JP5285323B2 - Charge control device for secondary battery for vehicle - Google Patents

Charge control device for secondary battery for vehicle Download PDF

Info

Publication number
JP5285323B2
JP5285323B2 JP2008111346A JP2008111346A JP5285323B2 JP 5285323 B2 JP5285323 B2 JP 5285323B2 JP 2008111346 A JP2008111346 A JP 2008111346A JP 2008111346 A JP2008111346 A JP 2008111346A JP 5285323 B2 JP5285323 B2 JP 5285323B2
Authority
JP
Japan
Prior art keywords
current
secondary battery
charging
auxiliary
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008111346A
Other languages
Japanese (ja)
Other versions
JP2009268176A (en
Inventor
昭治 堺
潔 青山
智明 ▲高▼井
覚 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008111346A priority Critical patent/JP5285323B2/en
Publication of JP2009268176A publication Critical patent/JP2009268176A/en
Application granted granted Critical
Publication of JP5285323B2 publication Critical patent/JP5285323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、車両に搭載される二次電池の充電状態を適正に制御するための車両用二次電池の充電制御装置に関する。   The present invention relates to a charging control device for a vehicular secondary battery for appropriately controlling a charging state of a secondary battery mounted on the vehicle.

近年、車両において電気および電子機器が多く搭載されるようになり、走行時だけでなく、停止時においても大量の電気エネルギーが求められている。車両に搭載された二次電池は、通常交流発電機からの出力電圧により充電され、車両に備えられた各種負荷に対して放電が行われる。充電の際の充電電圧及び放電の際の放電電圧はレギュレータにより制御されており、この充放電電圧を以後調整電圧という。   In recent years, many electric and electronic devices have been installed in vehicles, and a large amount of electric energy is required not only when traveling but also when stopping. The secondary battery mounted on the vehicle is normally charged by the output voltage from the AC generator, and discharged to various loads provided in the vehicle. The charging voltage at the time of charging and the discharging voltage at the time of discharging are controlled by a regulator, and this charging / discharging voltage is hereinafter referred to as an adjustment voltage.

二次電池は、車両始動前の放置状態による自己放電または車両に搭載された時計や電子機器などの記憶回路によって放電するため、放置状態が長い場合、車両をスムースに再始動できないおそれがある。そのため、車両始動直後に二次電池が低電圧状態のときに充電する補充電により、二次電池を充電する必要がある。   Since the secondary battery is self-discharged due to the left state before starting the vehicle or discharged by a memory circuit such as a watch or an electronic device mounted on the vehicle, there is a possibility that the vehicle cannot be restarted smoothly if the left state is long. Therefore, it is necessary to charge the secondary battery by supplementary charging that is performed when the secondary battery is in a low voltage state immediately after the vehicle is started.

特許第3891845号(特許文献1)には、電圧と温度により予め設定された所定の補充電完了判定電流と補充電における電流とを比較し、電流が補充電完了判定電流よりも小さい場合に、充電制御に移行することが記載されている。しかし、二次電池の充電状態に関わらず、補充電完了判定電流を同じ値で充電制御を行っていた。図7に示すように、垂下電流は充電時間の経過と共に低下し、二次電池容量が低SOCの充電状態では、本来維持したい二次電池の充電容量よりも低い値で維持するおそれがある(SOCとはState Of Charge=満充電状態を100%とする残存容量)。つまり、高SOCの場合と同様に補充電完了判定電流を同じ値にすると充電分極の影響により、本来維持したい二次電池の充電容量よりも低い値で充電が完了するおそれがあり、二次電池の寿命が短くなる問題があった。
特許第3891845号
Japanese Patent No. 389845 (Patent Document 1) compares a predetermined auxiliary charging completion determination current preset by voltage and temperature with a current in auxiliary charging, and when the current is smaller than the auxiliary charging completion determination current, It is described that the control shifts to charge control. However, regardless of the state of charge of the secondary battery, charge control is performed with the same value for the auxiliary charge completion determination current. As shown in FIG. 7, the drooping current decreases as the charging time elapses, and there is a risk that the secondary battery capacity may be maintained at a value lower than the secondary battery charging capacity that is originally desired to be maintained in a low SOC charging state ( SOC is State Of Charge = remaining capacity with 100% full charge). That is, if the auxiliary charging completion determination current is set to the same value as in the case of high SOC, charging may be completed at a value lower than the charging capacity of the secondary battery to be originally maintained due to the influence of charging polarization. There was a problem of shortening the service life.
Japanese Patent No. 389845

本願発明は、このような事情に鑑みてなされたものであり、二次電池の充電状態を制御することで、二次電池の維持したい充電状態の精度を向上させ、二次電池の劣化を抑制でき、二次電池の寿命を延ばすことができる車両用二次電池の充電制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and by controlling the state of charge of the secondary battery, the accuracy of the state of charge desired to be maintained by the secondary battery is improved and the deterioration of the secondary battery is suppressed. An object of the present invention is to provide a vehicle secondary battery charge control device that can extend the life of the secondary battery.

上記課題を解決するために本発明者は、二次電池の充電状態を適正に制御することができる車両用二次電池の充電制御装置について検討を重ねた結果本発明をなすに至った。   In order to solve the above problems, the present inventor has made the present invention as a result of repeated studies on a charging control device for a secondary battery for a vehicle that can appropriately control the charging state of the secondary battery.

本発明の車両用二次電池の充電制御装置は、交流発電機からの出力電圧を調整するレギュレータと、レギュレータから調整された調整電圧により充放電される二次電池と、二次電池の電圧を検出する電圧検出手段と、二次電池の電流を検出する電流検出手段と、二次電池の温度を検出する温度検出手段と、を備え、車両始動直後に二次電池を充電する補充電制御を行い、その後所定の電池容量に制御する電池容量制御を行う、車両用二次電池の充電制御装置において、補充電制御は、車両始動により補充電が開始され、この補充電中の二次電池の電流、電圧及び温度から補充電完了判定電流を求める補充電完了判定検出手段と、検出される電流と補充電完了判定電流とを比較し補充電完了を判定する電流比較判定手段と、を有し、補充電完了判定検出手段は、所定の目標補充電容量を有し、補充電完了時の補充電容量が目標補充電容量より大きい場合、補充電完了判定電流を小さく再設定して前記二次電池の補充電を継続する再設定手段を有することを特徴とする。 A charging control device for a secondary battery for a vehicle according to the present invention includes a regulator that adjusts an output voltage from an AC generator, a secondary battery that is charged and discharged by an adjustment voltage adjusted from the regulator, and a voltage of the secondary battery. A voltage detection means for detecting, a current detection means for detecting the current of the secondary battery, and a temperature detection means for detecting the temperature of the secondary battery, and the auxiliary charging control for charging the secondary battery immediately after starting the vehicle. In the vehicular secondary battery charge control device, which performs the battery capacity control to control to a predetermined battery capacity after that, the auxiliary charge control starts the auxiliary charge when the vehicle is started, and the secondary battery being supplemented is charged. Complementary charge completion determination detection means for obtaining a supplementary charge completion determination current from current, voltage and temperature, and a current comparison determination means for comparing the detected current and the supplementary charge completion determination current to determine the completion of supplementary charge. Completion of supplementary charging Constant detecting means has a predetermined target replenishment capacity, when auxiliary charge capacity when auxiliary charge completion is larger than the target recruitment capacity, the supplemental charging completion determination current smaller reconfigure auxiliary charge of the secondary battery It has the resetting means which continues .

本発明の車両用二次電池の充電制御装置は、車両始動直後に電圧検出手段から検出する電圧と電流検出手段から検出する電流及び温度検出手段から検出する温度とを補充電完了判定検出手段によって、補充電完了判定電流を求める。そして、電流比較判定手段によって、電流と補充電完了判定電流とを比較し、二次電池の補充電を継続するかを判定する。   The charging control device for a secondary battery for a vehicle according to the present invention includes a voltage detected from the voltage detecting unit immediately after starting the vehicle, a current detected from the current detecting unit, and a temperature detected from the temperature detecting unit by the auxiliary charging completion determination detecting unit. Then, the auxiliary charging completion determination current is obtained. Then, the current comparison determination unit compares the current and the auxiliary charging completion determination current to determine whether to continue the auxiliary charging of the secondary battery.

つまり、車両始動直後の補充電制御において、二次電池の充電状態を把握し、補充電完了判定電流を補正することで、二次電池の充電状態の精度を向上させ、二次電池の劣化を抑制でき、寿命を延ばすことができる。   In other words, in the auxiliary charging control immediately after starting the vehicle, by grasping the charging state of the secondary battery and correcting the auxiliary charging completion determination current, the accuracy of the charging state of the secondary battery is improved and the secondary battery is deteriorated. It can be suppressed and the life can be extended.

本発明の車両用二次電池の充電制御装置は、車両に搭載された交流発電機と二次電池とレギュレータとを備える。   The charging control apparatus for a secondary battery for a vehicle according to the present invention includes an AC generator, a secondary battery, and a regulator mounted on the vehicle.

交流発電機は、車両のエンジンによって駆動され、交流電圧を発生し、整流器は交流発電機の交流電圧を整流して整流電圧を発生する。レギュレータは、後述するマイクロコンピュータにより制御され、整流器から出力された電圧を制御し、適正な調整電圧として二次電池や電気負荷に出力する。   The AC generator is driven by a vehicle engine to generate an AC voltage, and the rectifier rectifies the AC voltage of the AC generator to generate a rectified voltage. The regulator is controlled by a microcomputer which will be described later, controls the voltage output from the rectifier, and outputs it to the secondary battery or electric load as an appropriate adjustment voltage.

電流検出手段は、二次電池の充電電流或いは放電電流を検出し、電圧検出手段は、二次電池の端子間電圧を検出し、温度検出手段は、二次電池の温度を検出する。   The current detecting means detects a charging current or a discharging current of the secondary battery, the voltage detecting means detects a voltage between terminals of the secondary battery, and the temperature detecting means detects the temperature of the secondary battery.

補充電制御は、電流比較判定手段と補充電完了判定検出手段を有し、車両始動後の二次電池の補充電を制御する。   The auxiliary charging control includes current comparison determination means and auxiliary charging completion determination detection means, and controls auxiliary charging of the secondary battery after starting the vehicle.

電流比較判定手段は、電流検出手段により検出される検出電流と補充電完了判定電流を比較し、補充電完了判定電流が検出電流よりも小さい場合、二次電池の補充電を継続することが好ましい。この場合、二次電池の充電状態が低SOCと判断され、二次電池の補充電制御を継続することによって、二次電池を適正な充電状態にでき、二次電池の充電状態の精度を向上させることができる。   Preferably, the current comparison determination unit compares the detection current detected by the current detection unit with the auxiliary charge completion determination current, and when the auxiliary charge completion determination current is smaller than the detection current, it is preferable to continue auxiliary charging of the secondary battery. . In this case, the state of charge of the secondary battery is determined to be low SOC, and the secondary battery can be properly charged by continuing the auxiliary charge control of the secondary battery, and the accuracy of the state of charge of the secondary battery is improved. Can be made.

補充電完了判定検出手段において、補充電完了判定電流を求める二次電池の電流、電圧及び温度は、補充電中の所定時間内の平均電流、平均電圧及び平均温度から求めることが好ましい。(平均電流とは、検出した電流の値の総計をその個数で割った電流を平均電流という。平均電圧、平均温度も同様。)そして、平均電流と検出した温度に応じて予め設定された所定の補充電完了判定電流により二次電池の充電状態を制御することができる。   In the auxiliary charging completion determination detection means, the current, voltage and temperature of the secondary battery for determining the auxiliary charging completion determination current are preferably determined from the average current, average voltage and average temperature within a predetermined time during auxiliary charging. (The average current is the current obtained by dividing the total value of the detected currents by the number thereof. The average current is the same as the average voltage and the average temperature.) And a predetermined value set in advance according to the average current and the detected temperature. The charging state of the secondary battery can be controlled by the auxiliary charging completion determination current.

また、所定時間内の平均電流、平均電圧及び平均温度の各々の平均値を用いることで、取得した値の変動要素の影響に対応できるため、充電状態の精度を向上させ、二次電池の劣化を抑制でき、寿命を延ばすことができる。   In addition, by using the average values of the average current, average voltage and average temperature within a predetermined time, it is possible to cope with the influence of fluctuation factors of the acquired value, so that the accuracy of the charge state is improved and the secondary battery is deteriorated. Can be suppressed and the life can be extended.

補充電完了判定検出手段は、所定の目標補充電容量を有し、補充電完了時の補充電容量が目標補充電容量より大きい場合、検出電流より補充電完了判定電流を小さく再設定する再設定手段を有することが好ましい。補充電容量は、補充電開始時からの電流積算値ΣIdtより求められる。そして、検出した温度に応じて予め設定された所定の補充電完了判定電流により二次電池の充電状態を制御することができる。再設定手段は、検出電流より補充電完了判定電流を小さくすることで、二次電池の補充電制御を継続し、二次電池を適正な充電容量にすることができ、二次電池の充電状態の精度を向上させ、二次電池の劣化を抑制でき、寿命を延ばすことができる。 The auxiliary charging completion determination detection means has a predetermined target auxiliary charging capacity, and when the auxiliary charging capacity at the time of completion of auxiliary charging is larger than the target auxiliary charging capacity, resetting is performed to reset the auxiliary charging completion determination current to be smaller than the detection current. It is preferable to have a means. The auxiliary charge capacity is obtained from the integrated current value ΣIdt from the start of auxiliary charge. The state of charge of the secondary battery can be controlled by a predetermined auxiliary charge completion determination current set in advance according to the detected temperature. By resetting the auxiliary charging completion determination current smaller than the detection current, the resetting means can continue the auxiliary charging control of the secondary battery and make the secondary battery have an appropriate charging capacity. The accuracy of the battery can be improved, deterioration of the secondary battery can be suppressed, and the life can be extended.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

(実施例1)
図1には、本発明に係る自動車用バッテリBを充電制御するための充電制御装置の実施例1の構成例が示される。なお、バッテリBは、二次電池の一種である鉛蓄電池等により構成されている。
Example 1
FIG. 1 shows a configuration example of Embodiment 1 of a charging control device for controlling charging of a vehicle battery B according to the present invention. The battery B is constituted by a lead storage battery or the like which is a kind of secondary battery.

この車両用二次電池の充電制御装置は、図1に示されるように、交流発電機10(以下発電機10)、整流器20、レギュレータ30、電流検出手段としての電流センサ40、電圧検出手段としての電圧センサ50、温度検出手段としての温度センサ60と、マイクロコンピュータ70を備えている。   As shown in FIG. 1, this vehicle secondary battery charging control device includes an AC generator 10 (hereinafter referred to as “generator 10”), a rectifier 20, a regulator 30, a current sensor 40 as current detection means, and a voltage detection means. Voltage sensor 50, temperature sensor 60 as temperature detecting means, and microcomputer 70 are provided.

発電機10は、オルタネータとも呼ばれ、車両のエンジンによって駆動され、交流電圧を発生させる。整流器20は、発生した交流電圧を整流して整流電圧を発生する。レギュレータ30は、後述するマイクロコンピュータ70による制御のもと、整流器20の整流電圧を制御し、調整電圧としてバッテリB及び電気負荷Lに出力する。電流センサ40は、バッテリBの充電電流或いは放電電流を検出する。電圧センサ50は、バッテリBの端子間電圧を検出する。温度センサ60は、バッテリBの液温、側面或いは底面のケース温度を検出する。   The generator 10 is also called an alternator, and is driven by a vehicle engine to generate an alternating voltage. The rectifier 20 rectifies the generated AC voltage to generate a rectified voltage. The regulator 30 controls the rectified voltage of the rectifier 20 under the control of the microcomputer 70 described later, and outputs the rectified voltage to the battery B and the electric load L as an adjusted voltage. The current sensor 40 detects the charging current or discharging current of the battery B. The voltage sensor 50 detects the voltage between the terminals of the battery B. The temperature sensor 60 detects the liquid temperature of the battery B, the case temperature of the side surface or the bottom surface.

マイクロコンピュータ70は、中央処理装置としてのCPUやROM及びRAMを備え(図示せず)、制御プログラムを図2で示すフローチャートに従い実行する。このマイクロコンピュータ70は、上記制御プログラムの実行中に電流センサ40、電圧センサ50及び温度センサ60の検出値に基づきバッテリBの充放電収支の算出、レギュレータ30の制御に必要な処理やデータの記憶処理などを行う。
なお、マイクロコンピュータ70は、バッテリBから常時給電されて作動状態にあり、自動車のイグニッションスイッチIGのオンにより、制御プログラムの実行を開始する。上記制御プログラムはマイクロコンピュータ70のROMに予め記憶されている。
The microcomputer 70 includes a CPU, ROM, and RAM (not shown) as a central processing unit, and executes a control program according to the flowchart shown in FIG. The microcomputer 70 calculates the charge / discharge balance of the battery B based on the detection values of the current sensor 40, the voltage sensor 50, and the temperature sensor 60 during the execution of the control program, and stores the processes and data necessary for controlling the regulator 30. Perform processing.
Note that the microcomputer 70 is in an operating state by being constantly supplied with power from the battery B, and starts executing the control program when the ignition switch IG of the automobile is turned on. The control program is stored in advance in the ROM of the microcomputer 70.

本実施例1の制御プログラムの作動について、図2を用いて説明する。車両始動直後のバッテリBの補充電を行うために、マイクロコンピュータ70が図2で示すフローチャートに従い、所定時間内の平均電流、平均電圧及び平均温度を用いることによって、補充電完了判定電流の補正を判定処理する。   The operation of the control program according to the first embodiment will be described with reference to FIG. In order to perform supplementary charging of the battery B immediately after starting the vehicle, the microcomputer 70 corrects the supplementary charging completion determination current by using the average current, average voltage and average temperature within a predetermined time according to the flowchart shown in FIG. Judgment processing.

上述のように、制御プログラムの実行が開始されると、ステップ100からステップ170の処理を周期1(sec)毎に実施する。なお制御プログラム開始直後は、補充電完了判定電流Ihの値は決まっていない。ステップ100において、電流センサ40の検出電流Iと電圧センサ50の検出電圧Vと温度センサ60の検出温度T及び発電機10のデューティ信号Fdutyが計測され読み込まれ、一時的にRAMに記憶される。Fdutyを計測することにより、発電機10の回転数および負荷を把握することができる。
次にステップ110において、平均電流より求められる初期垂下電流値Iavの値が決定しているかを判定し、Iavの値が決まっていない場合は、ステップ120へ進む。ステップ120において、デューティ信号Fdutyを100%にしてオルタネータ(発電機10)が最大の発電に達しているかを判定する。最大の発電に達していない場合は、ステップ130へ進む。
As described above, when the execution of the control program is started, the processing from step 100 to step 170 is performed every cycle (sec). Note that the value of the auxiliary charging completion determination current Ih is not determined immediately after the start of the control program. In step 100, the detected current I of the current sensor 40, the detected voltage V of the voltage sensor 50, the detected temperature T of the temperature sensor 60, and the duty signal Fduty of the generator 10 are measured and read and temporarily stored in the RAM. By measuring Fduty, the rotational speed and load of the generator 10 can be grasped.
Next, in step 110, it is determined whether the value of the initial droop current value Iav obtained from the average current has been determined. If the value of Iav has not been determined, the process proceeds to step 120. In step 120, it is determined whether the alternator (generator 10) has reached maximum power generation by setting the duty signal Fduty to 100%. If the maximum power generation has not been reached, the process proceeds to step 130.

ステップ130において、変数countの値を判定し、countの値が60よりも小さい場合、ステップ140へ進む。ステップ140において、countの値を1つずつ増加させ、ステップ100でRAMに記憶された検出電流Iを平均電流Iavに、検出電圧Vを平均電圧Vavに、検出温度Tを平均温度Tavに各々加算していく。   In step 130, the value of the variable count is determined, and if the count value is smaller than 60, the process proceeds to step 140. In step 140, the count value is incremented by one, and the detected current I stored in the RAM in step 100 is added to the average current Iav, the detected voltage V is added to the average voltage Vav, and the detected temperature T is added to the average temperature Tav. I will do it.

そしてcountの値が60になるまで、所定時間内でステップ100からステップ140までの処理が行われ、各々サンプリング数60個の値を合計し、平均値を各々算出する。平均値を算出することで、値の変動による影響を受けないようにし、マイクロコンピュータ70がバッテリBの充放電を正確に制御することができる。ステップ100からステップ140の過程で、ステップ130によりcountの値が60よりも大きくなったと肯定されたとき、つまり60個の値が取得されたときに、ステップ150で平均電流である初期垂下電流値Iavが決定したことになる。   Until the count value reaches 60, the processing from step 100 to step 140 is performed within a predetermined time, and the values of 60 samplings are summed, and the average value is calculated. By calculating the average value, the microcomputer 70 can be prevented from being affected by the fluctuation of the value, and the microcomputer 70 can accurately control the charge / discharge of the battery B. In the process from step 100 to step 140, when it is affirmed in step 130 that the count value is greater than 60, that is, when 60 values are obtained, the initial droop current value that is the average current in step 150 Iav has decided.

次にステップ100に戻り、電流センサ40の検出電流Iと電圧センサ50の検出電圧Vと温度センサ60の検出温度T及びデューティ信号Fdutyが計測され読み込まれる。ステップ110にて、初期垂下電流値Iavが決定したことにより判定で肯定され、ステップ160において、補充電完了判定電流検出手段によりIavと温度Tを、例えば図3に示される、予め設定された初期垂下電流と温度とに対する補充電完了判定電流マップに入力し、補充電完了判定電流Ihを求める。   Next, returning to step 100, the detected current I of the current sensor 40, the detected voltage V of the voltage sensor 50, the detected temperature T of the temperature sensor 60, and the duty signal Fduty are measured and read. In step 110, the determination is affirmed by determining that the initial droop current value Iav is determined. In step 160, Iav and temperature T are set by the auxiliary charging completion determination current detection means, for example, as shown in FIG. The auxiliary charge completion determination current map for the droop current and temperature is input to obtain the auxiliary charge completion determination current Ih.

次にステップ170において、電流比較判定手段により検出電流Iが補充電完了判定電流Ihよりも大きい場合には、二次電池の充電状態が低いと判断され、ステップ100に戻り、図2に示された実施例1の動作に移行し、充電を継続する。これによって、図4に示すように、図4(a)従来の誤差において、開始SOC40%の低SOC状態で充電を開始した場合、本来維持したい充電状態との誤差は、約―4%から―5%の間であった。つまり、維持したいバッテリBの充電状態よりも低い値であったが、本発明により、図4(b)に示すように、開始SOC40%の低SOC状態であっても、誤差は0%に近くなり、二次電池の維持したい充電状態への精度を向上させることができた。   Next, in step 170, when the detected current I is larger than the auxiliary charge completion determination current Ih by the current comparison determination means, it is determined that the state of charge of the secondary battery is low, and the process returns to step 100 and shown in FIG. The operation proceeds to the operation of the first embodiment, and the charging is continued. Accordingly, as shown in FIG. 4, when charging is started in a low SOC state with 40% starting SOC in the conventional error shown in FIG. 4 (a), the error from the state of charge originally desired to be maintained is about −4% to − Between 5%. That is, the value is lower than the state of charge of the battery B to be maintained, but according to the present invention, as shown in FIG. 4B, the error is close to 0% even in the low SOC state where the starting SOC is 40%. As a result, the accuracy of the secondary battery to the state of charge desired to be maintained could be improved.

またステップ170において、検出電流Iが補充電完了判定電流Ihよりも小さい場合には、ステップ180において、補充電を完了し、ステップ190において、充電制御へ移行する。   If the detected current I is smaller than the auxiliary charging completion determination current Ih in step 170, the auxiliary charging is completed in step 180, and the process proceeds to charging control in step 190.

以上のような構成により、車両始動直後の二次電池の補充電における充電状態を把握し、補充電完了判定電流を補正することで、バッテリBの維持したい充電状態の精度を向上させ、劣化を抑制でき、バッテリBの寿命を延ばすことができる。   With the configuration as described above, the charging state in the auxiliary charging of the secondary battery immediately after starting the vehicle is grasped, and the auxiliary charging completion determination current is corrected, thereby improving the accuracy of the charging state that the battery B wants to maintain and reducing the deterioration. Therefore, the life of the battery B can be extended.

(実施例2)
本実施例2の制御プログラムの作動について、図5に本発明に係る自動車用バッテリBを充電制御するための充電制御装置の実施例2の動作フローが示される。本実施例2では、図5に示されるようなフローチャートが上記図2のフローチャートに代えて採用されている。従って、本実施例2では、上記実施例1にて述べたマイクロコンピュータ70が、図2のフローチャートに代えて図5のフローチャートに従い、バッテリBの充電制御を実行する。その他の構成は、上記実施例1と同じである。
(Example 2)
Regarding the operation of the control program of the second embodiment, FIG. 5 shows an operation flow of the second embodiment of the charge control device for controlling the charging of the vehicle battery B according to the present invention. In the second embodiment, a flowchart as shown in FIG. 5 is employed instead of the flowchart of FIG. Therefore, in the second embodiment, the microcomputer 70 described in the first embodiment executes the charging control of the battery B according to the flowchart of FIG. 5 instead of the flowchart of FIG. Other configurations are the same as those of the first embodiment.

このように構成された本実施例2において、自動車のイグニッションスイッチIGのオンにより、制御プログラムの実行が開始される。   In the second embodiment configured as described above, the execution of the control program is started by turning on the ignition switch IG of the automobile.

本実施例2の制御プログラムの作動について図5を用いて説明する。上述のように、制御プログラムの実行が開始されると、ステップ200からステップ230の処理を周期Δt(sec)毎に実施する。なお制御プログラム開始直後は、補充電完了判定電流Ihの値は決まっていない。   The operation of the control program of the second embodiment will be described with reference to FIG. As described above, when the execution of the control program is started, the processing from step 200 to step 230 is performed every cycle Δt (sec). Note that the value of the auxiliary charging completion determination current Ih is not determined immediately after the start of the control program.

ステップ200において、電流センサ40の検出電流Iと電圧センサ50の検出電圧V及び温度センサ60の検出温度Tが計測され読み込まれる。次にステップ210において、充放電容量の電流積算値ΣIdtがIsumとして次の式(1)に基づき、算出される。   In step 200, the detected current I of the current sensor 40, the detected voltage V of the voltage sensor 50, and the detected temperature T of the temperature sensor 60 are measured and read. Next, at step 210, the current integrated value ΣIdt of the charge / discharge capacity is calculated as Isum based on the following equation (1).

Figure 0005285323
ここで、検出電流Iの正を充電とし、Isumは電流×時間の単位すなわち充放電容量の単位となっている。算出されたIsumにより、SOCが次の式(2)に基づき、算出される。
Figure 0005285323
Here, positive of the detection current I is charging, and Isum is a unit of current × time, that is, a unit of charge / discharge capacity. Based on the calculated Isum, the SOC is calculated based on the following equation (2).

Figure 0005285323
但し、式(2)において、CはバッテリBの定格容量(A・sec)を示す。電流積算値によってSOCを検出することにより、二次電池の補充電を継続させることで、維持したい充電容量を確保することができる。
Figure 0005285323
However, in Formula (2), C shows the rated capacity (A * sec) of the battery B. By detecting the SOC based on the integrated current value, it is possible to ensure the charge capacity to be maintained by continuing the auxiliary charging of the secondary battery.

ステップ220において、補充電完了判定電流検出手段によりバッテリBの温度Tを、例えば図6に示される、予め設定された温度に対する補充電完了判定電流マップに入力し補充電完了判定電流Ihを求める。具体的には、バッテリBの温度が約30℃の場合、補充電完了判定電流は、約5Aに設定される。なお調整電圧は、一定に制御される。そして、二次電池の補充電における補充電完了時の補充電容量が目標補充電容量より大きい場合、再設定手段によって補充電完了判定電流を小さく再設定する。   In step 220, the temperature T of the battery B is input to the auxiliary charge completion determination current map for a preset temperature shown in FIG. 6, for example, by the auxiliary charge completion determination current detection means to obtain the auxiliary charge completion determination current Ih. Specifically, when the temperature of battery B is about 30 ° C., the auxiliary charging completion determination current is set to about 5A. The adjustment voltage is controlled to be constant. When the auxiliary charging capacity at the completion of auxiliary charging in the auxiliary charging of the secondary battery is larger than the target auxiliary charging capacity, the resetting determination current is reset to a smaller value by the resetting means.

ステップ230において、検出電流Iが補充電完了判定電流Ihよりも大きい場合に、ステップ200に戻り、検出電流Iが補充電完了判定電流Ihよりも小さい場合には、次のステップ240において、補充電を完了し、ステップ250において、充電制御へ移行する。   If the detected current I is larger than the auxiliary charging completion determination current Ih in step 230, the process returns to step 200. If the detected current I is smaller than the auxiliary charging completion determination current Ih, in the next step 240, the auxiliary charging is performed. In step 250, the process proceeds to charge control.

以上のような構成により、車両始動直後の二次電池の補充電における補充電完了時の補充電容量が目標補充電容量より大きい場合、補充電完了判定電流を小さくすることにより、バッテリBの維持したい充電状態の精度を向上させ、劣化を抑制でき、バッテリBの寿命を延ばすことができる。   With the above configuration, when the auxiliary charging capacity at the completion of auxiliary charging in the auxiliary charging of the secondary battery immediately after starting the vehicle is larger than the target auxiliary charging capacity, the battery B is maintained by reducing the auxiliary charging completion determination current. Thus, the accuracy of the state of charge desired can be improved, deterioration can be suppressed, and the life of the battery B can be extended.

本発明は上述した実施例に限定されるものではなく、本発明の主旨に逸脱しない範囲で種々の変更を施すことが可能であることは云うまでもない。例えば図2で示したフローチャートのステップ130、ステップ140においてサンプリング数を60個としたが、さらに精度を高めるためにより多くのサンプリング数を取得してもよく、また周期を短くしてもよい。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention. For example, in step 130 and step 140 in the flowchart shown in FIG. 2, the number of samplings is set to 60. However, in order to further improve the accuracy, a larger number of samplings may be acquired and the cycle may be shortened.

本発明に係る車両用二次電池の充電制御装置の実施例の構成例を示す図である。It is a figure which shows the structural example of the Example of the charge control apparatus of the secondary battery for vehicles which concerns on this invention. 実施例1に関する動作フローを示す図である。FIG. 5 is a diagram illustrating an operation flow regarding the first embodiment. 実施例1に関する補充電完了判定電流値を求めるためのマップの例を示す図である。It is a figure which shows the example of the map for calculating | requiring the auxiliary charge completion determination electric current value regarding Example 1. FIG. 実施例1に関する補充電完了時のSOC誤差の(a)従来の誤差と(b)本発明に係る誤差を示す図である。It is a figure which shows the (a) conventional error of the SOC error at the time of completion of the auxiliary charge regarding Example 1, and the error which concerns on (b) this invention. 実施例2に関する動作フローを示す図である。FIG. 10 is a diagram illustrating an operation flow regarding the second embodiment. 実施例2に関する補充電完了判定電流値を求めるためのマップの例を示す図である。It is a figure which shows the example of the map for calculating | requiring the auxiliary charge completion determination electric current value regarding Example 2. FIG. 定電圧充電中の電流垂下特性を示す図である。It is a figure which shows the current drooping characteristic during constant voltage charge.

符号の説明Explanation of symbols

10:交流発電機 20:整流器 30:レギュレータ 40:電流センサ
50:電圧センサ 60:温度センサ 70: マイクロコンピュータ
B:バッテリ L:負荷
10: AC generator 20: Rectifier 30: Regulator 40: Current sensor 50: Voltage sensor 60: Temperature sensor 70: Microcomputer B: Battery L: Load

Claims (3)

交流発電機からの出力電圧を調整するレギュレータと、前記レギュレータから調整された調整電圧により充放電される二次電池と、前記二次電池の電圧を検出する電圧検出手段と、前記二次電池の電流を検出する電流検出手段と、前記二次電池の温度を検出する温度検出手段と、を備え、車両始動直後に前記二次電池を充電する補充電制御を行い、その後所定の電池容量に制御する電池容量制御を行う、車両用二次電池の充電制御装置において、
前記補充電制御は、車両始動により補充電が開始され、この補充電中の前記二次電池の電流、電圧及び温度から補充電完了判定電流を求める補充電完了判定検出手段と、検出される電流と前記補充電完了判定電流とを比較し補充電完了を判定する電流比較判定手段と、を有し、
前記補充電完了判定検出手段は、所定の目標補充電容量を有し、補充電完了時の補充電容量が前記目標補充電容量より大きい場合、前記補充電完了判定電流を小さく再設定して前記二次電池の補充電を継続する再設定手段を有することを特徴とする車両用二次電池の充電制御装置。
A regulator that adjusts the output voltage from the AC generator, a secondary battery that is charged and discharged by the adjusted voltage adjusted from the regulator, voltage detection means that detects the voltage of the secondary battery, and A current detection means for detecting current; and a temperature detection means for detecting the temperature of the secondary battery, and performing auxiliary charge control for charging the secondary battery immediately after starting the vehicle, and then controlling to a predetermined battery capacity In a vehicle secondary battery charge control device that performs battery capacity control,
The auxiliary charge control includes auxiliary charge completion determination detection means for obtaining an auxiliary charge completion determination current from the current, voltage and temperature of the secondary battery during the auxiliary charge when the vehicle is started, and detected current And current comparison determination means for determining the completion of supplementary charging by comparing the supplementary charging completion determination current,
The auxiliary charging completion determination detection means has a predetermined target auxiliary charging capacity, and when the auxiliary charging capacity at the time of completion of auxiliary charging is larger than the target auxiliary charging capacity, the auxiliary charging completion determination current is reset to be smaller and the auxiliary charging capacity is determined. A charging control device for a secondary battery for a vehicle, comprising resetting means for continuing auxiliary charging of the secondary battery.
前記電流比較判定手段は、前記電流検出手段により検出される前記電流と前記補充電完了判定電流を比較し、前記補充電完了判定電流が前記電流よりも小さい場合、前記二次電池の補充電を継続する請求項1記載の車両用二次電池の充電制御装置。   The current comparison determination unit compares the current detected by the current detection unit with the auxiliary charge completion determination current, and when the auxiliary charge completion determination current is smaller than the current, performs auxiliary charging of the secondary battery. The charging control device for a secondary battery for a vehicle according to claim 1, which is continued. 前記補充電完了判定電流を求める前記電流、電圧及び温度は、前記補充電中の所定時間内の平均電流、平均電圧及び平均温度である請求項1記載の車両用二次電池の充電制御装置。   2. The charge control device for a secondary battery for a vehicle according to claim 1, wherein the current, voltage, and temperature for obtaining the auxiliary charging completion determination current are an average current, an average voltage, and an average temperature within a predetermined time during the auxiliary charging.
JP2008111346A 2008-04-22 2008-04-22 Charge control device for secondary battery for vehicle Active JP5285323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111346A JP5285323B2 (en) 2008-04-22 2008-04-22 Charge control device for secondary battery for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111346A JP5285323B2 (en) 2008-04-22 2008-04-22 Charge control device for secondary battery for vehicle

Publications (2)

Publication Number Publication Date
JP2009268176A JP2009268176A (en) 2009-11-12
JP5285323B2 true JP5285323B2 (en) 2013-09-11

Family

ID=41393315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111346A Active JP5285323B2 (en) 2008-04-22 2008-04-22 Charge control device for secondary battery for vehicle

Country Status (1)

Country Link
JP (1) JP5285323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016231A1 (en) * 2016-07-22 2018-01-25 株式会社村田製作所 Cell device, electronic device, electrically driven vehicle, storage system, and control method
CN113049973B (en) * 2021-06-02 2021-08-13 河南工学院 Power battery detection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212986A (en) * 1994-01-19 1995-08-11 Mitsubishi Electric Corp Generation control equipment for vehicle
JP2002142376A (en) * 2000-11-06 2002-05-17 Sanyo Electric Co Ltd Charging control method for secondary battery
JP3891845B2 (en) * 2002-01-15 2007-03-14 株式会社日本自動車部品総合研究所 Charge control device for secondary battery for vehicle
JP2005080396A (en) * 2003-08-29 2005-03-24 Nissan Motor Co Ltd Device for controlling generator of vehicle

Also Published As

Publication number Publication date
JP2009268176A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CN108885242B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
JP7028781B2 (en) Secondary battery status detection device and secondary battery status detection method
JP4959511B2 (en) Charge control device for storage battery
EP2580604A1 (en) Capacity estimating apparatus for secondary battery
JP2000324702A (en) Method and apparatus for detecting discharge capacity of battery and controller for car battery
JP6577981B2 (en) Power system
JP5285323B2 (en) Charge control device for secondary battery for vehicle
JP3891845B2 (en) Charge control device for secondary battery for vehicle
JP5487183B2 (en) Charge capacity parameter estimation device for power storage device
JP5126511B2 (en) Charging apparatus and charging method
JP2007047117A (en) Remaining charge computing apparatus
JP5081722B2 (en) Charge control device for secondary battery
JP6631172B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
JP7276268B2 (en) storage battery controller
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
JP7040489B2 (en) Control device
JP2000123886A (en) Full charge determination device of secondary battery for vehicle
CN112534702B (en) Power conversion device
JP7111044B2 (en) Control device
JP2004031170A (en) Internal resistance detecting device for secondary battery and charge control system using the same
JP2018054423A (en) Charge amount calculation device
JP2008039516A (en) Apparatus for detecting current-voltage characteristics of battery and internal resistance detection apparatus using the same
EP2626970B1 (en) Battery state of charge determination method and battery state of charge determination apparatus
JP2020180861A (en) Battery resistance measuring device
JP2015162914A (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130531

R150 Certificate of patent or registration of utility model

Ref document number: 5285323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250