な影響がでる。例えば、給電線がプラズマ印加環境の反応室内に存在する場合には、給電線の周囲も反応ガスで満たされており、給電線と適当な距離だけ離れた部位に接地電位を有する反応室壁体(真空容器2の壁体)等があると、給電線と反応室壁体との間で放電が生じやすくなり、パワーロスやプラズマが生じた領域近傍における薄膜の付着やエッチングが生じる等の不具合が発生する。また整合回路に高電圧が印加され、整合回路内で絶縁破壊が生じやすくなるといった不具合が発生する。また、給電線5a,5bと高周波電極6a,6bとの間の電磁気的な干渉から高周波電極6a,6bの高周波電位分布が不均一化する傾向にあるが、高周波電極6a,6bの高周波電位分布の均一性は薄膜の膜厚均一性に影響し、高周波電位分布の不均一化が激しくなると薄膜の膜厚均一性が悪化する。   As the material of the power supply line, a metal having a low resistivity such as silver or copper is often selected, and the shape thereof is often selected to be linear, plate-shaped, or cylindrical. When high-frequency power is used as a power source and the power supply line becomes long, a high voltage is generated in the power supply line, and various influences occur inside and outside the vacuum vessel. For example, when the power supply line exists in the reaction chamber of the plasma application environment, the reaction chamber wall body that is also filled with the reaction gas around the power supply line and has a ground potential at a site separated from the power supply line by an appropriate distance. (The wall of the vacuum vessel 2) and the like, it is easy for electric discharge to occur between the power supply line and the reaction chamber wall, and there are problems such as adhesion of thin film and etching near the region where power loss and plasma are generated. Occur. In addition, a high voltage is applied to the matching circuit, causing a problem that dielectric breakdown is likely to occur in the matching circuit. Further, the high-frequency potential distribution of the high-frequency electrodes 6a and 6b tends to become non-uniform due to electromagnetic interference between the feeder lines 5a and 5b and the high-frequency electrodes 6a and 6b. The uniformity of the film thickness affects the film thickness uniformity of the thin film. When the non-uniformity of the high-frequency potential distribution becomes severe, the film thickness uniformity of the thin film deteriorates.

従来、真空容器内の不要な放電対策として、高周波電圧が印加される高周波電極と給電線との間にシールド板を挿入する構造が提案されている(例えば、特許文献1参照)。図7に示すように、特許文献1に記載されたプラズマ処理装置では、シールド板9を高周波電圧が印加される電極と給電線との間に挿入し、シールド板9の両端を接地電位部に接続させ、電磁気的な干渉を弱くすることで、良好なプラズマ処理を行なうこととしている。   Conventionally, a structure in which a shield plate is inserted between a high-frequency electrode to which a high-frequency voltage is applied and a power supply line has been proposed as a measure against unnecessary discharge in the vacuum vessel (see, for example, Patent Document 1). As shown in FIG. 7, in the plasma processing apparatus described in Patent Document 1, a shield plate 9 is inserted between an electrode to which a high frequency voltage is applied and a power supply line, and both ends of the shield plate 9 are connected to a ground potential portion. By connecting them and reducing electromagnetic interference, good plasma treatment is performed.

図6に示すように、真空容器2の内部の中央部において電極背面を対向させた一対の高周波電極6a,6bの中央部に接続される給電線5a,5bをシールドする場合、図7に示す構造のシールド板9では対応できない。少なくとも、各給電線5a,5bの全周をシールド構造体でそれぞれ囲み込むシール構造が必要である。
特開2006−261363号公報
As shown in FIG. 6, when the power supply lines 5 a and 5 b connected to the central part of the pair of high-frequency electrodes 6 a and 6 b with the back surfaces of the electrodes facing each other in the central part inside the vacuum vessel 2 are shielded as shown in FIG. 7. The shield plate 9 having the structure cannot cope. At least a seal structure that surrounds the entire circumference of each of the feeder lines 5a and 5b with a shield structure is required.
JP 2006-261363 A

しかしながら、真空容器の内部において各給電線の全周をそれぞれ囲み込むシールド構造体では、給電線を固定体に固定している固定部材の増し締めや、固定体の交換等のメンテナンス施工性が悪いという問題がある。   However, in the shield structure that surrounds the entire circumference of each power supply line inside the vacuum vessel, maintenance workability such as retightening of the fixing member fixing the power supply line to the fixed body and replacement of the fixed body is poor. There is a problem.

本発明は、かかる点に鑑みてなされたものであり、高周波電極に給電を行う主給電線の外周を囲う外周導体を分割構造として、給電構造全体を取り外すことなく、外周導体の内部に配置された主給電線に対する作業を行うことができ、固定体の交換等のメンテナンス施工性を改善することができるプラズマ処理装置を提供することを目的とする。   The present invention has been made in view of such a point, and the outer peripheral conductor surrounding the outer periphery of the main power supply line that supplies power to the high-frequency electrode is divided into the divided structure, and is disposed inside the outer peripheral conductor without removing the entire power supply structure. It is an object of the present invention to provide a plasma processing apparatus that can perform work on the main power supply line and can improve maintenance workability such as replacement of a fixed body.

本発明のプラズマ処理装置は、真空容器と、前記真空容器内に配置された第1及び第2の電極と、前記第1の電極に真空容器外から高周波電力を供給する給電機構と、前記第2の電極を基準電位に接続する機構とを備え、前記第1及び第2の電極間にガスを流した状態でプラズマを形成して製膜又はエッチングを行うプラズマ処理装置であって、前記給電機構は、前記真空容器外から供給される高周波電力を前記第1の電極に給電する中心導体と、前記真空容器内における前記中心導体の全周を、空間ギャップを介して囲むように配置され、分解可能な複数の金属構造体からなる外周導体とを備えたことを特徴とする。   The plasma processing apparatus of the present invention includes a vacuum vessel, first and second electrodes disposed in the vacuum vessel, a power supply mechanism that supplies high-frequency power to the first electrode from outside the vacuum vessel, and the first A plasma processing apparatus for forming a film or etching by forming a plasma in a state in which a gas is flowed between the first and second electrodes. The mechanism is disposed so as to surround a central conductor that feeds high-frequency power supplied from outside the vacuum vessel to the first electrode, and the entire circumference of the central conductor in the vacuum vessel via a space gap, And an outer peripheral conductor made of a plurality of decomposable metal structures.

この構成によれば、中心導体の全周を囲む外周導体が、分解可能な複数の金属構造体で構成されるので、一部の金属構造体を取り外すことにより中心導体を固定体に固定している固定部材の増し締めや、固定体の交換等のメンテナンスを容易に行うことができる。   According to this configuration, since the outer peripheral conductor surrounding the entire circumference of the center conductor is composed of a plurality of decomposable metal structures, the center conductor is fixed to the fixed body by removing some of the metal structures. It is possible to easily perform maintenance such as retightening of the fixing member and replacement of the fixed body.

また本発明は、上記プラズマ処理装置において、前記中心導体は、前記複数の金属構造体で形成される空間に配置されると共に前記外周導体から絶縁された固定体に固定され、前記複数の金属構造体のうち着脱可能な所定の金属構造体を取り外した状態で前記外周導体外から前記中心導体の固定箇所にアクセス可能にしたことを特徴とする。   According to the present invention, in the plasma processing apparatus, the central conductor is disposed in a space formed by the plurality of metal structures and is fixed to a fixed body insulated from the outer peripheral conductor, and the plurality of metal structures The fixed portion of the center conductor can be accessed from outside the outer peripheral conductor in a state where a predetermined removable metal structure is removed from the body.

この構成により、複数の金属構造体のうち着脱可能な所定の金属構造体を取り外した状態で前記外周導体外から前記中心導体の固定箇所にアクセス可能になり、中心導体を固定体に固定している固定部材の増し締めや、固定体の交換等のメンテナンスを容易に行うことができる。   With this configuration, it becomes possible to access the fixed portion of the center conductor from the outside of the outer peripheral conductor in a state where a predetermined removable metal structure is removed from among the plurality of metal structures, and the center conductor is fixed to the fixed body. It is possible to easily perform maintenance such as retightening of the fixing member and replacement of the fixed body.

上記プラズマ処理装置において、前記外周導体の内側に所定の剛性を有する骨材を配設する構成としても良い。これにより、給電構造全体の剛性が増すので、地絡・感電等に対する安全上の空間絶縁を確保することができ、しかも安定した給電特性を実現することができる。   In the plasma processing apparatus, an aggregate having a predetermined rigidity may be disposed inside the outer peripheral conductor. As a result, the rigidity of the entire power supply structure is increased, so that it is possible to ensure a safe space insulation against ground faults, electric shocks, and the like, and to realize stable power supply characteristics.

本発明によれば、高周波電極に給電を行う主給電線の外周を囲う外周導体が分割可能で、給電構造全体を取り外すことなく、外周導体の内部に配置された主給電線に対する作業を行うことができ、固定体の交換等のメンテナンス施工性を改善することができる。   According to the present invention, the outer peripheral conductor surrounding the outer periphery of the main power supply line that supplies power to the high-frequency electrode can be divided, and the work for the main power supply line arranged inside the outer peripheral conductor can be performed without removing the entire power supply structure. It is possible to improve maintenance workability such as replacement of a fixed body.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は、本実施の形態に係るプラズマCVD装置の構成を示す模式図である。このプラズマCVD装置10は、真空容器11内に第1の電極となる高周波電極及び第2の電極となる接地電極の組が2組設置されている。一方の高周波電極12aと接地電極13aとが対向配置されると共に、他方の高周波電極12bと接地電極13bとが対向配置されている。接地電極13a,13bは接地機構18a,18bを介してそれぞれ接地されているが、所定電位の基準電位に接続するように構成しても良い。真空容器11外には各高周波電極12a,12bに対応して高周波電源14a,14bが設けられている。高周波電源14a,14bはそれぞれ対応する中心導体15a,15bを介して高周波電極12a,12bに接続されている。なお、高周波電源14a,14bと中心導体15a,15bとの間には高周波電力を効率よく中心導体15a,15bへ入力するため、インピーダンス整合部16a,16bが設けられている。接地電極13a,13bの電極面上には、被処理体としての可撓性基板17a,17bを設置するための機構(図示せず)が配設されており、接地電極13a,13b内には可撓性基板17a,17bを加熱するための加熱機構(図示せず)が配設されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a configuration of a plasma CVD apparatus according to the present embodiment. In the plasma CVD apparatus 10, two sets of a high-frequency electrode serving as a first electrode and a ground electrode serving as a second electrode are installed in a vacuum vessel 11. One high-frequency electrode 12a and the ground electrode 13a are disposed to face each other, and the other high-frequency electrode 12b and the ground electrode 13b are disposed to face each other. The ground electrodes 13a and 13b are grounded through the ground mechanisms 18a and 18b, respectively, but may be configured to be connected to a predetermined reference potential. Outside the vacuum vessel 11, high-frequency power supplies 14a and 14b are provided corresponding to the high-frequency electrodes 12a and 12b. The high frequency power supplies 14a and 14b are connected to the high frequency electrodes 12a and 12b via the corresponding central conductors 15a and 15b, respectively. Impedance matching sections 16a and 16b are provided between the high frequency power supplies 14a and 14b and the center conductors 15a and 15b in order to efficiently input high frequency power to the center conductors 15a and 15b. On the electrode surfaces of the ground electrodes 13a and 13b, a mechanism (not shown) for installing flexible substrates 17a and 17b as objects to be processed is disposed. In the ground electrodes 13a and 13b, A heating mechanism (not shown) for heating the flexible substrates 17a and 17b is provided.

上記中心導体15a,15bの構造についてさらに詳しく説明する。中心導体15a,15bは、給電フランジ接続側給電線23a,23b、主給電線24a,24b、電極接続側給電線25a,25bで構成されている。給電フランジ21a,21bが真空容器11の上部に形成されたポートに絶縁材を介してそれぞれ気密に取り付けられている。真空容器11外に露出した給電フランジ21a,21bの一端面に連結導体板22a,22bの一端部が連結されている。該連結導体板22a,22bの他端部はインピーダンス整合部16a,16bに接続されている。真空容器11内では給電フランジ21a,21bの容器内に露出した他端面に対して断面L字型をなす給電フランジ接続側給電線23a,23bの一端部が螺子等の固定部材で固定されている。給電フランジ接続側給電線23a,23bの他端部には板状の主給電線24a,24bの一端部が螺子等の固定部材で固定されている。主給電線24a,24bは真空容器11内のポート付近から真空容器11の中央部付近までの間に配設されている。主給電線24a,24bの他端部は真空容器11内の中央部付近において電極接続側給電線25a,25bの一端部に螺子等の固定部材で固定されている。電極接続側給電線25a,25bの他端部は高周波電極12aの中央部に螺子等の固定部材で固定されている。主給電線24a,24bは絶縁性の固定体26a,26bに固定されている。   The structure of the center conductors 15a and 15b will be described in more detail. The center conductors 15a and 15b are configured by power supply flange connection side power supply lines 23a and 23b, main power supply lines 24a and 24b, and electrode connection side power supply lines 25a and 25b. The power supply flanges 21a and 21b are airtightly attached to ports formed in the upper part of the vacuum vessel 11 through insulating materials. One end portions of the connecting conductor plates 22a and 22b are connected to one end surfaces of the power supply flanges 21a and 21b exposed to the outside of the vacuum vessel 11. The other ends of the connecting conductor plates 22a and 22b are connected to the impedance matching portions 16a and 16b. In the vacuum vessel 11, one end portions of the power supply flange connection side power supply wires 23a and 23b having an L-shaped cross section with respect to the other end surfaces exposed in the containers of the power supply flanges 21a and 21b are fixed by a fixing member such as a screw. . One end of the plate-like main power supply lines 24a and 24b is fixed to the other end of the power supply flange connection side power supply lines 23a and 23b with a fixing member such as a screw. The main power supply lines 24 a and 24 b are disposed between the vicinity of the port in the vacuum vessel 11 and the vicinity of the central portion of the vacuum vessel 11. The other end portions of the main power supply lines 24 a and 24 b are fixed to one end portions of the electrode connection side power supply lines 25 a and 25 b with a fixing member such as a screw in the vicinity of the central portion in the vacuum vessel 11. The other ends of the electrode connection side power supply lines 25a and 25b are fixed to the center of the high frequency electrode 12a by a fixing member such as a screw. The main power supply lines 24a and 24b are fixed to insulating fixed bodies 26a and 26b.

このように、中心導体15a,15bは、給電フランジ21a,21b、給電フランジ接続側給電線23a,23b、主給電線24a,24b、電極接続側給電線25a,25bが、螺子等の固定部材で順次連結された構造をなしている。   As described above, the center conductors 15a and 15b include the power supply flanges 21a and 21b, the power supply flange connection side power supply lines 23a and 23b, the main power supply lines 24a and 24b, and the electrode connection side power supply lines 25a and 25b, which are fixing members such as screws. Sequentially connected structure.

本実施の形態は、真空容器11の内部において各中心導体15a,15bの周囲を、空間ギャップを介して囲んでシールドする分割可能な構造体からなる外周導体30a、30bを設けている。外周導体30a、30bは、先端部から主給電線24a,24b付近を囲む胴体部分は概略4角柱状をなしている。また、給電フランジ21a,21bの端面と給電フランジ接続側給電線23a,23bとの連結部付近は、給電フランジ21a,21b、給電フランジ接続側給電線23a,23bとの干渉を避けるために水平方向に突出した収納部40a,40bを形成している。収納部40a,40bには、給電フランジ21a,21bの端面と給電フランジ接続側給電線23a,23bとの連結部へアクセスするための開口部41a,41bが形成されている。   In the present embodiment, outer peripheral conductors 30a and 30b made of a separable structure that surrounds and shields the periphery of each of the central conductors 15a and 15b via a space gap inside the vacuum vessel 11 are provided. In the outer peripheral conductors 30a and 30b, the body portion surrounding the vicinity of the main power supply lines 24a and 24b from the front end portion has a substantially quadrangular prism shape. Further, in the vicinity of the connecting portion between the end faces of the power supply flanges 21a and 21b and the power supply flange connection side power supply lines 23a and 23b, in order to avoid interference with the power supply flanges 21a and 21b and the power supply flange connection side power supply lines 23a and 23b, The storage portions 40a and 40b projecting from each other are formed. Openings 41a and 41b are formed in the storage portions 40a and 40b for accessing the connecting portions between the end faces of the power supply flanges 21a and 21b and the power supply flange connection side power supply lines 23a and 23b.

図2は図1に示すA−A線矢視断面図である。外周導体30a、30bは、金属板が断面U字状をなすように折り曲げ加工された第1の金属構造体31と、金属板の両側を垂直に折り曲げて第1の金属構造体31の開口部を塞ぐように組みあわされた第2の金属構造体32とからなる。主給電線24a,24bは固定体26a,26bに固定されていて、該固定体26a,26bは第1の金属構造体31側に固定されている。外周導体30a、30bは、第1の金属構造体31と第2の金属構造体32とに分割可能に構成されている。第1の金属構造体31及び第2の金属構造体32は、銅、アルミニウム等の低抵抗材料で構成することができる。   2 is a cross-sectional view taken along line AA shown in FIG. The outer peripheral conductors 30a and 30b include a first metal structure 31 that is bent so that the metal plate has a U-shaped cross section, and an opening portion of the first metal structure 31 that is bent vertically on both sides of the metal plate. And a second metal structure 32 assembled so as to close the wall. The main feeders 24a and 24b are fixed to fixed bodies 26a and 26b, and the fixed bodies 26a and 26b are fixed to the first metal structure 31 side. The outer peripheral conductors 30 a and 30 b are configured to be divided into a first metal structure 31 and a second metal structure 32. The first metal structure 31 and the second metal structure 32 can be made of a low resistance material such as copper or aluminum.

中心導体15a,15bは、インピーダンスマッチングを図る必要があり、適切な導体サイズの選定、及び中心導体と外周導体間距離の確保することにより、最適なインダクタンス、キャパシタンスとする必要がある。この場合、中心導体15a,15bと外周導体30a,30bの距離は、絶縁材からなる固定体26a,26bで調節する必要がある。固定体26a,26bの材質としては、ポリテトラフルオロエチレン(PTFE)やポリアミドイミド(PAI)などの誘電体を選定するのが望ましいが、耐熱性の高いセラミックを選定する場合もある。 The center conductors 15a and 15b need to be impedance-matched, and need to have optimum inductance and capacitance by selecting an appropriate conductor size and securing a distance between the center conductor and the outer peripheral conductor. In this case, the distance between the center conductors 15a, 15b and the outer conductors 30a, 30b needs to be adjusted by the fixed bodies 26a, 26b made of an insulating material. As a material for the fixed bodies 26a and 26b, it is desirable to select a dielectric such as polytetrafluoroethylene (PTFE) or polyamideimide (PAI), but a ceramic having high heat resistance may be selected.

図3は電極接続側給電線25aの端部と高周波電極12aとの連結構造を示す図である。もう一方の電極接続側給電線25bと高周波電極12bとの連結構造も同様の構成であるので、ここでは片側のみ説明する。
電極接続側給電線25aの端部61に対して、ガイドピン63a,63bを有する角形状フランジ62を固定部材64a,64bで連結固定している。高周波電極12aの背面側に設けた角溝部65に角形状フランジ62を嵌め込むとともに、ガイドピン挿入孔を有するフランジ66で高周波電極12aを挟持した状態で、電極正面側から角形状フランジ62側面に螺合する締結部材67を締め込むことにより、高周波電極12a正面側から給電線15a(25a)と高周波電極12aを接続する構成としている。
FIG. 3 is a diagram showing a connection structure between the end of the electrode connection side power supply line 25a and the high frequency electrode 12a. Since the connection structure of the other electrode connection side power supply line 25b and the high frequency electrode 12b has the same configuration, only one side will be described here.
A rectangular flange 62 having guide pins 63a and 63b is connected and fixed to the end 61 of the electrode connection side power supply line 25a by fixing members 64a and 64b. The square flange 62 is fitted into a square groove portion 65 provided on the back side of the high frequency electrode 12a, and the high frequency electrode 12a is sandwiched by the flange 66 having a guide pin insertion hole, and the side of the square flange 62 from the front side of the electrode. By fastening the fastening member 67 to be screwed, the power supply line 15a (25a) and the high frequency electrode 12a are connected from the front side of the high frequency electrode 12a.

かかる構成により、高周波電極12a正面側から、角形状フランジ62とフランジ66にて、高周波電極12aを挟みこむ形で、電極接続側給電線25aと高周波電極12aとを接続することができる。高周波電極12a正面側から高周波電極12aと電極接続側給電線25aの接続が可能となるため、高周波電極12a背面側の電極接続側給電線25a接続スペースを節減でき、真空容器11を小型化できる。また、高周波電極12a背面側に設けた角溝部65により、角形状フランジ62の共回りを防止することにより、電極接続側給電線25aがねじりトルクにより変形することを防止できる。更に、ガイドピン63a,63bの長さ調節を行なうことにより、高周波電極12aの接続ホールから前面側への引き出しが可能となるとともに、角形状フランジ62とガイドピン挿入孔を有するフランジ66の芯合わせを容易に行なうことができる。ガイドピン63a,63bは、高周波電極12aと電極接続側給電線25aの接続完了後、プラズマ処理を行う場合には、放電集中の原因となり、成膜に影響がでる可能性もあり、取り外すことが望ましく、ねじ接続等によりガイドピンを着脱できる構成とする。   With this configuration, the electrode connection side power supply line 25a and the high frequency electrode 12a can be connected from the front side of the high frequency electrode 12a in such a manner that the high frequency electrode 12a is sandwiched between the square flange 62 and the flange 66. Since the high frequency electrode 12a and the electrode connection side power supply line 25a can be connected from the front side of the high frequency electrode 12a, the connection space of the electrode connection side power supply line 25a on the back side of the high frequency electrode 12a can be saved, and the vacuum vessel 11 can be downsized. Further, the square groove portion 65 provided on the back surface side of the high-frequency electrode 12a prevents the square flange 62 from co-rotating, thereby preventing the electrode connection side power supply line 25a from being deformed by torsion torque. Further, by adjusting the length of the guide pins 63a and 63b, the high-frequency electrode 12a can be pulled out from the connection hole to the front side, and the square flange 62 and the flange 66 having the guide pin insertion hole are aligned. Can be easily performed. The guide pins 63a and 63b may be removed when plasma processing is performed after the connection between the high-frequency electrode 12a and the electrode connection side power supply line 25a is completed, which may cause discharge concentration and affect film formation. Desirably, the guide pin can be attached and detached by screw connection or the like.

以上のように構成されたプラズマCVD装置では、真空容器11内を図示しない排気機構で或る程度の真空まで真空引きを行ない、その後に必要に応じて基板17a,17bを加熱する図示しないヒーターによって基板17a,17bの加熱を行なう。真空容器11内の脱ガスを促進する目的のために、薄膜形成前に図示しないガス導入ラインからガスを導入し、図示しない圧力制御器と図示しない製膜ガス排気ラインによって真空容器11内を一定の圧力に保持したまま真空容器11内の加熱(ベーキング)を行なう。ベーキング中に流すガスは、H等の熱伝導性が比較的良いガス、He,Ar等の不活性ガス、或いは製膜を行なう際に流す製膜ガス等を採用する。脱ガス後に、基板温度を製膜する際の基板温度に設定し、場合によっては数種類の製膜ガスを適当な流量比で混合した混合ガスを真空容器11内に流して適当な圧力で保持した後に、高周波電極12a,12bに高周波電力を供給し、高周波電極12a,12bと接地電極13a,13bとの間にプラズマを発生させて基板17a,17b上に薄膜形成を行う。 In the plasma CVD apparatus configured as described above, the inside of the vacuum vessel 11 is evacuated to a certain degree of vacuum by an exhaust mechanism (not shown), and then heated by a heater (not shown) that heats the substrates 17a and 17b as necessary. The substrates 17a and 17b are heated. For the purpose of promoting degassing in the vacuum vessel 11, gas is introduced from a gas introduction line (not shown) before forming the thin film, and the inside of the vacuum vessel 11 is fixed by a pressure controller (not shown) and a film forming gas exhaust line (not shown). The inside of the vacuum vessel 11 is heated (baked) while being maintained at the above pressure. As the gas to be flowed during baking, a gas having a relatively good thermal conductivity such as H 2 , an inert gas such as He or Ar, or a film-forming gas to be flowed when film formation is employed. After degassing, the substrate temperature is set to the substrate temperature at the time of film formation, and in some cases, a mixed gas in which several kinds of film formation gases are mixed at an appropriate flow ratio is flowed into the vacuum vessel 11 and held at an appropriate pressure. Later, high-frequency power is supplied to the high-frequency electrodes 12a and 12b, and plasma is generated between the high-frequency electrodes 12a and 12b and the ground electrodes 13a and 13b to form a thin film on the substrates 17a and 17b.

このとき、高周波電源14a,14bで発生する高周波電力がインピーダンス整合部16a,16bにて効率よく中心導体15a,15bへ入力される。各中心導体15a,15bは高周波電力を給電フランジ21a,21bから真空容器11内に取り込み、給電フランジ接続側給電線23a,23b、主給電線24a,24b、電極接続側給電線25a,25bを伝搬して高周波電極12a,12bへ伝えられる。   At this time, the high frequency power generated by the high frequency power supplies 14a and 14b is efficiently input to the center conductors 15a and 15b by the impedance matching units 16a and 16b. The central conductors 15a and 15b take in high-frequency power from the feed flanges 21a and 21b into the vacuum vessel 11, and propagate through the feed flange connection side feed lines 23a and 23b, the main feed lines 24a and 24b, and the electrode connection side feed lines 25a and 25b. Then, it is transmitted to the high frequency electrodes 12a and 12b.

中心導体15a,15bは外周導体30a、30bにより周囲が囲まれているので、中心導体15a,15bと高周波電極12a,12bとの間の電磁気的な干渉を弱めることができる。これにより、高周波電極12a,12bの高周波電位分布の均一性を保つことができ、製膜される薄膜の膜厚均一性を改善することができる。   Since the center conductors 15a and 15b are surrounded by the outer conductors 30a and 30b, the electromagnetic interference between the center conductors 15a and 15b and the high-frequency electrodes 12a and 12b can be weakened. Thereby, the uniformity of the high frequency potential distribution of the high frequency electrodes 12a and 12b can be maintained, and the film thickness uniformity of the thin film to be formed can be improved.

また、本実施の形態では外周導体30a、30bが第1の金属構造体31と第2の金属構造体32とに分割可能に構成されているので、固定体26a,26bとは分離して第2の金属構造体32だけを着脱することができる。第2の金属構造体32を取り外すことで、主給電線24a,24bを固定体26a,26b及び各給電線23a,23b、25a,25bに連結している固定部材が外部からアクセス可能に露出する。これにより、作業者は、給電構造全体を取り外すことなく、固定部材の増し締めや、固定体26a,26bの交換等のメンテナンスを容易に行うことができる。   In the present embodiment, since the outer conductors 30a and 30b can be divided into the first metal structure 31 and the second metal structure 32, the outer conductors 30a and 30b are separated from the fixed bodies 26a and 26b. Only the two metal structures 32 can be attached and detached. By removing the second metal structure 32, the fixing members connecting the main feeding lines 24a, 24b to the fixing bodies 26a, 26b and the feeding lines 23a, 23b, 25a, 25b are exposed to be accessible from the outside. . Thereby, the operator can easily perform maintenance such as retightening of the fixing member and replacement of the fixing bodies 26a and 26b without removing the entire power feeding structure.

図4は外周導体の変形例を示す図であり、図2と同様に図1に示すA−A線矢視断面に相当する図である。外周導体50a,50bは、概略4角柱状をなしており、その内の対向する2辺に沿って長尺なフラットバー51,52を対向配置している。フラットバー51,52は銅、アルミニウム等の低抵抗材料で構成している。対応配置されたフラットバー51,52の一方の側辺に対して第1の金属構造体53が配置され、フラットバー51,52の他方の側辺に対して第2の金属構造体54が配置されている。第1の金属構造体53は、フラットバー51,52の間隔よりも十分長い寸法を有し、フラットバー51,52の一方の側辺で垂直にフラットバー側へ折り曲げて断面U字形状をなすようにしている。第1の金属構造体53には固定体26a,26bが固定されている。第2の金属構造体54は、第1の金属構造体53と同一形状をなしておりフラットバー51,52の他方の側辺で垂直にフラットバー側へ折り曲げて断面U字形状をなすようにしている。第2の金属構造体54は、フラットバー51,52に対して着脱自在に取り付けられている。第1及び第2の金属構造体53,54は銅、アルミニウム等の低抵抗材料で構成している。   FIG. 4 is a view showing a modified example of the outer conductor, and is a view corresponding to the cross section taken along line AA shown in FIG. The outer peripheral conductors 50a and 50b have a substantially quadrangular prism shape, and long flat bars 51 and 52 are arranged opposite to each other along two opposing sides. The flat bars 51 and 52 are made of a low resistance material such as copper or aluminum. The first metal structure 53 is disposed on one side of the flat bars 51 and 52 correspondingly disposed, and the second metal structure 54 is disposed on the other side of the flat bars 51 and 52. Has been. The first metal structure 53 has a dimension that is sufficiently longer than the distance between the flat bars 51 and 52, and is bent vertically to one side of the flat bars 51 and 52 toward the flat bar to form a U-shaped cross section. I am doing so. Fixed bodies 26 a and 26 b are fixed to the first metal structure 53. The second metal structure 54 has the same shape as the first metal structure 53, and is bent vertically to the flat bar side at the other side of the flat bars 51 and 52 to form a U-shaped cross section. ing. The second metal structure 54 is detachably attached to the flat bars 51 and 52. The first and second metal structures 53 and 54 are made of a low resistance material such as copper or aluminum.

このような外周導体50a,50bによれば、フラットバー51,52が骨材となって給電構造全体の剛性が増すので、地絡・感電等に対する安全上の空間絶縁を確保することができる。また、インピーダンスに係るコンデンサ容量を決める主給電線24a,24bと外周導体50a,50bとの空間ギャップの変動を抑えることができ、安定した給電特性を実現することができる。   According to such outer peripheral conductors 50a and 50b, the flat bars 51 and 52 are aggregates to increase the rigidity of the entire power supply structure, so that it is possible to ensure a safe space insulation against ground faults, electric shocks, and the like. In addition, it is possible to suppress fluctuations in the spatial gap between the main power supply lines 24a and 24b and the outer conductors 50a and 50b that determine the capacitor capacity related to the impedance, thereby realizing stable power supply characteristics.

以上の説明では、真空容器11内に高周波電極及び接地電極の組が2組設置されている構造を説明したが、図5、図7に示すように高周波電極及び接地電極の組が1組の場合についても同様に適用可能である。   In the above description, the structure in which two sets of high-frequency electrodes and ground electrodes are installed in the vacuum vessel 11 has been described. However, as shown in FIGS. 5 and 7, one set of high-frequency electrodes and ground electrodes is provided. The same applies to cases.

本発明は、大面積成膜を行なう大型のプラズマCVD設備に適用可能である。   The present invention can be applied to a large-sized plasma CVD facility for performing large-area film formation.

本発明の一実施の形態に係るプラズマCVD装置の構成を示す模式図The schematic diagram which shows the structure of the plasma CVD apparatus which concerns on one embodiment of this invention 図1に示すA−A線矢視断面図AA arrow sectional view shown in FIG. 上記一実施の形態における電極接続側給電線と高周波電極との連結構造を示す図The figure which shows the connection structure of the electrode connection side electric power feeding line and high frequency electrode in the said one Embodiment 上記一実施の形態における外周導体の変形例を示す図The figure which shows the modification of the outer periphery conductor in the said one Embodiment 従来の容量結合型の平行平板プラズマCVD装置の模式図Schematic diagram of a conventional capacitively coupled parallel plate plasma CVD apparatus 真空容器内部に高周波電極及び接地電極を2組設置したプラズマ処理装置の模式図Schematic diagram of a plasma processing device with two sets of high-frequency electrodes and ground electrodes installed inside the vacuum vessel 真空容器内に放電対策を施した従来のプラズマ処理装置の模式図Schematic diagram of a conventional plasma processing equipment with discharge countermeasures in a vacuum vessel

符号の説明Explanation of symbols

10…プラズマCVD装置
11…真空容器
12a,12b…高周波電極
13a,13b…接地電極
14a,14b…高周波電源
15a,15b…中心導体
16a,16b…インピーダンス整合部
17a,17b…可撓性基板
18a,18b…接地機構
21a,21b…給電フランジ
22a,22b…連結導体板
23a,23b…給電フランジ接続側給電線
24a,24b…主給電線
25a,25b…電極接続側給電線
26a,26b…固定体
30a、30b、50a、50b、…外周導体
31、53…第1の金属構造体
32、54…第2の金属構造体
51、52…フラットバー
DESCRIPTION OF SYMBOLS 10 ... Plasma CVD apparatus 11 ... Vacuum container 12a, 12b ... High frequency electrode 13a, 13b ... Ground electrode 14a, 14b ... High frequency power supply 15a, 15b ... Center conductor 16a, 16b ... Impedance matching part 17a, 17b ... Flexible substrate 18a, 18b ... Grounding mechanism 21a, 21b ... Feeding flange 22a, 22b ... Connecting conductor plate 23a, 23b ... Feeding flange connection side feeding line 24a, 24b ... Main feeding line 25a, 25b ... Electrode connection side feeding line 26a, 26b ... Fixed body 30a 30b, 50a, 50b, outer peripheral conductors 31, 53 ... first metal structure 32, 54 ... second metal structure 51, 52 ... flat bar

Claims (3)

真空容器と、前記真空容器内に配置された第1及び第2の電極と、前記第1の電極に真空容器外から高周波電力を供給する給電機構と、前記第2の電極を基準電位に接続する機構とを備え、前記第1及び第2の電極間にガスを流した状態でプラズマを形成して製膜又はエッチングを行うプラズマ処理装置であって、
前記給電機構は、前記真空容器外から供給される高周波電力を前記第1の電極に給電する中心導体と、前記真空容器内における前記中心導体の全周を、空間ギャップを介して囲むように配置され、分解可能な複数の金属構造体からなる外周導体とを備えたことを特徴とするプラズマ処理装置。
A vacuum vessel, first and second electrodes disposed in the vacuum vessel, a power supply mechanism that supplies high-frequency power to the first electrode from outside the vacuum vessel, and the second electrode connected to a reference potential A plasma processing apparatus for forming a film or etching by forming a plasma in a state where a gas is allowed to flow between the first and second electrodes,
The power feeding mechanism is disposed so as to surround a central conductor that feeds high-frequency power supplied from outside the vacuum vessel to the first electrode and an entire circumference of the central conductor in the vacuum vessel via a space gap. And a peripheral conductor made of a plurality of decomposable metal structures.
前記中心導体は、前記複数の金属構造体で形成される空間に配置されると共に前記外周導体から絶縁された固定体に固定され、前記複数の金属構造体のうち着脱可能な所定の金属構造体を取り外した状態で前記外周導体外から前記中心導体の固定箇所にアクセス可能にしたことを特徴とする請求項1記載のプラズマ処理装置。   The center conductor is disposed in a space formed by the plurality of metal structures and is fixed to a fixed body insulated from the outer peripheral conductor, and a predetermined metal structure that is removable from the plurality of metal structures. The plasma processing apparatus according to claim 1, wherein the fixed portion of the central conductor can be accessed from outside the outer peripheral conductor in a state where the outer peripheral conductor is removed. 前記外周導体の内側に所定の剛性を有する骨材を配設することを特徴とする請求項1又は請求項2記載のプラズマ処理装置。
The plasma processing apparatus according to claim 1, wherein an aggregate having a predetermined rigidity is disposed inside the outer peripheral conductor.
JP2007259441A 2007-10-03 2007-10-03 Plasma processing equipment Expired - Fee Related JP5286733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259441A JP5286733B2 (en) 2007-10-03 2007-10-03 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259441A JP5286733B2 (en) 2007-10-03 2007-10-03 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2009088427A JP2009088427A (en) 2009-04-23
JP5286733B2 true JP5286733B2 (en) 2013-09-11

Family

ID=40661417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259441A Expired - Fee Related JP5286733B2 (en) 2007-10-03 2007-10-03 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5286733B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179623B2 (en) * 2011-04-22 2013-04-10 シャープ株式会社 Method for cleaning film forming apparatus and film forming method
JP5179624B2 (en) * 2011-04-22 2013-04-10 シャープ株式会社 Method for cleaning film forming apparatus and film forming method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058530B2 (en) * 1993-02-20 2000-07-04 東京エレクトロン株式会社 Plasma processing equipment
US5647911A (en) * 1993-12-14 1997-07-15 Sony Corporation Gas diffuser plate assembly and RF electrode
JPH10172792A (en) * 1996-12-05 1998-06-26 Tokyo Electron Ltd Plasma processing device
JP2003077848A (en) * 2001-09-06 2003-03-14 Hitachi Kokusai Electric Inc Substrate-processing apparatus
JP3948296B2 (en) * 2002-02-06 2007-07-25 松下電器産業株式会社 Plasma etching processing method and apparatus
JP4095921B2 (en) * 2003-04-01 2008-06-04 三菱重工業株式会社 Electrode connector and vacuum processing apparatus provided with the same
JP4158726B2 (en) * 2004-03-12 2008-10-01 富士電機ホールディングス株式会社 Thin film manufacturing equipment
JP4511958B2 (en) * 2005-01-25 2010-07-28 三菱重工業株式会社 Vacuum plasma processing apparatus with electrode connector
JP2006236867A (en) * 2005-02-25 2006-09-07 Ngk Insulators Ltd Plasma treatment member
JP4623422B2 (en) * 2005-03-17 2011-02-02 富士電機システムズ株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JP2009088427A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US11069510B2 (en) Substrate processing apparatus
US10373809B2 (en) Grooved backing plate for standing wave compensation
JP5631088B2 (en) Plasma processing apparatus and plasma processing method
TWI618456B (en) Plasma treatment systems and methods for uniformly distributing radiofrequency power between multiple electrodes
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
WO2016002547A1 (en) Substrate treatment device
JP4788504B2 (en) Power supply structure for plasma processing equipment
KR20070083211A (en) Plasma generating method, plasma generating apparatus, and plasma processing apparatus
KR20110066105A (en) Plasma process apparatus
JP6468521B2 (en) Inductively coupled antenna unit and plasma processing apparatus
JP5286733B2 (en) Plasma processing equipment
WO2011058608A1 (en) Plasma processing apparatus
TWI770144B (en) Plasma processing device
JP2012133899A (en) Plasma processing device
JP6996096B2 (en) Plasma processing equipment
WO2012008525A1 (en) Plasma processing device and plasma processing method
JP2008019463A (en) Thin film manufacturing apparatus
JP2006319192A (en) Electrode and plasma process unit employing it
US20170096737A1 (en) Plasma cvd apparatus
JP5686996B2 (en) Plasma processing equipment
JP6662998B2 (en) Plasma processing equipment
JP5135720B2 (en) Plasma processing equipment
JP4936129B2 (en) Plasma processing equipment
JP5523977B2 (en) Vacuum processing apparatus and plasma processing method
JP2002302772A (en) Treating apparatus with plasma

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

LAPS Cancellation because of no payment of annual fees