JP5281507B2 - Hydroponics method, hydroponic solution and hydroponic system - Google Patents

Hydroponics method, hydroponic solution and hydroponic system Download PDF

Info

Publication number
JP5281507B2
JP5281507B2 JP2009169053A JP2009169053A JP5281507B2 JP 5281507 B2 JP5281507 B2 JP 5281507B2 JP 2009169053 A JP2009169053 A JP 2009169053A JP 2009169053 A JP2009169053 A JP 2009169053A JP 5281507 B2 JP5281507 B2 JP 5281507B2
Authority
JP
Japan
Prior art keywords
nutrient solution
plant
hydroponic
hydroponic cultivation
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009169053A
Other languages
Japanese (ja)
Other versions
JP2011019476A (en
Inventor
晃植 蔡
昭久 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDUCATIONAL CORP KANSAI BUNRI SOUGOUGAKUEN
Original Assignee
EDUCATIONAL CORP KANSAI BUNRI SOUGOUGAKUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDUCATIONAL CORP KANSAI BUNRI SOUGOUGAKUEN filed Critical EDUCATIONAL CORP KANSAI BUNRI SOUGOUGAKUEN
Priority to JP2009169053A priority Critical patent/JP5281507B2/en
Publication of JP2011019476A publication Critical patent/JP2011019476A/en
Application granted granted Critical
Publication of JP5281507B2 publication Critical patent/JP5281507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Description

本発明は、水耕栽培方法、水耕栽培用養液及び水耕栽培システムに関する。   The present invention relates to a hydroponic cultivation method, a hydroponic cultivation nutrient solution, and a hydroponic cultivation system.

日本における野菜生産の方法は、露地栽培及びハウス栽培が中心である。しかし、これらの栽培方法は、天候不順などの原因により安定した野菜供給ができない、気象や農業用水の条件で栽培場所が限定される、肥料の流出により自然環境への負荷がある、除草や病虫害予防のため農薬の使用が避けられない、などの問題を有している。
そこで、近年、植物工場で野菜生産を行うことが試みられている。植物工場には太陽光利用型植物工場と、人工光下で管理された栽培条件で植物を育成する完全閉鎖型植物工場との2種類が存在するが、完全閉鎖型植物工場は、天候に左右されない安定した野菜供給が可能である、栽培場所が限定されない、肥料の流出が少ない、農薬を使用しない栽培が可能である、などのメリットを有する。さらに、生産する野菜の種類によっては、24時間照明下で栽培することによって生産期間を大幅に短縮することもでき、例えばリーフレタスの場合、露地栽培では播種から出荷までに45日程度必要なところ植物工場では30日程度で済む。
The vegetable production methods in Japan are mainly outdoor cultivation and house cultivation. However, these cultivation methods cannot provide a stable supply of vegetables due to bad weather, etc., the cultivation place is limited by the conditions of weather and agricultural water, the fertilizer outflow has a burden on the natural environment, weeding and pest damage There are problems such as the inevitable use of pesticides for prevention.
In recent years, therefore, attempts have been made to produce vegetables in plant factories. There are two types of plant factories: solar-powered plant factories and fully-closed plant factories that grow plants under cultivation conditions managed under artificial light. It is possible to provide a stable vegetable supply that is not performed, the cultivation place is not limited, the outflow of fertilizer is small, and cultivation without using agricultural chemicals is possible. In addition, depending on the type of vegetables to be produced, the production period can be significantly shortened by cultivating under 24 hours lighting. For example, in the case of leaf lettuce, it takes about 45 days from sowing to shipment in open field cultivation. A plant factory takes about 30 days.

特開2008−118957号公報JP 2008-118957 A

しかしながら、本来、野菜は太陽光を浴びて生育するものであり、人工光を利用して野菜を生産することは必ずしも効率的であるとは言えない。なぜなら、太陽光の照度が約10万ルクスであるのに対して、人工光の照度はその10分の1の1万ルクス程度しかなく、照度不足により野菜の本来の生育力が十分に発揮されていない可能性がある。そのため、低照度環境下における野菜の生育促進が可能な、人工光を利用する植物工場に適した栽培方法が求められている。   However, vegetables are originally grown under sunlight, and it is not always efficient to produce vegetables using artificial light. This is because the illuminance of sunlight is about 100,000 lux, whereas the illuminance of artificial light is only about 1 / 10th of that, and the original viability of vegetables is fully demonstrated due to insufficient illuminance. It may not be. Therefore, a cultivation method suitable for a plant factory using artificial light that can promote the growth of vegetables in a low illumination environment is demanded.

本発明は、上記の課題に鑑み、低照度環境下において植物の生育促進が可能な水耕栽培方法を提供することを目的とする。本発明の他の目的は、低照度環境下において植物の生育促進が可能な水耕栽培用養液及び水耕栽培システムを提供することにある。   In view of the above problems, an object of the present invention is to provide a hydroponic cultivation method capable of promoting the growth of plants in a low light environment. Another object of the present invention is to provide a hydroponic cultivation nutrient solution and a hydroponic cultivation system that can promote the growth of plants in a low-light environment.

上記目的を達成するため、本発明に係る水耕栽培方法は、植物工場内において植物に人工光を照射し且つ養液を施用して水耕栽培するための水耕栽培方法であって、前記養液が、MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有することを特徴とする。 In order to achieve the above object, the hydroponic cultivation method according to the present invention is a hydroponic cultivation method for cultivating a plant by irradiating artificial light and applying a nutrient solution to a plant in a plant factory, The nutrient solution is 1.9 to 6.9 mg / L in terms of Mn converted to MnO, 1.9 to 6.9 mg / L in terms of B to B 2 O 3 , and 4.5 to 16.0 mg Fe. / L, Cu is 0.04 to 0.14 mg / L, Zn is 0.09 to 0.34 mg / L, and Mo is 0.035 to 0.145 mg / L.

本発明に係る水耕栽培用養液は、植物工場内において植物に人工光を照射し且つ養液を施用する水耕栽培用の養液であって、MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有することを特徴とする。 The nutrient solution for hydroponics according to the present invention is a nutrient solution for hydroponics that irradiates a plant with artificial light and applies the nutrient solution in a plant factory, and converts Mn to MnO to 1.9. 6.9 mg / L, B converted to B 2 O 3 1.9 to 6.9 mg / L, Fe 4.5 to 16.0 mg / L, Cu 0.04 to 0.14 mg / L Zn is contained in 0.09 to 0.34 mg / L, and Mo is contained in 0.035 to 0.145 mg / L.

本発明に係る水耕栽培システムは、植物が定植される培地と、前記植物に人工光を照射するための照明装置と、前記植物に施用される養液と、当該養液が貯留される貯留槽と、当該貯留槽内から前記培地へ前記養液を移送するための移送手段とを備えた水耕栽培システムであって、前記養液が、MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有することを特徴とする。 The hydroponics system according to the present invention includes a culture medium in which plants are planted, a lighting device for irradiating the plants with artificial light, a nutrient solution applied to the plants, and a reservoir in which the nutrient solution is stored. It is a hydroponic cultivation system provided with the tank and the transfer means for transferring the said nutrient solution from the said storage tank to the said culture medium, Comprising: The said nutrient solution converts Mn into MnO and is 1.9-6 1.9 mg / L, B converted to B 2 O 3 1.9 to 6.9 mg / L, Fe 4.5 to 16.0 mg / L, Cu 0.04 to 0.14 mg / L, Zn Is 0.09 to 0.34 mg / L, and Mo is 0.035 to 0.145 mg / L.

本発明に係る水耕栽培方法、水耕栽培用養液及び水耕栽培システムは、植物に施用される養液に、Mn、B、Fe、Cu、Zn及びMoがそれぞれ上記した範囲で含まれているため、低照度環境下において植物の生育促進が可能である。
Mn、B、Fe、Cu、Zn及びMoは、微量必須元素と称されており、植物内において酵素の活性中心となる元素である。したがって、それら微量必須元素の含有量を調整すれば、低照度環境下における植物の生育促進に有効な酵素の活性を高めることが可能と考えられる。その一方で、微量必須元素の量が不足したり過多になったりすると、欠乏症や過剰症により生育抑制が生じるおそれもある。本発明に係る養液は、微量必須元素の含有量が、低照度環境下において植物の生育促進のために働く酵素を有効に活性させるのに好適な範囲内であり、且つ、欠乏症や過剰症が発症しない範囲内であるため、上記効果を奏するものであると考えられる。
The hydroponic cultivation method, hydroponic culture nutrient solution, and hydroponic cultivation system according to the present invention include Mn, B, Fe, Cu, Zn, and Mo in the nutrient solution applied to the plant in the ranges described above. Therefore, it is possible to promote the growth of plants in a low light environment.
Mn, B, Fe, Cu, Zn, and Mo are called trace essential elements, and are elements that become active centers of enzymes in plants. Therefore, it is considered that by adjusting the contents of these trace essential elements, it is possible to increase the activity of an enzyme effective for promoting the growth of plants in a low light environment. On the other hand, if the amount of trace essential elements is insufficient or excessive, growth suppression may occur due to deficiency or excess. The nutrient solution according to the present invention has a trace essential element content within a range suitable for effectively activating an enzyme that works for promoting the growth of plants in a low-light environment, and is deficient or excessive. It is considered that the above-mentioned effect is exhibited because the range is such that no symptom develops.

水耕栽培システムの概略構成図Schematic configuration diagram of hydroponics system 微量必須成分の濃度とリーフレタスの生育促進率との関係を示す図Diagram showing the relationship between the concentration of trace essential components and the growth promotion rate of leaf lettuce 野菜の形態異常を説明するための図Illustration to explain the abnormal morphology of vegetables

以下、本実施の形態に係る水耕栽培方法、水耕栽培用養液及び水耕栽培システムについて、図面を参照しながら説明する。なお、数値範囲を示す符号「〜」は、その両端の数値を含む。
[水耕栽培用養液]
表1は、微量必須成分の濃度とリーフレタスの生育促進率との関係を示す図であって、No.1,5〜8は比較例、No.2〜4は実施例である。
Hereinafter, a hydroponic cultivation method, a hydroponic nutrient solution, and a hydroponic cultivation system according to the present embodiment will be described with reference to the drawings. Note that the symbol “˜” indicating a numerical range includes numerical values at both ends thereof.
[Nutrient solution for hydroponics]
Table 1 shows the relationship between the concentration of trace essential components and the growth promotion rate of leaf lettuce. Nos. 1 to 8 are comparative examples. 2 to 4 are examples.

本実施の形態に係る水耕栽培用養液(以下、単に「養液」)は、多量必須元素であるN(窒素)、P(リン)、K(カリウム)、Mg(マグネシウム)及びCa(カルシウム)と、微量必須元素であるMn(マンガン)、B(ホウ素)、Fe(鉄)、Cu(銅)、Zn(亜鉛)及びMo(モリブデン)とを含有する水溶液であって、具体的には、表1に示すNo.2〜4の組成が一例として挙げられる。 The nutrient solution for hydroponics according to the present embodiment (hereinafter simply referred to as “nutrient solution”) includes N (nitrogen), P (phosphorus), K (potassium), Mg (magnesium), and Ca (essential elements). Calcium) and an aqueous solution containing trace essential elements Mn (manganese), B (boron), Fe (iron), Cu (copper), Zn (zinc) and Mo (molybdenum), No. shown in Table 1. Two to four compositions are listed as examples.

なお、養液の組成は、No.2〜4に示すものに限定されず、MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有すれば良く、この範囲であれば低照度環境下において植物の生育促進が可能である。 The composition of the nutrient solution is No. Not limited to those shown in 2~4, 1.9~6.9mg / L in terms of Mn to MnO, in terms of B to B 2 O 3 1.9~6.9mg / L, the Fe 4.5 to 16.0 mg / L, Cu 0.04 to 0.14 mg / L, Zn 0.09 to 0.34 mg / L, Mo 0.035 to 0.145 mg / L, Within this range, plant growth can be promoted in a low-light environment.

特に、MnをMnOに換算して3.16〜6.32mg/L、BをBに換算して3.16〜6.32mg/L、Feを7.35〜14.71mg/L、Cuを0.06〜0.13mg/L、Znを0.16〜0.32mg/L、Moを0.07〜0.13mg/L含有している場合は、ビタミンの豊富な植物を得ることができる。
また、養液には、微量必須元素として、Mn、B、Fe、Cu、Zn及びMo以外に例えばV(バナジウム)、Se(セレン)などが適量含まれていても良い。
In particular, in terms 3.16~6.32mg / L in terms of Mn to MnO, B to B 2 O 3 3.16~6.32mg / L, Fe and 7.35~14.71mg / L When containing 0.06-0.13 mg / L of Cu, 0.16-0.32 mg / L of Zn and 0.07-0.13 mg / L of Mo, a plant rich in vitamins is obtained. be able to.
Further, the nutrient solution may contain an appropriate amount of, for example, V (vanadium), Se (selenium), etc. in addition to Mn, B, Fe, Cu, Zn, and Mo as trace essential elements.

なお、多量必須元素であるN、P、K、Mg及びCaについては、特に含有量に制限はなく、栽培目的に応じて適宜調整可能である。なお、多量必須元素として、N、P、K、Mg及びCa以外に栽培植物によってはNa(ナトリウム)、Cl(塩素)などが適量含まれていても良い。
また、養液には、微量必須元素や多量必須元素のような無機元素(ミネラル)以外の成分として、例えばアミノ酸、炭水化物、タンパク質、脂質、ビタミン前駆体などの有機物が適量含まれていても良い。
In addition, about N, P, K, Mg, and Ca which are large amount essential elements, there is no restriction | limiting in particular in content, According to the cultivation purpose, it can adjust suitably. In addition to N, P, K, Mg, and Ca, an appropriate amount of Na (sodium), Cl (chlorine), or the like may be included as a large amount essential element depending on the cultivated plant.
In addition, the nutrient solution may contain an appropriate amount of organic substances such as amino acids, carbohydrates, proteins, lipids, vitamin precursors as components other than inorganic elements (minerals) such as trace essential elements and large essential elements. .

[水耕栽培システム及び水耕栽培方法]
図1は、本実施の形態に係る水耕栽培システムの概略構成図である。図1に示すように、本実施の形態に係る水耕栽培システム1は、植物工場内において植物2に人工光を照射し且つ養液3を施用して水耕栽培するためのシステムであって、例えば、リーフレタス、カキチシャ、ホウレンソウ、チンゲンサイ、アイスプラント、ハーブなどの葉菜類、葉菜類以外の例えばトマト、大葉などの野菜、野菜以外の例えば薬草などの植物2を栽培可能である。なお、養液3としては、上記で説明した本実施の形態に係る養液が用いられる。
[Hydroculture system and hydroponics method]
FIG. 1 is a schematic configuration diagram of a hydroponic cultivation system according to the present embodiment. As shown in FIG. 1, a hydroponic cultivation system 1 according to the present embodiment is a system for cultivating hydroponic cultivation by irradiating a plant 2 with artificial light and applying a nutrient solution 3 in a plant factory. For example, leafy vegetables such as leaf lettuce, oysters, spinach, chingensai, ice plant, herbs and the like, plants such as tomatoes and large leaves other than leafy vegetables, and plants 2 such as medicinal herbs other than vegetables can be cultivated. In addition, as the nutrient solution 3, the nutrient solution according to the present embodiment described above is used.

水耕栽培システム1は、植物2が定植される培地4と、前記植物2に人工光を照射するための照明装置5と、前記植物2に施用される養液3と、当該養液3が貯留される貯留槽6と、当該貯留槽6内から前記培地4へ前記養液3を移送するための移送手段7とを備える。
培地4は、例えばウレタンフォーム、スポンジ、ロックウール、ピートモスなどにより構成され、セルトレイ8上に複数個並べて配置されている。
The hydroponic cultivation system 1 includes a culture medium 4 on which a plant 2 is planted, a lighting device 5 for irradiating the plant 2 with artificial light, a nutrient solution 3 applied to the plant 2, and the nutrient solution 3 A storage tank 6 to be stored and a transfer means 7 for transferring the nutrient solution 3 from the storage tank 6 to the culture medium 4 are provided.
The culture medium 4 is made of, for example, urethane foam, sponge, rock wool, peat moss, and the like, and a plurality of the culture media 4 are arranged side by side on the cell tray 8.

照明装置5は、人工光源9を複数備えており、例えば、培地4の上方に配置され下方の植物2に向けて人工光を照射する。なお、人工光源9としては、例えば、HEFL(ハイブリッド電極蛍光ランプ)、LED(発光ダイオード)、蛍光ランプ、ナトリウムランプなどが考えられる。HEFLは、初期コストが安い、電気消費量が少ない、発熱が少ない、光色を選択できる等の特長を有するため人工光源9として最適である。また、LEDも、電気消費量が少ない、発熱が少ない、光色を選択できる等の特長を有するため人工光源9として好適である。   The illuminating device 5 includes a plurality of artificial light sources 9. For example, the illuminating device 5 is arranged above the culture medium 4 and irradiates artificial light toward the plant 2 below. As the artificial light source 9, for example, HEFL (hybrid electrode fluorescent lamp), LED (light emitting diode), fluorescent lamp, sodium lamp and the like can be considered. HEFL is optimal as the artificial light source 9 because it has features such as low initial cost, low electricity consumption, low heat generation, and light color selection. The LED is also suitable as the artificial light source 9 because it has features such as low electricity consumption, low heat generation, and light color selection.

貯留槽6は、例えばセルトレイ8の下方に配置されており、移送手段7を介してセルトレイ8と接続されている。移送手段7は、移送管10及びポンプ11を備え、当該ポンプ11を駆動させると、貯留槽6内の養液が移送管10を通ってセルトレイ8内に移送される。さらに、セルトレイ8内の養液は培地4に吸収され植物2に施用される。
以上のような水耕栽培システム1を、温度及び湿度などが制御可能な閉鎖環境下に設置することによって完全閉鎖型植物工場を構築可能である。その場合の栽培条件は、例えば、照明装置のPFD(光量子束密度)を100〜150μmol/ms、室温を23〜25℃、養液3の温度を23〜25℃、湿度を75〜85%、二酸化炭素の濃度を500〜700ppmとすることが好適である。
The storage tank 6 is disposed, for example, below the cell tray 8 and is connected to the cell tray 8 via the transfer means 7. The transfer means 7 includes a transfer pipe 10 and a pump 11, and when the pump 11 is driven, the nutrient solution in the storage tank 6 is transferred into the cell tray 8 through the transfer pipe 10. Further, the nutrient solution in the cell tray 8 is absorbed by the culture medium 4 and applied to the plant 2.
By installing the hydroponic cultivation system 1 as described above in a closed environment where the temperature and humidity can be controlled, a completely closed plant factory can be constructed. The cultivation conditions in that case are, for example, a PFD (photon flux density) of the lighting device of 100 to 150 μmol / m 2 s, a room temperature of 23 to 25 ° C., a temperature of the nutrient solution 3 of 23 to 25 ° C., and a humidity of 75 to 85. %, And the concentration of carbon dioxide is preferably 500 to 700 ppm.

[効果の確認]
次に、本実施の形態に係る水耕栽培方法、水耕栽培用養液及び水耕栽培システムの効果を実験により確認したので以下に説明する。
<実験に用いた植物>
市場価格が高く消費者要求も高いという理由から、カキチシャ、リーフレタス、ホウレンソウ及びチンゲンサイを採用した。具体的には、カキチシャとしてチマサンチュ(株式会社サカタのタネ)を用い、リーフレタスとしてグリーンウェーブ(タキイ種苗株式会社)を用い、ホウレンソウ品種としてスペードワン(雪印種苗株式会社)を用い、チンゲンサイ品種として青帝(株式会社サカタのタネ)を用いた。
[Confirmation of effect]
Next, the effects of the hydroponic cultivation method, the hydroponic cultivation solution, and the hydroponic cultivation system according to the present embodiment have been confirmed by experiments, and will be described below.
<Plants used in the experiment>
Kakichisha, leaf lettuce, spinach and chingensai were used because of high market prices and high consumer demand. Specifically, Chima Sanchu (Sakata Seed Co., Ltd.) is used as oysters, Green Wave (Takii Seed Co., Ltd.) is used as leaf lettuce, Spade One (Snow Brand Seed Co., Ltd.) is used as spinach variety, and Blue is used as Chingensai variety. Emperor (Sakata Seed) was used.

<実験に用いた養液>
実験には、表1に示すNo.1〜7の養液を用いた。No.1の養液は、従来から水耕栽培で用いられている養液であり、No.2〜7の養液は、No.1の養液よりも微量必須元素の含有量が多い養液である。各養液は、大塚ハウス1号を1.58g/L、大塚ハウス2号を1.06g/Lに調整した水溶液を基本溶液として、この基本溶液に大塚ハウス5号を添加することにより調製した。なお、各養液のEC値は2.0前後に、pHは5.0〜7.0に調整した。
<Nutrient solution used in the experiment>
In the experiment, No. 1 shown in Table 1 was used. 1 to 7 nutrient solutions were used. No. No. 1 nutrient solution is a nutrient solution conventionally used in hydroponics. The nutrient solutions 2-7 are No. It is a nutrient solution having a larger amount of trace essential elements than the nutrient solution of No. 1. Each nutrient solution was prepared by adding Otsuka House No. 5 to this basic solution using an aqueous solution prepared by adjusting Otsuka House No. 1 to 1.58 g / L and Otsuka House No. 2 to 1.06 g / L. . In addition, EC value of each nutrient solution was adjusted to around 2.0, and pH was adjusted to 5.0-7.0.

<水耕栽培の条件>
カキチシャ、リーフレタス及びチンゲンサイは、2000倍に希釈したハイポネックス(株式会社ハイポネックスジャパン)をpH調整後にスポンジに染み込ませ、そのスポンジに播種して、室温21℃の暗所に発芽するまで静置し、発芽後はHEFL照明(HEFLを人工光源とする照明装置)による24時間照明下で育苗した。
<Conditions for hydroponics>
Kakichisha, leaf lettuce and chingensai are soaked in sponge after having adjusted the pH of Hyponex (Hyponex Japan Co., Ltd.) 2000 times, seeded on the sponge and allowed to stand until germination in a dark place at room temperature of 21 ° C. After germination, the seedlings were grown under 24-hour illumination with HEFL illumination (illumination device using HEFL as an artificial light source).

ホウレンソウは、育成用肥料を栽培用ロックファイバー(日東紡株式会社)に染み込ませ、そのロックファイバーに播種して、室温21℃の暗所に発芽するまで静置し、発芽後はHEFL照明による24時間照明下で育苗した。
いずれの品目の苗も、播種から14日後に水耕栽培システム1に移し水耕栽培した。具体的には、室温21℃、湿度60%、24時間照明下で栽培し、栽培中は隣の株と葉が重なりだしたら間引きを行い、播種から38日後に収穫した。照明装置にはPPFが140μmol/msの85WのHEFL照明装置を用い、HEFL照明と野菜との距離が常に3cm程度に維持されるよう野菜の成長に合わせて照明装置又はセルトレイの高さを調整した。
Spinach is soaked with the cultivation fertilizer in the cultivation lock fiber (Nittobo Co., Ltd.), sown on the lock fiber, and allowed to stand until it germinates in a dark place at a room temperature of 21 ° C. Raised seedlings under time lighting.
The seedlings of any item were transferred to the hydroponics system 1 14 days after sowing and hydroponically cultivated. Specifically, the plants were cultivated under illumination at room temperature of 21 ° C. and humidity of 60% for 24 hours. During cultivation, thinning was carried out when the adjacent strains and leaves overlapped, and harvested 38 days after sowing. The lighting device uses a 85W HEFL lighting device with PPF of 140μmol / m 2 s, and the height of the lighting device or cell tray is adjusted according to the growth of the vegetable so that the distance between the HEFL lighting and the vegetable is always maintained at about 3 cm. It was adjusted.

<露地栽培の条件>
比較のための露地栽培では、いずれの品目についても、基肥入りの培養土を充填したセルトレイに播種し、毎日灌水するとともに、1週間に1回、1000倍に希釈したOK−F−1(大塚化学株式会社)を施用して、育苗ハウスで育苗した。その後、くみあい燐硝安加里S604号(旭化成ケミカルズ株式会社)を100g/m施用し、耕耘、畝立てした本圃に、育苗した苗を株間15cm、条間20cmで定植して栽培した。
<Conditions for outdoor cultivation>
In outdoor cultivation for comparison, for all items, OK-F-1 (Otsuka) was sown in a cell tray filled with culture soil containing basic fertilizer, watered daily, and diluted 1000 times once a week. Chemical Co., Ltd.) was applied and raised in a nursery house. Then, Kumiai Phosphorus Ankari S604 (Asahi Kasei Chemicals Co., Ltd.) was applied at 100 g / m 2 , and the seedlings that were cultivated and planted were cultivated by planting them at 15 cm between the lines and 20 cm between the lines.

<生育促進効果>
生育促進効果は、収穫した野菜の生重量を量って評価した。具体的には、No.2〜7の養液で栽培した野菜の生重量をNo.1の養液で栽培した野菜の生重量で除した値を、生育促進率として算出し、その生育促進率が100%を上回っていたら生育が促進されたと評価し、100%を下回っていたら生育が抑制されたと評価した。
<Growth promotion effect>
The growth promoting effect was evaluated by measuring the raw weight of the harvested vegetables. Specifically, no. The raw weight of the vegetables cultivated with the nutrient solution of 2-7 is No. The value divided by the raw weight of the vegetables cultivated with the nutrient solution of 1 is calculated as the growth promotion rate. If the growth promotion rate exceeds 100%, it is evaluated that the growth has been promoted. Was evaluated as being suppressed.

<ビタミン含有量>
(サンプル調製)
ビタミン含有量を測定するための野菜は、収穫後すぐに鋏で細かく裁断し、これを均一に混ぜ合わせ、液体窒素で瞬間冷凍し、−80℃のディープフリーザーで凍結して保存した。そして、これを凍結乾燥したものをビタミン含有量の測定用のサンプルとした。
<Vitamin content>
(Sample preparation)
Vegetables for measuring vitamin content were cut into small pieces immediately after harvesting, mixed uniformly, snap-frozen in liquid nitrogen, and frozen and stored in a deep freezer at -80 ° C. And what was freeze-dried was used as the sample for the measurement of vitamin content.

(ビタミンB2の定量)
サンプル5gに0.1MのHClを50mL加え、ポリトロンホモジナイザー(HG−200、HSIANGTAI)で完全に破砕されるまでホモジナイズした。次に、15分間沸騰水浴中で加熱し、その後水冷によって室温に戻してから4Mの酢酸ナトリウムでpH4.5に調整した。これに2.5%のタカジアスターゼを5mL加えた後、恒温器に入れ、40℃で16時間加温し、室温に戻したものを酢酸バッファーで100mLにメスアップし、濾過後、濾液をHPLC(高速液体クロマトグラフィー)で分析した。
(Quantification of vitamin B2)
50 mL of 0.1 M HCl was added to 5 g of the sample, and homogenized with a Polytron homogenizer (HG-200, HSIANGTAI) until it was completely crushed. Next, it was heated in a boiling water bath for 15 minutes, and then returned to room temperature by water cooling, and then adjusted to pH 4.5 with 4M sodium acetate. To this was added 5 mL of 2.5% Takadiastase, then placed in a thermostat, warmed at 40 ° C. for 16 hours, returned to room temperature, made up to 100 mL with acetate buffer, filtered, and the filtrate was HPLC (High performance liquid chromatography).

HPLC分析の条件は、溶媒A:水、溶媒B:90%アセトニトリル水溶液、流速:0.7mL/min、溶出条件:溶媒Bが10%〜100%のリニアグラジエント、カラム:PEGASIL ODS(4.6φ×250mm、120Å、センシュー科学株式会社)、カラム温度:40℃、検出:蛍光検出(Ex=445nm、Em=530nm)である。   The HPLC analysis conditions were as follows: solvent A: water, solvent B: 90% acetonitrile aqueous solution, flow rate: 0.7 mL / min, elution condition: linear gradient of solvent B 10% to 100%, column: PEGASIL ODS (4.6φ × 250 mm, 120 mm, Senshu Science Co., Ltd.), column temperature: 40 ° C., detection: fluorescence detection (Ex = 445 nm, Em = 530 nm).

(ビタミンEの定量)
サンプル5gにアセトニトリル:メタノール4:6を50mL加えてポリトロンホモジナイザーでホモジナイズした。次に、この破砕液を濾過後、ロータリーエバポレーターを用いて完全に有機溶媒を除き、残った水を凍結乾燥により除去した。そして、乾燥物にアセトニトリル:メタノール4:6を加えて可溶化後、フィルター濾過し、HPLCで分析した。
(Quantification of vitamin E)
50 mL of acetonitrile: methanol 4: 6 was added to 5 g of the sample and homogenized with a Polytron homogenizer. Next, this crushed liquid was filtered, and then the organic solvent was completely removed using a rotary evaporator, and the remaining water was removed by lyophilization. Then, acetonitrile: methanol 4: 6 was added to the dried product, solubilized, filtered, and analyzed by HPLC.

HPLC分析の条件は、溶媒:アセトニトリル:メタノール、6:4、流速:1.0mL/min、カラム:PEGASIL ODS(4.6φ×250mm、120Å、センシュー科学株式会社)、カラム温度:40℃、検出:蛍光検出(Ex=325nm、Em=430nm)である。
(ビタミンK1の定量)
ビタミンEと同じ手順によりHPLCで分析した。
The conditions for the HPLC analysis were as follows: solvent: acetonitrile: methanol, 6: 4, flow rate: 1.0 mL / min, column: PEGASIL ODS (4.6φ × 250 mm, 120 mm, Senshu Scientific Co., Ltd.), column temperature: 40 ° C., detection : Fluorescence detection (Ex = 325 nm, Em = 430 nm).
(Quantification of vitamin K1)
Analyzed by HPLC using the same procedure as for vitamin E.

HPLC分析の条件は、溶媒:アセトニトリル:メタノール、6:4、流速:1.0mL/min、カラム:PEGASIL ODS(4.6φ×250mm、120Å、センシュー科学株式会社)、カラム温度:40℃、検出:蛍光検出(Ex=298nm、Em=325nm)である。
なお、標品の分析は上記の条件で分析可能であったが、カキチシャやリーフレタスについて分析する場合は、ビタミンK1が含まれる近辺の画分を分取し、エバポレーターで濃縮後、アセトニトリル:メタノール、6:4の溶液で溶解し、NaBHを用いてビタミンK1を還元し、この還元ビタミンK1を同じHPLC条件で再度分析した。
The conditions for the HPLC analysis were as follows: solvent: acetonitrile: methanol, 6: 4, flow rate: 1.0 mL / min, column: PEGASIL ODS (4.6φ × 250 mm, 120 mm, Senshu Scientific Co., Ltd.), column temperature: 40 ° C., detection : Fluorescence detection (Ex = 298 nm, Em = 325 nm).
The sample could be analyzed under the above conditions. However, when analyzing oysters and leaf lettuce, fractions near vitamin K1 were collected, concentrated with an evaporator, and then acetonitrile: methanol. , 6: 4 solution, vitamin K1 was reduced with NaBH 4 and this reduced vitamin K1 was analyzed again under the same HPLC conditions.

(ビタミンCの定量)
サンプル5gに5%(W/V)のメタリン酸溶液を25mL加え、乳鉢で2.5分間破砕を行った。これに更に5%(W/V)のメタリン酸溶液を25mLに加え、乳鉢で2.5分間破砕を行い、5%(W/V)のメタリン酸溶液で100mLに定容後、8000rpmで10分間遠心分離し、上精を濾過した。この濾液を試験管に1mL分注し、5%(W/V)のメタリン酸溶液を1mL加えた。
(Quantification of vitamin C)
25 mL of 5% (W / V) metaphosphoric acid solution was added to 5 g of the sample, and crushed in a mortar for 2.5 minutes. Further, 5% (W / V) metaphosphoric acid solution was added to 25 mL, crushed in a mortar for 2.5 minutes, adjusted to 100 mL with 5% (W / V) metaphosphoric acid solution, and then 10% at 8000 rpm. Centrifugation was performed for a minute, and the supernatant was filtered. 1 mL of this filtrate was dispensed into a test tube, and 1 mL of a 5% (W / V) metaphosphoric acid solution was added.

次に、インドフェノール溶液を1滴滴下し、2%(W/V)のチオ尿素−メタリン酸溶液を2mL加えた後、2%(W/V)の2,4−ジニトロヒドラジン−4.5M硫酸溶液を0.5mL加えて混合した。これを50℃で90分間加温し、氷冷後85%硫酸を2.5mL加えさらに氷冷し、30分間室温で放置した後、520nmの吸光度を測定した。そして、標品を同様に処理して得た吸光度に基づいて作成した検量線からビタミンCの量を算出した。   Next, 1 drop of indophenol solution was added dropwise, 2 mL of 2% (W / V) thiourea-metaphosphoric acid solution was added, and then 2% (W / V) 2,4-dinitrohydrazine-4.5M. 0.5 mL of sulfuric acid solution was added and mixed. This was heated at 50 ° C. for 90 minutes, and after ice cooling, 2.5 mL of 85% sulfuric acid was added and further ice-cooled. After standing at room temperature for 30 minutes, absorbance at 520 nm was measured. And the quantity of vitamin C was computed from the analytical curve created based on the light absorbency obtained by processing the sample similarly.

<実験結果>
まず、リーフレタスをNo.1〜7の養液を用いて栽培した実験の結果について説明する。表1に示すように、No.2〜4の養液でリーフレタスを栽培した場合は、いずれも生育促進率が100%を上回っていることから、No.2〜4の養液はリーフレタスの生育を促進させたと認められる。特に、No.2及び3の溶液は、生育促進率が110%を超えており生育促進効果が非常に顕著であった。一方、No.5〜7の養液でリーフレタスを栽培した場合は、いずれも生育促進率が100%を下回っていることから、No.5〜7の養液はリーフレタスの生育を抑制したと認められる。
<Experimental result>
First, the leaf lettuce is No. The result of the experiment cultivated using the nutrient solutions 1 to 7 will be described. As shown in Table 1, no. In the case where leaf lettuce was cultivated with 2 to 4 nutrient solutions, the growth promotion rate exceeded 100% in all cases. It is recognized that 2 to 4 nutrient solutions promoted the growth of leaf lettuce. In particular, no. In the solutions 2 and 3, the growth promotion rate exceeded 110%, and the growth promotion effect was very remarkable. On the other hand, no. In the case where leaf lettuce was cultivated with the nutrient solution of 5 to 7, the growth promotion rate was less than 100% in all cases. It is recognized that the nutrient solution of 5-7 suppressed the growth of leaf lettuce.

図2は、各微量必須成分の濃度とリーフレタスの生育促進率との関係を示す図であって、(a)はMnO、(b)はB、(c)はFe、(d)はCu、(e)はZn、(f)はMoに関する。図2(a)〜(f)に示すように、各微量必須成分について、X軸を濃度、Y軸を生育促進率とするXY座標上に表1に示す値をプロットし、そのプロットをもとに2次曲線を引いて、微量必須成分の濃度とリーフレタスの生育促進率との関係を導き出した。そして、顕著な生育促進効果があると認める105%以上の生育促進率を得るために必要な濃度を求めた。その結果、MnはMnOに換算して1.9〜6.9mg/L、BはBに換算して1.9〜6.9mg/L、Feは4.5〜16.0mg/L、Cuは0.04〜0.14mg/L、Znは0.09〜0.34mg/L、Moは0.035〜0.145mg/Lの濃度であれば生育促進効果が得られることがわかった。 FIG. 2 is a diagram showing the relationship between the concentration of each trace essential component and the growth promotion rate of leaf lettuce, where (a) is MnO, (b) is B 2 O 3 , (c) is Fe, (d ) Is Cu, (e) is Zn, and (f) is Mo. As shown in FIGS. 2 (a) to 2 (f), for each trace essential component, the values shown in Table 1 are plotted on the XY coordinates with the X axis as the concentration and the Y axis as the growth promotion rate. Then, a quadratic curve was drawn to derive the relationship between the concentration of trace essential components and the growth promotion rate of leaf lettuce. And the density | concentration required in order to obtain the growth promotion rate of 105% or more recognized that there exists a remarkable growth promotion effect was calculated | required. As a result, Mn is 1.9 to 6.9 mg / L in terms of MnO, B is 1.9 to 6.9 mg / L in terms of B 2 O 3 , and Fe is 4.5 to 16.0 mg / L. If L and Cu are concentrations of 0.04 to 0.14 mg / L, Zn is 0.09 to 0.34 mg / L, and Mo is 0.035 to 0.145 mg / L, a growth promoting effect may be obtained. all right.

次に、リーフレタスだけではなく、カキチシャ、ホウレンソウ及びチンゲンサイについてもNo.1,3,4,7の養液を用いて実験を行ったので、その結果について説明する。
表2は、微量必須成分の濃度と野菜の生育促進率との関係を示す図である。
Next, in addition to leaf lettuce, no. Since the experiment was performed using 1, 3, 4, and 7 nutrient solutions, the results will be described.
Table 2 is a diagram showing the relationship between the concentration of trace essential components and the growth promotion rate of vegetables.

表2に示すように、No.3の養液で栽培した場合に、カキチシャ及びリーフレタスに顕著な生育促進効果が認められ、ホウレンソウ及びチンゲンサイにも生育促進効果が認められた。また、No.4の養液で栽培した場合に、リーフレタスに顕著な生育促進効果が認められ、ホウレンソウ及びチンゲンサイにも生育促進効果が認められた。一方、No.7の養液で栽培した場合は、いずれにも野菜の生育の抑制が認められた。 As shown in Table 2, no. When cultivated with the nutrient solution of No. 3, a remarkable growth promoting effect was observed in oysters and leaf lettuce, and a growth promoting effect was also observed in spinach and tincture. No. When cultivated with the nutrient solution of No. 4, a remarkable growth promoting effect was observed in leaf lettuce, and a growth promoting effect was also observed in spinach and tincture. On the other hand, no. When cultivated with the nutrient solution of No. 7, inhibition of the growth of vegetables was observed in all cases.

さらに、No.7の養液で栽培したチンゲンサイ及びリーフレタスに至っては、形態の変化も認められた。図3は、野菜の形態異常を説明するための図であって、(a)はチンゲンサイに関する図、(b)はホウレンソウに関する図である。図3(a)に示すように、No.7の養液で栽培したチンゲンサイは、No.1の養液で栽培したチンゲンサイに比べて葉肉が薄く、葉が内側に反るといった形態的変化が認められた。また、図3(b)に示すように、No.7の養液で栽培したリーフレタスは、No.1の養液で栽培したリーフレタスよりも葉の生育が阻害され、葉自体が黒ずんでいるという変化が認められた。以上のことから、微量必須元素が過多になると、生育が抑制されるだけでなく、形態的な変化も起きることが確認できた。なお、No.3及び4の養液で栽培した野菜には形態的変化はみられなかった。   Furthermore, no. A change in morphology was also observed in Chingensai and Leaf Lettuce cultivated with No. 7 nutrient solution. FIGS. 3A and 3B are diagrams for explaining a morphological abnormality of a vegetable, in which FIG. As shown in FIG. No. 7 was cultivated with the nutrient solution of No. 7. Morphological changes were observed in which the mesophyll was thinner and the leaves were warped inward compared to Chingensai grown in No. 1 nutrient solution. In addition, as shown in FIG. The leaf lettuce cultivated with the nutrient solution of No. 7 The change of leaf growth was inhibited rather than leaf lettuce cultivated with 1 nutrient solution, and the leaf itself was darkened. From the above, it was confirmed that when the trace essential elements are excessive, not only growth is suppressed but also morphological changes occur. In addition, No. No morphological changes were observed in the vegetables cultivated with the nutrient solutions 3 and 4.

表3は、微量必須成分の濃度と野菜のビタミン含有量との関係を示す図である。   Table 3 is a diagram showing the relationship between the concentration of trace essential components and the vitamin content of vegetables.

表3に示すように、No.3,4の養液を用いて栽培した場合は、No.1の養液を用いて栽培した場合と比較して、ビタミンE及びK1の含有量が全ての品目について増加し、ビタミンB2及びCの含有量が特定の品目について増加していた。また、露地栽培した場合と比較しても、ビタミンE及びK1の含有量が全ての品目について増加し、ビタミンB2及びCの含有量が特定の品目について増加していた。したがって、ビタミンの豊富な植物を栽培できる養液として、MnについてはMnOに換算して3.16〜6.32mg/L、BについてはBに換算して3.16〜6.32mg/L、Feについては7.35〜14.71mg/L、Cuについては0.06〜0.13mg/L、Znについては0.16〜0.32mg/L、Moについては0.07〜0.13mg/Lとした。 As shown in Table 3, no. When cultivated using 3 or 4 nutrient solution, no. Compared with the case where it cultivated using 1 nutrient solution, the content of vitamin E and K1 increased for all items, and the content of vitamin B2 and C increased for specific items. Moreover, compared with the case where it cultivates by the open field, content of vitamin E and K1 increased about all the items, and content of vitamin B2 and C increased about the specific item. Therefore, as a nutrient solution that can grow plants rich in vitamins, Mn is converted to MnO 3.16 to 6.32 mg / L, and B is converted to B 2 O 3 to 3.16 to 6.32 mg. / L, 7.35 to 14.71 mg / L for Fe, 0.06 to 0.13 mg / L for Cu, 0.16 to 0.32 mg / L for Zn, 0.07 to 0 for Mo .13 mg / L.

本発明は、太陽光を遮蔽し人工光のみを利用して植物を栽培する完全閉鎖型植物工場に適しているが、太陽光と人工光とを併用する太陽光利用型植物工場に利用することも可能である。   The present invention is suitable for a fully-closed plant factory that shields sunlight and uses only artificial light to grow plants, but is used for a solar-use plant factory that uses both sunlight and artificial light. Is also possible.

1 水耕栽培システム
2 植物
3 養液
4 培地
5 照明装置
6 貯留槽
7 移送手段
DESCRIPTION OF SYMBOLS 1 Hydroponics system 2 Plant 3 Nutrient solution 4 Medium 5 Illumination device 6 Reservoir 7 Transfer means

Claims (3)

植物工場内において植物に人工光を照射し且つ養液を施用して水耕栽培するための水耕栽培方法であって、
前記養液が、MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有することを特徴とする水耕栽培方法。
A hydroponics method for cultivating hydroponic cultivation by irradiating a plant with artificial light and applying a nutrient solution in a plant factory,
The nutrient solution is 1.9 to 6.9 mg / L when Mn is converted to MnO, 1.9 to 6.9 mg / L when B is converted to B 2 O 3 , and Fe is 4.5 to 16. Hydroponic cultivation method characterized by containing 0 mg / L, Cu 0.04-0.14 mg / L, Zn 0.09-0.34 mg / L, and Mo 0.035-0.145 mg / L .
植物工場内において植物に人工光を照射し且つ養液を施用する水耕栽培用の養液であって、
MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有することを特徴とする水耕栽培用養液。
A nutrient solution for hydroponics that irradiates a plant with artificial light and applies a nutrient solution in a plant factory,
Mn converted to MnO 1.9 to 6.9 mg / L, B converted to B 2 O 3 1.9 to 6.9 mg / L, Fe 4.5 to 16.0 mg / L, Cu Is contained in 0.04-0.14 mg / L, Zn is 0.09-0.34 mg / L, and Mo is contained in 0.035-0.145 mg / L.
植物が定植される培地と、前記植物に人工光を照射するための照明装置と、前記植物に施用される養液と、当該養液が貯留される貯留槽と、当該貯留槽内から前記培地へ前記養液を移送するための移送手段とを備えた水耕栽培システムであって、
前記養液が、MnをMnOに換算して1.9〜6.9mg/L、BをBに換算して1.9〜6.9mg/L、Feを4.5〜16.0mg/L、Cuを0.04〜0.14mg/L、Znを0.09〜0.34mg/L、Moを0.035〜0.145mg/L含有することを特徴とする水耕栽培システム。
A culture medium in which plants are planted, a lighting device for irradiating the plant with artificial light, a nutrient solution applied to the plant, a storage tank in which the nutrient solution is stored, and the culture medium from within the storage tank A hydroponic cultivation system comprising a transfer means for transferring the nutrient solution to
The nutrient solution is 1.9 to 6.9 mg / L when Mn is converted to MnO, 1.9 to 6.9 mg / L when B is converted to B 2 O 3 , and Fe is 4.5 to 16. Hydroponic cultivation system characterized by containing 0 mg / L, Cu 0.04-0.14 mg / L, Zn 0.09-0.34 mg / L, and Mo 0.035-0.145 mg / L .
JP2009169053A 2009-07-17 2009-07-17 Hydroponics method, hydroponic solution and hydroponic system Expired - Fee Related JP5281507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169053A JP5281507B2 (en) 2009-07-17 2009-07-17 Hydroponics method, hydroponic solution and hydroponic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169053A JP5281507B2 (en) 2009-07-17 2009-07-17 Hydroponics method, hydroponic solution and hydroponic system

Publications (2)

Publication Number Publication Date
JP2011019476A JP2011019476A (en) 2011-02-03
JP5281507B2 true JP5281507B2 (en) 2013-09-04

Family

ID=43630121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169053A Expired - Fee Related JP5281507B2 (en) 2009-07-17 2009-07-17 Hydroponics method, hydroponic solution and hydroponic system

Country Status (1)

Country Link
JP (1) JP5281507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050958A (en) * 2013-09-06 2015-03-19 岩谷産業株式会社 Culture solution for hydroponics of low potassium vegetable and hydroponics method of low potassium vegetable using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174658U (en) * 1986-12-18 1988-11-14
JPH0280836A (en) * 1988-09-19 1990-03-20 Toyota Motor Corp Gear transmission for automatic transmission
JP3687455B2 (en) * 2000-01-11 2005-08-24 吉澤石灰工業株式会社 Crop cultivation method and crop quality improving agent
JP2003171194A (en) * 2001-12-04 2003-06-17 Masahiro Nagahama Soil fertility promoting material comprising fertilizer composition containing vitamins, sulpher-containing amino acids and saccharides which are organic substances
JP2007145614A (en) * 2005-11-24 2007-06-14 Sumika Takeda Engei Kk High-concentration liquid fertilizer composition
JP2009044985A (en) * 2007-08-17 2009-03-05 Globally Tech Kk Hydroponics system

Also Published As

Publication number Publication date
JP2011019476A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
Agbna et al. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato
Guang-Cheng et al. Growth, yield and water use efficiency response of greenhouse-grown hot pepper under Time-Space deficit irrigation
CN103222420B (en) Small vegetable indoor cultivation technique based on LED energy saving light source
JP6465110B2 (en) How to grow ginseng
Pignata et al. Water and nutrient supply in horticultural crops grown in soilless culture: resource efficiency in dynamic and intensive systems
EP3892088A1 (en) Illumination method for facilitating plant growth, plant illumination device and use thereof
Rannu et al. Effect of irrigation and mulch on the yield and water use of strawberry
Bao et al. Effect of stage-specific saline irrigation on greenhouse tomato production
CN102960223B (en) Method for simply, easily and quickly cultivating tobacco seedlings
Acharya et al. Yield and quality attributes of lettuce and spinach grown in different hydroponic systems
Clark et al. Fertilization methods for organic and conventional potted blueberry plants
Li et al. Effect of potassium application on celery growth and cation uptake under different calcium and magnesium levels in substrate culture
Kinoshita et al. Differential nutrient uptake and its transport in tomato plants on different fertilizer regimens
Rodríguez-Delfín et al. Soil based and simplified hydroponics rooftop gardens
Singh New systems of vegetable production: Protected cultivation, hydroponics, aeroponics, vertical, organic, microgreens
JP5281507B2 (en) Hydroponics method, hydroponic solution and hydroponic system
Zhou et al. Effect of light quality on the growth and photosynthetic characteristics of Cinnamomum camphora rooted cuttings
Ampim et al. Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants 2022, 11, 2843
CN205623647U (en) Sealed artificial lighting strawberry cultivation device
Mu et al. Effects of different mulching practices on the photosynthetic characteristics of hot pepper (Capsicum annuum L.) in a greenhouse in Northwest China
Lalk et al. Fertilizer type and irrigation frequency affect plant growth, yield, and gas exchange of containerized strawberry cultivars
CN101485281A (en) Soilless culture method for edible wild herb
Aly Emam et al. Sustainable ecology strawberry production via different soilless culture techniques under urban conditions
CN103641609A (en) Plant culture medium
Shohael et al. An easy and reproducible field to table technology for the production of hydroponics lettuce in Bangladesh

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130524

R150 Certificate of patent or registration of utility model

Ref document number: 5281507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees