JP5286326B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5286326B2
JP5286326B2 JP2010120421A JP2010120421A JP5286326B2 JP 5286326 B2 JP5286326 B2 JP 5286326B2 JP 2010120421 A JP2010120421 A JP 2010120421A JP 2010120421 A JP2010120421 A JP 2010120421A JP 5286326 B2 JP5286326 B2 JP 5286326B2
Authority
JP
Japan
Prior art keywords
temperature
ultrasonic
fluid
flow velocity
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010120421A
Other languages
Japanese (ja)
Other versions
JP2011247719A (en
Inventor
英一 村上
敬章 鶴見
雅之 柳橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsuden Co Ltd
Original Assignee
Atsuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsuden Co Ltd filed Critical Atsuden Co Ltd
Priority to JP2010120421A priority Critical patent/JP5286326B2/en
Publication of JP2011247719A publication Critical patent/JP2011247719A/en
Application granted granted Critical
Publication of JP5286326B2 publication Critical patent/JP5286326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、温度補正により流量測定精度を向上させ得る超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter capable of improving flow rate measurement accuracy by temperature correction.

時間差式の超音波流量計は図5に示すように、例えば流体が矢印方向に流れるコ字型の管路1の両側に、超音波振動子である圧電素子2、3を取り付けた構造とされている。一方の圧電素子2に電圧を印加して発振させることにより、流体中に超音波ビームを伝播させることができる。他方の圧電素子3はこの超音波ビームを受信すると、その応力から圧電効果を生じ、誘起された電荷を読み取ることで、超音波ビームの受信信号を得ることができる。圧電素子2、3による超音波ビームの送信、受信を交互に行って、流体中の超音波ビームの上流から下流へ、下流から上流への伝播時間をそれぞれ検出する。   As shown in FIG. 5, the time difference type ultrasonic flowmeter has a structure in which, for example, piezoelectric elements 2 and 3 that are ultrasonic vibrators are attached to both sides of a U-shaped pipe 1 in which a fluid flows in the direction of an arrow. ing. By applying a voltage to one piezoelectric element 2 and oscillating it, an ultrasonic beam can be propagated in the fluid. When the other piezoelectric element 3 receives this ultrasonic beam, a piezoelectric effect is generated from the stress, and a received signal of the ultrasonic beam can be obtained by reading the induced charge. Transmission and reception of the ultrasonic beam by the piezoelectric elements 2 and 3 are alternately performed to detect the propagation time of the ultrasonic beam in the fluid from upstream to downstream and from downstream to upstream.

このようにして、超音波ビームを上流の圧電素子2から流体を経て下流の圧電素子3に伝播させたときの伝播時間Tdと、下流の圧電素子3から上流の圧電素子2に伝播させたときの伝播時間Tuの時間差を基に、流量を測定することは例えば特許文献1等において公知である。   In this way, when the ultrasonic beam is propagated from the upstream piezoelectric element 2 to the downstream piezoelectric element 3 via the fluid and to the downstream piezoelectric element 3, the propagation time Td is propagated from the downstream piezoelectric element 3 to the upstream piezoelectric element 2. The measurement of the flow rate based on the time difference of the propagation time Tu is known in, for example, Patent Document 1.

即ち、管路1の長さをL、流体の音速をC、管路1内の流体の流速をVとすると、伝播時間Td、Tuは次式のようになる。
Td=L/(C+V) ・・・(1)
Tu=L/(C−V) ・・・(2)
That is, if the length of the pipe line 1 is L, the sound velocity of the fluid is C, and the flow velocity of the fluid in the pipe line 1 is V, the propagation times Td and Tu are as follows.
Td = L / (C + V) (1)
Tu = L / (C−V) (2)

これらの式(1)、(2)から流速Vを消去すると、流速Vに関する式(3)が得られる。逆に、流速Vを消去することで、音速Cに関する式(4)を得ることができる。これらの式(3)、(4)は超音波ビームの伝播時間Tu、Tdを求めれば、流速V、音速Cを得ることができることを示している。
V=L(Tu−Td)/(2・Td・Tu) ・・・(3)
C=(L/2)(1/Td+1/Tu) ・・・(4)
When the flow velocity V is eliminated from these equations (1) and (2), equation (3) relating to the flow velocity V is obtained. Conversely, by eliminating the flow velocity V, the equation (4) relating to the sound velocity C can be obtained. These equations (3) and (4) indicate that the flow velocity V and the sound velocity C can be obtained by obtaining the ultrasonic beam propagation times Tu and Td.
V = L (Tu−Td) / (2 · Td · Tu) (3)
C = (L / 2) (1 / Td + 1 / Tu) (4)

超音波流量計では、式(3)を用いて流速Vを求め、これに次式(5)のように、管路1の断面積Sを乗ずることにより流体の流量Fを算出できる。
F=V・S ・・・(5)
In the ultrasonic flowmeter, the flow rate F of the fluid can be calculated by obtaining the flow velocity V using the equation (3) and multiplying this by the cross-sectional area S of the pipe line 1 as in the following equation (5).
F = V · S (5)

特開2002−162269号公報JP 2002-162269 A

超音波ビームを流体中を伝播させるために、圧電素子の駆動信号を単一パルスとしても、圧電素子の共振による共振振動が発生し、受信側の圧電素子に到達する受信信号は、図6に示すような複数サイクルの受信パルスとなるのが普通である。   In order to propagate the ultrasonic beam through the fluid, even if the drive signal of the piezoelectric element is a single pulse, the resonance signal due to the resonance of the piezoelectric element is generated, and the received signal reaching the receiving piezoelectric element is shown in FIG. Usually, the received pulse has a plurality of cycles as shown.

本来、超音波ビームの伝播時間とは、図6に示すように正確には送信側の圧電素子にパルスを印加した時間から、受信側の圧電素子による受信波形Wの最初の受信パルスの立ち上がり時間t0までのことである。しかし、ノイズ等の影響や測定技術上の問題から、この最初の立ち上がり時間t0の検出が困難なため、一般には近似的な方法として、ゼロクロス法が用いられている。   Originally, the propagation time of the ultrasonic beam is, as shown in FIG. 6, from the time when the pulse is applied to the transmitting-side piezoelectric element, to the rise time of the first received pulse of the received waveform W by the receiving-side piezoelectric element. Up to t0. However, since it is difficult to detect the first rise time t0 due to the influence of noise or the like or problems in measurement technology, the zero cross method is generally used as an approximate method.

ゼロクロス法とは、受信波形Wの電圧レベルが0Vとなる点をゼロクロス点とし、例えば特許文献1のように、パルス印加時間から何番目かの指定した受信パルスのゼロクロス点までの時間、或いは幾つかの受信パルスのゼロクロス点の平均時間を求めて超音波ビームの伝播時間としている。   In the zero cross method, a point at which the voltage level of the received waveform W becomes 0 V is defined as a zero cross point. The average time at the zero cross point of the received pulse is obtained as the propagation time of the ultrasonic beam.

時間差により流量を測定する超音波流量計は、式(3)から明らかなように、音速Cは消去されているので、流体温度が変化し音速Cが変わっても、測定原理上、音速変化の補償は行われている。   As is apparent from the equation (3), the ultrasonic flowmeter that measures the flow rate by the time difference has the sound velocity C deleted, so even if the fluid temperature changes and the sound velocity C changes, the sound velocity changes due to the measurement principle. Compensation has been made.

しかし、現実には測定中に流体の温度変化が生ずると、測定誤差が生ずることがあり、その原因はゼロクロス法による伝播時間の検出の近似法に問題がある。流体の温度が変化しても、受信波形Wの最初の受信パルスの立ち上がり時間t0は変動することはないが、それ以降の受信パルスの受信波形は変化する。例えば、図6の実線で示す超音波ビームの受信波形が、温度により点線で示すように変化し、時間軸に沿って伸縮することが発明者により確かめられた。この温度変化による波形の伸縮が生ずると、従来のゼロクロス法による検出時間が変化するため、超音波ビームの伝播時間は正しく得られない。   However, in reality, if a temperature change of the fluid occurs during the measurement, a measurement error may occur, and the cause is a problem in the approximation method for detecting the propagation time by the zero cross method. Even if the temperature of the fluid changes, the rising time t0 of the first reception pulse of the reception waveform W does not change, but the reception waveform of subsequent reception pulses changes. For example, it has been confirmed by the inventors that the received waveform of the ultrasonic beam indicated by the solid line in FIG. 6 changes as indicated by the dotted line depending on the temperature and expands and contracts along the time axis. When the waveform expands or contracts due to this temperature change, the detection time by the conventional zero cross method changes, and therefore the propagation time of the ultrasonic beam cannot be obtained correctly.

例えば実験においては、図7に示すように、1受信波形ごとにドット間隔50ns(クロック周波数20MHz)で100点の波形データを取り込む。各波形について取り込んだデータの中で、最も大きい電圧の点を100mVとし、最も小さい電圧の点を−100mVとして規格化し、0V近傍の4点(正の点2、負の点2)を最小二乗法で線形近似し、その直線と時間軸の交点を求めるべきゼロクロス点とした。   For example, in an experiment, as shown in FIG. 7, 100 points of waveform data are captured at a dot interval of 50 ns (clock frequency 20 MHz) for each received waveform. Among the data acquired for each waveform, the highest voltage point is normalized to 100 mV, the lowest voltage point is normalized to -100 mV, and four points near 0 V (positive point 2, negative point 2) are minimum two. A linear approximation was performed by multiplication, and the intersection of the straight line and the time axis was defined as the zero cross point to be obtained.

一定の流速で、15、20、25、30℃の水の超音波ビームの受信波形を各160波形ずつ、つまり圧電素子12から圧電素子13に伝播させた80個の受信波形W、圧電素子13から圧電素子12に伝播させた80個の受信波形Wを使用した。このようなゼロクロス法から求めた伝播時間Td、Tuを80波形分平均し、式(3)から流速Vを求めたところ、温度の順に0.647、0.654、0.631、0.624(m/s)となった。図8の実線はこれをグラフ図で示したものであるが、実際の流速は一定であるにも拘らず、得られた流速Vは温度の影響を十分に受けている。   The received waveform of the ultrasonic beam of water at 15, 20, 25, and 30 ° C. at a constant flow rate is 160 waveforms each, that is, 80 received waveforms W propagated from the piezoelectric element 12 to the piezoelectric element 13, the piezoelectric element 13. 80 received waveforms W propagated to the piezoelectric element 12 were used. The propagation times Td and Tu obtained from the zero cross method are averaged for 80 waveforms, and the flow velocity V is obtained from the equation (3). As a result, the temperature is 0.647, 0.654, 0.631, 0.624 in order of temperature. (M / s). The solid line in FIG. 8 shows this graphically, but the obtained flow velocity V is sufficiently affected by the temperature even though the actual flow velocity is constant.

一方、図8の点線は受信波形Wから推測して立ち上がり時間t0を求め、この立ち上がり時間t0を基に流速Vを算出したものであり、この場合は流速Vは温度の順に0.647、0.650、0.650、0.649(m/s)となり、温度に殆ど影響されていないことが明らかであった。   On the other hand, the dotted line in FIG. 8 is obtained by estimating the rising time t0 from the received waveform W and calculating the flow velocity V based on the rising time t0. In this case, the flow velocity V is 0.647, 0 in the order of temperature. .650, 0.650, and 0.649 (m / s), which were clearly not influenced by temperature.

ゼロクロス法以外にも伝播時間を検出するために、例えば受信波形Wを用いた相関法が知られているが、同様に温度による影響は避けられない。   In order to detect the propagation time other than the zero-cross method, for example, a correlation method using the received waveform W is known. However, the influence of temperature is unavoidable as well.

本発明の目的は、上述の課題を解決し、温度センサを用いることなく、温度補正を行い流量を精度良く測定し得る超音波流量計を提供することにある。   An object of the present invention is to solve the above-mentioned problems and to provide an ultrasonic flowmeter capable of accurately measuring a flow rate by performing temperature correction without using a temperature sensor.

上記目的を達成するための本発明に係る超音波流量計は、流体が流れる管体に距離を隔てて一対の超音波送受信素子を配置し、これらの超音波送受信素子間で前記管体中の流体に対し超音波ビームをそれぞれ送信、受信し、得られた受信波形を基に前記超音波ビームの上流から下流へ、下流から上流への伝播時間をそれぞれ検出する伝播時間検出手段と、超音波ビームの受信波形の前半の強制振動部分と後半と自由振動部分のうち、前記後半の自由振動部分の受信パルスの周期を基に流体の温度を算出する温度算出手段と、前記伝播時間検出手段で得られた前記2つの伝播時間から流体の流速を算出する流速算出手段と、該流速算出手段により得られた流速から流体の流量を算出する流量算出手段と、前記流速又は前記流量を前記温度算出手段で得られた温度により補正する温度補正手段とを有することを特徴とする。   In order to achieve the above object, an ultrasonic flowmeter according to the present invention includes a pair of ultrasonic transmission / reception elements arranged at a distance from a tubular body through which a fluid flows, and the ultrasonic transmission / reception elements in the tubular body between these ultrasonic transmission / reception elements. A transmission time detecting means for transmitting and receiving an ultrasonic beam to the fluid, and detecting a propagation time from upstream to downstream and from downstream to upstream of the ultrasonic beam based on the received waveform obtained; and an ultrasonic wave Among the forced vibration part, the latter half, and the free vibration part of the first half of the received waveform of the beam, the temperature calculation means for calculating the temperature of the fluid based on the period of the received pulse of the latter free vibration part, and the propagation time detection means A flow velocity calculating means for calculating a flow velocity of the fluid from the obtained two propagation times; a flow rate calculating means for calculating a flow rate of the fluid from the flow velocity obtained by the flow velocity calculating means; and calculating the temperature of the flow velocity or the flow rate. hand And having a temperature correction means for correcting the obtained temperature.

本発明に係る超音波流量計によれば、たとえゼロクロス法により伝播時間を検出しても、温度補正がなされ測定精度の良好な流量を求めることができる。   According to the ultrasonic flowmeter of the present invention, even if the propagation time is detected by the zero cross method, temperature correction is performed and a flow rate with good measurement accuracy can be obtained.

実施例の超音波流量計のブロック回路構成図である。It is a block circuit block diagram of the ultrasonic flowmeter of an Example. 超音波ビームの発信及び受信波形図である。It is a transmission and reception waveform diagram of an ultrasonic beam. 自由振動部分の平均周期を求める方法の説明図である。It is explanatory drawing of the method of calculating | requiring the average period of a free vibration part. 自由振動部分における温度と平均周期のグラフ図である。It is a graph of the temperature and average period in a free vibration part. 超音波流量計の構成図である。It is a block diagram of an ultrasonic flowmeter. 超音波ビームの受信波形図である。It is a received waveform figure of an ultrasonic beam. ゼロクロス法による伝播時間の求め方の説明図である。It is explanatory drawing of how to obtain | require propagation time by the zero cross method. ゼロクロス法による時間と最初の立ち上がり点の時間t0による温度に対する流速の関係のグラフ図である。It is a graph of the relationship of the flow velocity with respect to the temperature by the time by the zero cross method and the time t0 of the first rising point.

本発明を図1〜図4に図示の実施例に基づいて詳細に説明する。
図1は実施例の超音波流量計のブロック回路構成図である。例えば、合成樹脂製の円管から成る管体11に対して、上流及び下流の2個所の所定位置に、超音波送受信素子として超音波ビームを送信、受信するための圧電素子12、13が
固定されている。圧電素子12、13は管体11と一体に射出成型された合成樹脂製の取付ベース14、15に固定されている。
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 is a block circuit configuration diagram of the ultrasonic flowmeter of the embodiment. For example, piezoelectric elements 12 and 13 for transmitting and receiving ultrasonic beams as ultrasonic transmission / reception elements are fixed at two predetermined positions upstream and downstream of a tubular body 11 made of a synthetic resin circular pipe. Has been. The piezoelectric elements 12 and 13 are fixed to synthetic resin mounting bases 14 and 15 which are integrally molded with the tube body 11.

圧電素子12、13には送受信切換スイッチ16を介して、送信部17、受信部18がそれぞれ択一的に接続されている。送信部17、受信部18は制御演算部19に接続され、更に制御演算部19にはメモリ部20、表示部21が接続されている。制御演算部19は例えばCPUであり、送受信切換スイッチ16、送信部17、受信部18、メモリ部20、表示部21を制御すると共に、内蔵のメモリに記憶したプログラムに従って所定の演算を行う。   A transmission unit 17 and a reception unit 18 are alternatively connected to the piezoelectric elements 12 and 13 via a transmission / reception selector switch 16. The transmission unit 17 and the reception unit 18 are connected to a control calculation unit 19, and a memory unit 20 and a display unit 21 are further connected to the control calculation unit 19. The control calculation unit 19 is, for example, a CPU, and controls the transmission / reception changeover switch 16, the transmission unit 17, the reception unit 18, the memory unit 20, and the display unit 21, and performs a predetermined calculation according to a program stored in a built-in memory.

流量Vの測定に際しては、制御演算部19の指令で送受信切換スイッチ16により送信部17に圧電素子12を切換え、受信部18を圧電素子13に切換える。送信部17から圧電素子12に駆動用のパルス電圧を加え、圧電素子12から発生した超音波ビームを流体中に伝達する。超音波ビームは流体中を伝播し、図2に示すように圧電素子13において超音波ビームの受信波形Wが得られ、この受信波形Wは受信部18、制御演算部19を経てメモリ部20に記憶される。制御演算部19はメモリ部20に記憶した受信波形Wから例えばゼロクロス法により超音波ビームの伝播時間Tdを検出する。   When the flow rate V is measured, the piezoelectric element 12 is switched to the transmission unit 17 and the reception unit 18 is switched to the piezoelectric element 13 by the transmission / reception changeover switch 16 according to a command from the control calculation unit 19. A pulse voltage for driving is applied from the transmitter 17 to the piezoelectric element 12, and the ultrasonic beam generated from the piezoelectric element 12 is transmitted into the fluid. The ultrasonic beam propagates in the fluid, and a received waveform W of the ultrasonic beam is obtained in the piezoelectric element 13 as shown in FIG. 2, and this received waveform W passes through the receiving unit 18 and the control calculation unit 19 to the memory unit 20. Remembered. The control calculation unit 19 detects the propagation time Td of the ultrasonic beam from the received waveform W stored in the memory unit 20 by, for example, the zero cross method.

次に、送受信切換スイッチ16を切換えて、圧電素子13から超音波ビームを送信し、圧電素子12で得られた受信波形Wから同様にして伝播速度Tuを検出する。本実施例においては、これらの伝播速度Td、Tuを基に、前述の式(3)により流速Vを求める。   Next, the transmission / reception selector switch 16 is switched to transmit an ultrasonic beam from the piezoelectric element 13, and the propagation velocity Tu is detected in the same manner from the received waveform W obtained by the piezoelectric element 12. In the present embodiment, the flow velocity V is obtained by the above-described equation (3) based on these propagation velocities Td and Tu.

復元力のあるばねモデルとして運動方程式を解くと、得られた変位は圧電素子による超音波ビームの受信波形Wと同様と考えられる。図2に示す受信波形Wのうち、前半の4周期は入力パルス由来の力による強制振動部分Waで、後半は外力が働かない周波数の復元力による自由振動部分Wbである。   When the equation of motion is solved as a spring model having a restoring force, the obtained displacement is considered to be the same as the received waveform W of the ultrasonic beam by the piezoelectric element. In the received waveform W shown in FIG. 2, the first four periods are the forced vibration portions Wa due to the force derived from the input pulse, and the second half are the free vibration portions Wb due to the restoring force of the frequency at which no external force works.

受信波形Wの前半の強制振動部分Waの周波数は、入力された超音波ビームの共振周波数に支配されているため温度依存性が比較的少ない。一方、5周期目以降は自由振動部分Wbであり、その共振周波数は弾性スティフネスの影響を受けるため温度変化によって変化する。そこで本実施例においては、温度情報を後半の自由振動部分Wbから求める。   The frequency of the forced vibration portion Wa in the first half of the received waveform W is governed by the resonance frequency of the input ultrasonic beam, and therefore has a relatively low temperature dependency. On the other hand, the fifth and subsequent cycles are free vibration portions Wb, and the resonance frequency thereof is affected by the elastic stiffness, and therefore changes with temperature. Therefore, in the present embodiment, the temperature information is obtained from the latter free vibration portion Wb.

超音波ビームの受信波形Wの自由振動部分Wbは、流体の温度変化の影響を受け、例えば温度が上昇すると共振周波数が下がるため、自由振動部分Wbの周期が長くなる。制御演算部19によってこの自由振動部分Wbの周波数を算出し、その変化から流体の温度情報を得ることができる。   The free vibration portion Wb of the received waveform W of the ultrasonic beam is affected by the temperature change of the fluid. For example, when the temperature rises, the resonance frequency decreases, so the period of the free vibration portion Wb becomes longer. The frequency of the free vibration part Wb can be calculated by the control calculation unit 19, and the temperature information of the fluid can be obtained from the change.

メタノールを水で希釈して作製した流量0、5、10、15、20%の水溶液について、温度を15、20、25、30℃と変化させ、自由振動部分Wbの平均周期を求めたところ、表1のデータが得られた。   For an aqueous solution with a flow rate of 0, 5, 10, 15, 20% prepared by diluting methanol with water, the temperature was changed to 15, 20, 25, 30 ° C., and the average period of the free vibration part Wb was determined. The data in Table 1 was obtained.

表1 自由振動部分の平均周期(ns)
0% 5% 10% 15% 20%
15℃ 472.9 472.9 472.9 472.9 473.0
20℃ 473.6 473.6 473.6 473.6 473.5
25℃ 474.2 474.3 474.3 474.3 474.2
30℃ 474.8 474.7 474.7 474.8 474.8
Table 1 Average period of free vibration part (ns)
0% 5% 10% 15% 20%
15 ° C 472.9 472.9 472.9 472.9 473.0
20 ° C 473.6 473.6 473.6 473.6 473.5
25 ° C 474.2 474.3 474.3 474.3 474.2
30 ° C 474.8 474.7 474.7 474.8 474.8

表1は所定の流量、温度の水溶液に関し、図3に示すように自由振動部分Wbの11番目〜19番目までのゼロクロス点から求めた振動の平均周期を示している。これを図4に示すと、何れの水溶液の濃度においても平均周期は温度に対しほぼ一定値であり、自由振動部分Wbの平均周期は濃度によらず、温度によって定まるパラメータであることが分かる。   Table 1 shows the average period of vibration obtained from the eleventh to nineteenth zero cross points of the free vibration portion Wb as shown in FIG. 3 for the aqueous solution having a predetermined flow rate and temperature. As shown in FIG. 4, it can be seen that the average period is a substantially constant value with respect to the temperature at any concentration of the aqueous solution, and the average period of the free vibration portion Wb is a parameter determined by the temperature regardless of the concentration.

このように、超音波ビームの自由振動部分Wbの平均周期は、温度変化のみに依存することが実験により確認できた。従って、自由振動部分Wbの平均周期が得られれば、図4から温度を求めることができる。   Thus, it has been confirmed by experiments that the average period of the free vibration portion Wb of the ultrasonic beam depends only on the temperature change. Therefore, if the average period of the free vibration portion Wb is obtained, the temperature can be obtained from FIG.

自由振動部分Wbの平均周期を得るためには、制御演算部19は自由振動部分Wbのゼロクロス点を適当に2つ選択し、その差から求めればよい。しかし本実施例では、約2MHzの受信波形Wに対し50nsの間隔で波形を取り込んでいるため、単純に差を求めると分散が大きく、明確な温度依存性が得られない。   In order to obtain the average period of the free vibration portion Wb, the control calculation unit 19 may appropriately select two zero cross points of the free vibration portion Wb and obtain the difference from the two. However, in this embodiment, since the waveform is captured at an interval of 50 ns with respect to the received waveform W of about 2 MHz, if the difference is simply obtained, the dispersion is large and a clear temperature dependency cannot be obtained.

そこで、本実施例では図3に示すように、各受信パルスのゼロクロス点を番号順にプロットし、自由振動部分Wbの平均周期を求めている。この方法はゼロクロス点まで時間をプロットしているので、その直線の傾きが、用いたゼロクロス点に関する平均周期となっており、直線の傾きが大きいほど温度が高くなっている。   Therefore, in this embodiment, as shown in FIG. 3, the zero-cross points of the received pulses are plotted in numerical order to obtain the average period of the free vibration portion Wb. Since this method plots the time to the zero cross point, the slope of the straight line is an average period with respect to the used zero cross point, and the temperature increases as the slope of the straight line increases.

このように、平均周期から流体の温度を求め、受信波形Wから求めた流速Vを補正し、正確な流量を求めることができる。流量Fの温度補正の演算については、数多くのデータから温度に対する補正テーブルを作成し、この補正テーブルを基に補正を行えばよい。なお、この補正は流速Vに対し、又は流量に対して行っても何れでもよい。   In this way, the fluid temperature is obtained from the average period, the flow velocity V obtained from the received waveform W is corrected, and an accurate flow rate can be obtained. For the calculation of the temperature correction of the flow rate F, a correction table for the temperature may be created from a large number of data, and correction may be performed based on this correction table. This correction may be performed on the flow velocity V or the flow rate.

11 管体
12、13 圧電素子
16 送受信切換スイッチ
17 送信部
18 受信部
19 制御演算部
20 メモリ部
21 表示部
DESCRIPTION OF SYMBOLS 11 Tube 12, 13 Piezoelectric element 16 Transmission / reception changeover switch 17 Transmission part 18 Reception part 19 Control operation part 20 Memory part 21 Display part

Claims (3)

流体が流れる管体に距離を隔てて一対の超音波送受信素子を配置し、これらの超音波送受信素子間で前記管体中の流体に対し超音波ビームをそれぞれ送信、受信し、得られた受信波形を基に前記超音波ビームの上流から下流へ、下流から上流への伝播時間をそれぞれ検出する伝播時間検出手段と、超音波ビームの受信波形の前半の強制振動部分と後半と自由振動部分のうち、前記後半の自由振動部分の受信パルスの周期を基に流体の温度を算出する温度算出手段と、前記伝播時間検出手段で得られた前記2つの伝播時間から流体の流速を算出する流速算出手段と、該流速算出手段により得られた流速から流体の流量を算出する流量算出手段と、前記流速又は前記流量を前記温度算出手段で得られた温度により補正する温度補正手段とを有することを特徴とする超音波流量計。   A pair of ultrasonic transmission / reception elements are arranged at a distance from the pipe body through which the fluid flows, and an ultrasonic beam is transmitted and received between the ultrasonic transmission / reception elements to the fluid in the pipe body. Propagation time detecting means for detecting the propagation time from the upstream to the downstream of the ultrasonic beam based on the waveform, and from the downstream to the upstream, respectively, the forced vibration part of the first half of the received waveform of the ultrasonic beam, the latter half of the free vibration part Among them, a temperature calculation means for calculating the temperature of the fluid based on the period of the received pulse of the latter free vibration part, and a flow velocity calculation for calculating the flow speed of the fluid from the two propagation times obtained by the propagation time detection means Means, flow rate calculation means for calculating the flow rate of the fluid from the flow velocity obtained by the flow velocity calculation means, and temperature correction means for correcting the flow velocity or the flow rate by the temperature obtained by the temperature calculation means. Ultrasonic flow meter, wherein the door. 前記伝播時間検出手段は前記受信波形を基にゼロクロス法により検出することを特徴とする請求項1に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the propagation time detecting means detects by a zero cross method based on the received waveform. 前記伝播時間検出手段は前記受信波形を基に相関法により検出することを特徴とする請求項1又は2に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the propagation time detection means detects the correlation based on the received waveform.
JP2010120421A 2010-05-26 2010-05-26 Ultrasonic flow meter Active JP5286326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120421A JP5286326B2 (en) 2010-05-26 2010-05-26 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120421A JP5286326B2 (en) 2010-05-26 2010-05-26 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2011247719A JP2011247719A (en) 2011-12-08
JP5286326B2 true JP5286326B2 (en) 2013-09-11

Family

ID=45413160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120421A Active JP5286326B2 (en) 2010-05-26 2010-05-26 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5286326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874514B2 (en) * 2012-04-26 2016-03-02 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242015A (en) * 1985-08-19 1987-02-24 Fuji Electric Co Ltd Temperature correcting method for ultrasonic flow meter
JP3590900B2 (en) * 1997-02-26 2004-11-17 トキコテクノ株式会社 Ultrasonic flow meter
JP3616324B2 (en) * 2000-11-27 2005-02-02 東京計装株式会社 Ultrasonic flow meter by propagation time difference method
JP4822731B2 (en) * 2005-04-05 2011-11-24 リコーエレメックス株式会社 Ultrasonic flow meter

Also Published As

Publication number Publication date
JP2011247719A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5906388B2 (en) Flow measuring device
WO2011083766A1 (en) Ultrasonic flowmeter
JP6111423B2 (en) Flow measuring device
JP2014092467A (en) Flow rate measurement device
JPWO2006040996A1 (en) Ultrasonic flow meter
WO2011055532A1 (en) Ultrasonic flowmeter
JP2014224684A (en) Flow rate measuring device
WO2014148081A1 (en) Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program
JP2007187506A (en) Ultrasonic flowmeter
JP5372831B2 (en) Ultrasonic densitometer
JP5286326B2 (en) Ultrasonic flow meter
JP5141613B2 (en) Ultrasonic flow meter
JP2018136276A (en) Ultrasonic flowmeter
JP5346870B2 (en) Ultrasonic flow meter
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP3624743B2 (en) Ultrasonic flow meter
JP4661714B2 (en) Ultrasonic anemometer
JP5990770B2 (en) Ultrasonic measuring device
JP2019028040A (en) Ultrasonic flowmeter
JP2007064988A (en) Flowmeter
JP4858220B2 (en) Ultrasonic current meter
JP2007232659A (en) Ultrasonic flowmeter
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP5092413B2 (en) Flow velocity or flow rate measuring device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130408

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250