JP5285873B2 - Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element - Google Patents

Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element Download PDF

Info

Publication number
JP5285873B2
JP5285873B2 JP2007158836A JP2007158836A JP5285873B2 JP 5285873 B2 JP5285873 B2 JP 5285873B2 JP 2007158836 A JP2007158836 A JP 2007158836A JP 2007158836 A JP2007158836 A JP 2007158836A JP 5285873 B2 JP5285873 B2 JP 5285873B2
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
conversion element
squarylium
sensitizing dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007158836A
Other languages
Japanese (ja)
Other versions
JP2008311127A (en
Inventor
一正 船曳
正樹 松居
司 吉田
淳弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University
Sekisui Jushi Corp
Original Assignee
Gifu University
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, Sekisui Jushi Corp filed Critical Gifu University
Priority to JP2007158836A priority Critical patent/JP5285873B2/en
Publication of JP2008311127A publication Critical patent/JP2008311127A/en
Application granted granted Critical
Publication of JP5285873B2 publication Critical patent/JP5285873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型光電変換素子に用いられる増感色素、該増感色素が用いられた光電変換素子、ならびに、該光電変換素子が用いられた太陽電池に関する。   The present invention relates to a sensitizing dye used for a dye-sensitized photoelectric conversion element, a photoelectric conversion element using the sensitizing dye, and a solar cell using the photoelectric conversion element.

従来、環境に優しく資源枯渇のおそれもない発電方法として、太陽光などの光エネルギーを電気エネルギーに変換させる光電変換素子が用いられた太陽電池が広く用いられるようになってきている。このような、太陽電池としては、従来、シリコン単結晶やアモルファスシリコンなどを用いたものが知られているが、近年、このシリコン製太陽電池よりも低コストで製造可能な色素増感型太陽電池が注目されるようになってきている。   2. Description of the Related Art Conventionally, solar cells using a photoelectric conversion element that converts light energy such as sunlight into electrical energy have been widely used as a power generation method that is environmentally friendly and does not cause resource depletion. As such a solar cell, those using a silicon single crystal, amorphous silicon, or the like are conventionally known, but in recent years, a dye-sensitized solar cell that can be manufactured at a lower cost than the silicon solar cell. Is getting attention.

このような太陽電池に用いられる光電変換素子には光電変換特性に優れたものが求められており、色素増感型太陽電池の光電変換素子にも光電変換特性に優れたものが求められている。例えば、この色素増感型太陽電池の光電変換素子は、従来、焼成された多孔質酸化チタン半導体にルテニウム系色素を吸着させた光電極層が用いられたりしており、光電変換特性を高めるべく光電極層について種々の材料が検討されたりしている。この光電極層については、特許文献1には、カソード電析により析出させた酸化亜鉛に増感色素を吸着させたものを用いることで光電変換特性に優れたものとし得ることが記載されている。   A photoelectric conversion element used for such a solar cell is required to have excellent photoelectric conversion characteristics, and a photoelectric conversion element for a dye-sensitized solar cell is also required to have excellent photoelectric conversion characteristics. . For example, in the photoelectric conversion element of this dye-sensitized solar cell, a photoelectrode layer in which a ruthenium-based dye is adsorbed on a fired porous titanium oxide semiconductor has been conventionally used to improve photoelectric conversion characteristics. Various materials have been studied for the photoelectrode layer. Regarding this photoelectrode layer, Patent Document 1 describes that it is possible to achieve excellent photoelectric conversion characteristics by using a sensitizing dye adsorbed on zinc oxide deposited by cathode electrodeposition. .

ところで、太陽電池は、種々の電気製品に用いられており、しかも、この電気製品に用いられる太陽電池は、受光を行うために電気製品の表面に配されている。そのため、太陽電池自体の美観を高めることも求められており、増感色素にも、種々の色調のものが求められている。
しかし、従来の増感色素は、主として赤系統の色調を呈しており、例えば、青色系色素であるスクアリリウム系色素を用いた検討(特許文献2及び3参照)が行われたりしているものの、このスクアリリウム系色素を増感色素として用いたもの(「スクアリリウム系増感色素」ともいう)は、光電変換素子の光電変換特性を十分向上させることが困難で、赤色系統の色素などで得られている光電変換特性値に比べるといまだ不十分なものとなっている。
By the way, solar cells are used in various electric products, and the solar cells used in the electric products are arranged on the surface of the electric products in order to receive light. Therefore, it is also required to enhance the beauty of the solar cell itself, and sensitizing dyes are also required to have various colors.
However, the conventional sensitizing dye mainly exhibits a red color tone, for example, although studies using a squarylium dye that is a blue dye (see Patent Documents 2 and 3) have been performed, This squarylium dye used as a sensitizing dye (also referred to as “squarylium sensitizing dye”) is difficult to sufficiently improve the photoelectric conversion characteristics of the photoelectric conversion element, and is obtained with a red dye or the like. It is still insufficient compared with the photoelectric conversion characteristic value.

すなわち、従来のスクアリリウム系増感色素では、光電変換特性を十分向上させることが困難であるという問題を有している。   That is, the conventional squarylium-based sensitizing dye has a problem that it is difficult to sufficiently improve the photoelectric conversion characteristics.

特開2004−6235号公報JP 2004-6235 A 特開2003−109676号公報JP 2003-109676 A 特開2004−319309号公報JP 2004-319309 A

本発明は、光電変換特性を向上させ得るスクアリリウム系増感色素の提供を課題としている。   An object of the present invention is to provide a squarylium-based sensitizing dye that can improve photoelectric conversion characteristics.

本発明者らは、スクアリリウム系増感色素について鋭意検討を実施した結果、特定の構造を有するスクアリリウム系増感色素が従来のスクアリリウム系増感色素に比べて光電変換特性の向上に有効であることを見出し、本発明の完成に到ったのである。
すなわち、本発明は、前記課題を解決すべくなされたもので、増感色素にかかる発明は、色素増感型光電変換素子に用いられ、下記一般式()で表される構造を有していることを特徴としている。
As a result of intensive studies on the squarylium sensitizing dye, the present inventors have found that the squarylium sensitizing dye having a specific structure is more effective in improving the photoelectric conversion characteristics than the conventional squarylium sensitizing dye. As a result, the present invention has been completed.
That is, the present invention has been made to solve the above problems, and the invention relating to a sensitizing dye is used for a dye-sensitized photoelectric conversion element, and has a structure represented by the following general formula ( 2 ). It is characterized by having.

Figure 0005285873
Figure 0005285873

(なお、R(In addition, R 21twenty one 、R, R 22twenty two は、同じ炭素数あるいは異なる炭素数を有する、アルキル基、芳香族基、または、アルキル基置換芳香族基のいずれかがそれぞれ独立しているか、RAre each independently an alkyl group, an aromatic group, or an alkyl group-substituted aromatic group having the same or different carbon number, or R 21twenty one 、R, R 22twenty two が互いに結合して脂環族構造を形成しているかのいずれかであり、RAre bonded to each other to form an alicyclic structure, and R 21twenty one 、R, R 22twenty two の合計炭素数は、2〜25である。XThe total number of carbon atoms is 2-25. X 22 、Y, Y 22 は、いずれも炭素原子を表しており、AEach represents a carbon atom, and A 22 は、置換もしくは非置換の炭素数4〜10のシクロアルカンか、または、置換もしくは非置換のベンゼン環かのいずれかを、XRepresents either a substituted or unsubstituted cycloalkane having 4 to 10 carbon atoms or a substituted or unsubstituted benzene ring; 22 、Y, Y 22 とともに形成するのに必要な原子群を表している。nは、1〜3の整数を表す。)It represents the atomic group necessary to form together. n represents an integer of 1 to 3. )

本発明によれば、前記一般式()に示されたようなスクアリリウム系色素を増感色素として用いることから、色素増感型光電変換素子の光電変換特性を向上させ得る。
しかも、本発明によれば、増感色素にスクアリリウム系色素を用いることから、特に青色系の色調を有する色素増感型太陽電池を容易に製造させ得る。
According to the present invention, since the squarylium dye as shown in the general formula ( 2 ) is used as a sensitizing dye, the photoelectric conversion characteristics of the dye-sensitized photoelectric conversion element can be improved.
Moreover, according to the present invention, since the squarylium dye is used as the sensitizing dye, a dye-sensitized solar cell having a blue color tone can be easily manufactured.

以下に、本発明の好ましい実施の形態について光電変換素子を例に図1を参照しつつ説明する。   A preferred embodiment of the present invention will be described below with reference to FIG. 1 by taking a photoelectric conversion element as an example.

本実施形態における色素増感型光電変換素子10(以下、単に「光電変換素子」ともいう)には、透明電極により形成された第一の導電性皮膜3を備えた透明板状に形成された電極基材2と、第二の導電性皮膜5を備えた対向基板6とが用いられ、これら電極基材2と対向基板6とは、互いに導電性皮膜を対向させて配されている。また、この対向する導電性皮膜の間には、光電極層1と電解質層4とが形成されており、この光電極層1は一面側を前記第一の導電性皮膜3に接するように配され、他面側を前記電解質層4に接するように配されている。また、前記電解質層4は、一面側を前述のように光電極層1に接するように配され、他面側を前記第二の導電性皮膜5に接するように配されている。
この色素増感型の光電変換素子10は、主に太陽Sからの光が電極基材2を透過して光電極層1に照射され、光電極層が励起されて電子の移動が起こることで起電力を発生させている。
The dye-sensitized photoelectric conversion element 10 (hereinafter also simply referred to as “photoelectric conversion element”) in the present embodiment was formed in a transparent plate shape having the first conductive film 3 formed by a transparent electrode. An electrode base 2 and a counter substrate 6 provided with a second conductive film 5 are used. The electrode base 2 and the counter substrate 6 are arranged with their conductive films facing each other. In addition, a photoelectrode layer 1 and an electrolyte layer 4 are formed between the opposing conductive films, and the photoelectrode layer 1 is arranged so that one side is in contact with the first conductive film 3. The other side is in contact with the electrolyte layer 4. The electrolyte layer 4 is arranged so that one surface side is in contact with the photoelectrode layer 1 as described above and the other surface side is in contact with the second conductive film 5.
In the dye-sensitized photoelectric conversion element 10, light from the sun S is transmitted through the electrode substrate 2 and irradiated to the photoelectrode layer 1, and the photoelectrode layer is excited to cause movement of electrons. An electromotive force is generated.

前記電極基材2の基体7は、透明性の高いガラス、強化ガラスや、ポリカーボネート樹脂、アクリル樹脂、ポリアリレート樹脂、ポリメタクリレート、ポリ塩化ビニルなどの透明性の高い合成樹脂などを用いて形成することができる。   The base 7 of the electrode substrate 2 is formed using highly transparent glass, tempered glass, or highly transparent synthetic resin such as polycarbonate resin, acrylic resin, polyarylate resin, polymethacrylate, or polyvinyl chloride. be able to.

前記電極基材2の第一の導電性皮膜3を形成する透明電極に用いられる材料としては、スズドープ酸化インジウム(ITO)、フッソドープ酸化スズ(FTO)、金、白金、などやこれらを複数組み合わせたものを真空蒸着法、スパッタ蒸着法、イオンプレーティング法、化学気相成長(CVD)法、泳動電着法などの方法により前記透明板の表面に直接形成させたり、あるいは、これらが形成されたフィルムを前記基体7に貼着させたりすることにより透明板の表面に第一の導電性皮膜3を形成させた電極基材2とすることができる。   As a material used for the transparent electrode for forming the first conductive film 3 of the electrode substrate 2, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold, platinum, and the like, or a combination thereof are used. The material is directly formed on the surface of the transparent plate by a vacuum deposition method, a sputter deposition method, an ion plating method, a chemical vapor deposition (CVD) method, an electrophoretic electrodeposition method, or the like. By sticking a film to the base body 7, the electrode substrate 2 in which the first conductive film 3 is formed on the surface of the transparent plate can be obtained.

前記対向基板6の基体8は、例えば、透明性が要求される場合などは、前記電極基材2の透明板と同じ材料を用いて形成することができるが、この基体8が電解質層4の電解液などに直接接触するよう配される場合には、電解液に対する耐久性を高め得る点において、ポリエステル樹脂やポリオレフィン樹脂を用いて形成することが好ましい。
このポリエステル樹脂としては、ポリエチレンテレフタレート樹脂やポリエチレンナフタレート樹脂などを例示することができ、ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂などを例示することができる。
The base 8 of the counter substrate 6 can be formed using the same material as the transparent plate of the electrode base 2 when, for example, transparency is required. When arranged so as to be in direct contact with the electrolytic solution, it is preferable to use a polyester resin or a polyolefin resin in that the durability against the electrolytic solution can be improved.
Examples of the polyester resin include polyethylene terephthalate resin and polyethylene naphthalate resin, and examples of the polyolefin resin include polyethylene resin, polypropylene resin, and cyclic polyolefin resin.

前記対向電極6の第二の導電性皮膜5を形成する電極材料については、例えば、透明性が必要とされる場合などは、前記第一の導電性皮膜3を形成する透明電極と同様の材料を用いて同様に形成させることができる。また、透明性などを必要としない場合には、カーボンや、導電性ポリマー、一般的な金属などを用いて形成させることができる。   For the electrode material forming the second conductive film 5 of the counter electrode 6, for example, when transparency is required, the same material as the transparent electrode forming the first conductive film 3 is used. Can be formed in the same manner. Moreover, when transparency etc. are not required, it can form using carbon, a conductive polymer, a general metal, etc.

前記光電極層1は、例えば、Fe23、Cu2O、In23、WO3、Fe2TiO3、PbO、V25、FeTiO3、Bi23、Nb23、SrTiO3、ZnO、BaTiO3、CaTiO3、KTaO3、SnO2、ZrO2などの半導体材料を用いて形成された半導体層に増感色素を担持させることで形成させることができる。
なお、前記半導体層としては、コスト、作業性ならびに半導体層の透明性を高め、薄層化させることが容易である点においてZnO(酸化亜鉛)を用いることが好ましい。
The photoelectrode layer 1 is made of, for example, Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , Fe 2 TiO 3 , PbO, V 2 O 5 , FeTiO 3 , Bi 2 O 3 , Nb 2 O 3. , SrTiO 3 , ZnO, BaTiO 3 , CaTiO 3 , KTaO 3 , SnO 2 , ZrO 2, etc., can be formed by supporting a sensitizing dye on a semiconductor layer.
As the semiconductor layer, it is preferable to use ZnO (zinc oxide) in terms of increasing cost, workability, and transparency of the semiconductor layer and facilitating thinning.

前記増感色素としては、下記一般式(1)で表される構造を有しているものを用いる。   As the sensitizing dye, one having a structure represented by the following general formula (1) is used.

Figure 0005285873
Figure 0005285873

(なお、R11、R12は、同じ炭素数あるいは異なる炭素数を有する、アルキル基、芳香族基、または、アルキル基置換芳香族基のいずれかがそれぞれ独立しているか、R11、R12が互いに結合して脂環族構造を形成しているかのいずれかであり、R11、R12の合計炭素数は、2〜25である。X1、Y1は、いずれも炭素原子を表しており、A1は、X1、Y1とともに形成される含窒素ヘテロ環を含んでなる単環構造あるいは多環構造を構成する原子群を表している。nは、1〜3の整数を表す。) (Note that R 11 and R 12 are either an alkyl group, an aromatic group, or an alkyl group-substituted aromatic group having the same or different carbon number, or R 11 , R 12 Are bonded to each other to form an alicyclic structure, and the total carbon number of R 11 and R 12 is 2 to 25. X 1 and Y 1 each represent a carbon atom. A 1 represents an atomic group constituting a monocyclic structure or a polycyclic structure including a nitrogen-containing heterocycle formed together with X 1 and Y 1 , and n is an integer of 1 to 3. Represents.)

前記一般式(1)におけるA1により、X1、Y1とともに形成される含窒素ヘテロ環の窒素原子は、X1あるいはY1のいずれかに結合される位置に配され前記含窒素ヘテロ環に他の環が縮合された多環構造がA1、X1、Y1により形成されている
上記のようなA1、X1、Y1により形成される多環構造の好適な態様としては、X1に結合された窒素原子を有する含窒素5員環と他の環との縮合環構造を例示できる。
また、この多環構造は、含窒素5員環や他の環に置換基が結合されたものでも、置換基が結合されていないものでもいずれであってもよく、このような多環構造が形成されていることで増感色素に良好なる光電変化特性を奏させ得る。
すなわち、前記一般式(1)で表される増感色素、下記一般式(2)で表される構造を有している








According to A 1 in the general formula (1), the nitrogen atom of the nitrogen-containing heterocycle formed together with X 1 and Y 1 is arranged at the position bonded to either X 1 or Y 1 , and the nitrogen-containing hetero A polycyclic structure in which another ring is condensed to the ring is formed by A 1 , X 1 and Y 1 .
As a preferred embodiment of the polycyclic structure formed by A 1 , X 1 and Y 1 as described above, a condensed ring structure of a nitrogen-containing 5-membered ring having a nitrogen atom bonded to X 1 and another ring Can be illustrated.
In addition, this polycyclic structure may be either a nitrogen-containing 5-membered ring or a ring having a substituent bonded to another ring, or a ring to which no substituent is bonded. By being formed, the sensitizing dye can have good photoelectric change characteristics.
That is, the sensitizing dye represented by formula (1) has a structure represented by the following general formula (2).








Figure 0005285873
Figure 0005285873

(なお、R21、R22は、同じ炭素数あるいは異なる炭素数を有する、アルキル基、芳香族基、または、アルキル基置換芳香族基のいずれかがそれぞれ独立しているか、R21、R22が互いに結合して脂環族構造を形成しているかのいずれかであり、R21、R22の合計炭素数は、2〜25である。X2、Y2は、いずれも炭素原子を表しており、A2は、置換もしくは非置換の炭素数4〜10のシクロアルカンか、または、置換もしくは非置換のベンゼン環かのいずれかを、X2、Y2とともに形成するのに必要な原子群を表している。nは、1〜3の整数を表す。) (Note that R 21 and R 22 are each independently an alkyl group, an aromatic group, or an alkyl group-substituted aromatic group having the same or different carbon number, or R 21 and R 22. Are bonded to each other to form an alicyclic structure, and the total number of carbon atoms of R 21 and R 22 is 2 to 25. X 2 and Y 2 each represent a carbon atom. A 2 is an atom necessary for forming either a substituted or unsubstituted cycloalkane having 4 to 10 carbon atoms or a substituted or unsubstituted benzene ring together with X 2 and Y 2. Represents a group, and n represents an integer of 1 to 3.)

なお、A2が、X2、Y2とともに、シクロアルカンを形成する場合における“炭素数4〜10”とは、X2とY2とを含めた炭素原子の数を示すものである。
しかも、このシクロアルカンに炭素原子を含む置換基が結合されているような場合には、この置換基の炭素原子の数は含まないことを意図したものである。
Incidentally, A 2, together with X 2, Y 2, and "C4-10" in the case of forming a cycloalkane, shows the number of carbon atoms, including the X 2 and Y 2.
In addition, in the case where a substituent containing a carbon atom is bonded to the cycloalkane, it is intended that the number of carbon atoms of the substituent is not included.

このA2が、X2、Y2とともに形成する構造は、シクロペンタンかベンゼン環であることが好適である。
なかでも、下記構造式(A)〜(E)で表されるものが好適であり、下記構造式(C)で表されるものが、高い光電変換効率を示す点において、特に好適である。
The A 2 has the structure to form together with X 2, Y 2 is suitably a cyclopentane or benzene ring.
Especially, what is represented by the following structural formula (A)-(E) is suitable, and what is represented by the following structural formula (C) is especially suitable in the point which shows high photoelectric conversion efficiency.

Figure 0005285873
Figure 0005285873

このような増感色素を前記半導体層に担持させる方法としては、例えば、前記半導体層を多孔質に形成させて、増感色素を含有する溶液をこの多孔質半導体層に含浸させて形成させることができる。
特に、半導体層を酸化亜鉛多孔質体で形成させた場合には、一般式(1)で表される増感色素の中から所望の構造の増感色素を選択して、該増感色素をアルコールなどの溶媒に分散させた溶液として、この酸化亜鉛多孔質体に、デオキシコール酸共存下で含浸させることで光電変換効率をさらに高めることができる。
As a method for supporting such a sensitizing dye on the semiconductor layer, for example, the semiconductor layer is formed to be porous, and the porous semiconductor layer is impregnated with a solution containing the sensitizing dye. Can do.
In particular, when the semiconductor layer is formed of a zinc oxide porous body, a sensitizing dye having a desired structure is selected from the sensitizing dyes represented by the general formula (1), and the sensitizing dye is used. Photoelectric conversion efficiency can be further enhanced by impregnating the porous zinc oxide in the presence of deoxycholic acid as a solution dispersed in a solvent such as alcohol.

前記電解質層4は、アセトニトリルとエチレンカーボネートの混合液や、メトキシプロピオニトリルなどを溶媒として、金属ヨウ素やヨウ化リチウムなどのヨウ化物からなる電解質を加えたものなどの液体電解質や、高分子ゲル電解液などの擬固体化電解質、p型半導体、ホール輸送剤などの固体電解質を用いて形成することができる。   The electrolyte layer 4 is a liquid electrolyte such as a mixture of acetonitrile and ethylene carbonate, a liquid electrolyte such as methoxypropionitrile or the like to which an electrolyte made of iodide such as metal iodine or lithium iodide is added, or a polymer gel. It can be formed using a quasi-solidified electrolyte such as an electrolytic solution, a solid electrolyte such as a p-type semiconductor and a hole transport agent.

また、このような光電変換素子を用いて太陽電池を形成することで、美観と光電変換特性に優れた太陽電池を得ることができる。
なお、本実施形態においては、増感色素を、上記材料が用いられた上記部材と組み合わせて光電変換素子に用いる場合を例に説明したが、本発明の増感色素は、上記材料が用いられた上記部材と組み合わせて光電変換素子に用いる場合にその用途を限定するものではない。
In addition, by forming a solar cell using such a photoelectric conversion element, a solar cell excellent in aesthetics and photoelectric conversion characteristics can be obtained.
In the present embodiment, the case where the sensitizing dye is used in a photoelectric conversion element in combination with the above-described member using the above-described material has been described as an example. In addition, the use thereof is not limited when used in a photoelectric conversion element in combination with the above members.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(実施例1〜5、比較例1〜9)
各実施例、比較例のスクアリリウム系色素として、以下のようなものを用意した。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.
(Examples 1-5, Comparative Examples 1-9)
The following were prepared as squarylium pigments for the examples and comparative examples.

(実施例1)
実施例1のスクアリリウム系色素は、下記の通り。
Example 1
The squarylium pigments of Example 1 are as follows.

Figure 0005285873
Figure 0005285873

なお、実施例1のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of Example 1 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体1(0.222g)、中間体2(0.165g)、ベンゼン/n−ブタノール(v/v=1:1)混合溶媒6mLを混合し、Dean−stark管を用いて7時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール20:1の混合溶液)を用いて精製し、実施例1のスクアリリウム色素を0.075g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例1のスクアリリウム色素のエタノール中での極大吸収波長は634nmであった。 Intermediate 1 (0.222 g), Intermediate 2 (0.165 g), and 6 mL of a mixed solvent of benzene / n-butanol (v / v = 1: 1) are mixed and refluxed using a Dean-stark tube for 7 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 20: 1) to obtain 0.075 g of the squarylium dye of Example 1. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Example 1 was 634 nm.

(実施例2)
実施例2のスクアリリウム系色素は、下記の通り。
(Example 2)
The squarylium pigments of Example 2 are as follows.

Figure 0005285873
Figure 0005285873

なお、実施例2のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of Example 2 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体1(0.093g)、中間体3(0.122g)、ベンゼン/n−ブタノール(v/v=1:1)混合溶媒6mLを混合し、Dean−stark管を用いて15時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール20:1の混合溶液)を用いて精製し、実施例2のスクアリリウム色素を0.067g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例2のスクアリリウム色素のエタノール中での極大吸収波長は575nmであった。 Intermediate 1 (0.093 g), Intermediate 3 (0.122 g), and 6 mL of a mixed solvent of benzene / n-butanol (v / v = 1: 1) are mixed and refluxed using a Dean-stark tube for 15 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 20: 1) to obtain 0.067 g of the squarylium dye of Example 2. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Example 2 was 575 nm.

(実施例3)
実施例3のスクアリリウム系色素は、下記の通り。
(Example 3)
The squarylium dyes of Example 3 are as follows.

Figure 0005285873
Figure 0005285873

なお、実施例3のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of Example 3 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体1(0.125g)、中間体4(0.126g)、ベンゼン/n−ブタノール(v/v=1:1)混合溶媒6mLを混合し、Dean−stark管を用いて13時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール40:1の混合溶液)を用いて精製し、実施例3のスクアリリウム色素を0.013g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例3のスクアリリウム色素のエタノール中での極大吸収波長は645nmであった。 Intermediate 1 (0.125 g), Intermediate 4 (0.126 g), and 6 mL of a mixed solvent of benzene / n-butanol (v / v = 1: 1) are mixed and refluxed using a Dean-stark tube for 13 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 40: 1) to obtain 0.013 g of the squarylium dye of Example 3. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength of the squarylium dye of Example 3 in ethanol was 645 nm.

(実施例4)
実施例4のスクアリリウム系色素は、下記の通り。
Example 4
The squarylium pigments of Example 4 are as follows.

Figure 0005285873
Figure 0005285873

なお、実施例4のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of Example 4 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体1(0.178g)、中間体5(0.165g)、ベンゼン/n−ブタノール(v/v=1:1)混合溶媒6mLを混合し、Dean−stark管を用いて6時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール20:1の混合溶液)を用いて精製し、実施例4のスクアリリウム色素を0.114g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例4のスクアリリウム色素のエタノール中での極大吸収波長は645nmであった。 Intermediate 1 (0.178 g), Intermediate 5 (0.165 g), and 6 mL of a mixed solvent of benzene / n-butanol (v / v = 1: 1) are mixed and refluxed using a Dean-stark tube for 6 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 20: 1) to obtain 0.114 g of the squarylium dye of Example 4. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Example 4 was 645 nm.

(実施例5)
実施例5のスクアリリウム系色素は、下記の通り。
(Example 5)
The squarylium pigments of Example 5 are as follows.

Figure 0005285873
Figure 0005285873

なお、実施例5のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of Example 5 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体1(0.222g)、中間体6(0.410g)、ベンゼン/n−ブタノール(v/v=1:1)混合溶媒6mLを混合し、Dean−stark管を用いて4時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール100:3の混合溶液)を用いて精製し、実施例5のスクアリリウム色素を0.017g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この実施例5のスクアリリウム色素のエタノール中での極大吸収波長は646nmであった。 Intermediate 1 (0.222 g), Intermediate 6 (0.410 g), and 6 mL of a mixed solvent of benzene / n-butanol (v / v = 1: 1) are mixed and refluxed using a Dean-stark tube for 4 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 100: 3) to obtain 0.017 g of squarylium dye of Example 5. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. In addition, the maximum absorption wavelength of the squarylium dye of Example 5 in ethanol was 646 nm.

(比較例1)
比較例1のスクアリリウム系色素は、下記の通り。
(Comparative Example 1)
The squarylium dyes of Comparative Example 1 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例1のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 1 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体7(0.049g)、中間体8(0.059g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例1のスクアリリウム色素を0.016g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例1のスクアリリウム色素のエタノール中での極大吸収波長は620nmであった。 Intermediate 7 (0.049 g), Intermediate 8 (0.059 g), and 3 mL of toluene / n-butanol (v / v = 1: 1) mixed solvent were mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.016 g of the squarylium dye of Comparative Example 1. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Moreover, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 1 was 620 nm.

(比較例2)
比較例2のスクアリリウム系色素は、下記の通り。
(Comparative Example 2)
The squarylium dyes of Comparative Example 2 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例2のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 2 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体9(0.411g)、中間体8(0.414g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて6時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例2のスクアリリウム色素を0.047g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例2のスクアリリウム色素のエタノール中での極大吸収波長は635nmであった。 Intermediate 9 (0.411 g), Intermediate 8 (0.414 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 10 mL are mixed, and a Dean-stark tube is connected. And refluxed for 6 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.047 g of squarylium dye of Comparative Example 2. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Moreover, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 2 was 635 nm.

(比較例3)
比較例3のスクアリリウム系色素は、下記の通り。
(Comparative Example 3)
The squarylium dyes of Comparative Example 3 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例3のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 3 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体1(0.137g)、中間体8(0.128g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例3のスクアリリウム色素を0.080g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例3のスクアリリウム色素のエタノール中での極大吸収波長は623nmであった。 The above intermediate 1 (0.137 g), intermediate 8 (0.128 g), and toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL were mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.080 g of the squarylium dye of Comparative Example 3. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 3 was 623 nm.

(比較例4)
比較例4のスクアリリウム系色素は、下記の通り。
(Comparative Example 4)
The squarylium dyes of Comparative Example 4 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例4のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 4 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体10(0.120g)、中間体8(0.124g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例4のスクアリリウム色素を0.085g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例4のスクアリリウム色素のエタノール中での極大吸収波長は624nmであった。 The above intermediate 10 (0.120 g), intermediate 8 (0.124 g), and toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL are mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.085 g of the squarylium dye of Comparative Example 4. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 4 was 624 nm.

(比較例5)
比較例5のスクアリリウム系色素は、下記の通り。
(Comparative Example 5)
The squarylium dyes of Comparative Example 5 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例5のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 5 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体11(0.104g)、中間体8(0.079g)、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて2時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例5のスクアリリウム色素を0.041g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例5のスクアリリウム色素のエタノール中での極大吸収波長は625nmであった。 The above intermediate 11 (0.104 g), intermediate 8 (0.079 g) and toluene / n-butanol (v / v = 1: 1) mixed solvent 3 mL are mixed and refluxed using a Dean-stark tube for 2 hours. Reacted. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.041 g of the squarylium dye of Comparative Example 5. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 5 was 625 nm.

(比較例6)
比較例6のスクアリリウム系色素は、下記の通り。
(Comparative Example 6)
The squarylium dyes of Comparative Example 6 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例6のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 6 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体7(0.179g)、中間体12(0.261g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて5時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例6のスクアリリウム色素を0.066g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例6のスクアリリウム色素のエタノール中での極大吸収波長は621nmであった。 The above intermediate 7 (0.179 g), intermediate 12 (0.261 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 10 mL are mixed, and a Dean-stark tube is connected. And refluxed for 5 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.066 g of the squarylium dye of Comparative Example 6. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 6 was 621 nm.

(比較例7)
比較例7のスクアリリウム系色素は、下記の通り。
(Comparative Example 7)
The squarylium dyes of Comparative Example 7 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例7のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 7 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体7(0.102g)、中間体13(0.092g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒3mLを混合し、Dean−stark管を用いて5時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例7のスクアリリウム色素を0.051g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例7のスクアリリウム色素のエタノール中での極大吸収波長は642nmであった。 Intermediate 7 (0.102 g), Intermediate 13 (0.092 g), 0.1 mL of quinoline, 3 mL of toluene / n-butanol (v / v = 1: 1) mixed solvent are mixed, and a Dean-stark tube is connected. And refluxed for 5 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.051 g of the squarylium dye of Comparative Example 7. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 7 was 642 nm.

(比較例8)
比較例8のスクアリリウム系色素は、下記の通り。
(Comparative Example 8)
The squarylium dyes of Comparative Example 8 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例8のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 8 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体14(0.337g)、中間体8(0.414g)、キノリン0.1mL、トルエン/n−ブタノール(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて5時間還流反応させた。反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例8のスクアリリウム色素を0.085g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認した。また、この比較例8のスクアリリウム色素のエタノール中での極大吸収波長は630nmであった。 Intermediate 14 (0.337 g), Intermediate 8 (0.414 g), quinoline 0.1 mL, toluene / n-butanol (v / v = 1: 1) mixed solvent 10 mL were mixed, and a Dean-stark tube was connected. And refluxed for 5 hours. The reaction solution was concentrated and purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.085 g of the squarylium dye of Comparative Example 8. In addition, it confirmed by the identification by < 1 > H-NMR that the obtained pigment | dye has the said structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 8 was 630 nm.

(比較例9)
比較例9のスクアリリウム系色素は、下記の通り。
(Comparative Example 9)
The squarylium dyes of Comparative Example 9 are as follows.

Figure 0005285873
Figure 0005285873

なお、比較例9のスクアリリウム色素は、以下のように合成した。   In addition, the squarylium pigment | dye of the comparative example 9 was synthesize | combined as follows.

Figure 0005285873
Figure 0005285873

上記中間体7(0.587g)、化合物a(0.201g)、キノリン0.6mL、トルエン/ベンゼン(v/v=1:1)混合溶媒10mLを混合し、Dean−stark管を用いて19時間還流反応させた。反応溶液を冷却して沈澱物を得た。該沈殿物をシリカゲルカラムクロマトグラフィー(展開溶媒は、ジクロロメタンとメタノール9:1の混合溶液)を用いて精製し、比較例9のスクアリリウム色素を0.544g得た。なお、得られた色素が上記構造となっていることは、1H−NMRによる同定で確認がなされている。また、この比較例9のスクアリリウム色素のエタノール中での極大吸収波長は630nmであった。 The intermediate 7 (0.587 g), compound a (0.201 g), quinoline 0.6 mL, toluene / benzene (v / v = 1: 1) mixed solvent 10 mL were mixed, and 19 using a Dean-stark tube. The reaction was refluxed for an hour. The reaction solution was cooled to obtain a precipitate. The precipitate was purified using silica gel column chromatography (developing solvent was a mixed solution of dichloromethane and methanol 9: 1) to obtain 0.544 g of the squarylium dye of Comparative Example 9. In addition, it is confirmed by identification by 1 H-NMR that the obtained dye has the above structure. Further, the maximum absorption wavelength in ethanol of the squarylium dye of Comparative Example 9 was 630 nm.

(評価1)
(光電変換素子の作成)
(光電極層の作成)
電極基材として片面にFTO電極皮膜が形成されたFTOガラスを用いて、該FTOガラスの電極面に、電析により厚さ3μmの酸化亜鉛多孔質体膜を形成した。
この酸化亜鉛多孔質体膜が形成されたFTOガラスを各比較例の増感色素溶液に1時間浸漬し光電極層を作成した。
なお、このFTOガラスには旭硝子株式会社製「SnO2導電基板:A110U80」(厚さ:1.1mm、表面抵抗9Ω/□、透過率82%)を用いた。
またこのとき、増感色素溶液としては下記の3通りのものを用いた。
増感色素溶液1:増感色素100μM/エタノール10mL
増感色素溶液2:(増感色素100μM+DCA1mM)/エタノール10mL
増感色素溶液3:(増感色素100μM+DCA0.5mM)/エタノール10mL
(DCA:デオキシコール酸)
(Evaluation 1)
(Creation of photoelectric conversion element)
(Create photoelectrode layer)
Using an FTO glass having an FTO electrode film formed on one side as an electrode substrate, a zinc oxide porous film having a thickness of 3 μm was formed on the electrode surface of the FTO glass by electrodeposition.
The photoelectrode layer was prepared by immersing the FTO glass on which the zinc oxide porous film was formed in the sensitizing dye solution of each comparative example for 1 hour.
As this FTO glass, “SnO 2 conductive substrate: A110U80” (thickness: 1.1 mm, surface resistance 9Ω / □, transmittance 82%) manufactured by Asahi Glass Co., Ltd. was used.
At this time, the following three types of sensitizing dye solutions were used.
Sensitizing dye solution 1: Sensitizing dye 100 μM / ethanol 10 mL
Sensitizing dye solution 2: (sensitizing dye 100 μM + DCA 1 mM) / ethanol 10 mL
Sensitizing dye solution 3: (sensitizing dye 100 μM + DCA 0.5 mM) / ethanol 10 mL
(DCA: deoxycholic acid)

(電解質層の形成)
アセトニトリルとエチレンカーボネートとを体積比でアセトニトリル:エチレンカーボネート=1:4の割合で混合した溶液に、ヨウ化テトラプロピルアンモニウムとヨウ素とをヨウ化テトラプロピルアンモニウム0.5mol/L、ヨウ素0.05mol/Lとなるように混合し電解質液とした。
この電解質液を上記電極基材と同じFTOガラスを用いた対向基板と先述の光電極層との間に配し電解質層を形成させた。
(Formation of electrolyte layer)
To a solution in which acetonitrile and ethylene carbonate are mixed at a volume ratio of acetonitrile: ethylene carbonate = 1: 4, tetrapropylammonium iodide and iodine are mixed with tetrapropylammonium iodide at 0.5 mol / L and iodine at 0.05 mol / L. An electrolyte solution was prepared by mixing so as to be L.
This electrolyte solution was disposed between the counter substrate using the same FTO glass as the electrode base material and the above-mentioned photoelectrode layer, thereby forming an electrolyte layer.

(光電変換特性の測定)
各比較例の増感色素を用いた光電変換素子(受光面積4mm×5mm)に分光計器株式会社製「CEP−2000」を用いて100mW/cm2の照射強度で光を当てて、光電変換素子の短絡電流I0(mA/cm2)と開放電圧E0(V)とを測定した。
ついで、光電変換素子の電極間に接続する抵抗値を変化させて最大電力Wmaxを観測し、フィルファクタと光電変換効率とを計算により求めた。
比較例の各増感色素を増感色素溶液1〜3として用いた場合のフィルファクタ(ff)、光電変換効率(η)を表1に示す。
(Measurement of photoelectric conversion characteristics)
A photoelectric conversion element (photosensitive area: 4 mm × 5 mm) using the sensitizing dye of each comparative example was irradiated with light at an irradiation intensity of 100 mW / cm 2 using “CEP-2000” manufactured by Spectrometer Co., Ltd. The short circuit current I 0 (mA / cm 2 ) and the open circuit voltage E 0 (V) were measured.
Next, the maximum power Wmax was observed by changing the resistance value connected between the electrodes of the photoelectric conversion element, and the fill factor and the photoelectric conversion efficiency were obtained by calculation.
Table 1 shows the fill factor (ff) and photoelectric conversion efficiency (η) when the sensitizing dyes of Comparative Examples are used as the sensitizing dye solutions 1 to 3.

Figure 0005285873
Figure 0005285873

表1に示された結果では、比較例3の増感色素を上記増感色素溶液3の状態、すなわち、増感色素100μMをデオキシコール酸(DCA)0.5mM共存下でエタノール10mL中に分散させた溶液の状態で用いた場合が比較例中でも最も高い光電変換効率(η=1.50)を示した。
なお、同じ比較例3の増感色素を用いた場合でも増感色素溶液1の状態、すなわち、DCAを共存させない状態では、光電変換効率がη=0.89までしか示さなかった。
In the results shown in Table 1, the sensitizing dye of Comparative Example 3 was dispersed in 10 mL of ethanol in the state of the sensitizing dye solution 3, ie, 100 μM of the sensitizing dye in the presence of 0.5 mM deoxycholic acid (DCA). The case where it was used in the state of the prepared solution showed the highest photoelectric conversion efficiency (η = 1.50) among the comparative examples.
Even when the same sensitizing dye of Comparative Example 3 was used, the photoelectric conversion efficiency showed only up to η = 0.89 in the state of the sensitizing dye solution 1, that is, in the state where DCA was not present.

(評価2)
(光電変換素子の作成)
(光電極層の作成)
電極基材として環状ポリオレフィン系樹脂板(厚さ2mm)の片面にITOを蒸着して電極皮膜を形成し、該ITO蒸着板の電極面に、電析により厚さ3μmの酸化亜鉛多孔質体膜を形成した。
この酸化亜鉛多孔質体膜が形成されたITO蒸着板を実施例1乃至5、比較例3の増感色素溶液に1時間浸漬し光電極層を作成した。
なお、このITO蒸着板の表面抵抗は9Ω/□であり、透過率は84%であった。
またこのとき、増感色素溶液としては下記のものを用いた。
増感色素溶液4:(増感色素100μM+DCA0.5mM)/エタノール10mL
(DCA:デオキシコール酸)
(Evaluation 2)
(Creation of photoelectric conversion element)
(Create photoelectrode layer)
An electrode film is formed by vapor-depositing ITO on one side of a cyclic polyolefin-based resin plate (thickness 2 mm) as an electrode substrate, and a zinc oxide porous film having a thickness of 3 μm is formed on the electrode surface of the ITO vapor-deposited plate by electrodeposition. Formed.
The ITO vapor deposition plate on which the zinc oxide porous body film was formed was immersed in the sensitizing dye solutions of Examples 1 to 5 and Comparative Example 3 for 1 hour to form a photoelectrode layer.
The ITO vapor-deposited plate had a surface resistance of 9Ω / □ and a transmittance of 84%.
At this time, the following sensitizing dye solution was used.
Sensitizing dye solution 4: (sensitizing dye 100 μM + DCA 0.5 mM) / ethanol 10 mL
(DCA: deoxycholic acid)

(電解質層の形成)
アセトニトリルとエチレンカーボネートとを体積比でアセトニトリル:エチレンカーボネート=1:4の割合で混合した溶液に、ヨウ化テトラプロピルアンモニウムとヨウ素とをヨウ化テトラプロピルアンモニウム0.5mol/L、ヨウ素0.05mol/Lとなるように混合し電解質液とした。
この電解質液を上記電極基材と同じITO蒸着板を用いた対向基板と先述の光電極層との間に配し電解質層を形成させた。
(Formation of electrolyte layer)
To a solution in which acetonitrile and ethylene carbonate are mixed at a volume ratio of acetonitrile: ethylene carbonate = 1: 4, tetrapropylammonium iodide and iodine are mixed with tetrapropylammonium iodide at 0.5 mol / L and iodine at 0.05 mol / L. An electrolyte solution was prepared by mixing so as to be L.
This electrolyte solution was disposed between the counter substrate using the same ITO vapor deposition plate as the electrode base material and the above-mentioned photoelectrode layer, thereby forming an electrolyte layer.

(光電変換特性の測定)
各比較例の増感色素を用いた光電変換素子(受光面積4mm×5mm)に分光計器株式会社製「CEP−2000」を用いて100mW/cm2の照射強度で光を当てて、光電変換素子の短絡電流I0(mA/cm2)と開放電圧E0(V)とを測定した。
ついで、光電変換素子の電極間に接続する抵抗値を変化させて最大電力Wmaxを観測し、フィルファクタと光電変換効率とを計算により求めた。
各実施例、および、比較例3の各増感色素を増感色素溶液4として用いた場合のフィルファクタ(ff)、光電変換効率(η)を表2に示す。
(Measurement of photoelectric conversion characteristics)
A photoelectric conversion element (photosensitive area: 4 mm × 5 mm) using the sensitizing dye of each comparative example was irradiated with light at an irradiation intensity of 100 mW / cm 2 using “CEP-2000” manufactured by Spectrometer Co., Ltd. The short circuit current I 0 (mA / cm 2 ) and the open circuit voltage E 0 (V) were measured.
Next, the maximum power Wmax was observed by changing the resistance value connected between the electrodes of the photoelectric conversion element, and the fill factor and the photoelectric conversion efficiency were obtained by calculation.
Table 2 shows the fill factor (ff) and photoelectric conversion efficiency (η) when each sensitizing dye of each Example and Comparative Example 3 was used as the sensitizing dye solution 4.

Figure 0005285873
Figure 0005285873

FTOガラスを用いた上記の評価1において、最も高い光電変換効率(η=1.50)を示した比較例3の増感色素は、ITO蒸着板を用いた表2の結果においてFTOガラスを用いた場合に比べて僅かに高い光電変換効率値(η=1.64)を示した。
一方で、各実施例の増感色素は、この比較例3の増感色素に比べても、さらに優れた光電変換効率を示している。
すなわち、本発明の増感色素が光電変換特性の優れたものであることがわかる。
In the above evaluation 1 using FTO glass, the sensitizing dye of Comparative Example 3 which showed the highest photoelectric conversion efficiency (η = 1.50) was obtained by using FTO glass in the results of Table 2 using an ITO vapor-deposited plate. The photoelectric conversion efficiency value (η = 1.64) was slightly higher than that of
On the other hand, the sensitizing dye of each Example shows a further excellent photoelectric conversion efficiency as compared with the sensitizing dye of Comparative Example 3.
That is, it can be seen that the sensitizing dye of the present invention has excellent photoelectric conversion characteristics.

一実施形態の色素増感型光電変換素子を示す部分断面図。The fragmentary sectional view which shows the dye-sensitized photoelectric conversion element of one Embodiment.

符号の説明Explanation of symbols

1:光電極層、2:電極基材、3:第一の導電性皮膜、4:電解質層、5:第二の導電性皮膜、6:対向基板、10:色素増感型光電変換素子   1: photoelectrode layer, 2: electrode base material, 3: first conductive film, 4: electrolyte layer, 5: second conductive film, 6: counter substrate, 10: dye-sensitized photoelectric conversion element

Claims (4)

色素増感型光電変換素子に用いられ、下記一般式(2)で表される構造を有していることを特徴とする増感色素。
Figure 0005285873
(なお、R21、R22は、同じ炭素数あるいは異なる炭素数を有する、アルキル基、芳香族基、または、アルキル基置換芳香族基のいずれかがそれぞれ独立しているか、R21、R22が互いに結合して脂環族構造を形成しているかのいずれかであり、R21、R22の合計炭素数は、2〜25である。X2、Y2は、いずれも炭素原子を表しており、A2は、置換もしくは非置換の炭素数4〜10のシクロアルカンか、または、置換もしくは非置換のベンゼン環かのいずれかを、X2、Y2とともに形成するのに必要な原子群を表している。nは、1〜3の整数を表す。)
Used in the dye-sensitized photoelectric conversion element, a sensitizing dye, characterized in that it has a structure represented by the following general formula (2).
Figure 0005285873
(Note that R 21 and R 22 are each independently an alkyl group, an aromatic group, or an alkyl group-substituted aromatic group having the same or different carbon number, or R 21 and R 22. Are bonded to each other to form an alicyclic structure, and the total number of carbon atoms of R 21 and R 22 is 2 to 25. X 2 and Y 2 each represent a carbon atom. A 2 is an atom necessary for forming either a substituted or unsubstituted cycloalkane having 4 to 10 carbon atoms or a substituted or unsubstituted benzene ring together with X 2 and Y 2. Represents a group, and n represents an integer of 1 to 3.)
請求項に記載の増感色素が用いられてなる光電極層を備えていることを特徴とする色素増感型光電変換素子。 A dye-sensitized photoelectric conversion element comprising a photoelectrode layer using the sensitizing dye according to claim 1 . 前記光電極層が、請求項に記載の増感色素を含有する溶液がデオキシコール酸共存下で酸化亜鉛多孔質体に含浸されて形成されている請求項に記載の色素増感型光電変換素子。 The dye-sensitized photoelectric film according to claim 2 , wherein the photoelectrode layer is formed by impregnating a zinc oxide porous body with a solution containing the sensitizing dye according to claim 1 in the presence of deoxycholic acid. Conversion element. 請求項またはに記載の色素増感型光電変換素子が用いられてなることを特徴とする
色素増感型太陽電池。
A dye-sensitized solar cell, wherein the dye-sensitized photoelectric conversion element according to claim 2 or 3 is used.
JP2007158836A 2007-06-15 2007-06-15 Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element Active JP5285873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158836A JP5285873B2 (en) 2007-06-15 2007-06-15 Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158836A JP5285873B2 (en) 2007-06-15 2007-06-15 Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2008311127A JP2008311127A (en) 2008-12-25
JP5285873B2 true JP5285873B2 (en) 2013-09-11

Family

ID=40238552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158836A Active JP5285873B2 (en) 2007-06-15 2007-06-15 Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5285873B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270114B2 (en) * 2007-06-15 2013-08-21 富士フイルム株式会社 Solid-state image sensor
TWI434894B (en) * 2010-05-19 2014-04-21 Univ Nat Central Organic and inorganic photosensitizer dyes
JP5756766B2 (en) * 2011-03-31 2015-07-29 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell and dye
JP2013161751A (en) 2012-02-08 2013-08-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing the same, and dye-sensitized solar cell using the same
TWI434895B (en) 2012-03-28 2014-04-21 Ind Tech Res Inst Dyes and photoelectric conversion devices containing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041156A1 (en) * 2004-10-14 2006-04-20 Kyowa Hakko Chemical Co., Ltd. Squarylium compound, photo-electric converting material comprising the same, photo-electric converting element, and photoelectrochemical cell
JP4999334B2 (en) * 2005-02-28 2012-08-15 住友化学株式会社 Dye compound, photoelectric conversion element and photoelectrochemical cell using the compound
JP5061286B2 (en) * 2005-09-06 2012-10-31 国立大学法人岐阜大学 Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye

Also Published As

Publication number Publication date
JP2008311127A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
Wang et al. Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte
KR100696529B1 (en) Electrode for photoelectric conversion device including metal elements and dye sensitized solar cell using the same
JP2664194B2 (en) Photoelectrochemical cells, their production and use
US7790980B2 (en) Dye for dye sensitized photovoltaic cell and dye sensitized photovoltaic cell prepared using the same
KR100844871B1 (en) A dye for dye-sensitized solar cell and solar cell using it
Yum et al. Toward higher photovoltage: Effect of blocking layer on cobalt bipyridine pyrazole complexes as redox shuttle for dye-sensitized solar cells
Yum et al. Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell
CN101276849B (en) Photoelectric conversion device
JP4945873B2 (en) Semiconductor for photoelectric conversion material, photoelectric conversion element and solar cell
JP5285873B2 (en) Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using the sensitizing dye, and solar cell using the dye-sensitized photoelectric conversion element
US20110220170A1 (en) Dye-sensitized solar cell
JP5055638B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and dye-sensitized solar cell using the sensitizing dye
JP5689351B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP5156271B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye
TW201116593A (en) Dye-sensitized solar cell and photoanode thereof
US8680336B2 (en) Dyes for dye sensitized solar cell
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
JP2009076369A (en) Dye-sensitized solar cell
JP5061286B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye
Nonomura et al. Blocking the charge recombination with diiodide radicals by TiO2 compact layer in dye-sensitized solar cells
JP4420645B2 (en) Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell
TW201238968A (en) Metal complex dye composition, photoelectric transducing element and photoelectrochemical cell, and method for preparing metal complex dye
Akhtaruzzaman et al. Improving the spectral response of black dye by cosensitization with a simple indoline based dye in dye-sensitized solar cell
US8278550B2 (en) Ruthenium complex and photoelectric component using the same
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5285873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250