JP5278226B2 - Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof - Google Patents

Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5278226B2
JP5278226B2 JP2009176596A JP2009176596A JP5278226B2 JP 5278226 B2 JP5278226 B2 JP 5278226B2 JP 2009176596 A JP2009176596 A JP 2009176596A JP 2009176596 A JP2009176596 A JP 2009176596A JP 5278226 B2 JP5278226 B2 JP 5278226B2
Authority
JP
Japan
Prior art keywords
tic
less
amount
strength
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009176596A
Other languages
Japanese (ja)
Other versions
JP2011026690A (en
Inventor
由起子 小林
淳 高橋
龍雄 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009176596A priority Critical patent/JP5278226B2/en
Publication of JP2011026690A publication Critical patent/JP2011026690A/en
Application granted granted Critical
Publication of JP5278226B2 publication Critical patent/JP5278226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel sheet which has a strength of &ge;540 MPa and excellent workability and is used for automotive parts or the like, and to provide a method for producing the same. <P>SOLUTION: The low alloy type high-strength hot-rolled steel sheet having a tensile strength of 540 to 650 MPa or more has a composition comprising, by mass, 0.02 to 0.08% C, 0.01 to 1.50% Si and 0.1 to 1.5% Mn, and further comprising 0.03 to 0.06% Ti, and in which Ti/C also satisfies 0.375 to 1.6, and the content of P is limited to &le;0.1%, the content of S is limited to &le;0.005%, the content of Al is limited to &le;0.5% and the content of N is limited to &le;0.009%, and the balance Fe with inevitable impurities, and the average diameter of TiC precipitates is 0.8 to 3 nm, and the average number density is &ge;1&times;10<SP>17</SP>pieces/cm<SP>3</SP>. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、特に、自動車部品などに用いられる540MPa以上の強度と優れた加工性を有する熱延鋼板及びその製造方法に関するものである。   The present invention particularly relates to a hot-rolled steel sheet having a strength of 540 MPa or more and excellent workability used for automobile parts and the like, and a method for producing the same.

鋼の強度を高めるには、Cや、Si、Mnなどの元素の添加による固溶強化、Ti、Nbなどの析出物を利用した析出強化、金属組織を軟質のフェライトと硬質のマルテンサイトやベイナイトからなる複合組織とする組織強化が有効である。特に、自動車用部材は、軽量化や、安全性及び耐久性の向上が進められており、素材である鉄鋼材料の高強度化が要求されている。   To increase the strength of steel, solid solution strengthening by adding elements such as C, Si, and Mn, precipitation strengthening using precipitates such as Ti and Nb, and the metal structure of soft ferrite and hard martensite or bainite It is effective to strengthen the organization as a composite organization consisting of In particular, automobile components are being reduced in weight and improved in safety and durability, and a high strength steel material is required.

しかし、固溶強化は、析出強化や組織強化に比べて効果が小さく、自動車用部材の素材に求められるような高強度化は困難である。そのため、マルテンサイトなどの硬質相を組み合わせた複合組織鋼が開発されている。この複合組織鋼は、均一伸びにも優れるものの、フェライトと硬質相との硬度差に起因して、局部延性が低く、穴広げ性に劣る。   However, solid solution strengthening is less effective than precipitation strengthening and structure strengthening, and it is difficult to increase the strength as required for materials for automobile members. Therefore, a composite structure steel combining hard phases such as martensite has been developed. Although this composite structure steel is excellent in uniform elongation, the local ductility is low due to the difference in hardness between the ferrite and the hard phase, and the hole expandability is inferior.

これに対し、本来のフェライト相の均一組織の優れた変形能を維持したまま高強度化を図ろうとする技術開発が、近年再び検討され始めた。例えば、本発明者らの一部は、Ti、Nb、Moなどの炭化物形成元素を活用し、微細な炭化物を析出させ、フェライトを強化する方法を提案した(例えば、特許文献1〜3、参照)。また。Tiを析出強化に利用した鋼板については、材質のばらつきを低減する方法も提案されている(例えば、特許文献4及び5、参照)。   On the other hand, technical development for increasing the strength while maintaining the excellent deformability of the original uniform structure of the ferrite phase has recently started to be examined again. For example, some of the present inventors have proposed a method of strengthening ferrite by precipitating fine carbides by utilizing carbide-forming elements such as Ti, Nb, and Mo (see, for example, Patent Documents 1 to 3). ). Also. For steel sheets using Ti for precipitation strengthening, methods for reducing material variations have also been proposed (see, for example, Patent Documents 4 and 5).

しかし、これらは比較的、多量の炭化物形成元素を添加するものである。これに対し、炭化物形成元素の添加を抑え、代わりにAlおよびNによる析出強化を利用する方法が提案されている(例えば、特許文献6、参照)。   However, they add a relatively large amount of carbide forming elements. On the other hand, a method of suppressing the addition of carbide forming elements and using precipitation strengthening by Al and N instead has been proposed (see, for example, Patent Document 6).

特開2007−262487号公報JP 2007-262487 A 特開2007−247046号公報JP 2007-247046 A 特開2007−247049号公報JP 2007-247049 A 特開2006−213957号公報JP 2006-213957 A 特開2007−231409号公報JP 2007-231409 A 特開2007−070647号公報JP 2007-070647 A

特許文献6の鋼板は、AlとTi、Nbなどの窒化物を利用するものであるが、省合金化という観点では、炭化物形成能の最も強いTiを主に利用し、他の炭化物形成元素の利用は極力低減することが望ましい。本発明は、Nb、Mo、Vなどの合金元素の添加を抑制し、少量のTiの添加によって効率的に析出強化させた、引張強度540〜650MPaの高強度熱延鋼板及びその製造方法を提供することを目的とするものである。   The steel sheet of Patent Document 6 uses nitrides such as Al, Ti, and Nb, but from the viewpoint of alloying, mainly uses Ti having the strongest carbide forming ability, and other carbide forming elements. It is desirable to reduce usage as much as possible. The present invention provides a high-strength hot-rolled steel sheet having a tensile strength of 540 to 650 MPa, which suppresses the addition of alloy elements such as Nb, Mo, and V and is efficiently precipitation strengthened by the addition of a small amount of Ti, and a method for producing the same. It is intended to do.

本発明者らは、炭化物形成能が他の元素と比べて非常に高いTiを効率的に析出強化に利用するための、析出物のサイズ、および個数密度を見出し、これによって、最も少量の原子の利用で、多くの原子を利用したときと同じ強度を達成することが可能であることを明らかにした。添加元素の量を抑えることで、合金コストの低減が可能になるだけでなく、合金元素の添加に起因する加工性の低下も抑えることができる。   The inventors of the present invention have found the size and number density of precipitates for efficiently using Ti, which has a very high carbide forming ability compared to other elements, for precipitation strengthening. It was clarified that the use of can achieve the same strength as when many atoms were used. By suppressing the amount of the additive element, it is possible not only to reduce the alloy cost, but also to suppress a decrease in workability due to the addition of the alloy element.

本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。   This invention is made | formed based on such knowledge, The summary is as follows.

(1) 質量%で、
C:0.02〜0.08%、
Si:0.01〜1.50%、
Mn: 0.1〜1.5%
Ti:0.03〜0.06%
を含有し、
P:0.1%以下、
S:0.005%以下、
Al:0.5%以下、
N:0.009%以下
に制限し、更に、Nb、Mo、Vの含有量の合計を0.01%以下に制限し、残部がFeおよび不可避的不純物からなり、C量に対するTi量の比が、
Ti/C:0.375〜1.6
であり、結晶粒内のTiC析出物の平均直径が0.8〜3nmであり、平均個数密度が、1×1017[個/cm3]以上であり、引張強度が540〜650MPaであることを特徴とする省合金型高強度熱延鋼板。
(1) In mass%,
C: 0.02 to 0.08%,
Si: 0.01 to 1.50%,
Mn: 0.1 to 1.5%
Ti: 0.03-0.06%
Containing
P: 0.1% or less,
S: 0.005% or less,
Al: 0.5% or less,
N: Limiting to 0.009% or less, further limiting the total content of Nb, Mo, V to 0.01% or less, the balance being Fe and inevitable impurities, the ratio of Ti amount to C amount But,
Ti / C: 0.375 to 1.6
The average diameter of the TiC precipitates in the crystal grains is 0.8 to 3 nm, the average number density is 1 × 10 17 [pieces / cm 3 ] or more, and the tensile strength is 540 to 650 MPa. Alloy-saving high-strength hot-rolled steel sheet.

(2) 上記(1)に記載の高強度熱延鋼板の製造方法であって、上記(1)に記載の成分からなる鋼片を1200℃以上に加熱し、最終加工温度FT[℃]を900℃超として熱間加工を行い、20℃/s以上で580〜640℃の範囲内の温度MT1[℃]まで1次冷却し、続いて5℃/s以下で、510〜600℃の範囲内であり、前記MT1[℃]よりも低い温度MT2[℃]まで2次冷却し、巻取ることを特徴とする省合金型高強度熱延鋼板の製造方法。 (2) A method for producing a high-strength hot-rolled steel sheet as described in (1) above, wherein a steel slab comprising the component as described in (1) above is heated to 1200 ° C. or higher, and a final processing temperature FT [° C.] is set. Hot working is performed at over 900 ° C., and is first cooled to a temperature MT 1 [° C.] within a range of 580 to 640 ° C. at 20 ° C./s or higher, and subsequently at 510 ° C. to 600 ° C. at 5 ° C./s or lower. A method for producing an alloy-saving high-strength hot-rolled steel sheet, wherein the secondary cooling is performed to a temperature MT 2 [° C.] lower than the MT 1 [° C.], and winding is performed.

本発明によれば、より少ないかつ安価な合金元素の添加で効率的に強度を確保することができるため、産業上の貢献が極めて顕著である。   According to the present invention, the strength can be efficiently ensured with the addition of a less expensive and cheap alloy element, so that the industrial contribution is extremely remarkable.

Tiの析出量を0.03質量%としたときの、TiC析出物の粒子直径と鋼材の析出強化量との関係を示す図である。It is a figure which shows the relationship between the particle diameter of a TiC precipitate when the precipitation amount of Ti is 0.03 mass%, and the precipitation strengthening amount of steel materials. Tiの析出量を0.06質量%としたときの、TiC析出物の粒子直径と鋼材の析出強化量との関係を示す図である。It is a figure which shows the relationship between the particle diameter of a TiC precipitate, and the precipitation strengthening amount of steel materials when the precipitation amount of Ti is 0.06 mass%.

本発明では低コストで所望の強度と加工性を確保するために極力合金元素は添加せず、析出強化を最大限活用するような鋼板の製造を目指した。そこで炭化物形成能が他の元素と比べて非常に高いTiを効率的に析出強化に利用することを検討した。
本発明者らは、TiC析出物のサイズと析出物1個あたりの強化能について、種々の熱処理条件により、析出物のサイズおよび個数密度を変化させた析出強化鋼を製造して詳細に検討を行った。
In the present invention, in order to secure desired strength and workability at low cost, an alloy element is not added as much as possible, and the aim is to produce a steel sheet that makes the best use of precipitation strengthening. Therefore, we investigated the efficient use of Ti for precipitation strengthening, which has very high carbide forming ability compared to other elements.
The inventors of the present invention have studied in detail the production of precipitation-strengthened steel in which the size and number density of the precipitates are changed under various heat treatment conditions with respect to the size of TiC precipitates and the strengthening ability per precipitate. went.

まず、得られた析出強化鋼から、 平行部の直径が6mmφ、長さが32mmの丸棒引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、降伏強度を測定した。各試験片の降伏強度から、析出硬化していない試験片の降伏強度を差し引いて、析出強化量を求めた。   First, from the obtained precipitation-strengthened steel, a round bar tensile test piece having a parallel part diameter of 6 mmφ and a length of 32 mm was collected, and a tensile test was performed according to JIS Z 2241 to measure the yield strength. The yield strength of each test piece was determined by subtracting the yield strength of the test piece that had not been precipitation hardened.

また、TiC析出物サイズ及びTiC析出物密度の測定を、三次元アトムプローブ測定法により、以下のようにして行った。
測定対象の試験片から、切断および電解研磨法により、必要に応じて電解研磨法とあわせて集束イオンビーム加工法を活用し、針状の試料を作製する。三次元アトムプローブ測定では、試料表面を一原子層ずつ蒸発させて積算したデータを、再構築して実空間での実際の原子の分布像として求めることができる。
The TiC precipitate size and TiC precipitate density were measured by the three-dimensional atom probe measurement method as follows.
A needle-like sample is prepared from a test specimen to be measured by cutting and electrolytic polishing using a focused ion beam processing method in combination with an electrolytic polishing method as necessary. In the three-dimensional atom probe measurement, data obtained by evaporating the sample surface by one atomic layer and integrating can be reconstructed and obtained as an actual atomic distribution image in real space.

観察されたTiC析出物の立体分布像の体積とTiC析出物の数からTiC析出物の個
数密度が求まる。また、TiC析出物のサイズは、観察されたTiC析出物の構成原子数とTiCの格子定数から、析出物を球状と仮定し算出した直径とし、任意に30個以上のTiC析出物の直径を測定し、その平均値として求まる。なお、三次元アトムプローブ測定では、サイズが0.5nm未満の粒子を固溶状態と判断した。また、本発明の成分範囲の鋼材においては、サイズが50nmを超える粒子は個数密度が少なく、正確な評価が困難である。そのため、サイズが0.5〜50nmのTiC析出物を対象として、TiCサイズ及びTiC析出物密度を求めた。
The number density of TiC precipitates can be determined from the volume of the observed stereo distribution of TiC precipitates and the number of TiC precipitates. The size of the TiC precipitate is the diameter calculated from the observed number of constituent atoms of the TiC precipitate and the lattice constant of TiC, assuming that the precipitate is spherical, and arbitrarily the diameter of 30 or more TiC precipitates. Measure and find the average value. In the three-dimensional atom probe measurement, particles having a size of less than 0.5 nm were determined to be in a solid solution state. In addition, in the steel material having the component range of the present invention, particles having a size exceeding 50 nm have a small number density and are difficult to accurately evaluate. Therefore, TiC size and TiC precipitate density were determined for TiC precipitates having a size of 0.5 to 50 nm.

このようにして求めたTiC析出物のサイズ、個数密度、析出強化量から、析出物のサイズとその析出物1個あたりの析出強化量(転位をピンニングする抵抗力)との関係を計算で求めた。なお、計算式は、転位が粒子を切断するモデルの理論式に基づいている。   From the size, number density, and precipitation strengthening amount of the TiC precipitate thus obtained, the relationship between the size of the precipitate and the precipitation strengthening amount per one precipitate (resistance force for pinning dislocations) is obtained by calculation. It was. The calculation formula is based on a theoretical formula of a model in which dislocations cut particles.

次に、鋼材全体の析出強化量に及ぼすTiC析出物サイズの影響について検討を行った。その際、添加したTiによる鋼の最大の析出強化量を評価するために、鋼中に含まれるTiの全量が析出し、化学量論的なTiCとなると仮定した。また、TiC析出物のサイズが一定、即ち、TiおよびCの全原子数が一定であると仮定した。
そして、鋼のTi量とTiC析出物のサイズから個数密度を求め、先に求めた析出物1個あたりの析出強化量と個数密度から鋼材の析出強化量を求めてTiC析出物のサイズと鋼材の析出強化量との関係を評価した。なお、鋼材の析出強化量は、析出物1個あたりの析出強化量の評価に用いた計算式を変形し、TiC析出物のサイズから求めた個数密度によって評価した。
Next, the influence of the TiC precipitate size on the precipitation strengthening amount of the whole steel material was examined. At that time, in order to evaluate the maximum precipitation strengthening amount of the steel by the added Ti, it was assumed that the entire amount of Ti contained in the steel was precipitated and became stoichiometric TiC. It was also assumed that the size of the TiC precipitate was constant, that is, the total number of Ti and C atoms was constant.
Then, the number density is obtained from the Ti amount of the steel and the size of the TiC precipitate, and the precipitation strengthening amount of the steel material is obtained from the precipitation strengthening amount and the number density per precipitate obtained previously, and the size of the TiC precipitate and the steel material are obtained. The relationship with the precipitation strengthening amount of was evaluated. The precipitation strengthening amount of the steel material was evaluated by the number density obtained from the size of the TiC precipitate by modifying the calculation formula used for the evaluation of the precipitation strengthening amount per precipitate.

図1および図2に、Ti量を0.03質量%および0.06質量%としたときの、TiC析出物のサイズと鋼材の析出強化量との関係を示す。
図1および図2に示すように、平均直径(TiC析出物のサイズ)が0.8〜3nmの範囲で、鋼材の析出強化量が特に高くなることがわかる。また、図1と図2とを比較すると、鋼材のTi量が変化しても、粒子直径と析出強化量との相対的な関係は変化しないことがわかる。
FIG. 1 and FIG. 2 show the relationship between the size of the TiC precipitate and the precipitation strengthening amount of the steel when the Ti amount is 0.03% by mass and 0.06% by mass.
As shown in FIGS. 1 and 2, it can be seen that the precipitation strengthening amount of the steel material is particularly high when the average diameter (size of TiC precipitates) is in the range of 0.8 to 3 nm. Moreover, when FIG. 1 and FIG. 2 are compared, even if Ti amount of steel materials changes, it turns out that the relative relationship between a particle diameter and precipitation strengthening amount does not change.

したがって、図1および2の結果から、一定量のTiを添加した場合、TiC析出物の平均直径を0.8〜3nmの範囲とすることで、非常に効率良く析出強化を作用させられることがわかる。すなわち、TiC析出物の平均直径を0.8〜3nmの範囲とすれば、0.8nm未満及び3nm超の場合に比べて、強度を確保するために必要なTi量を削減することができると考えられる。   Therefore, from the results of FIGS. 1 and 2, when a certain amount of Ti is added, precipitation strengthening can be applied very efficiently by setting the average diameter of TiC precipitates in the range of 0.8 to 3 nm. Recognize. That is, if the average diameter of the TiC precipitates is in the range of 0.8 to 3 nm, the amount of Ti necessary for securing the strength can be reduced as compared with the case of less than 0.8 nm and more than 3 nm. Conceivable.

以下、本発明について詳細に説明する。
Cは、本発明では、微細なTiC析出物を生じて析出強化に寄与する重要な元素であり、0.02%以上の添加が必要である。一方、C量が0.08%を超えると、粗大なセメンタイトが生じ、延性、特に、局部延性が低下する。
Hereinafter, the present invention will be described in detail.
In the present invention, C is an important element that generates fine TiC precipitates and contributes to precipitation strengthening, and addition of 0.02% or more is necessary. On the other hand, when the amount of C exceeds 0.08%, coarse cementite is generated, and ductility, particularly local ductility is lowered.

Siは、脱酸元素であり、0.01%以上を添加する。また、Siは固溶強化に寄与する元素であるが、含有量が1.50%を超えると加工性が劣化するため、Si量の上限を1.50%以下とする。   Si is a deoxidizing element, and 0.01% or more is added. Si is an element that contributes to solid solution strengthening, but if the content exceeds 1.50%, the workability deteriorates, so the upper limit of Si content is 1.50% or less.

Mnは脱酸、脱硫に有効な元素であり、固溶強化にも寄与するため、0.2%以上を添加する。一方、Mn量が1.5%を超えると、偏析が生じやすくなり加工性が低下し、またコストが上昇するため好ましくない。   Mn is an element effective for deoxidation and desulfurization, and contributes to solid solution strengthening, so 0.2% or more is added. On the other hand, if the amount of Mn exceeds 1.5%, segregation is likely to occur, workability is reduced, and costs are increased, which is not preferable.

Tiは、フェライトの粒内に微細なTiC析出物を析出し、析出強化に寄与する極めて重要な元素である。強度を上昇させるため、0.03%以上を添加することが好ましい。一方、0.06%を超えるTiを添加すると、TiC析出物が粗大化しやすくなり、製造を難しくするため、本発明の析出物サイズおよび個数密度を達成するためには0.06%以下とすることが好ましい。   Ti is an extremely important element that contributes to precipitation strengthening by precipitating fine TiC precipitates in ferrite grains. In order to increase the strength, 0.03% or more is preferably added. On the other hand, when Ti exceeding 0.06% is added, TiC precipitates are likely to be coarsened, making production difficult. Therefore, in order to achieve the precipitate size and number density of the present invention, the content is made 0.06% or less. It is preferable.

Pは、不純物であり、加工性や溶接性を損なうため、0.1%以下に制限する。特に、Pは粒界に偏析して延性を低下させるため、P量を0.02%以下に制限することが好ましい。   P is an impurity and is limited to 0.1% or less because it impairs workability and weldability. In particular, since P segregates at the grain boundaries to lower the ductility, it is preferable to limit the amount of P to 0.02% or less.

Sは、不純物であり、特に、熱間加工性を損なうため、0.005%以下に制限する。硫化物などの介在物による延性の低下を抑制するためには、S量を0.002%以下に制限することが好ましい。   S is an impurity, and is particularly limited to 0.005% or less in order to impair hot workability. In order to suppress a decrease in ductility due to inclusions such as sulfides, it is preferable to limit the amount of S to 0.002% or less.

Nは、TiNを形成し、鋼の加工性を低下させるため、0.009%以下に制限することが好ましい。
Alは、脱酸剤であり、0.5%以下を含有させる。なお、Alを過剰に添加すると窒化物を形成し、延性が低下するため、0.15%以下に制限することが好ましい。
N forms TiN and lowers the workability of the steel, so it is preferable to limit it to 0.009% or less.
Al is a deoxidizer and contains 0.5% or less. Note that, if Al is added excessively, nitrides are formed and ductility is lowered. Therefore, it is preferable to limit to 0.15% or less.

Nb、Mo、VもTiと同様にフェライト結晶粒内に炭化物を析出する元素である。しかし、Nb、Mo、Vともに合金コストが高い割に見合った析出強化能はTiより小さいため、Nb、Mo、Vの合計量を0.01%以下に制限する。   Nb, Mo, and V are also elements that precipitate carbide in the ferrite crystal grains, like Ti. However, since the precipitation strengthening ability corresponding to the high alloy cost of Nb, Mo, and V is smaller than that of Ti, the total amount of Nb, Mo, and V is limited to 0.01% or less.

また、CaおよびREMを介在物の形態を制御するために添加してもよく、含有量が合計で0.01%以下とすることが好ましい。   Further, Ca and REM may be added to control the form of inclusions, and the total content is preferably 0.01% or less.

その他の不可避的不純物としては、例えば、スクラップから混入する可能性がある、Ni、Cu、Snが挙げられる。Ni、Cu、Snなどの含有量の許容範囲は、それぞれ0.01%以下である。   Examples of other inevitable impurities include Ni, Cu, and Sn that may be mixed from scrap. The allowable ranges for the contents of Ni, Cu, Sn, etc. are each 0.01% or less.

また、本発明ではTiとCとの含有量の比Ti/Cを1.6以下とすることが重要である。これは原子数の比率に換算するとTi/Cが約0.4以下に相当する。従来の析出強化鋼では、TiCを析出させるために、Cに対してTiを過剰に含有させていた。しかし、本発明では、添加したTiを鋼中に固溶させず、TiCの析出を促進させ、析出強化に有効に寄与させるために、Ti量がCに対して過剰にならないように添加する。   In the present invention, it is important that the content ratio Ti / C of Ti and C is 1.6 or less. This corresponds to Ti / C of about 0.4 or less when converted to the ratio of the number of atoms. In conventional precipitation strengthened steel, Ti is excessively contained with respect to C in order to precipitate TiC. However, in the present invention, the added Ti is not dissolved in the steel, the precipitation of TiC is promoted, and the Ti content is added so as not to be excessive with respect to C in order to effectively contribute to precipitation strengthening.

また、Ti/Cが1.6を超えると高温でTiCが析出し易くなり、本発明の製造方法では、TiC析出物の平均直径が3nmを超え、平均個数密度が、1×1017[個/cm3]未満になる。より好ましいTi/Cの上限は1.0以下である。Ti/Cの下限値は、Ti量の下限値が0.03%であり、C量の上限値が0.08%であることから、0.375以上とする。 Further, when Ti / C exceeds 1.6, TiC is likely to precipitate at a high temperature. In the production method of the present invention, the average diameter of TiC precipitates exceeds 3 nm, and the average number density is 1 × 10 17 [pieces]. / Cm 3 ]. A more preferable upper limit of Ti / C is 1.0 or less. The lower limit value of Ti / C is set to 0.375 or more because the lower limit value of the Ti amount is 0.03% and the upper limit value of the C amount is 0.08%.

次に、本発明の高強度鋼の金属組織について説明する。
本発明の鋼板の金属組織は特に指定しないが、加工性の観点から実質的にフェライトとベイナイトとからなることが好ましい。
Next, the metal structure of the high strength steel of the present invention will be described.
Although the metal structure of the steel plate of the present invention is not particularly specified, it is preferably substantially composed of ferrite and bainite from the viewpoint of workability.

析出強化量は、析出物1個あたりの強化量(転位をピンニングする力)と、析出物の個数密度で決まると考えることができる。結晶粒内に析出したTiC析出物の平均直径は、0.8nm未満では、析出物1個当たりのピンニング力が弱く、析出強化への寄与が小さい。一方、TiC析出物の平均直径が3nmを超えると、析出物1個あたりの強化量の増加は飽和し、個数密度が減少するため、析出強化量が低下する。析出強化のためには、1.5〜3.0nmのTiC析出物を利用することが更に好ましい。   The amount of precipitation strengthening can be considered to be determined by the amount of strengthening per precipitate (the force for pinning dislocations) and the number density of precipitates. When the average diameter of TiC precipitates precipitated in the crystal grains is less than 0.8 nm, the pinning force per precipitate is weak and the contribution to precipitation strengthening is small. On the other hand, when the average diameter of the TiC precipitate exceeds 3 nm, the increase in the amount of strengthening per precipitate is saturated and the number density decreases, so the amount of precipitation strengthening decreases. For precipitation strengthening, it is more preferable to use a 1.5 to 3.0 nm TiC precipitate.

結晶粒内に析出したTiC析出物の個数密度は、効率的に析出強化を活用するために、高いほうが好ましい。強度540MPa以上を達成するためには1×1017個/cm3以上が必要である。好ましくは2×1017個/cm3以上、さらに好ましくは4×1017個/cm3以上である。
析出物の平均直径と平均個数密度の測定には、前述したように、三次元アトムプローブ測定法を用いる。三次元アトムプローブ法による測定では、針状の試料を用い、1つの結晶粒内の析出状態を観察する。測定に用いる試料数は3以上とし、平均直径は、30個以上の析出物の直径を測定して求める。また、測定する析出物のサイズは、現状の三次元アトムプローブ測定では、サイズが0.5nm未満の粒子を固溶状態と判断し、正確に個数密度を算出できる上限が、本発明の成分範囲では、50nmであるので、0.5〜50nmのものを測定して、平均直径と平均個数密度を求める。
The number density of TiC precipitates precipitated in the crystal grains is preferably higher in order to efficiently utilize precipitation strengthening. In order to achieve a strength of 540 MPa or more, 1 × 10 17 pieces / cm 3 or more is required. Preferably it is 2 × 10 17 pieces / cm 3 or more, more preferably 4 × 10 17 pieces / cm 3 or more.
As described above, the three-dimensional atom probe measurement method is used to measure the average diameter and average number density of the precipitates. In the measurement by the three-dimensional atom probe method, a needle-like sample is used and the precipitation state in one crystal grain is observed. The number of samples used for measurement is 3 or more, and the average diameter is obtained by measuring the diameter of 30 or more precipitates. In addition, the size of the precipitate to be measured is determined by the current three-dimensional atom probe measurement, and the upper limit for accurately calculating the number density can be determined by determining particles having a size of less than 0.5 nm as a solid solution state. Then, since it is 50 nm, the thing of 0.5-50 nm is measured and an average diameter and an average number density are calculated | required.

また、本発明において上記TiC析出物とは、炭化物だけでなく、炭化物中に窒素が若干混入した炭窒化物も含むものとする。また、TiC析出物の中にNb、Mo、Vが固溶したものも含むものとする。   In the present invention, the TiC precipitate includes not only carbides but also carbonitrides in which nitrogen is slightly mixed in the carbides. Moreover, the thing which Nb, Mo, and V dissolved in TiC precipitate is also included.

次に、本発明の高強度鋼の製造方法について説明する。
鋼を常法によって溶製、鋳造し、得られた鋼片を熱間圧延する。鋼片は、生産性の観点から、連続鋳造設備で製造することが好ましい。熱間圧延の加熱温度は、炭化物形成元素と炭素を十分に鋼材中に分解溶解させるため、1200℃以上とする。鋳造後、鋼片を冷却して、1200℃以上の温度で圧延を開始しても良い。1200℃以下に冷却された鋼片を加熱する場合は、1時間以上の保持を行うことが好ましい。
Next, the manufacturing method of the high strength steel of this invention is demonstrated.
Steel is melted and cast by a conventional method, and the obtained steel piece is hot-rolled. The steel slab is preferably manufactured by continuous casting equipment from the viewpoint of productivity. The heating temperature of the hot rolling is set to 1200 ° C. or higher in order to sufficiently decompose and dissolve the carbide forming element and carbon in the steel material. After casting, the steel slab may be cooled and rolling may be started at a temperature of 1200 ° C. or higher. When heating a steel piece cooled to 1200 ° C. or lower, it is preferable to hold for at least 1 hour.

熱間加工の終了温度は、900℃超とする。これは、高温でのTiC析出物の粗大化を抑制するためであり、熱間加工後は速やかに冷却を開始することが必要である。熱間加工の終了温度は、高温でのTiCの析出を抑制するため、好ましくは920℃以上とする。熱間加工後は、1次冷却後、更に2次冷却を行う。   The end temperature of hot working is over 900 ° C. This is for suppressing the coarsening of the TiC precipitate at a high temperature, and it is necessary to start cooling promptly after hot working. The end temperature of hot working is preferably 920 ° C. or higher in order to suppress precipitation of TiC at a high temperature. After hot working, secondary cooling is further performed after primary cooling.

1次冷却の冷却速度は、20℃/s以上とする。これは、高温でのTiC析出物の析出、成長や、冷却中のフェライト変態を抑制するためである。高温でのTiCの析出を抑制するためには、1次冷却の冷却速度を50℃/s以上とすることが好ましい。1次冷却の冷却速度の上限は規定しないが、100℃/s超にすると、1次冷却の停止温度の制御が困難になる。   The cooling rate of the primary cooling is set to 20 ° C./s or more. This is to suppress precipitation and growth of TiC precipitates at high temperatures and ferrite transformation during cooling. In order to suppress precipitation of TiC at a high temperature, it is preferable to set the cooling rate of primary cooling to 50 ° C./s or more. The upper limit of the cooling rate of the primary cooling is not specified, but if it exceeds 100 ° C./s, it becomes difficult to control the stop temperature of the primary cooling.

1次冷却の停止温度MT1[℃]は、高温でのTiC析出物の生成を抑制するため、580〜640℃の範囲内とすることが必要である。MT1が640℃を超えるとTiC析出物が粗大化し、効率的な析出強化が困難になる。一方、MT1が580℃未満になると、2次冷却でのTiC析出物の析出が不十分になる。 The primary cooling stop temperature MT 1 [° C.] needs to be in the range of 580 to 640 ° C. in order to suppress the formation of TiC precipitates at a high temperature. When MT 1 exceeds 640 ° C., TiC precipitates are coarsened, and efficient precipitation strengthening becomes difficult. On the other hand, when MT 1 is less than 580 ° C., precipitation of TiC precipitates in the secondary cooling becomes insufficient.

更に、2次冷却を行う。2次冷却の冷却速度は、TiC析出物の形成を促進するため、5℃/s以下とする。2次冷却の冷却速度の下限は特に規定しないが、製造コストの観点から、空冷が好ましい。   Further, secondary cooling is performed. The cooling rate of the secondary cooling is set to 5 ° C./s or less in order to promote the formation of TiC precipitates. The lower limit of the cooling rate of the secondary cooling is not particularly specified, but air cooling is preferable from the viewpoint of manufacturing cost.

2次冷却の停止温度MT2[℃]は、TiC析出物の粗大化を防止し、微細なTiC析出物を増加させるため、510〜600℃とすることが必要である。なお、2次冷却を施すため、MT2[℃]は、MT1[℃]よりも低くなる。TiC析出物の粗大化を防ぎ十分な析出密度を得るためには10℃以上低くするのが好ましい。MT2[℃]が600℃を超えるとTiC析出物が粗大化し、効率的な析出強化が困難になる。一方、MT2[℃]が510℃未満になると、TiC析出物の析出が不十分になる。 The secondary cooling stop temperature MT 2 [° C.] is required to be 510 to 600 ° C. in order to prevent coarsening of TiC precipitates and increase fine TiC precipitates. Since secondary cooling is performed, MT 2 [° C.] is lower than MT 1 [° C.]. In order to prevent coarsening of TiC precipitates and obtain a sufficient precipitation density, it is preferable to lower by 10 ° C. or more. When MT 2 [° C.] exceeds 600 ° C., TiC precipitates are coarsened, and efficient precipitation strengthening becomes difficult. On the other hand, when MT 2 [° C.] is less than 510 ° C., the precipitation of TiC precipitates becomes insufficient.

表1に示した成分組成を有する鋼を溶解し、鋳造して鋼片を作製した。表1の成分値は化学分析値で質量%である。次に、表2に示した製造条件で鋼片に熱間圧延を施し、熱延鋼板を製造した。   Steel having the composition shown in Table 1 was melted and cast to produce a steel slab. The component values in Table 1 are chemical analysis values and are mass%. Next, the steel pieces were hot-rolled under the production conditions shown in Table 2 to produce hot-rolled steel sheets.

これらの熱延鋼板から、JIS Z 2201に準拠して5号試験片を採取した。引張試験は、JIS Z 2241に準拠して行い、引張特性を評価した。   From these hot-rolled steel sheets, No. 5 test pieces were collected according to JIS Z 2201. The tensile test was performed according to JIS Z 2241 to evaluate the tensile properties.

TiC析出物のサイズ及び密度の測定は、三次元アトムプローブ測定法によって行った。電解研磨法により針状の試料を作製し、観察されたTiC析出物の構成原子数とTiCの格子定数から、析出物を球状と仮定し算出した直径をサイズとした。更に、30個以上のTiC析出物の直径を測定し、その平均値を求めた。また測定に用いた試料の体積とTiC炭化物の数からTiC炭化物の個数密度を求めた。   The size and density of the TiC precipitate were measured by a three-dimensional atom probe measurement method. A needle-like sample was prepared by an electropolishing method, and the diameter calculated from the observed number of constituent atoms of the TiC precipitate and the lattice constant of TiC assuming that the precipitate was spherical was taken as the size. Furthermore, the diameter of 30 or more TiC precipitates was measured, and the average value was obtained. The number density of TiC carbides was determined from the volume of the sample used for the measurement and the number of TiC carbides.

結果を表2に示す。成分および製造条件が本発明の範囲内であれば、TiC析出物のサイズが0.8〜3nm、個数密度が1×1017以上となり、引張強度が540MPa以上になることがわかる。 The results are shown in Table 2. It can be seen that when the components and production conditions are within the scope of the present invention, the size of the TiC precipitate is 0.8 to 3 nm, the number density is 1 × 10 17 or more, and the tensile strength is 540 MPa or more.

一方、製造No.15はTi量が少なく、製造No.16はC量が少なく、Ti/Cの比率も高いため、TiC析出物の生成が不十分になり、TiCの個数密度および強度が低下した例である。製造No.17はC量が多く、延性が低下した例である。製造No.18は、多量のMoが添加されており、TiC析出物のサイズおよび個数密度および強度は満たしているものの、合金コストが高くなり、また延性が低下した例である。   On the other hand, production No. No. 15 has a small amount of Ti. No. 16 is an example in which since the amount of C is small and the ratio of Ti / C is high, the generation of TiC precipitates is insufficient and the number density and strength of TiC are reduced. Production No. 17 is an example in which the amount of C is large and ductility is lowered. Production No. No. 18 is an example in which a large amount of Mo is added and the size, number density and strength of the TiC precipitates are satisfied, but the alloy cost is increased and the ductility is lowered.

製造No.2は一次冷却の冷却速度が遅く、製造No.6および製造No.14は一次冷却の停止温度が高いため、TiC析出物が大きくなり、TiCの個数密度および強度が低下した例である。   Production No. No. 2 has a slow primary cooling rate. 6 and production no. No. 14 is an example in which since the primary cooling stop temperature is high, the TiC precipitates become large and the number density and strength of TiC decrease.

製造No.4は一次冷却の停止温度が低く、製造No.8は二次冷却の冷却速度が速いため、TiC析出物の生成が不十分になり、TiCの個数密度および強度が低下した例である。   Production No. No. 4 has a low primary cooling stop temperature. No. 8 is an example in which the cooling rate of the secondary cooling is high, so that TiC precipitates are not sufficiently generated, and the number density and strength of TiC are reduced.

製造No.9は二次冷却の停止温度が高く、TiC析出物が大きくなり、TiCの個数密度および強度が低下した例である。製造No.10は熱間加工の終了温度が低く、高温でのTiC析出物の粗大化が起きたと考えられ、TiCの個数密度および強度が低下した例である。   Production No. No. 9 is an example in which the secondary cooling stop temperature is high, TiC precipitates are increased, and the number density and strength of TiC are reduced. Production No. No. 10 is an example in which the hot working finish temperature is low, and TiC precipitates are coarsened at a high temperature, and the number density and strength of TiC are reduced.

Figure 0005278226
Figure 0005278226

Figure 0005278226
Figure 0005278226

Claims (2)

質量%で、
C:0.02〜0.08%、
Si:0.01〜1.50%、
Mn: 0.1〜1.5%
Ti:0.03〜0.06%
を含有し、
P:0.1%以下、
S:0.005%以下、
Al:0.5%以下、
N:0.009%以下
に制限し、更に、Nb、Mo、Vの含有量の合計を0.01%以下に制限し、残部がFeおよび不可避的不純物からなり、C量に対するTi量の比が、
Ti/C:0.375〜1.6
であり、結晶粒内のTiC析出物の平均直径が0.8〜3nmであり、平均個数密度が、1×1017[個/cm3]以上であり、引張強度が540〜650MPaであることを特徴とする省合金型高強度熱延鋼板。
% By mass
C: 0.02 to 0.08%,
Si: 0.01 to 1.50%,
Mn: 0.1 to 1.5%
Ti: 0.03-0.06%
Containing
P: 0.1% or less,
S: 0.005% or less,
Al: 0.5% or less,
N: Limiting to 0.009% or less, further limiting the total content of Nb, Mo, V to 0.01% or less, the balance being Fe and inevitable impurities, the ratio of Ti amount to C amount But,
Ti / C: 0.375 to 1.6
The average diameter of the TiC precipitates in the crystal grains is 0.8 to 3 nm, the average number density is 1 × 10 17 [pieces / cm 3 ] or more, and the tensile strength is 540 to 650 MPa. Alloy-saving high-strength hot-rolled steel sheet.
請求項1に記載の高強度熱延鋼板の製造方法であって、請求項1に記載の成分からなる鋼片を1200℃以上に加熱し、最終加工温度FT[℃]を900℃超として熱間加工を行い、20℃/s以上で580〜640℃の範囲内の温度MT1[℃]まで1次冷却し、続いて5℃/s以下で、510〜600℃の範囲内であり、前記MT1[℃]よりも低い温度MT2[℃]まで2次冷却し、巻取ることを特徴とする省合金型高強度熱延鋼板の製造方法。 A method for producing a high-strength hot-rolled steel sheet according to claim 1, wherein the steel slab comprising the component according to claim 1 is heated to 1200 ° C or higher, and the final processing temperature FT [° C] is set to be higher than 900 ° C. Intercooling, and primary cooling to a temperature MT 1 [° C.] in the range of 580 to 640 ° C. at 20 ° C./s or higher, and subsequently in the range of 510 to 600 ° C. at 5 ° C./s or lower, A method for producing an alloy-saving high-strength hot-rolled steel sheet, which is subjected to secondary cooling to a temperature MT 2 [° C.] lower than the MT 1 [° C.] and winding.
JP2009176596A 2009-07-29 2009-07-29 Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof Active JP5278226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176596A JP5278226B2 (en) 2009-07-29 2009-07-29 Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176596A JP5278226B2 (en) 2009-07-29 2009-07-29 Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011026690A JP2011026690A (en) 2011-02-10
JP5278226B2 true JP5278226B2 (en) 2013-09-04

Family

ID=43635750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176596A Active JP5278226B2 (en) 2009-07-29 2009-07-29 Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5278226B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453286B (en) * 2011-04-13 2014-09-21 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet and manufacturing method thereof
MX358644B (en) 2011-04-13 2018-08-30 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel for gaseous nitrocarburizing and manufacturing method thereof.
WO2013061543A1 (en) * 2011-10-25 2013-05-02 Jfeスチール株式会社 High-tension hot-rolled steel plate and method for manufacturing same
WO2013069210A1 (en) * 2011-11-08 2013-05-16 Jfeスチール株式会社 High-tensile-strength hot-rolled plated steel sheet and method for producing same
JP5838796B2 (en) 2011-12-27 2016-01-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5610094B2 (en) 2011-12-27 2014-10-22 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5578288B2 (en) 2012-01-31 2014-08-27 Jfeスチール株式会社 Hot-rolled steel sheet for generator rim and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528276B2 (en) * 2006-03-28 2010-08-18 新日本製鐵株式会社 High strength steel plate with excellent stretch flangeability

Also Published As

Publication number Publication date
JP2011026690A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP4528275B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability
JP5042914B2 (en) High strength steel and manufacturing method thereof
JP5278226B2 (en) Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP6292022B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP5037744B2 (en) High strength steel plate and manufacturing method thereof
JP4955496B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability
EP3859040A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
EP2927340A1 (en) Steel material for hardening and method for producing the same
JP5720612B2 (en) High strength hot rolled steel sheet excellent in formability and low temperature toughness and method for producing the same
JP2013023743A (en) Nonmagnetic steel wire or bar steel, and method for producing the same
JPWO2010150448A1 (en) PERLITE HIGH CARBON STEEL RAIL HAVING EXCELLENT DUCTIVITY AND PROCESS FOR PRODUCING THE
JP2007262487A (en) High strength steel sheet having excellent stretch flange formability
KR20130103422A (en) Thick steel plate excellent in ultra low temperature toughness
JP2007314819A (en) Steel sheet having excellent fatigue crack propagation resistance
JP5741426B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP6816355B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2015017283A (en) High carbon hot-rolled steel sheet excellent in hardenability and workability, and method for manufacturing the same
JP2007321228A (en) Steel sheet having excellent haz toughness and undergoing little deterioration in strength caused by heat treatment after welding
JPWO2016060141A1 (en) Steel material for large heat input welding
JP2008261029A (en) High-strength hot-rolled steel sheet superior in punching workability, and manufacturing method thereof
JP2005060835A (en) Low-yield-ratio high-strength steel sheet excellent in toughness of welding-heat-affected part and its production method
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5278226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350