JP5285734B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP5285734B2
JP5285734B2 JP2011076513A JP2011076513A JP5285734B2 JP 5285734 B2 JP5285734 B2 JP 5285734B2 JP 2011076513 A JP2011076513 A JP 2011076513A JP 2011076513 A JP2011076513 A JP 2011076513A JP 5285734 B2 JP5285734 B2 JP 5285734B2
Authority
JP
Japan
Prior art keywords
heat
air
medium
heat exchanger
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011076513A
Other languages
Japanese (ja)
Other versions
JP2012211715A (en
Inventor
喜徳 久角
司 堀
章 岸本
努 若林
量 榎本
健太郎 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Osaka University NUC
Original Assignee
Osaka Gas Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Osaka University NUC filed Critical Osaka Gas Co Ltd
Priority to JP2011076513A priority Critical patent/JP5285734B2/en
Publication of JP2012211715A publication Critical patent/JP2012211715A/en
Application granted granted Critical
Publication of JP5285734B2 publication Critical patent/JP5285734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、エンジンにより駆動されて熱媒体を圧縮する圧縮機と、熱媒体から放熱させる凝縮器と、熱媒体を膨張させる膨張弁と、熱媒体に吸熱させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載順に熱媒体を循環する熱媒体循環回路とを備え、前記凝縮器又は前記蒸発器を通流する熱媒体と熱交換した空調用空気を空調対象空間へ供給するエンジン駆動式ヒートポンプ装置を備えた空調システムに関する。   The present invention includes a compressor driven by an engine to compress a heat medium, a condenser that dissipates heat from the heat medium, an expansion valve that expands the heat medium, an evaporator that absorbs heat to the heat medium, the compressor, A heat medium circulation circuit that circulates the heat medium in the order of description in the condenser, the expansion valve, and the evaporator, and air-conditioning air that is heat-exchanged with the heat medium that flows through the condenser or the evaporator The present invention relates to an air conditioning system including an engine-driven heat pump device that supplies air to a space.

従来、例えば、エンジンにより駆動されて熱媒体を圧縮する圧縮機と、熱媒体から放熱させる凝縮器と、熱媒体を膨張させる膨張弁と、熱媒体に吸熱させる蒸発器の順に熱媒体を循環させる熱媒体循環回路を備えたGHP(ガスエンジン駆動式ヒートポンプ装置:ガスエンジンを駆動源として働くヒートポンプ装置)がある。そして、このようなGHPにおいて、特に夏場の冷房運転時で、室外機としての凝縮器のフィンコイルに対し水を噴霧する噴霧機を備え、凝縮器を通流する熱媒体からの放熱を促進することで、圧縮機の消費動力を抑制し、省エネを実現する技術が知られている(非特許文献1を参照)。
当該技術では、例えば、熱媒体をR410Aとし、室内の冷房熱負荷が不変の場合であって、室外機としての凝縮器のフィンコイルに噴霧する水の圧力を0.2MpaGとし、噴霧した水がすべて凝縮器のフィンコイルにて蒸発すると仮定すると、理論上、消費電力を約20%削減できる。しかしながら、実際は、蒸発器のフィンコイルに噴霧した水のすべてが蒸発することはない。従って、実際、上述の如く消費電力を20%削減するためには、連続的な噴霧を行った場合、理論噴霧量の15倍もの多量の水を噴霧する必要がある。そこで、上記非特許文献1の技術では、室外機として蒸発器のフィンコイルにて効率的に水を蒸発させるべく、間欠的に水を噴霧する構成を採用し、水の噴霧量を1/5〜1/10程度に抑制している。
一方、特に熱媒の冷房運転時において、GHPでラジエータにより大気に排出されるガスエンジンの排熱を有効利用すべく、当該排熱を吸収式冷凍機や吸着式冷凍機に導いて冷熱を発生させ、当該冷熱を冷房運転に利用する技術が知られている(特許文献1、2を参照。)。
Conventionally, for example, a compressor driven by an engine to compress a heat medium, a condenser that radiates heat from the heat medium, an expansion valve that expands the heat medium, and an evaporator that absorbs heat to the heat medium are circulated in that order. There is a GHP (gas engine driven heat pump device: a heat pump device that uses a gas engine as a drive source) provided with a heat medium circulation circuit. And in such GHP, especially at the time of cooling operation in the summer, a sprayer that sprays water on the fin coil of the condenser as an outdoor unit is provided, and heat radiation from the heat medium flowing through the condenser is promoted. Thus, a technology for suppressing power consumption of the compressor and realizing energy saving is known (see Non-Patent Document 1).
In this technique, for example, the heat medium is R410A, the indoor cooling heat load is unchanged, the pressure of water sprayed on the fin coil of the condenser as the outdoor unit is 0.2 MpaG, and the sprayed water is Assuming that all vaporize in the fin coil of the condenser, theoretically, power consumption can be reduced by about 20%. However, in practice, not all of the water sprayed on the fin coil of the evaporator will evaporate. Therefore, in fact, in order to reduce power consumption by 20% as described above, when continuous spraying is performed, it is necessary to spray as much water as 15 times the theoretical spray amount. Therefore, the technique of Non-Patent Document 1 employs a configuration in which water is intermittently sprayed in order to efficiently evaporate water with the fin coil of the evaporator as an outdoor unit, and the spray amount of water is reduced to 1/5. It is suppressed to about 1/10.
On the other hand, especially during the cooling operation of the heat medium, in order to effectively use the exhaust heat of the gas engine discharged to the atmosphere by the radiator with GHP, the exhaust heat is led to an absorption refrigerator or adsorption refrigerator to generate cold heat. In addition, there is known a technique for using the cooling energy for cooling operation (see Patent Documents 1 and 2).

冷凍−第73巻第850号新技術・新製品・新設備紹介pp.47−53:空冷室外機への水噴霧による省エネ装置Refrigeration-Vol. 73, No. 850 Introduction of new technologies, new products and new equipment pp. 47-53: Energy-saving device by spraying water on air-cooled outdoor unit 特開平11−223412号公報Japanese Patent Laid-Open No. 11-223412 特開2010−175091号公報JP 2010-175091 A

上記非特許文献1に示されている技術では、外気の相対湿度が上昇すれば、蒸発器のフィンコイルに噴霧された水の蒸発量が減少し、噴霧により蒸発器を通流する熱媒体の温度を効果的に低減できないという問題がある。
一方、上記特許文献1、2に示されているGHPの排熱を吸収式冷凍機又は吸着式冷凍機では、例えば、水/LiBr系の吸収式冷凍機又は水冷媒を用いた吸着式冷凍機にあっては、真空を保持する構成を採用する必要があり、構成が複雑となるという問題があった。
また、上記特許文献1、2の技術において、アンモニア/水系の吸収式冷凍機にあっては、熱媒体であるアンモニアが漏洩した場合には、人体に悪影響が出る虞あるという問題があった。
In the technique disclosed in Non-Patent Document 1, if the relative humidity of the outside air increases, the amount of water sprayed on the fin coil of the evaporator decreases, and the heat medium flowing through the evaporator by spraying is reduced. There is a problem that the temperature cannot be reduced effectively.
On the other hand, in the absorption refrigerating machine or the adsorption refrigerating machine that absorbs the exhaust heat of GHP shown in Patent Documents 1 and 2, for example, a water / LiBr absorption refrigerating machine or an adsorption refrigerating machine using water refrigerant In this case, it is necessary to adopt a configuration for holding a vacuum, and there is a problem that the configuration becomes complicated.
Further, in the techniques of Patent Documents 1 and 2, in the ammonia / water absorption refrigerator, there is a problem that when ammonia as a heat medium leaks, the human body may be adversely affected.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、比較的簡易な構成により、安全性を維持しながらも、特に冷房運転時における冷房能力を向上させることができる空調システムを提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is an air conditioning system capable of improving the cooling capacity particularly during cooling operation while maintaining safety with a relatively simple configuration. Is to provide.

上記目的を達成するための本発明の空調システムは、
エンジンにより駆動されて熱媒体を圧縮する圧縮機と、熱媒体から放熱させる凝縮器と、熱媒体を膨張させる膨張弁と、熱媒体に吸熱させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載順に熱媒体を循環する熱媒体循環回路とを備え、前記凝縮器又は前記蒸発器を通流する熱媒体と熱交換した空調用空気を空調対象空間へ供給するエンジン駆動式ヒートポンプ装置を備えた空調システムであって、
回転駆動する通気性吸湿体からなり吸湿部に通流させる処理空気の水分を吸着するとともに吸着した水分を再生部に通流させる再生用空気に放出するデシカントロータと、前記デシカントロータの前記吸湿部を通過した処理空気を加湿する加湿機とを有するデシカント空調装置を備え、
前記デシカントロータの前記吸湿部を通流し前記加湿機にて加湿された処理空気と、前記熱媒体循環回路の前記凝縮器と前記膨張弁との間を通流する熱媒体とを熱交換可能な熱媒体冷却熱交換器を備え、
前記エンジンの排熱にて前記デシカントロータの前記再生部において前記通気性吸湿体を再生可能に構成され
前記エンジンの排熱と排熱回収媒体とを熱交換させる排熱回収熱交換器と、前記デシカントロータの前記再生部に通流させる再生用空気と排熱回収媒体とを熱交換させる再生用空気加熱熱交換器と、前記排熱回収熱交換器と前記再生用空気加熱熱交換器との間で排熱回収媒体を循環させる排熱回収媒体循環回路とを備え、
前記デシカントロータの前記吸湿部を通過した処理空気と再生用空気とを熱交換する処理空気冷却熱交換器を備え、
再生用空気は、前記処理空気冷却熱交換器にて処理空気との熱交換により加熱され、前記再生用空気加熱熱交換器にて排熱回収媒体との熱交換により加熱された後、前記デシカントロータの前記再生部へ導かれるように構成されている点にある。
In order to achieve the above object, the air conditioning system of the present invention comprises:
A compressor driven by the engine to compress the heat medium; a condenser for releasing heat from the heat medium; an expansion valve for expanding the heat medium; an evaporator for absorbing heat to the heat medium; the compressor; the condenser; The expansion valve and the evaporator include a heat medium circulation circuit that circulates the heat medium in the order of description, and supplies the air for air conditioning exchanged with the condenser or the heat medium flowing through the evaporator to the air-conditioning target space. An air conditioning system equipped with an engine-driven heat pump device,
A desiccant rotor that is composed of a breathable hygroscopic body that rotates and adsorbs moisture in the processing air that flows through the hygroscopic part, and that releases the adsorbed water to the regeneration air that passes through the regenerating part, and the hygroscopic part of the desiccant rotor A desiccant air conditioner having a humidifier for humidifying the processing air that has passed through
Heat exchange can be performed between the processing air that has flowed through the moisture absorption part of the desiccant rotor and humidified by the humidifier, and the heat medium that flows between the condenser and the expansion valve of the heat medium circulation circuit. A heat medium cooling heat exchanger,
The breathable moisture absorber can be regenerated in the regeneration part of the desiccant rotor by exhaust heat of the engine ,
An exhaust heat recovery heat exchanger for exchanging heat between the exhaust heat of the engine and an exhaust heat recovery medium, and regeneration air for exchanging heat between the regeneration air passed through the regeneration unit of the desiccant rotor and the exhaust heat recovery medium A heating heat exchanger, and an exhaust heat recovery medium circulation circuit for circulating an exhaust heat recovery medium between the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger,
A processing air cooling heat exchanger for exchanging heat between the processing air that has passed through the moisture absorption part of the desiccant rotor and the regeneration air;
The regeneration air is heated by heat exchange with the treatment air in the treatment air cooling heat exchanger, heated by the heat exchange with the exhaust heat recovery medium in the regeneration air heating heat exchanger, and then the desiccant. It is in the point which is comprised so that it may be guide | induced to the said reproduction | regeneration part of a rotor.

上記特徴構成によれば、デシカント空調装置において、デシカントロータの再生部は、エンジンの排熱にて適切に再生できるので、デシカントロータの吸湿部では、空気を十分に除湿できる状態となる。このような状態において、処理空気は、デシカントロータの吸湿部を通過し十分に除湿された後、加湿機により加湿され、当該加湿による一部の水分の蒸発潜熱が奪われる形態で冷却されて、熱媒体冷却熱交換器に導かれる。これにより、熱媒体冷却熱交換器を通流する熱媒体は、比較的低温の処理空気と熱交換して冷却されるとともに、処理空気に含まれる水分が当該熱媒体冷却熱交換器にて蒸発して蒸発潜熱が奪われる形態でも熱媒体が冷却される。
これにより、特に、夏場で除湿冷房運転を行う場合に、エンジン駆動式ヒートポンプ装置の熱媒体循環回路を循環する熱媒体は、圧縮機にて圧縮されて高温となった後、凝縮器にて外気と熱交換する形態で凝縮して放熱し、熱媒体冷却熱交換器にて処理空気と熱交換するとともに水分の蒸発潜熱が奪われる形態で冷却され、膨張弁にて膨張して十分に低温となった後、蒸発器にて空調用空気と熱交換することとなる。
即ち、空調用空気は、蒸発器にて十分に冷却された熱媒体と熱交換することで、適切に冷却された状態で、空調対象空間に導かれる。
上述の構成を採用すれば、従来技術の如く、真空を保持する構成を採用する必要がなく構成を簡略化することができるとともに、アンモニア等の熱媒体を用いる必要がなく安全性を維持することができながら、デシカント空調装置による処理空気にて熱媒体を適切に冷却する形態で冷房運転時における冷房能力を向上させることができる空調システムを提供することができる。
さらに、上記特徴構成によれば、排熱回収熱交換器及び再生用空気加熱熱交換器に循環接続される排熱回収媒体循環回路に排熱回収媒体を循環させることで、排熱回収媒体にてエンジンの排熱を適切に回収し、回収した排熱にてデシカントロータの再生部に通流する再生用空気を加熱できる。結果、エンジン駆動式ヒートポンプ装置のエンジンの排熱を、デシカント空調装置のデシカントロータの再生部の再生に適切に利用できる。
さらに、上記特徴構成によれば、再生用空気は、処理空気熱交換器にて処理空気との熱交換により加熱され、再生用空気加熱熱交換器にて排熱回収媒体との熱交換により加熱され、十分に高温としてデシカントロータの再生部へ導かれるので、再生部は高温の再生用空気にて良好に再生することができる。
上記目的を達成するための別の本発明の空調システムは、
エンジンにより駆動されて熱媒体を圧縮する圧縮機と、熱媒体から放熱させる凝縮器と、熱媒体を膨張させる膨張弁と、熱媒体に吸熱させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載順に熱媒体を循環する熱媒体循環回路とを備え、前記凝縮器又は前記蒸発器を通流する熱媒体と熱交換した空調用空気を空調対象空間へ供給するエンジン駆動式ヒートポンプ装置を備えた空調システムであって、その特徴構成は、
回転駆動する通気性吸湿体からなり吸湿部に通流させる処理空気の水分を吸着するとともに吸着した水分を再生部に通流させる再生用空気に放出するデシカントロータと、前記デシカントロータの前記吸湿部を通過した処理空気を加湿する加湿機とを有するデシカント空調装置を備え、
前記デシカントロータの前記吸湿部を通流し前記加湿機にて加湿された処理空気と、前記熱媒体循環回路の前記凝縮器と前記膨張弁との間を通流する熱媒体とを熱交換可能な熱媒体冷却熱交換器を備え、
前記エンジンの排熱にて前記デシカントロータの前記再生部において前記通気性吸湿体を再生可能に構成されており、
前記エンジンの排熱と排熱回収媒体とを熱交換させる排熱回収熱交換器と、前記デシカントロータの前記再生部に通流させる再生用空気と排熱回収媒体とを熱交換させる再生用空気加熱熱交換器と、前記排熱回収熱交換器と前記再生用空気加熱熱交換器との間で排熱回収媒体を循環させる排熱回収媒体循環回路とを備え、
前記デシカントロータの前記吸湿部を通過した処理空気と加湿機によって加湿された外気空気を熱交換する処理空気冷却熱交換器を備え、
再生用空気は、前記再生用空気加熱熱交換器にて排熱回収媒体との熱交換により加熱された後、前記デシカントロータの前記再生部へ導かれるように構成されている点にある。
そして、当該特徴構成によれば、処理空気冷却熱交換器において、処理空気は加湿機によって加湿された外気空気と熱交換するため、処理空気冷却熱交換器を出た後の処理空気の温度を低減することができ、熱媒体を良好に冷却できる。
According to the above characteristic configuration, in the desiccant air conditioner, the regeneration portion of the desiccant rotor can be appropriately regenerated by exhaust heat of the engine, so that the moisture absorption portion of the desiccant rotor can sufficiently dehumidify the air. In such a state, the processing air passes through the moisture absorption part of the desiccant rotor and is sufficiently dehumidified, and then is humidified by a humidifier and cooled in a form in which the latent heat of vaporization of some moisture due to the humidification is taken away, It is led to a heat medium cooling heat exchanger. Thereby, the heat medium flowing through the heat medium cooling heat exchanger is cooled by exchanging heat with the relatively low temperature processing air, and moisture contained in the processing air is evaporated in the heat medium cooling heat exchanger. Thus, the heat medium is cooled even in a form in which latent heat of vaporization is removed.
As a result, particularly when performing dehumidifying and cooling operation in summer, the heat medium circulating in the heat medium circulation circuit of the engine-driven heat pump device is compressed by the compressor and becomes high temperature, and then the outside air is discharged by the condenser. The heat is condensed and dissipated in the form of heat exchange with the heat medium, heat exchanged with the processing air in the heat medium cooling heat exchanger and cooled in a form in which the latent heat of vaporization of the water is taken away, and the expansion valve expands to a sufficiently low temperature After that, heat is exchanged with air for air conditioning in the evaporator.
That is, the air-conditioning air is guided to the air-conditioning target space in an appropriately cooled state by exchanging heat with the heat medium sufficiently cooled by the evaporator.
If the above configuration is adopted, it is not necessary to adopt a configuration for maintaining a vacuum as in the prior art, and the configuration can be simplified, and it is not necessary to use a heat medium such as ammonia, and safety is maintained. However, it is possible to provide an air conditioning system capable of improving the cooling capacity during the cooling operation in a form in which the heat medium is appropriately cooled with the processing air by the desiccant air conditioner.
Furthermore, according to the above characteristic configuration, the exhaust heat recovery medium is circulated through the exhaust heat recovery medium circulation circuit that is circulated and connected to the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger, thereby obtaining an exhaust heat recovery medium. Thus, the exhaust heat of the engine can be appropriately recovered, and the regeneration air flowing through the regeneration portion of the desiccant rotor can be heated by the recovered exhaust heat. As a result, the exhaust heat of the engine of the engine-driven heat pump device can be appropriately used for regeneration of the regeneration portion of the desiccant rotor of the desiccant air conditioner.
Furthermore, according to the above characteristic configuration, the regeneration air is heated by heat exchange with the treatment air in the treatment air heat exchanger, and is heated by heat exchange with the exhaust heat recovery medium in the regeneration air heating heat exchanger. Then, since the temperature is sufficiently high, it is guided to the regeneration portion of the desiccant rotor, so that the regeneration portion can be well regenerated with the high-temperature regeneration air.
Another air conditioning system of the present invention for achieving the above object is
A compressor driven by the engine to compress the heat medium; a condenser for releasing heat from the heat medium; an expansion valve for expanding the heat medium; an evaporator for absorbing heat to the heat medium; the compressor; the condenser; The expansion valve and the evaporator include a heat medium circulation circuit that circulates the heat medium in the order of description, and supplies the air for air conditioning exchanged with the condenser or the heat medium flowing through the evaporator to the air-conditioning target space. An air-conditioning system equipped with an engine-driven heat pump device, whose characteristic configuration is
A desiccant rotor that is composed of a breathable hygroscopic body that rotates and adsorbs moisture in the processing air that flows through the hygroscopic part, and that releases the adsorbed water to the regeneration air that passes through the regenerating part, and the hygroscopic part of the desiccant rotor A desiccant air conditioner having a humidifier for humidifying the processing air that has passed through
Heat exchange can be performed between the processing air that has flowed through the moisture absorption part of the desiccant rotor and humidified by the humidifier, and the heat medium that flows between the condenser and the expansion valve of the heat medium circulation circuit. A heat medium cooling heat exchanger,
The breathable moisture absorber is configured to be regenerated in the regeneration portion of the desiccant rotor by exhaust heat of the engine,
An exhaust heat recovery heat exchanger for exchanging heat between the exhaust heat of the engine and an exhaust heat recovery medium, and regeneration air for exchanging heat between the regeneration air passed through the regeneration unit of the desiccant rotor and the exhaust heat recovery medium A heating heat exchanger, and an exhaust heat recovery medium circulation circuit for circulating an exhaust heat recovery medium between the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger,
A processing air cooling heat exchanger that exchanges heat between the processing air that has passed through the moisture absorption part of the desiccant rotor and the outside air that has been humidified by a humidifier;
The regeneration air is configured to be guided to the regeneration unit of the desiccant rotor after being heated by heat exchange with the exhaust heat recovery medium in the regeneration air heating heat exchanger.
And according to the said characteristic structure, in the processing air cooling heat exchanger, since processing air exchanges heat with the outside air humidified by the humidifier, the temperature of the processing air after leaving the processing air cooling heat exchanger is changed. And the heat medium can be cooled well.

本発明の空調システムの更なる特徴構成は、
前記加湿機にて処理空気を加湿する水分は、前記蒸発器にて発生するドレン水である点にある。
Further features of the air conditioning system of the present invention are as follows:
The water | moisture content which humidifies process air in the said humidifier exists in the point which is the drain water which generate | occur | produces in the said evaporator.

上記特徴構成によれば、デシカント空調装置の加湿機にて処理空気を加湿するための水分として、蒸発器にて発生するドレン水を用いることで、システムの外部から別途水を供給する構成をとることなく、構成の簡略化を図ることができる。
また、外部から水を供給する必要がないので、経済性の観点でも優れた空調システムとできる。
According to the above characteristic configuration, a configuration is adopted in which water is separately supplied from the outside of the system by using drain water generated in the evaporator as moisture for humidifying the processing air in the humidifier of the desiccant air conditioner. Therefore, the configuration can be simplified.
Moreover, since it is not necessary to supply water from the outside, it can be set as the air conditioning system excellent also from the economical viewpoint.

本発明の空調システムの更なる特徴構成は、
熱媒体循環回路に、熱媒体と室内空気とを熱交換させる室内機と、熱媒体と室外空気とを熱交換させる室外熱交換器と、前記室内機を前記蒸発器として機能させ前記室外熱交換器を前記凝縮器として機能させる冷房運転状態と前記室内機を前記凝縮器として機能させ前記室外熱交換器を前記蒸発器として機能させる暖房運転状態とに熱媒体の通流状態を切り替える通流状態切替手段を備えている点にある。
Further features of the air conditioning system of the present invention are as follows:
An indoor unit that exchanges heat between the heat medium and indoor air in a heat medium circulation circuit, an outdoor heat exchanger that exchanges heat between the heat medium and outdoor air, and the outdoor unit that functions as the evaporator A flow-through state for switching the flow state of the heat medium between a cooling operation state in which a condenser functions as the condenser and a heating operation state in which the indoor unit functions as the condenser and the outdoor heat exchanger functions as the evaporator It is in the point provided with the switching means.

上記特徴構成によれば、通流状態切替手段は、熱媒体循環回路を通流する熱媒体の通流状態を、冷房運転状態と暖房運転状態との間で切り替えるという比較的簡易な構成により、冷房運転と暖房運転とを適切に切り替えることができる。   According to the above characteristic configuration, the flow state switching means has a relatively simple configuration in which the flow state of the heat medium flowing through the heat medium circulation circuit is switched between the cooling operation state and the heating operation state. It is possible to appropriately switch between the cooling operation and the heating operation.

本発明の空調システムの更なる特徴構成は、
前記通流状態切替手段が前記暖房運転状態に切り替えている状態において、前記熱媒体循環回路の前記蒸発器と前記圧縮機との間を通流する熱媒体と排熱回収媒体とを熱交換可能な熱媒体加熱熱交換器を備え、
前記排熱回収媒体循環回路には、前記排熱回収熱交換器と前記再生用空気加熱熱交換器との間で排熱回収媒体を循環させる第1回路と、前記排熱回収熱交換器と前記熱媒体加熱熱交換器との間で排熱回収媒体を循環させる第2回路とを切り替える循環回路切替手段が設けられている点にある。
Further features of the air conditioning system of the present invention are as follows:
In the state where the flow state switching means is switched to the heating operation state, heat exchange can be performed between the heat medium flowing between the evaporator and the compressor of the heat medium circulation circuit and the exhaust heat recovery medium. Equipped with a simple heat medium heating heat exchanger,
The exhaust heat recovery medium circulation circuit includes a first circuit for circulating an exhaust heat recovery medium between the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger, the exhaust heat recovery heat exchanger, A circulation circuit switching means for switching between the second circuit for circulating the exhaust heat recovery medium with the heat medium heating heat exchanger is provided.

上記特徴構成によれば、例えば、通流状態切替手段が冷房運転状態に切り替えている状態においては、循環回路切替手段が第1回路に切り替えて、排熱回収熱交換器と再生用空気加熱熱交換器との間で排熱回収媒体を循環させて、エンジンの排熱をデシカントロータの再生部に用いて、冷房能力を向上させることができる。
一方、通流状態切替手段が暖房運転状態に切り替えている状態においては、循環回路切替手段が第2回路に切り替えて、排熱回収熱交換器と熱媒体加熱熱交換器との間で排熱回収媒体を循環させて、エンジンの排熱にて熱媒体を適切に加熱し、暖房能力を向上させることができる。
According to the above characteristic configuration, for example, when the flow state switching means is switched to the cooling operation state, the circulation circuit switching means switches to the first circuit, and the exhaust heat recovery heat exchanger and the regeneration air heating heat are switched. The exhaust heat recovery medium is circulated with the exchanger, and the exhaust heat of the engine is used for the regeneration portion of the desiccant rotor, so that the cooling capacity can be improved.
On the other hand, in a state where the flow state switching means is switched to the heating operation state, the circulation circuit switching means switches to the second circuit, and exhaust heat is exhausted between the exhaust heat recovery heat exchanger and the heat medium heating heat exchanger. By circulating the recovery medium, the heat medium can be appropriately heated by the exhaust heat of the engine, and the heating capacity can be improved.

第1実施形態の冷房運転状態時の回路を示す概略構成図である。It is a schematic block diagram which shows the circuit at the time of the air_conditionaing | cooling operation state of 1st Embodiment. 第1実施形態の冷房運転状態時の回路を通流する空気の状態を示す空気線図である。It is an air diagram which shows the state of the air which flows through the circuit at the time of the cooling operation state of 1st Embodiment. 第1実施形態の冷房運転状態時の回路を通流する空気の状態値を示す表である。It is a table | surface which shows the state value of the air which flows through the circuit at the time of the cooling operation state of 1st Embodiment. 第1実施形態の暖房運転状態時の回路を示す概略構成図である。It is a schematic block diagram which shows the circuit at the time of the heating operation state of 1st Embodiment. 第1実施形態と従来技術との性能を示す表である。It is a table | surface which shows the performance of 1st Embodiment and a prior art. 第1実施形態と従来技術との冷凍サイクルを示したPH線図である。It is PH diagram which showed the refrigerating cycle of 1st Embodiment and a prior art. 第2実施形態の冷房運転状態時の回路を示す概略構成図である。It is a schematic block diagram which shows the circuit at the time of the air_conditionaing | cooling operation state of 2nd Embodiment. 第2実施形態の冷房運転状態時の回路を通流する空気の状態を示す空気線図である。It is an air diagram which shows the state of the air which flows through the circuit at the time of the cooling operation state of 2nd Embodiment. 第2実施形態の冷房運転状態時の回路を通流する空気の状態値を示す表である。It is a table | surface which shows the state value of the air which flows through the circuit at the time of the cooling operation state of 2nd Embodiment.

〔第1実施形態〕
本発明は、エンジン駆動式ヒートポンプ装置の駆動源であるエンジンの排熱を、デシカント空調装置のデシカントロータの再生に用いるとともに、デシカント空調装置にて処理された処理空気A1にてエンジン駆動式ヒートポンプ装置の熱媒体Mを冷却して、特に夏場における冷房性能を向上させる点を特徴としている。
そこで、以下では、エンジン駆動式ヒートポンプ装置の構成、デシカント空調装置の構成を説明した後、本発明の特徴的な構成について説明する。
[First Embodiment]
The present invention uses exhaust heat of an engine, which is a drive source of an engine-driven heat pump device, for regeneration of a desiccant rotor of a desiccant air conditioner, and uses an engine-driven heat pump device with treated air A1 processed by the desiccant air conditioner. The heat medium M is cooled to improve the cooling performance especially in summer.
Therefore, in the following, after describing the configuration of the engine-driven heat pump device and the configuration of the desiccant air conditioner, the characteristic configuration of the present invention will be described.

〔エンジン駆動式ヒートポンプ装置〕
エンジン駆動式ヒートポンプ装置は、図1、4に示すように、エンジン21により駆動されて熱媒体Mを圧縮する圧縮機11と、熱媒体Mを凝縮させて放熱させる凝縮器12と、熱媒体Mを膨張する膨張弁13と、熱媒体Mを蒸発させて吸熱させる蒸発器14と、圧縮機11と凝縮器12と膨張弁13と蒸発器14とに記載順に熱媒体Mを循環する熱媒体循環回路Lとから構成されている。
[Engine-driven heat pump device]
As shown in FIGS. 1 and 4, the engine-driven heat pump device includes a compressor 11 that is driven by an engine 21 to compress the heat medium M, a condenser 12 that condenses the heat medium M to release heat, and a heat medium M. The expansion valve 13 that expands the heat medium, the evaporator 14 that evaporates the heat medium M and absorbs heat, the compressor 11, the condenser 12, the expansion valve 13 and the evaporator 14 circulate the heat medium M in the order described. Circuit L.

熱媒体循環回路Lには、熱媒体Mと室内空気との間で熱交換可能な室内機50と、熱媒体Mと室外空気との間で熱交換可能な室外熱交換器51と、室内機50を蒸発器14として機能させ室外熱交換器51を凝縮器12として機能させる冷房運転状態(図1に示す状態)と室内機50を凝縮器12として機能させ室外熱交換器51を蒸発器14として機能させる暖房運転状態(図4に示す状態)とを切り替える四方弁15(循環回路切替手段の一例)が設けられている。
四方弁15は、制御装置(図示せず)による制御により、熱媒体循環回路Lにおいて、圧縮機11と室内機50との間の流路及び室外熱交換器51と圧縮機11との間の流路における接続状態を切り替えることにより、冷房運転状態と暖房運転状態とを切り替えるように構成されている。
The heat medium circulation circuit L includes an indoor unit 50 that can exchange heat between the heat medium M and indoor air, an outdoor heat exchanger 51 that can exchange heat between the heat medium M and outdoor air, and an indoor unit. The cooling operation state (state shown in FIG. 1) in which 50 functions as the evaporator 14 and the outdoor heat exchanger 51 functions as the condenser 12, and the indoor unit 50 functions as the condenser 12, and the outdoor heat exchanger 51 serves as the evaporator 14. A four-way valve 15 (an example of a circulation circuit switching unit) that switches between the heating operation state (the state shown in FIG. 4) that functions as the above is provided.
The four-way valve 15 is controlled by a control device (not shown) in the heat medium circulation circuit L between the flow path between the compressor 11 and the indoor unit 50 and between the outdoor heat exchanger 51 and the compressor 11. By switching the connection state in the flow path, the cooling operation state and the heating operation state are switched.

熱媒体循環回路Lには、室外熱交換器51に設けられている熱媒体Mと室外空気との熱交換効率を高めるためのフィンコイル51aに対し、室外空気を送風するための室外熱交換用ファン51bが設けられている。
そして、圧縮機11、凝縮器12、室外熱交換器51、膨張弁13、四方弁15、及びエンジン21は、室外機52の内部に備えられている。
The heat medium circulation circuit L is used for outdoor heat exchange for blowing outdoor air to the fin coil 51a for increasing the heat exchange efficiency between the heat medium M provided in the outdoor heat exchanger 51 and the outdoor air. A fan 51b is provided.
The compressor 11, the condenser 12, the outdoor heat exchanger 51, the expansion valve 13, the four-way valve 15, and the engine 21 are provided inside the outdoor unit 52.

さらに、本発明では、エンジン駆動式ヒートポンプ装置のエンジン21の排熱は、以下に示すデシカント空調装置のデシカントロータ40を再生に利用可能に構成されているとともに、以下に示すデシカント空調装置にて処理された処理空気A1にて、エンジン駆動式ヒートポンプ装置の熱媒体循環回路Lを通流する熱媒体Mを冷却する。   Furthermore, in the present invention, the exhaust heat of the engine 21 of the engine-driven heat pump device is configured so that the desiccant rotor 40 of the desiccant air conditioner shown below can be used for regeneration, and is processed by the desiccant air conditioner shown below. The heat medium M flowing through the heat medium circuit L of the engine-driven heat pump device is cooled by the treated air A1.

〔デシカント空調装置〕
デシカント空調装置は、エンジン駆動式ヒートポンプ装置が冷房運転状態にある場合に働くものである。このとき、室内機50は蒸発器14として働き、室外熱交換器51は凝縮器12として働いている。
このような状態において、デシカント空調装置は、回転駆動する通気性吸湿体40cからなり吸湿部40aに通流させる処理空気A1の水分を吸着するとともに水分を再生部40bに通流させる再生用空気A2に放出するデシカントロータ40と、デシカントロータ40の吸湿部40aを通流した後の処理空気A1を室外空気との熱交換により冷却する処理空気冷却熱交換器41と、処理空気冷却熱交換器41にて冷却された処理空気A1を加湿する第1加湿機42(加湿機の一例)と、第1加湿機42を通流した処理空気A1と室外熱交換器51を通過した後の熱媒体Mとを熱交換する熱媒体冷却熱交換器43とを備えている。
さらに、デシカント空調装置には、処理空気A1を、デシカントロータ40の吸湿部40a、処理空気冷却熱交換器41、第1加湿機42、及び熱媒体冷却熱交換器43の記載順に通流させる第1ファン44を、処理空気A1の通流方向でデシカントロータ40の吸湿部40aの下流側で処理空気冷却熱交換器41の上流側に備えている。
また、室外の空気である再生用空気を、処理空気冷却熱交換器41、デシカントロータ40の再生部40bの記載順に通流させる第2ファン45を、再生用空気A2の通流方向でデシカントロータ40の再生部40bの下流側に備えている。
以上の構成により、処理空気A1は、デシカントロータ40の吸湿部40aにて除湿され、処理空気冷却熱交換器41にて冷却された後、第1加湿機42を通流することで、当該加湿による水分の蒸発潜熱が奪われる形態で冷却されるとともに、当該加湿による水分を十分に含んだ状態で、熱媒体冷却熱交換器43に導かれる。これにより、熱媒体冷却熱交換器43を通流する熱媒体Mは、適切に冷却された処理空気A1にて冷却されるとともに、処理空気A1に含まれる水分の蒸発潜熱を熱媒体Mから奪うことによっても冷却される。
このように、処理空気A1にて熱媒体Mを冷却することで冷房性能の向上を図っている。
[Desicant air conditioner]
The desiccant air conditioner works when the engine-driven heat pump device is in a cooling operation state. At this time, the indoor unit 50 functions as the evaporator 14, and the outdoor heat exchanger 51 functions as the condenser 12.
In such a state, the desiccant air conditioner is composed of a breathable hygroscopic body 40c that rotates and adsorbs moisture of the processing air A1 that flows through the moisture absorbing section 40a, and also reproduces air A2 that allows moisture to flow through the regeneration section 40b. , A processing air cooling heat exchanger 41 that cools the processing air A1 that has passed through the moisture absorbing portion 40a of the desiccant rotor 40 by heat exchange with outdoor air, and a processing air cooling heat exchanger 41. The first humidifier 42 (an example of a humidifier) that humidifies the processing air A1 cooled in step 1, the processing air A1 that flows through the first humidifier 42, and the heat medium M that has passed through the outdoor heat exchanger 51. And a heat medium cooling heat exchanger 43 for exchanging heat with each other.
Further, in the desiccant air conditioner, the process air A1 is passed through the desiccant rotor 40 in the order of description of the moisture absorption part 40a, the process air cooling heat exchanger 41, the first humidifier 42, and the heat medium cooling heat exchanger 43. One fan 44 is provided on the downstream side of the moisture absorption part 40a of the desiccant rotor 40 in the flow direction of the processing air A1 and on the upstream side of the processing air cooling heat exchanger 41.
Further, the second fan 45 for allowing the regeneration air, which is the outdoor air, to flow in the order of the description of the processing air cooling heat exchanger 41 and the regeneration portion 40b of the desiccant rotor 40, is the desiccant rotor in the flow direction of the regeneration air A2. 40 on the downstream side of the reproduction unit 40b.
With the above configuration, the processing air A1 is dehumidified by the moisture absorption part 40a of the desiccant rotor 40, cooled by the processing air cooling heat exchanger 41, and then passed through the first humidifier 42 to thereby provide the humidification. The water is cooled in such a manner that the latent heat of vaporization of the water is taken away, and is also introduced to the heat medium cooling heat exchanger 43 in a state of sufficiently containing the moisture due to the humidification. As a result, the heat medium M flowing through the heat medium cooling heat exchanger 43 is cooled by the appropriately cooled processing air A1 and takes away the latent heat of evaporation of moisture contained in the processing air A1 from the heat medium M. Can also be cooled.
As described above, the cooling medium is cooled by the processing air A1 to improve the cooling performance.

さらに、本発明では、エンジン21の排熱をデシカントロータ40の再生に用いるべく、エンジン21の排熱と排熱回収媒体Eとを熱交換させる排熱回収熱交換器22と、排熱回収媒体Eとデシカントロータ40の再生部40bに導かれる再生用空気A2とを熱交換させる再生用空気加熱熱交換器24と、排熱回収熱交換器22と再生用空気加熱熱交換器24との間で排熱回収媒体Eを循環可能な排熱回収媒体循環回路Cと、排熱回収媒体循環回路Cにて排熱回収媒体Eを圧送する循環ポンプ26とを備えて構成されている。
排熱回収媒体Eは、排熱回収媒体循環回路Cを循環して、排熱回収熱交換器22にてエンジン21の排熱を回収した後、再生用空気加熱熱交換器24にて再生用空気A2と熱交換し、再生用空気A2が加熱される。
Further, in the present invention, the exhaust heat recovery heat exchanger 22 for exchanging heat between the exhaust heat of the engine 21 and the exhaust heat recovery medium E in order to use the exhaust heat of the engine 21 for regeneration of the desiccant rotor 40, and the exhaust heat recovery medium Between the regeneration air heating heat exchanger 24 for exchanging heat between E and the regeneration air A2 guided to the regeneration portion 40b of the desiccant rotor 40, and the exhaust heat recovery heat exchanger 22 and the regeneration air heating heat exchanger 24. The exhaust heat recovery medium circulation circuit C that can circulate the exhaust heat recovery medium E and the circulation pump 26 that pumps the exhaust heat recovery medium E by the exhaust heat recovery medium circulation circuit C are provided.
The exhaust heat recovery medium E circulates in the exhaust heat recovery medium circulation circuit C, recovers the exhaust heat of the engine 21 by the exhaust heat recovery heat exchanger 22, and then regenerates by the regeneration air heating heat exchanger 24. Heat is exchanged with the air A2, and the regeneration air A2 is heated.

再生用空気加熱熱交換器24は、処理空気冷却熱交換器41の下流側でデシカントロータ40の再生部40bの上流側に設けられている。
再生用空気A2は、処理空気冷却熱交換器41にて処理空気A1と熱交換して加熱され、再生用空気加熱熱交換器24にて排熱回収媒体Eと熱交換して加熱された後に、デシカントロータ40の再生部40bに導かれ、再生部40bにて通気性吸湿体40cを再生する。
これにより、デシカントロータ40の再生能力を向上し、結果的に、デシカントロータ40の吸湿部40aの吸湿性能の向上を図っている。
The regeneration air heating heat exchanger 24 is provided downstream of the processing air cooling heat exchanger 41 and upstream of the regeneration unit 40 b of the desiccant rotor 40.
The regeneration air A2 is heated by exchanging heat with the treatment air A1 in the treatment air cooling heat exchanger 41 and heated by exchanging heat with the exhaust heat recovery medium E in the regeneration air heating heat exchanger 24. Then, the air is guided to the regenerating unit 40b of the desiccant rotor 40, and the regenerating unit 40b regenerates the breathable moisture absorber 40c.
Thereby, the reproduction | regeneration capability of the desiccant rotor 40 is improved, As a result, the moisture absorption performance of the moisture absorption part 40a of the desiccant rotor 40 is aimed at.

また、冷房運転状態において、再生用空気加熱熱交換器24にて熱媒体Mと熱交換した後の処理空気A1は、室外空気に比べて若干温度が低い。そこで、図示は省略するが、冷房運転状態において、再生用空気加熱熱交換器24を通流した後の処理空気A1は、凝縮器12して機能する室外熱交換器51に室外空気と混合した状態で供給する構成を採用することができる。   Further, in the cooling operation state, the processing air A1 after heat exchange with the heat medium M in the regeneration air heating heat exchanger 24 has a slightly lower temperature than the outdoor air. Therefore, although illustration is omitted, in the cooling operation state, the processing air A1 after flowing through the regeneration air heating heat exchanger 24 is mixed with outdoor air in the outdoor heat exchanger 51 that functions as the condenser 12. The structure supplied in a state can be adopted.

尚、上記デシカント空調装置は、エンジン駆動式ヒートポンプ装置が冷房運転状態(図1に示す状態)にあるときに働くものであり、暖房運転状態(図4に示す状態)にあるときは停止状態にある。そこで、本発明にあっては、エンジン21の排熱は、冷房運転状態にあってはエンジン21の排熱をデシカント空調装置のデシカントロータ40の再生部40bの再生に用いるとともに、暖房運転状態にあってはエンジン21の排熱を熱媒体循環回路Lを循環する熱媒体Mの加熱に用いるように構成されている。
具体的には、凝縮器12として機能する室内機50と圧縮機11との間を通流する熱媒体Mと排熱回収媒体Eとを熱交換する熱媒体加熱熱交換器23を備え、排熱回収熱交換器22と再生用空気加熱熱交換器24との間で排熱回収媒体Eを循環させる第1回路C1(図1にて実線で示す回路)と、排熱回収熱交換器22と熱媒体加熱熱交換器23との間で排熱回収媒体Eを循環させる第2回路C2(図4にて実線で示す回路)と、第1回路C1と第2回路C2とを切り替える切替弁25(循環回路切替手段の一例)とを備えて構成されている。
切替弁25は、制御装置(図示せず)による切り替え制御により、冷房運転状態にあっては、排熱回収媒体循環回路Cを第1回路C1に切り替えて、排熱回収媒体Eを排熱回収熱交換器22と再生用空気加熱熱交換器24との間で循環させ、エンジン21の排熱にて再生用空気A2を加熱する(図1にて実線で示す状態)。一方、暖房運転状態にあっては、排熱回収媒体循環回路Cを第2回路C2に切り替えて、排熱回収媒体Eを排熱回収熱交換器22と熱媒体加熱熱交換器23との間で循環させ、エンジン21の排熱にて熱媒体Mを加熱する(図4にて実線で示す状態)。
尚、上記第1回路C1には、熱媒体加熱熱交換器23から排熱回収熱交換器22へ導かれる排熱回収媒体Eの放熱を促進するフィン53aと、当該フィン53aに室外空気を導くファン53bから成るラジエータ53が設けられている。
The desiccant air conditioner operates when the engine-driven heat pump device is in a cooling operation state (the state shown in FIG. 1), and is in a stopped state when it is in a heating operation state (the state shown in FIG. 4). is there. Therefore, in the present invention, the exhaust heat of the engine 21 is used for regeneration of the regeneration unit 40b of the desiccant rotor 40 of the desiccant air conditioner in the cooling operation state and in the heating operation state. In this case, the exhaust heat of the engine 21 is used to heat the heat medium M circulating in the heat medium circuit L.
Specifically, a heat medium heating heat exchanger 23 for exchanging heat between the heat medium M flowing between the indoor unit 50 functioning as the condenser 12 and the compressor 11 and the heat recovery medium E is provided. A first circuit C1 (a circuit indicated by a solid line in FIG. 1) for circulating the exhaust heat recovery medium E between the heat recovery heat exchanger 22 and the regeneration air heating heat exchanger 24, and an exhaust heat recovery heat exchanger 22 Switching circuit for switching between a second circuit C2 (a circuit indicated by a solid line in FIG. 4) for circulating the exhaust heat recovery medium E between the first circuit C1 and the second circuit C2 25 (an example of a circulation circuit switching means).
The switching valve 25 switches the exhaust heat recovery medium circulation circuit C to the first circuit C1 in the cooling operation state by switching control by a control device (not shown), and recovers the exhaust heat recovery medium E to the exhaust heat. Circulation is performed between the heat exchanger 22 and the regeneration air heating heat exchanger 24, and the regeneration air A2 is heated by the exhaust heat of the engine 21 (a state indicated by a solid line in FIG. 1). On the other hand, in the heating operation state, the exhaust heat recovery medium circulation circuit C is switched to the second circuit C2, and the exhaust heat recovery medium E is disposed between the exhaust heat recovery heat exchanger 22 and the heat medium heating heat exchanger 23. And the heat medium M is heated by the exhaust heat of the engine 21 (a state indicated by a solid line in FIG. 4).
The first circuit C1 has fins 53a for promoting the heat dissipation of the exhaust heat recovery medium E guided from the heat medium heating heat exchanger 23 to the exhaust heat recovery heat exchanger 22, and outdoor air is guided to the fins 53a. A radiator 53 including a fan 53b is provided.

〔加湿機の構成〕
第1加湿機42は、熱媒体冷却熱交換器43に導かれる処理空気A1に、直接水を噴霧して加湿するように構成されているが、当該噴霧される水は、蒸発器14として機能する室内機50のドレン水を利用可能になっている。
具体的には、室内機50のドレン水を第1加湿機42へ供給するドレン水供給路30と、当該ドレン水供給路30にてドレン水を第1加湿機42の側へ圧送するドレン水圧送ポンプ31とが設けられている。ドレン水供給路30にて第1加湿機42に導かれたドレン水は、連続噴霧又は間欠噴霧にて処理空気A1に直接噴霧される形態で、処理空気A1を加湿可能に構成されている。
[Configuration of humidifier]
Although the 1st humidifier 42 is comprised so that the process air A1 led to the heat-medium cooling heat exchanger 43 may be directly sprayed and humidified, the sprayed water functions as the evaporator 14. The drain water of the indoor unit 50 to be used can be used.
Specifically, the drain water supply path 30 that supplies the drain water of the indoor unit 50 to the first humidifier 42, and the drain water pressure that pumps the drain water to the first humidifier 42 side in the drain water supply path 30. A feed pump 31 is provided. The drain water led to the first humidifier 42 in the drain water supply path 30 is configured to be able to humidify the processing air A1 in a form that is directly sprayed to the processing air A1 by continuous spraying or intermittent spraying.

〔冷房運転状態における処理空気A1の状態変化〕
本発明の空調システムは、冷房運転状態において高い冷房能力を発揮するものである。そこで、本発明の空調システムの冷房性能について、図1における測定点P1〜P10での処理空気A1・再生用空気A2の状態(温度、絶対湿度、相対湿度)の変化を説明することで、評価する。尚、図1における測定点P1〜P10での処理空気A1・再生用空気A2の状態(温度、絶対湿度、相対湿度)の変化は、図2に空気線図にて示すとともに、図3に表にて示している。尚、測定点P11は、測定点P1における空気を、飽和状態まで加湿した状態である。
冷媒の圧縮動力を12.4kW、処理空気A1および再生用空気A2の流量を700m3/hとした場合の各媒体の状態変化を示す。
室外空気の温度(処理空気A1・再生用空気A2の初期温度)は35℃とし、相対湿度を45%である。また、排熱回収媒体Eの温度は、再生用空気加熱熱交換器24の入口で92℃であり、ラジエータ53の出口で86℃とする。第1加湿機42に導かれるドレン水の温度は、16.7℃であり、流量は30.6kg/hである。
P1−P2の間において、処理空気A1は、デシカントロータ40の吸湿部40aを通流することで、9.3g/kg乾燥空気だけ除湿される。ここで、デシカントロータ40の再生部40bがエンジン21の排熱にて加熱された再生用空気A2にて適切に再生されているので、十分な除湿能力が発揮されている。
P2−P4の間において、処理空気A1は、処理空気冷却熱交換器41により室外空気OAと熱交換する形態で冷却され、20.9℃だけ温度が低下する。
P4−P5の間において、処理空気A1は、第1加湿機42にて水が噴霧されて加湿され、加湿による水分の蒸発潜熱が奪われる形態で、19.6℃だけ冷却される。第1加湿機42に導かれる処理空気A1は、吸湿部40aにて十分に除湿されたものであるので、第1加湿機42にて加湿された際に、加湿による水分が良好に蒸発して冷却されている。
P5−P6の間において、処理空気A1は、熱媒体冷却熱交換器43にて熱媒体Mと熱交換して熱媒体Mを冷却する形態で、12.5℃だけ昇温する。このとき、処理空気A1は、蒸発しきらない水を含む状態で熱媒体冷却熱交換器43に導かれており、熱媒体冷却熱交換器43にて当該水分の蒸発潜熱が奪われる形態で熱媒体Mがさらに冷却される。
例えば、熱媒体冷却熱交換器43にて、水分の蒸発潜熱が奪われる形態で低下する熱媒体Mの温度は、42℃から25.2℃となる。
[Changes in the state of the processing air A1 in the cooling operation state]
The air conditioning system of the present invention exhibits high cooling capacity in the cooling operation state. Therefore, the cooling performance of the air conditioning system of the present invention is evaluated by explaining changes in the state (temperature, absolute humidity, relative humidity) of the processing air A1 and the regeneration air A2 at the measurement points P1 to P10 in FIG. To do. Note that changes in the state (temperature, absolute humidity, relative humidity) of the processing air A1 and the regeneration air A2 at the measurement points P1 to P10 in FIG. 1 are shown in an air diagram in FIG. 2 and shown in FIG. Is shown. Note that the measurement point P11 is a state where the air at the measurement point P1 is humidified to a saturated state.
The state change of each medium when the compression power of the refrigerant is 12.4 kW and the flow rates of the processing air A1 and the regeneration air A2 are 700 m 3 / h is shown.
The temperature of the outdoor air (initial temperature of the processing air A1 and the regeneration air A2) is 35 ° C., and the relative humidity is 45%. The temperature of the exhaust heat recovery medium E is 92 ° C. at the inlet of the regeneration air heating heat exchanger 24 and 86 ° C. at the outlet of the radiator 53. The temperature of the drain water led to the first humidifier 42 is 16.7 ° C., and the flow rate is 30.6 kg / h.
Between P <b> 1 and P <b> 2, the processing air A <b> 1 is dehumidified by 9.3 g / kg dry air by flowing through the moisture absorption part 40 a of the desiccant rotor 40. Here, since the regeneration part 40b of the desiccant rotor 40 is appropriately regenerated by the regeneration air A2 heated by the exhaust heat of the engine 21, a sufficient dehumidifying ability is exhibited.
Between P2 and P4, the processing air A1 is cooled in a form in which heat is exchanged with the outdoor air OA by the processing air cooling heat exchanger 41, and the temperature is lowered by 20.9 ° C.
Between P4 and P5, the processing air A1 is cooled by 19.6 ° C. in a form in which water is sprayed and humidified by the first humidifier 42, and the latent heat of vaporization of moisture due to humidification is taken away. Since the processing air A1 guided to the first humidifier 42 has been sufficiently dehumidified by the moisture absorption part 40a, when humidified by the first humidifier 42, the moisture due to the humidification evaporates well. It is cooled.
Between P 5 and P 6, the processing air A 1 is heated by 12.5 ° C. in a form in which the heat medium M is cooled by exchanging heat with the heat medium M in the heat medium cooling heat exchanger 43. At this time, the processing air A1 is led to the heat medium cooling heat exchanger 43 in a state including water that cannot be evaporated, and the heat latent heat of heat is taken away by the heat medium cooling heat exchanger 43. The medium M is further cooled.
For example, in the heat medium cooling heat exchanger 43, the temperature of the heat medium M that decreases in a form in which the latent heat of vaporization of moisture is lost is 42 ° C. to 25.2 ° C.

一方、再生用空気A2は、P1−P7の間において、処理空気冷却熱交換器41にて処理空気A1と熱交換する形態で加熱され、21.5℃だけ昇温し、P7−P8の間において、再生用空気加熱熱交換器24にて排熱回収媒体Eと熱交換する形態で、30.1℃だけ昇温し86.6℃となり、P8−P9の間において、デシカントロータ40の再生部40bを再生する。デシカントロータ40は、再生部40bが86.6℃の非常に高温の再生用空気A2にて再生されることで、9.3g/kg乾燥空気の分だけ適切に再生されていることがわかる。   On the other hand, the regeneration air A2 is heated in a form in which heat is exchanged with the treatment air A1 in the treatment air cooling heat exchanger 41 between P1 and P7, and the temperature is raised by 21.5 ° C., between P7 and P8. , The heat is exchanged with the exhaust heat recovery medium E in the regeneration air heating heat exchanger 24, and the temperature is increased by 30.1 ° C. to 86.6 ° C., and the regeneration of the desiccant rotor 40 is performed between P8 and P9. Part 40b is reproduced. It can be seen that the desiccant rotor 40 is appropriately regenerated by the amount of 9.3 g / kg dry air when the regenerating unit 40b is regenerated by the very high temperature regenerating air A2 of 86.6 ° C.

以上の如く、処理空気A1及び再生用空気A2がデシカント空調装置を通流することにより、計算上では熱媒体Mの温度を16.8℃低下させることができ、夏季における冷房性能を大幅に向上できる。   As described above, when the processing air A1 and the regeneration air A2 flow through the desiccant air conditioner, the temperature of the heat medium M can be reduced by 16.8 ° C. in calculation, and the cooling performance in summer is greatly improved. it can.

〔本発明と従来技術との性能比較〕
次に、図5に示す表に基づいて、本発明と従来技術との性能を比較する。
図5に示す表において、基準(ヒートポンプ装置)は、通常のエンジン駆動式のヒートポンプ装置を用いた場合、従来技術(非特許文献1の技術)は、凝縮器12として機能する室外熱交換器51に直接水を噴霧する場合、本発明1(デシカント冷却)は、本発明にてデシカント空調装置により冷却した処理空気A1にて熱媒体Mを冷却した場合、本発明2(デシカント冷却+処理空気冷却)は、熱媒体Mを冷却した後の処理空気A1を凝縮器12に導いて熱媒体Mをさらに冷却する場合の夫々において、COP及び使用する水量を示すものである。
[Performance comparison between the present invention and the prior art]
Next, based on the table | surface shown in FIG. 5, the performance of this invention and a prior art is compared.
In the table shown in FIG. 5, the standard (heat pump device) is an outdoor heat exchanger 51 that functions as the condenser 12 when the conventional engine-driven heat pump device is used. In the case of directly spraying water on the surface, the present invention 1 (desiccant cooling) is the present invention 2 (desiccant cooling + process air cooling) when the heat medium M is cooled by the processing air A1 cooled by the desiccant air conditioner in the present invention. ) Shows the COP and the amount of water used in each of the cases where the processing medium A1 after cooling the heat medium M is guided to the condenser 12 to further cool the heat medium M.

COPについては、従来技術(非特許文献1の技術)、本発明1(デシカント冷却)、本発明2(デシカント冷却+処理空気冷却)の何れの場合も、基準(ヒートポンプ装置)に比べて、大きく向上していることがわかる。
一方、利用する水量については、本発明1(デシカント冷却)及び本発明2(デシカント冷却+処理空気冷却)の何れの場合も、従来技術(非特許文献1の技術)に比べて、大幅に低減できている。本発明1及び本発明2の水量(28kg/h)は、従来技術の水量(245kg/h)の約1/10程度に低減できている。本発明1及び本発明2の水量(28kg/h)は、ヒートポンプ装置にて発生するドレン水量(30kg/h)にて賄える量である。
即ち、本発明1及び本発明2によれば、ヒートポンプ装置にて発生するドレン水量の範囲内の水にて、非常に高いCOPを発揮できていると言える。
As for COP, the conventional technique (the technique of Non-Patent Document 1), the present invention 1 (desiccant cooling), and the present invention 2 (desiccant cooling + process air cooling) are larger than the standard (heat pump device). It can be seen that it has improved.
On the other hand, the amount of water used is greatly reduced in both cases of the present invention 1 (desiccant cooling) and the present invention 2 (desiccant cooling + process air cooling) compared to the prior art (the technique of Non-Patent Document 1). is made of. The water amount (28 kg / h) of the present invention 1 and the present invention 2 can be reduced to about 1/10 of the water amount (245 kg / h) of the prior art. The amount of water (28 kg / h) of the present invention 1 and the present invention 2 is an amount that can be covered by the amount of drain water (30 kg / h) generated in the heat pump device.
That is, according to the present invention 1 and the present invention 2, it can be said that a very high COP can be exhibited with water within the range of the amount of drain water generated in the heat pump device.

次に、図6に示すPH線図(圧力-エンタルピ線図)に基づいて、本発明と従来技術との性能比較を行う。
図6に示すPH線図は、冷凍サイクルを循環する熱媒体Mの圧力及びエンタルピの変化を示すものであり、P1−P2間の変化は圧縮機11を通流するときの変化に対応し、P2−P3間の変化は凝縮器12を通流するときの変化に対応し、P3−P4間の変化は膨張弁13を通流するときの変化に対応し、P4−P1間の変化は蒸発器14を通流するときの変化に対応している。
尚、本発明1及び本発明2にあっては、凝縮器12として機能する室外熱交換器51の下流にて熱媒体冷却熱交換器43が設けられているので、P2−P3間の変化は凝縮器12及び熱媒体冷却熱交換器43を通流するときの変化に対応する。
ここで、P2−P3間におけるエンタルピの低下量に着目すると、本発明1及び本発明2のエンタルピの低下量(P2D1−P3D1、P2D2−P3D2)は、基準のエンタルピの低下量(P2B−P3B間の変化)に対しE1だけ多く低下しており、従来技術のエンタルピの低下量(P2S−P3S)に対してもE2だけ多く低下していることがわかる。
即ち、本発明1及び本発明2では、基準及び従来技術よりも、凝縮器12及び熱媒体冷却熱交換器43における熱媒体Mの放熱をより多く行えており、この分だけ冷房能力も向上しているといえる。
Next, based on the PH diagram (pressure-enthalpy diagram) shown in FIG. 6, the performance of the present invention is compared with that of the prior art.
The PH diagram shown in FIG. 6 shows changes in the pressure and enthalpy of the heat medium M circulating in the refrigeration cycle, and the change between P1 and P2 corresponds to the change when flowing through the compressor 11, The change between P2 and P3 corresponds to the change when flowing through the condenser 12, the change between P3 and P4 corresponds to the change when flowing through the expansion valve 13, and the change between P4 and P1 is evaporation. This corresponds to the change when flowing through the vessel 14.
In addition, in this invention 1 and this invention 2, since the heat-medium cooling heat exchanger 43 is provided downstream of the outdoor heat exchanger 51 which functions as the condenser 12, the change between P2-P3 is This corresponds to a change when flowing through the condenser 12 and the heat medium cooling heat exchanger 43.
Here, focusing on the amount of enthalpy reduction between P2 and P3, the amount of enthalpy reduction (P2 D1 -P3 D1 , P2 D2 -P3 D2 ) of the present invention 1 and the present invention 2 is the amount of decrease in the reference enthalpy ( P2 B -P3 has decreased as much E1 to changes) between B, it can be seen that the reduction as much E2 against conventional reduction of the enthalpy of technology (P2 S -P3 S).
That is, in the present invention 1 and the present invention 2, the heat radiation of the heat medium M in the condenser 12 and the heat medium cooling heat exchanger 43 can be more radiated than the standard and the prior art, and the cooling capacity is improved accordingly. It can be said that.

〔第2実施形態〕
第1実施形態において、デシカントロータ40の処理空気量を減少させるとともに、装置のコンパクト化を図りながらも、ファン44及びファン45の所要動力を削減し、デシカントロータ40の消費動力を減らす構成として、図7に示すような構成を採用することができる。図8は、当該構成を採用した場合の空気線図を示している。図9は当該構成を採用した場合の空気の状態値を示している。
冷媒の圧縮動力は12.4kW、デシカントロータ40を通過させる処理空気A1および再生用空気A2の流量を560m3/h、室外空気A3の流量を280m3/hとしており、合計の流量は1400m3/hである。第1実施形態では、デシカントロータ40を通過させる処理空気A1および再生用空気A2の流量を700m3/hとしており、合計の流量は1400m3/hである。即ち、合計の流量は等しく、デシカントロータ40を通過させる空気量を約2割削減した条件である。
当該第2実施形態による空調システムでは、新たにファン46及び第2加湿機47を設け、室外空気A3を、当該第2加湿機47にて蒸発器14のドレン水により加湿して25℃程度まで冷却し、ファン46にて処理空気冷却熱交換器41へ導き、25℃程度まで冷却された室外空気A3と処理空気A1とを熱交換するように構成されている。これにより、処理空気A1の温度は、図8の測定点P4に示すように26.6℃まで冷却されることとなる。
P4−P5の間において、処理空気A1は、第1加湿機42にて水が噴霧されて加湿され、加湿による水分の蒸発潜熱が奪われる形態で、10.8℃だけ冷却される。第1加湿機42に導かれる処理空気A1は、吸湿部40aにて十分に除湿されたものであるので、第1加湿機42にて加湿された際に、加湿による水分が良好に蒸発して冷却されている。
一方、室外空気としての再生用空気A2は、再生用空気加熱熱交換器24にて86.6℃まで加熱された状態で、デシカントロータ40の再生部40bの通気性吸湿体40cを通過して再生し、ファン45にて外部へ排出される。
これにより、熱媒体冷却熱交換器43の出口における熱媒体Mの温度は、23.8℃程度となり、COPは5.56となる。また、第1加湿機42の水量は16kg/h、第2加湿機47の水量は6kg/hとした。合計水量は22kg/hであり,第1実施形態での必要水量を約2割削減できる。
このように、当該第2実施形態では、COPを低下させることなく、デシカントロータを通過させる空気量や必要水量を大幅に削減できる。
尚、当該第2実施形態では、ファン46及び第2加湿機47を設ける構成としたが、第2加湿機47を設けることなく、ファン46に直接ドレン水を導くように構成し、ファン46にて室外空気A3を加湿するようにしても構わない。
[Second Embodiment]
In the first embodiment, while reducing the amount of processing air of the desiccant rotor 40 and reducing the size of the apparatus, the required power of the fan 44 and the fan 45 is reduced, and the power consumption of the desiccant rotor 40 is reduced. A configuration as shown in FIG. 7 can be employed. FIG. 8 shows an air diagram in the case where the configuration is adopted. FIG. 9 shows air state values when this configuration is adopted.
The compression power of the refrigerant is 12.4 kW, the flow rate of the processing air A1 and the regeneration air A2 passing through the desiccant rotor 40 is 560 m 3 / h, the flow rate of the outdoor air A3 is 280 m 3 / h, and the total flow rate is 1400 m 3 / H. In the first embodiment, the flow rates of the processing air A1 and the regeneration air A2 that pass through the desiccant rotor 40 are 700 m 3 / h, and the total flow rate is 1400 m 3 / h. That is, the total flow rate is equal, and the amount of air passing through the desiccant rotor 40 is reduced by about 20%.
In the air conditioning system according to the second embodiment, a fan 46 and a second humidifier 47 are newly provided, and the outdoor air A3 is humidified with the drain water of the evaporator 14 by the second humidifier 47 to about 25 ° C. It cools, it guides to the process air cooling heat exchanger 41 with the fan 46, and it is comprised so that the outdoor air A3 and process air A1 which were cooled to about 25 degreeC may be heat-exchanged. As a result, the temperature of the processing air A1 is cooled to 26.6 ° C. as indicated by a measurement point P4 in FIG.
Between P4 and P5, the processing air A1 is cooled by 10.8 ° C. in a form in which water is sprayed and humidified by the first humidifier 42, and the latent heat of vaporization of moisture due to humidification is taken away. Since the processing air A1 guided to the first humidifier 42 has been sufficiently dehumidified by the moisture absorption part 40a, when humidified by the first humidifier 42, the moisture due to the humidification evaporates well. It is cooled.
On the other hand, the regeneration air A2 as outdoor air passes through the breathable moisture absorber 40c of the regeneration portion 40b of the desiccant rotor 40 in a state heated to 86.6 ° C. by the regeneration air heating heat exchanger 24. It is regenerated and discharged to the outside by the fan 45.
As a result, the temperature of the heat medium M at the outlet of the heat medium cooling heat exchanger 43 is about 23.8 ° C., and the COP is 5.56. The amount of water in the first humidifier 42 was 16 kg / h, and the amount of water in the second humidifier 47 was 6 kg / h. The total amount of water is 22 kg / h, and the required amount of water in the first embodiment can be reduced by about 20%.
Thus, in the said 2nd Embodiment, the air quantity and required water quantity which pass a desiccant rotor can be reduced significantly, without reducing COP.
In the second embodiment, the fan 46 and the second humidifier 47 are provided. However, the drain water is directly guided to the fan 46 without providing the second humidifier 47. Thus, the outdoor air A3 may be humidified.

〔別実施形態〕
デシカント空調装置におけるデシカントロータ40の再生部40bは、エンジン21のエンジン冷却水の回収熱ではなく、エンジン21の排ガスの排熱を利用するように構成することもでき、またその両方を利用することもできる。
[Another embodiment]
The regeneration unit 40b of the desiccant rotor 40 in the desiccant air conditioner can be configured to use the exhaust heat of the exhaust gas of the engine 21 instead of the recovered heat of the engine coolant of the engine 21, or use both of them. You can also.

本発明の空調システムは、比較的簡易な構成により、安全性を維持しながらも、特に冷房運転時における冷房能力を向上させることができる空調システムとして、有効に利用可能である。   The air-conditioning system of the present invention can be effectively used as an air-conditioning system capable of improving the cooling capacity particularly during cooling operation while maintaining safety with a relatively simple configuration.

M :熱媒体
E :排熱回収媒体
L :熱媒体循環回路
L1 :第1回路
L2 :第2回路
11 :圧縮機
12 :凝縮器
13 :膨張弁
14 :蒸発器
15 :四方弁(通流状態切替手段の一例)
21 :エンジン
22 :排熱回収熱交換器
23 :熱媒体加熱熱交換器
24 :再生用空気加熱熱交換器
25 :切替弁(循環回路切替手段)
27 :エンジン排気
40 :デシカントロータ
42 :第1加湿機
43 :熱媒体冷却熱交換器
50 :室内機
51 :室外熱交換器
53 ;ラジエータ
M: Heat medium E: Waste heat recovery medium L: Heat medium circulation circuit L1: First circuit L2: Second circuit 11: Compressor 12: Condenser 13: Expansion valve 14: Evaporator 15: Four-way valve (flowing state) An example of switching means)
21: Engine 22: Waste heat recovery heat exchanger 23: Heat medium heating heat exchanger 24: Regenerative air heating heat exchanger 25: Switching valve (circulation circuit switching means)
27: Engine exhaust 40: Desiccant rotor 42: First humidifier 43: Heat medium cooling heat exchanger 50: Indoor unit 51: Outdoor heat exchanger 53; Radiator

Claims (5)

エンジンにより駆動されて熱媒体を圧縮する圧縮機と、熱媒体から放熱させる凝縮器と、熱媒体を膨張させる膨張弁と、熱媒体に吸熱させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載順に熱媒体を循環する熱媒体循環回路とを備え、前記凝縮器又は前記蒸発器を通流する熱媒体と熱交換した空調用空気を空調対象空間へ供給するエンジン駆動式ヒートポンプ装置を備えた空調システムであって、
回転駆動する通気性吸湿体からなり吸湿部に通流させる処理空気の水分を吸着するとともに吸着した水分を再生部に通流させる再生用空気に放出するデシカントロータと、前記デシカントロータの前記吸湿部を通過した処理空気を加湿する加湿機とを有するデシカント空調装置を備え、
前記デシカントロータの前記吸湿部を通流し前記加湿機にて加湿された処理空気と、前記熱媒体循環回路の前記凝縮器と前記膨張弁との間を通流する熱媒体とを熱交換可能な熱媒体冷却熱交換器を備え、
前記エンジンの排熱にて前記デシカントロータの前記再生部において前記通気性吸湿体を再生可能に構成され
前記エンジンの排熱と排熱回収媒体とを熱交換させる排熱回収熱交換器と、前記デシカントロータの前記再生部に通流させる再生用空気と排熱回収媒体とを熱交換させる再生用空気加熱熱交換器と、前記排熱回収熱交換器と前記再生用空気加熱熱交換器との間で排熱回収媒体を循環させる排熱回収媒体循環回路とを備え、
前記デシカントロータの前記吸湿部を通過した処理空気と再生用空気とを熱交換する処理空気冷却熱交換器を備え、
再生用空気は、前記処理空気冷却熱交換器にて処理空気との熱交換により加熱され、前記再生用空気加熱熱交換器にて排熱回収媒体との熱交換により加熱された後、前記デシカントロータの前記再生部へ導かれるように構成されている空調システム。
A compressor driven by the engine to compress the heat medium; a condenser for releasing heat from the heat medium; an expansion valve for expanding the heat medium; an evaporator for absorbing heat to the heat medium; the compressor; the condenser; The expansion valve and the evaporator include a heat medium circulation circuit that circulates the heat medium in the order of description, and supplies the air for air conditioning exchanged with the condenser or the heat medium flowing through the evaporator to the air-conditioning target space. An air conditioning system equipped with an engine-driven heat pump device,
A desiccant rotor that is composed of a breathable hygroscopic body that rotates and adsorbs moisture in the processing air that flows through the hygroscopic part, and that releases the adsorbed water to the regeneration air that passes through the regenerating part, and the hygroscopic part of the desiccant rotor A desiccant air conditioner having a humidifier for humidifying the processing air that has passed through
Heat exchange can be performed between the processing air that has flowed through the moisture absorption part of the desiccant rotor and humidified by the humidifier, and the heat medium that flows between the condenser and the expansion valve of the heat medium circulation circuit. A heat medium cooling heat exchanger,
The breathable moisture absorber can be regenerated in the regeneration part of the desiccant rotor by exhaust heat of the engine ,
An exhaust heat recovery heat exchanger for exchanging heat between the exhaust heat of the engine and an exhaust heat recovery medium, and regeneration air for exchanging heat between the regeneration air passed through the regeneration unit of the desiccant rotor and the exhaust heat recovery medium A heating heat exchanger, and an exhaust heat recovery medium circulation circuit for circulating an exhaust heat recovery medium between the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger,
A processing air cooling heat exchanger for exchanging heat between the processing air that has passed through the moisture absorption part of the desiccant rotor and the regeneration air;
The regeneration air is heated by heat exchange with the treatment air in the treatment air cooling heat exchanger, heated by the heat exchange with the exhaust heat recovery medium in the regeneration air heating heat exchanger, and then the desiccant. An air conditioning system configured to be guided to the regeneration unit of the rotor.
エンジンにより駆動されて熱媒体を圧縮する圧縮機と、熱媒体から放熱させる凝縮器と、熱媒体を膨張させる膨張弁と、熱媒体に吸熱させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載順に熱媒体を循環する熱媒体循環回路とを備え、前記凝縮器又は前記蒸発器を通流する熱媒体と熱交換した空調用空気を空調対象空間へ供給するエンジン駆動式ヒートポンプ装置を備えた空調システムであって、  A compressor driven by the engine to compress the heat medium; a condenser for releasing heat from the heat medium; an expansion valve for expanding the heat medium; an evaporator for absorbing heat to the heat medium; the compressor; the condenser; The expansion valve and the evaporator include a heat medium circulation circuit that circulates the heat medium in the order of description, and supplies the air for air conditioning exchanged with the condenser or the heat medium flowing through the evaporator to the air-conditioning target space. An air conditioning system equipped with an engine-driven heat pump device,
回転駆動する通気性吸湿体からなり吸湿部に通流させる処理空気の水分を吸着するとともに吸着した水分を再生部に通流させる再生用空気に放出するデシカントロータと、前記デシカントロータの前記吸湿部を通過した処理空気を加湿する加湿機とを有するデシカント空調装置を備え、  A desiccant rotor that is composed of a breathable hygroscopic body that rotates and adsorbs moisture in the processing air that flows through the hygroscopic part, and that releases the adsorbed water to the regeneration air that passes through the regenerating part, and the hygroscopic part of the desiccant rotor A desiccant air conditioner having a humidifier for humidifying the processing air that has passed through
前記デシカントロータの前記吸湿部を通流し前記加湿機にて加湿された処理空気と、前記熱媒体循環回路の前記凝縮器と前記膨張弁との間を通流する熱媒体とを熱交換可能な熱媒体冷却熱交換器を備え、  Heat exchange can be performed between the processing air that has flowed through the moisture absorption part of the desiccant rotor and humidified by the humidifier, and the heat medium that flows between the condenser and the expansion valve of the heat medium circulation circuit. A heat medium cooling heat exchanger,
前記エンジンの排熱にて前記デシカントロータの前記再生部において前記通気性吸湿体を再生可能に構成されており、  The breathable moisture absorber is configured to be regenerated in the regeneration portion of the desiccant rotor by exhaust heat of the engine,
前記エンジンの排熱と排熱回収媒体とを熱交換させる排熱回収熱交換器と、前記デシカントロータの前記再生部に通流させる再生用空気と排熱回収媒体とを熱交換させる再生用空気加熱熱交換器と、前記排熱回収熱交換器と前記再生用空気加熱熱交換器との間で排熱回収媒体を循環させる排熱回収媒体循環回路とを備え、  An exhaust heat recovery heat exchanger for exchanging heat between the exhaust heat of the engine and an exhaust heat recovery medium, and regeneration air for exchanging heat between the regeneration air passed through the regeneration unit of the desiccant rotor and the exhaust heat recovery medium A heating heat exchanger, and an exhaust heat recovery medium circulation circuit for circulating an exhaust heat recovery medium between the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger,
前記デシカントロータの前記吸湿部を通過した処理空気と加湿機によって加湿された外気空気を熱交換する処理空気冷却熱交換器を備え、  A processing air cooling heat exchanger that exchanges heat between the processing air that has passed through the moisture absorption part of the desiccant rotor and the outside air that has been humidified by a humidifier;
再生用空気は、前記再生用空気加熱熱交換器にて排熱回収媒体との熱交換により加熱された後、前記デシカントロータの前記再生部へ導かれるように構成されている空調システム。  The air conditioning system is configured such that the regeneration air is heated by heat exchange with the exhaust heat recovery medium in the regeneration air heating heat exchanger and then guided to the regeneration unit of the desiccant rotor.
前記加湿機にて処理空気を加湿する水分は、前記蒸発器にて発生するドレン水である請求項1又は2に記載の空調システム。  The air conditioning system according to claim 1 or 2, wherein the moisture that humidifies the processing air by the humidifier is drain water generated by the evaporator. 熱媒体循環回路に、熱媒体と室内空気とを熱交換させる室内機と、熱媒体と室外空気とを熱交換させる室外熱交換器と、前記室内機を前記蒸発器として機能させ前記室外熱交換器を前記凝縮器として機能させる冷房運転状態と前記室内機を前記凝縮器として機能させ前記室外熱交換器を前記蒸発器として機能させる暖房運転状態とに熱媒体の通流状態を切り替える通流状態切替手段を備えている請求項1乃至3の何れか一項に記載の空調システム。  An indoor unit that exchanges heat between the heat medium and indoor air in a heat medium circulation circuit, an outdoor heat exchanger that exchanges heat between the heat medium and outdoor air, and the outdoor unit that functions as the evaporator A flow-through state for switching the flow state of the heat medium between a cooling operation state in which a condenser functions as the condenser and a heating operation state in which the indoor unit functions as the condenser and the outdoor heat exchanger functions as the evaporator The air conditioning system according to any one of claims 1 to 3, further comprising a switching unit. 前記通流状態切替手段が前記暖房運転状態に切り替えている状態において、前記熱媒体循環回路の前記蒸発器と前記圧縮機との間を通流する熱媒体と排熱回収媒体とを熱交換可能な熱媒体加熱熱交換器を備え、  In the state where the flow state switching means is switched to the heating operation state, heat exchange can be performed between the heat medium flowing between the evaporator and the compressor of the heat medium circulation circuit and the exhaust heat recovery medium. Equipped with a simple heat medium heating heat exchanger,
前記排熱回収媒体循環回路には、前記排熱回収熱交換器と前記再生用空気加熱熱交換器  The exhaust heat recovery medium circulation circuit includes the exhaust heat recovery heat exchanger and the regeneration air heating heat exchanger.
との間で排熱回収媒体を循環させる第1回路と、前記排熱回収熱交換器と前記熱媒体加熱熱交換器との間で排熱回収媒体を循環させる第2回路とを切り替える循環回路切替手段が設けられている請求項4に記載の空調システム。A circulation circuit that switches between a first circuit that circulates the exhaust heat recovery medium between and a second circuit that circulates the exhaust heat recovery medium between the exhaust heat recovery heat exchanger and the heat medium heating heat exchanger The air conditioning system according to claim 4, wherein switching means is provided.
JP2011076513A 2011-03-30 2011-03-30 Air conditioning system Expired - Fee Related JP5285734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076513A JP5285734B2 (en) 2011-03-30 2011-03-30 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076513A JP5285734B2 (en) 2011-03-30 2011-03-30 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2012211715A JP2012211715A (en) 2012-11-01
JP5285734B2 true JP5285734B2 (en) 2013-09-11

Family

ID=47265817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076513A Expired - Fee Related JP5285734B2 (en) 2011-03-30 2011-03-30 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5285734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573759B1 (en) 2014-04-18 2015-12-02 주식회사 경동나비엔 Apparatus for dehumidifying and cooling air
KR101560823B1 (en) * 2014-04-21 2015-10-16 주식회사 경동나비엔 Hybrid type heat pump device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130391A (en) * 2001-10-18 2003-05-08 Sanyo Electric Co Ltd Air conditioner
JP3933494B2 (en) * 2002-02-21 2007-06-20 大阪瓦斯株式会社 Desiccant dehumidification method and desiccant dehumidifier
JP2003279070A (en) * 2002-03-22 2003-10-02 Tosetz Co Ltd Hybrid type desciccant air-conditioning system
JP2004085096A (en) * 2002-08-27 2004-03-18 Univ Waseda Hybrid-type desiccant air-conditioning system
JP2006038260A (en) * 2004-07-22 2006-02-09 Osaka Gas Co Ltd Condensed refrigerant supercooling system in vapor compression type refrigeration machine
JP4816267B2 (en) * 2006-06-09 2011-11-16 日本エクスラン工業株式会社 Humidity control device

Also Published As

Publication number Publication date
JP2012211715A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
KR101201010B1 (en) Humidity control device
JP2010078193A (en) Desiccant air conditioning device
JP2009275955A (en) Desiccant air-conditioning device
JPH1096542A (en) Air conditioning system
JP2007187386A (en) Dehumidification air conditioning system
TWI702367B (en) Air conditioning system
JP2005164165A (en) Air conditioning system
JP2001241693A (en) Air conditioner
JPH09196482A (en) Desiccant air-conditioning apparatus
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JP2011208828A (en) Air conditioning system using steam adsorbent
JP5285734B2 (en) Air conditioning system
WO2007080979A1 (en) Dehumidifying air conditioning system
JP2007327693A (en) Dehumidifying air-conditioning system
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JPH1151421A (en) Outer air treating unit
JP4011724B2 (en) Desiccant air conditioning method
JP6452368B2 (en) Fuel cell equipment type air conditioning system
JP6120759B2 (en) Air conditioning system
JP2017003224A (en) Humidity controller
JP4423683B2 (en) Desiccant air conditioning method
JP5311734B2 (en) Air conditioner
JP2008304113A (en) Humidifying air-conditioning system
JP3743581B2 (en) Heat pump and operation method thereof
JPH0894202A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130531

R150 Certificate of patent or registration of utility model

Ref document number: 5285734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees