JP5277669B2 - Wastewater treatment method and apparatus for steam gasifier - Google Patents

Wastewater treatment method and apparatus for steam gasifier Download PDF

Info

Publication number
JP5277669B2
JP5277669B2 JP2008060397A JP2008060397A JP5277669B2 JP 5277669 B2 JP5277669 B2 JP 5277669B2 JP 2008060397 A JP2008060397 A JP 2008060397A JP 2008060397 A JP2008060397 A JP 2008060397A JP 5277669 B2 JP5277669 B2 JP 5277669B2
Authority
JP
Japan
Prior art keywords
steam
waste water
gasification
gas
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008060397A
Other languages
Japanese (ja)
Other versions
JP2009214014A (en
Inventor
裕一 西山
幸治 竹脇
克明 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008060397A priority Critical patent/JP5277669B2/en
Publication of JP2009214014A publication Critical patent/JP2009214014A/en
Application granted granted Critical
Publication of JP5277669B2 publication Critical patent/JP5277669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively heat and concentrate waste water discharged from a gas derivation system path deriving a produced gas from a steam gasification furnace, without generating scale at a heating surface, and further, to effectively utilize steam generated upon the heating and concentration of the waste water as steam for reaction in the steam gasification furnace. <P>SOLUTION: The waste water 10 discharged from a gas derivation system path 6 through which a gas 5 produced by a steam gasification furnace 1 where a raw material 2 and steam 4 are introduced, and gasification is performed is fed to a waste water evaporator 22. The gas 5 at the outlet of the steam gasification furnace 1 is subjected to heat exchange with purified water 25, and the generated steam 27 for heating is introduced into the waste water evaporator 22. The waste water 10 is heated, thus steam 30 for reaction is generated, so as to concentrate the waste water 10, and the steam 30 for reaction is fed to the steam gasification furnace 1 and is utilized for the gasification of the raw material 2. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、水蒸気ガス化炉の廃水処理方法及び装置に関する。   The present invention relates to a wastewater treatment method and apparatus for a steam gasifier.

従来より石炭或いはバイオマス等を原料としてガス化を行い、得られた一酸化炭素CO、炭化水素CH、水素H等を含むガス化ガスを内燃機関やガスタービン等の燃料或いはその他に利用することが考えられ、原料のガス化効率を高めるために水蒸気を供給した雰囲気でガス化を行う水蒸気ガス化炉が提案されている。 Conventionally, gasification is performed using coal or biomass as a raw material, and the obtained gasified gas containing carbon monoxide CO, hydrocarbon CH, hydrogen H 2, etc. is used as fuel for internal combustion engines, gas turbines, etc. In order to increase the gasification efficiency of the raw material, a steam gasification furnace that performs gasification in an atmosphere supplied with steam has been proposed.

上記水蒸気ガス化炉で生成されたガス化ガスを燃料等として利用するためには、ガス化ガス中のタールを除去する必要があり、このために従来よりガス化ガスを冷却し、タールを水との混合物の形で分離している。しかし、タールと水が混合した廃水は多環芳香族炭化水素類やフェノール類を含む等の問題から、環境保全上そのまま外界に流出させることができないため、廃水は浄化して無害化する必要がある。従来より廃水を酸化により浄化する方法や吸着剤を用いて浄化する方法等が提案されているが、浄化には多大の費用がかかる問題や高い浄化効果を達成することができないといった問題がある。   In order to use the gasification gas generated in the steam gasification furnace as a fuel or the like, it is necessary to remove the tar in the gasification gas. For this purpose, the gasification gas has been conventionally cooled to remove the tar from the water. And in the form of a mixture. However, wastewater mixed with tar and water cannot be discharged directly to the outside world for environmental conservation due to problems such as containing polycyclic aromatic hydrocarbons and phenols. Therefore, it is necessary to purify and render the wastewater harmless. is there. Conventionally, a method for purifying wastewater by oxidation, a method for purifying using an adsorbent, and the like have been proposed. However, there are problems that the purification is expensive and a high purification effect cannot be achieved.

このため、廃水を減容化することは、廃水を浄化するための費用を低減できることから有効な手段といえる。廃水を減容化するには、従来から直接加熱・濃縮方法が用いられて来たが、直接加熱・濃縮方法の場合、前記水蒸気ガス化炉からの廃水を加熱する際に伝熱面にタール、マグネシウム、カルシウム等のスケ−ルが付着堆積し、スケ−ルが付着すると熱効率が低下する問題があると共に、成長したスケ−ルによって伝熱管や配管が閉塞して運転を継続できなくなるという問題が生じる。このため、定期的に濃縮作業を停止して、脱スケ−ル薬剤(塩酸等)を用いてスケールを除去洗浄する必要があるという問題がある。   For this reason, reducing the volume of wastewater can be said to be an effective means because the cost for purifying the wastewater can be reduced. In order to reduce the volume of wastewater, a direct heating / concentration method has been used in the past, but in the case of the direct heating / concentration method, when heating the wastewater from the steam gasification furnace, tar is applied to the heat transfer surface. , Magnesium, Calcium and other scales are deposited and deposited, and if the scales adhere, there is a problem that the thermal efficiency is lowered, and the heat transfer tubes and piping are blocked by the grown scale, and the operation cannot be continued. Occurs. For this reason, there is a problem that it is necessary to periodically stop the concentration operation and remove and clean the scale using a descaling agent (hydrochloric acid or the like).

このため、特許文献1ではボイラを用いて廃水の油分を低沸点部分と高沸点部分とに分離し、これらを蒸気形態とすることによってガスエンジンやガスタービン等で利用できる軽質の可燃性ガスを得るようにし、又、廃水の水は蒸気した後冷却することにより清浄な水として回収するようにしている。   For this reason, in patent document 1, light oil combustible gas which can be used with a gas engine, a gas turbine, etc. by separating oil content of wastewater into a low boiling point part and a high boiling point part using a boiler, and making these into a steam form is used. In addition, waste water is recovered as clean water by steaming and cooling.

又、特許文献2では、湿式排煙脱硫廃水を蒸発濃縮する蒸発缶、及び、蒸発缶内液を循環加熱する加熱器を有する蒸発濃縮装置において、蒸発缶から排出する発生蒸気の熱エネルギーを吸収ヒートポンプで回収してその熱エネルギーを加熱器に供給するようにしている。
特表2004−532124号公報 特許第3448201号公報
Further, in Patent Document 2, in an evaporator that evaporates and concentrates wet flue gas desulfurization waste water and a heater that circulates and heats the liquid in the evaporator, the thermal energy of the generated steam discharged from the evaporator is absorbed. The heat energy is recovered by a heat pump and supplied to the heater.
Special table 2004-532124 gazette Japanese Patent No. 3448201

しかし、前記特許文献1では廃水の油分をボイラで回収することにより燃焼し、その燃焼熱を利用して前記油分を分解して得た軽質の可燃性部分をガスエンジン等の燃料として用いるというものであり、この方法ではボイラの構成が非常に複雑になってしまうと共に、ボイラの運転制御が繁雑になるという問題がある。又、特許文献2では、湿式排煙脱硫廃水を収容した蒸発缶を加熱器で加熱して蒸発濃縮を行い、蒸発缶から排出される発生蒸気の熱エネルギーを吸収ヒートポンプで回収して、この回収した熱エネルギーを加熱器に供給して蒸発缶内液を循環加熱するというものであり、この方法においても蒸発缶を加熱するための構成が複雑になると共に、吸収ヒートポンプを作動するためのプラント蒸気が必要になるといった問題がある。   However, in the said patent document 1, it burns by collect | recovering the oil content of wastewater with a boiler, and uses the light combustible part obtained by decomposing | disassembling the said oil content using the combustion heat as fuels, such as a gas engine In this method, the configuration of the boiler becomes very complicated, and the operation control of the boiler becomes complicated. In Patent Document 2, an evaporator containing wet flue gas desulfurization waste water is heated by a heater to be evaporated and concentrated, and heat energy of the generated steam discharged from the evaporator is recovered by an absorption heat pump. In this method, the structure for heating the evaporator is complicated and the plant steam for operating the absorption heat pump is also supplied. There is a problem that is necessary.

更に、上記特許文献1、2はいずれも廃水を直接加熱・濃縮する方法と比較すると、複雑で大型の設備が必要である割には、廃水の濃縮効果が低いという問題がある。また、特許文献1、2では、廃水を濃縮する際に発生させた水蒸気を、水蒸気ガス化時の水蒸気源として有効に利用することについては全く開示していない。   Further, both Patent Documents 1 and 2 have a problem that the concentration effect of the waste water is low compared to the method of directly heating and concentrating the waste water, although a complicated and large facility is required. Further, Patent Documents 1 and 2 do not disclose at all how to effectively use the water vapor generated when the wastewater is concentrated as a water vapor source at the time of steam gasification.

本発明は、上記実情に鑑みてなしたもので、水蒸気ガス化炉からガス化ガスを導出するガス導出系路から取り出される廃水を、伝熱面にスケールを生じさせることなく効果的に加熱・濃縮することができ、更に、廃水の加熱・濃縮時に発生する水蒸気を水蒸気ガス化炉の反応用水蒸気として有効に利用するようにした水蒸気ガス化炉の廃水処理方法及び装置を提供しようとするものである。   The present invention has been made in view of the above circumstances, and effectively heats and discharges waste water taken out from a gas lead-out path for deriving gasified gas from a steam gasifier without causing scale on the heat transfer surface. A water vapor gasification furnace wastewater treatment method and apparatus capable of concentrating and further effectively utilizing water vapor generated during heating and concentration of wastewater as reaction water vapor for the steam gasification furnace It is.

本発明は、原料と水蒸気を導入してガス化を行う水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を廃水蒸発器に供給し、前記水蒸気ガス化炉出口のガス化ガスに清浄水を熱交換させて生成した加熱用水蒸気を前記廃水蒸発器に導き、前記廃水を加熱することにより反応用水蒸気を生成させて廃水を濃縮し、前記反応用水蒸気を水蒸気ガス化炉に供給して原料のガス化に供し、前記廃水蒸発器で生成される反応用水蒸気を、前記水蒸気ガス化炉出口のガス化ガスと熱交換して温度を高めて水蒸気ガス化炉に供給することを特徴とする水蒸気ガス化炉の廃水処理方法、に係るものである。 The present invention supplies waste water taken out from a gas lead-out path for deriving a gasification gas generated in a steam gasification furnace that introduces a raw material and water vapor to perform gasification to a waste water evaporator, and discharges the steam gasification furnace The heating steam generated by exchanging clean water with the gasified gas is led to the waste water evaporator, and the waste water is heated to generate reaction steam to concentrate the waste water, and the reaction steam is converted to steam. Steam gasification furnace is supplied to the gasification furnace to be used for raw material gasification, and the reaction steam generated in the waste water evaporator is heat-exchanged with the gasification gas at the outlet of the steam gasification furnace to increase the temperature. The present invention relates to a wastewater treatment method for a steam gasifier characterized by being supplied to

又、上記水蒸気ガス化炉の廃水処理方法において、前記ガス導出系路から取り出される廃水の油分を分離し分離した油分を前記水蒸気ガス化炉に導くことは好ましい。   Moreover, in the wastewater treatment method for a steam gasification furnace, it is preferable that the oil content of the wastewater taken out from the gas lead-out system path is separated and the separated oil content is led to the steam gasification furnace.

本発明は、燃料を燃焼して循環粒子を加熱する流動層燃焼炉と、流動層燃焼炉からの燃
焼流体を燃焼排ガスと循環粒子とに分離する分離器と、分離器で分離した循環粒子と原料と水蒸気を導入し原料をガス化してガス化ガスを生成する水蒸気ガス化炉とを有し、水蒸気ガス化炉の循環粒子及びガス化途中のチャーを燃料として前記流動燃焼炉に戻すようにしている循環流動層ガス化設備において、前記水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を廃水蒸発器に供給し、前記分離器からの燃焼排ガスと水蒸気ガス化炉から導出されるガス化ガスの少なくとも一方に清浄水を熱交換させて生成した加熱用水蒸気を前記廃水蒸発器に導き、前記廃水を加熱することにより反応用水蒸気を生成させて廃水を濃縮し、前記反応用水蒸気を水蒸気ガス化炉に供給して原料のガス化に供し、前記廃水蒸発器で生成した反応用水蒸気を、前記分離器からの燃焼排ガスと水蒸気ガス化炉出口のガス化ガスの少なくとも一方と熱交換して温度を高めて水蒸気ガス化炉に供給することを特徴とする水蒸気ガス化炉の廃水処理方法、に係るものである。
The present invention includes a fluidized bed combustion furnace that burns fuel to heat circulating particles, a separator that separates combustion fluid from the fluidized bed combustion furnace into combustion exhaust gas and circulating particles, and circulating particles that are separated by the separator, A steam gasification furnace that introduces the raw material and steam to gasify the raw material to generate gasified gas, and returns the circulating particles of the steam gasification furnace and the char during gasification to the fluidized bed combustion furnace as fuel In the circulating fluidized bed gasification facility, the waste water taken out from the gas outlet system for leading the gasified gas generated in the steam gasifier is supplied to the waste water evaporator, and the combustion exhaust gas and steam from the separator are supplied. Heating water vapor generated by heat-exchanging clean water to at least one of the gasification gas derived from the gasification furnace is led to the waste water evaporator, and the waste water is heated to generate reaction water vapor. Condensation, and the reaction for steam is supplied to the steam gasifier subjected to gasification of the raw materials, the reaction water vapor generated in the waste water evaporator, the combustion exhaust gas and steam gasifier outlet of gas from the separator The present invention relates to a wastewater treatment method for a steam gasification furnace, characterized in that the temperature is raised by exchanging heat with at least one of the gasification gases to supply the steam gasification furnace.

又、上記水蒸気ガス化炉の廃水処理方法において、前記廃水蒸発器で生成した反応用水蒸気を、前記水蒸気ガス化炉出口のガス化ガスと熱交換した後、分離器からの燃焼排ガスと熱交換して温度を高めて水蒸気ガス化炉に供給することは好ましい。   Further, in the above-described wastewater treatment method for a steam gasification furnace, the reaction steam generated in the wastewater evaporator is heat exchanged with the gasification gas at the outlet of the steam gasification furnace, and then heat exchange with the combustion exhaust gas from the separator. Then, it is preferable to raise the temperature and supply it to the steam gasifier.

又、上記水蒸気ガス化炉の廃水処理方法において、前記ガス導出系路から取り出される廃水の油分を分離し分離した油分を前記水蒸気ガス化炉に導くことは好ましい。   Moreover, in the wastewater treatment method for a steam gasification furnace, it is preferable that the oil content of the wastewater taken out from the gas lead-out system path is separated and the separated oil content is led to the steam gasification furnace.

本発明は、原料と水蒸気を導入して原料のガス化を行う水蒸気ガス化炉と、該水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を導入する廃水蒸発器と、前記水蒸気ガス化炉出口のガス化ガスに清浄水を熱交換させて加熱用水蒸気を生成する排熱回収ボイラと、該排熱回収ボイラで生成した加熱用水蒸気を前記廃水蒸発器に導いて廃水を加熱することにより反応用水蒸気を生成させる加熱流体供給系路と、前記廃水蒸発器での廃水の加熱により生成した反応用水蒸気を前記水蒸気ガス化炉に供給する反応用水蒸気供給系路とを有し、前記廃水蒸発器で生成した反応用水蒸気を前記水蒸気ガス化炉に供給する反応用水蒸気供給系路に、前記水蒸気ガス化炉出口のガス化ガスと反応用水蒸気を熱交換させて反応用水蒸気の温度を高める昇温器を有することを特徴とする水蒸気ガス化炉の廃水処理装置、に係るものである。 The present invention relates to a steam gasification furnace that introduces a raw material and water vapor to gasify the raw material, and a waste water evaporation that introduces waste water taken out from a gas outlet system for deriving the gasification gas generated in the steam gasification furnace A waste heat recovery boiler that heat-exchanges clean water to the gasified gas at the outlet of the steam gasification furnace to generate steam for heating, and the steam for heating generated by the exhaust heat recovery boiler to the waste water evaporator A heating fluid supply system that generates reaction steam by guiding and heating waste water, and a reaction steam supply system that supplies reaction steam generated by heating waste water in the waste water evaporator to the steam gasification furnace A heat exchange between the gasification gas at the outlet of the steam gasification furnace and the reaction steam for the reaction steam supply system path for supplying the reaction steam generated by the waste water evaporator to the steam gasification furnace. Let me react Waste water treatment apparatus of the steam gasifier, characterized in that it comprises a heating device to increase the temperature of the steam, which relates to.

又、上記水蒸気ガス化炉の廃水処理装置において、前記ガス導出系路から取り出した廃水から油分を分離する油分分離手段と、該油分分離手段で分離した油分を前記水蒸気ガス化炉に導く油分供給系路を有することは好ましい。   Further, in the wastewater treatment apparatus for the steam gasification furnace, an oil separation means for separating oil from the wastewater taken out from the gas outlet system, and an oil supply for guiding the oil separated by the oil separation means to the steam gasification furnace It is preferable to have a system.

本発明は、燃料を燃焼して循環粒子を加熱する流動燃焼炉と、流動燃焼炉からの燃焼流体を燃焼排ガスと循環流体とに分離する分離器と、分離器で分離した循環粒子と原料と水蒸気を導入し原料をガス化してガス化ガスを生成する水蒸気ガス化炉とを有し、水蒸気ガス化炉の循環粒子及びガス化途中のチャーを燃料として前記流動燃焼炉に戻すようにしている循環流動層ガス化設備における前記水蒸気ガス化炉と、該水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を導入する廃水蒸発器と、前記分離器からの燃焼排ガスと前記水蒸気ガス化炉出口のガス化ガスとの少なくとも一方に清浄水を熱交換させて加熱用水蒸気を生成する排熱回収ボイラと、該排熱回収ボイラで生成した加熱用水蒸気を前記廃水蒸発器に導いて廃水を加熱することにより反応用水蒸気を生成させる加熱流体供給系路と、前記廃水蒸発器での廃水の加熱により生成した反応用水蒸気を前記水蒸気ガス化炉に供給する反応用水蒸気供給系路とを有し、前記廃水蒸発器で生成した反応用水蒸気を水蒸気ガス化炉に供給する反応用水蒸気供給系路に、前記水蒸気ガス化炉出口のガス化ガスと反応用水蒸気を熱交換して反応用水蒸気の温度を高める第1昇温器と、第1昇温器出口の反応用水蒸気を分離器からの燃焼排ガスと熱交換して温度を高める第2昇温器とを有することを特徴とする水蒸気ガス化炉の廃水処理装置、に係るものである。 The present invention includes a fluidized bed combustion furnace that burns fuel to heat circulating particles, a separator that separates combustion fluid from the fluidized bed combustion furnace into combustion exhaust gas and circulating fluid, and circulating particles separated by the separator, A steam gasification furnace that introduces the raw material and steam to gasify the raw material to generate gasified gas, and returns the circulating particles of the steam gasification furnace and the char during gasification to the fluidized bed combustion furnace as fuel The steam gasification furnace in the circulating fluidized bed gasification facility, the waste water evaporator for introducing the waste water taken out from the gas outlet system for leading the gasification gas generated in the steam gasification furnace, and the separator Exhaust heat recovery boiler that generates heat steam by heat-exchanging clean water to at least one of the combustion exhaust gas from the above and the gasification gas at the outlet of the steam gasification furnace, and the heating steam generated by the exhaust heat recovery boiler The above A heating fluid supply system for generating reaction steam by heating the waste water by introducing it to the water evaporator, and a reaction for supplying the steam for reaction generated by heating the waste water in the waste water evaporator to the steam gasifier A reaction water vapor supply system for supplying the reaction water vapor generated in the waste water evaporator to the water vapor gasification furnace, the gasification gas at the outlet of the water vapor gasification furnace and the reaction water vapor A first warmer that raises the temperature of the reaction water vapor by exchanging heat, and a second warmer that heats the reaction water vapor at the outlet of the first warmer with the flue gas from the separator to raise the temperature, The present invention relates to a wastewater treatment apparatus for a steam gasification furnace characterized by comprising:

又、上記水蒸気ガス化炉の廃水処理装置において、前記ガス導出系路から取り出した廃水から油分を分離する油分分離手段と、該油分分離手段で分離した油分を前記水蒸気ガス化炉に導く油分供給系路を有することは好ましい。   Further, in the wastewater treatment apparatus for the steam gasification furnace, an oil separation means for separating oil from the wastewater taken out from the gas outlet system, and an oil supply for guiding the oil separated by the oil separation means to the steam gasification furnace It is preferable to have a system.

本発明の水蒸気ガス化炉の廃水処理方法及び装置によれば、水蒸気ガス化炉のガス化ガスを導出するガス導出系路から取り出される廃水を廃水蒸発器に導入し、水蒸気ガス化炉出口のガス化ガスに清浄水を熱交換させて生成した加熱用水蒸気を前記廃水蒸発器に導いて廃水蒸発器内の廃水を加熱することにより反応用水蒸気を生成させて廃水を濃縮しており、水蒸気ガス化炉の廃熱を利用して生成した清浄な加熱用水蒸気を用いて廃水蒸発器内の廃水を加熱・濃縮するようにしているので、伝熱面の汚れを軽減して長期に亘り装置を連続して運転できる効果がある。   According to the method and apparatus for treating wastewater from a steam gasifier according to the present invention, wastewater taken out from a gas lead-out path for deriving gasified gas from the steam gasifier is introduced into a wastewater evaporator, Heating steam generated by exchanging clean water with gasified gas is led to the waste water evaporator to heat the waste water in the waste water evaporator, thereby generating reaction steam to concentrate the waste water. Since the waste water in the waste water evaporator is heated and concentrated using clean heating steam generated by using the waste heat of the gasification furnace, the contamination of the heat transfer surface is reduced and the equipment is used for a long time. Can be operated continuously.

更に、廃水蒸発器で生成した反応用水蒸気を水蒸気ガス化炉に供給して原料のガス化に供するようにしたので、廃水の水分を反応用水蒸気として有効に活用することができ、よって水蒸気用水の製造設備及び製造費用を低減できる効果がある。   Furthermore, since the reaction water vapor generated in the waste water evaporator is supplied to the steam gasification furnace to be used for gasification of the raw material, the water content of the waste water can be effectively used as the reaction water vapor. There is an effect that the manufacturing equipment and the manufacturing cost can be reduced.

又、廃水蒸発器により廃水を効果的に減容化することができ、よって減容化した濃縮廃水の処理負荷を軽減できる効果がある。   In addition, the waste water evaporator can effectively reduce the volume of the waste water, thereby reducing the treatment load of the concentrated waste water whose volume has been reduced.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例を示すもので、1は水蒸気ガス化炉であり、水蒸気ガス化炉1の上部からは石炭、バイオマス等の原料2が供給され、又、水蒸気ガス化炉1の下部からは散気装置3等を介して水蒸気4(反応用水蒸気30)が供給されている。この水蒸気ガス化炉1では、原料2が部分燃焼することにより例えば800〜1000℃の温度を保持して、吸熱反応である原料2と水蒸気4(反応用水蒸気30)による水蒸気ガス化反応を促進させて一酸化炭素CO、炭化水素CH、水素H等を含むガス化ガス5を生成するようになっている。 FIG. 1 shows an example of an embodiment for carrying out the present invention. Reference numeral 1 denotes a steam gasification furnace. A raw material 2 such as coal and biomass is supplied from the upper part of the steam gasification furnace 1. Water vapor 4 (reaction water vapor 30) is supplied from the lower part of the furnace 1 through the air diffuser 3 or the like. In this steam gasification furnace 1, the raw material 2 is partially burned to maintain a temperature of, for example, 800 to 1000 ° C., and the steam gasification reaction by the raw material 2 and the steam 4 (reaction steam 30), which is an endothermic reaction, is promoted. Thus, the gasification gas 5 containing carbon monoxide CO, hydrocarbon CH, hydrogen H 2 and the like is generated.

水蒸気ガス化炉1で生成した800〜1000℃のガス化ガス5は、ガス導出系路6により導出されてスプレー塔7に供給され、ノズル7aからスプレー噴射される洗浄水8によって冷却・洗浄される。この時、ガス化ガス5は例えば70℃前後に冷却され、ガス化ガス5中のタール及び灰等が除去される。更に、スプレー塔7を出たガス化ガス5は冷却器9に導かれて例えば40℃に冷却される。これにより、ガス中の灰を含む水は凝縮分離されて除去される。そして、冷却器9から出たタール、灰、水が除去されたガス化ガス5は、図示しないガスエンジンやガスタービン、或いはガス精製装置等に供給される。   The gasified gas 5 of 800 to 1000 ° C. generated in the steam gasification furnace 1 is led out by the gas lead-out system 6 and supplied to the spray tower 7, and is cooled and washed by the washing water 8 sprayed from the nozzle 7 a. The At this time, the gasified gas 5 is cooled to about 70 ° C., for example, and tar and ash in the gasified gas 5 are removed. Further, the gasified gas 5 exiting the spray tower 7 is led to a cooler 9 and cooled to 40 ° C., for example. Thereby, the water containing the ash in the gas is condensed and removed. Then, the gasified gas 5 from which the tar, ash, and water are removed from the cooler 9 is supplied to a gas engine, a gas turbine, a gas purification device, or the like (not shown).

前記スプレー塔7からの廃水10a及び冷却器9からの廃水10bは廃水処理する必要があり、図1においては、廃水10a,10bを油分分離手段11に導いて油分を分離するようにしている。即ち、前記スプレー塔7でガス化ガス5を洗浄した後の廃水10aは、沈殿槽12に導いて廃水10a(上層)と重質タールを含む沈殿物13(下層)とに分離され、沈殿槽12で分離された廃水10aの一部はポンプ14により前記スプレー塔7のノズル7aに洗浄水8として循環使用され、廃水10aの残りは前記冷却器9からの廃水10bが導入されている分離槽15に供給される。分離槽15は加圧分離を行うようになっており、廃水10a,10b中の軽質タールが浮上分離され、分離された軽質タール16は油分供給系路17により前記水蒸気ガス化炉1に供給されてガス化されるようになっている。又、前記沈殿槽12で分離された沈殿物13は、遠心分離器18に導かれて廃水10aと固形分を含む重質タール19とに分離され、分離された重質タール19は油分供給系路20により前記水蒸気ガス化炉1に供給されてガス化されるようになっている。前記遠心分離器18で分離された廃水10aは前記分離槽15に導かれるようになっている。   The waste water 10a from the spray tower 7 and the waste water 10b from the cooler 9 need to be treated. In FIG. 1, the waste water 10a and 10b are guided to the oil separation means 11 to separate the oil. That is, the waste water 10a after the gasification gas 5 is washed in the spray tower 7 is guided to the precipitation tank 12 and separated into the waste water 10a (upper layer) and the precipitate 13 (lower layer) containing heavy tar. Part of the waste water 10a separated in 12 is circulated and used as washing water 8 to the nozzle 7a of the spray tower 7 by the pump 14, and the remainder of the waste water 10a is separated into the waste water 10b from the cooler 9. 15 is supplied. The separation tank 15 is configured to perform pressure separation, the light tar in the wastewaters 10a and 10b is floated and separated, and the separated light tar 16 is supplied to the steam gasifier 1 through an oil supply line 17. Gasification. The precipitate 13 separated in the settling tank 12 is guided to a centrifugal separator 18 and separated into a waste water 10a and a heavy tar 19 containing solids, and the separated heavy tar 19 is an oil supply system. The gas is supplied to the steam gasification furnace 1 through a passage 20 and gasified. Waste water 10 a separated by the centrifugal separator 18 is guided to the separation tank 15.

前記分離槽15で軽質タール16が分離された廃水10は、ポンプ21により廃水蒸発器22に導くようにしている。   The waste water 10 from which the light tar 16 has been separated in the separation tank 15 is guided to a waste water evaporator 22 by a pump 21.

一方、前記水蒸気ガス化炉1出口のガス導出系路6には熱交換部23が設けてあり、該熱交換部23には、蒸発器24の清浄水25(純水)を伝熱管26により循環供給してガス化ガス5と熱交換することにより、加熱用水蒸気27を生成するようにした排熱回収ボイラ28を設けている。   On the other hand, a heat exchanging section 23 is provided in the gas outlet system 6 at the outlet of the steam gasifier 1, and clean water 25 (pure water) of the evaporator 24 is supplied to the heat exchanging section 23 by a heat transfer tube 26. An exhaust heat recovery boiler 28 configured to generate heating steam 27 by circulating supply and heat exchange with the gasified gas 5 is provided.

前記排熱回収ボイラ28で生成した加熱用水蒸気27は、加熱流体供給系路29により前記廃水蒸発器22内に備えた伝熱管29aに導いて廃水蒸発器22内の廃水10を加熱するようにしており、廃水蒸発器22では廃水10の蒸発が行われて反応用水蒸気30が生成され、廃水10は濃縮されて濃縮廃水31となって廃水蒸発器22から外部に取り出されるようになっている。廃水蒸発器22で廃水10を加熱して冷却し液化した清浄水25はポンプ32により前記蒸発器24に戻されるようになっている。   The heating water vapor 27 generated in the exhaust heat recovery boiler 28 is led to a heat transfer pipe 29a provided in the waste water evaporator 22 by a heating fluid supply system path 29 to heat the waste water 10 in the waste water evaporator 22. In the waste water evaporator 22, the waste water 10 is evaporated to generate the reaction water vapor 30, and the waste water 10 is concentrated to be concentrated waste water 31, which is taken out from the waste water evaporator 22. . The purified water 25 which is heated and cooled and liquefied by the waste water evaporator 22 is returned to the evaporator 24 by a pump 32.

前記廃水蒸発器22において廃水10が加熱されて生成した反応用水蒸気30は、反応用水蒸気供給系路33により前記熱交換部23の伝熱管26より下流の昇温器34に導かれ、ガス化ガス5と熱交換することにより温度が高められた反応用水蒸気30(過熱水蒸気)となって水蒸気ガス化炉1に供給するようにしている。尚、前記反応用水蒸気30は、前記昇温器34に導いて加熱することなしに、直接水蒸気ガス化炉1に供給するようにしてもよい。   The reaction water vapor 30 generated by heating the waste water 10 in the waste water evaporator 22 is led to the temperature riser 34 downstream of the heat transfer pipe 26 of the heat exchange section 23 through the reaction water vapor supply system path 33 and gasified. The steam 5 for reaction (superheated steam) whose temperature is increased by heat exchange with the gas 5 is supplied to the steam gasifier 1. The reaction water vapor 30 may be directly supplied to the water vapor gasification furnace 1 without being led to the temperature riser 34 and heated.

次に、上記図示例の作動を説明する。   Next, the operation of the illustrated example will be described.

水蒸気ガス化炉1では、石炭、バイオマス等の原料2が上部から供給されると共に下部から水蒸気(反応用水蒸気30)が供給され、原料2の部分燃焼により例えば800〜1000℃の温度を保持されて水蒸気ガス化が行われ、一酸化炭素CO、炭化水素CH、水素H等を含むガス化ガス5が生成される。 In the steam gasification furnace 1, raw materials 2 such as coal and biomass are supplied from the top and steam (reaction steam 30) is supplied from the bottom, and a temperature of, for example, 800 to 1000 ° C. is maintained by partial combustion of the raw materials 2. Steam gasification is performed, and a gasification gas 5 containing carbon monoxide CO, hydrocarbon CH, hydrogen H 2 and the like is generated.

水蒸気ガス化炉1で生成したガス化ガス5は、例えば800〜1000℃の温度を有してガス導出系路6により導出され、スプレー塔7に供給されてタール及び灰等が除去され、更に、冷却器9に導かれて冷却されることによりガス中に含有する水分が灰と共に除去された後、図示しないガスエンジンやガスタービン、或いはガスの精製分離を行うガス精製装置等に供給される。   The gasification gas 5 generated in the steam gasification furnace 1 has a temperature of, for example, 800 to 1000 ° C., is led out by the gas lead-out system 6, is supplied to the spray tower 7, and tar and ash are removed. Then, after the water contained in the gas is removed together with the ash by being led to the cooler 9 and cooled, it is supplied to a gas engine or a gas turbine (not shown) or a gas purifier for purifying and separating the gas. .

前記スプレー塔7からの廃水10aと冷却器9からの廃水10bは油分分離手段11に導かれて油分が分離される。即ち、前記スプレー塔7でガス化ガス5を洗浄した後の廃水10aは、沈殿槽12に導かれて廃水10a(上層)と重質タールを含む沈殿物13(下層)とに分離され、沈殿槽12で分離された廃水10aは前記冷却器9からの廃水10bが導入されている分離槽15に供給され、分離槽15では加圧分離が行われて廃水10a,10b中の軽質タールが浮上分離され、分離された軽質タール16は油分供給系路17により前記水蒸気ガス化炉1に供給されてガス化の原料に供される。又、前記沈殿槽12で分離された沈殿物13は遠心分離器18に導かれて廃水10aと固形分を含む重質タール19とに分離され、分離された重質タール19は油分供給系路20により前記水蒸気ガス化炉1に供給されてガス化の原料に供される。又、前記遠心分離器18で分離された廃水10aは前記分離槽15に導かれる。   The waste water 10a from the spray tower 7 and the waste water 10b from the cooler 9 are guided to the oil component separating means 11 to separate the oil component. That is, the waste water 10a after the gasification gas 5 is washed in the spray tower 7 is guided to the precipitation tank 12 and separated into the waste water 10a (upper layer) and the precipitate 13 (lower layer) containing heavy tar, The waste water 10a separated in the tank 12 is supplied to the separation tank 15 into which the waste water 10b from the cooler 9 is introduced. In the separation tank 15, pressure separation is performed, and the light tar in the waste water 10a, 10b rises. The separated light tar 16 is supplied to the steam gasification furnace 1 through an oil supply system 17 and supplied to a raw material for gasification. The precipitate 13 separated in the settling tank 12 is guided to a centrifugal separator 18 and separated into waste water 10a and a heavy tar 19 containing solids. The separated heavy tar 19 is an oil supply system. 20 is supplied to the steam gasification furnace 1 to be used as a raw material for gasification. The waste water 10a separated by the centrifugal separator 18 is guided to the separation tank 15.

前記分離槽15で軽質タール16が分離された廃水10は、ポンプ21によって廃水蒸発器22に供給される。   The waste water 10 from which the light tar 16 has been separated in the separation tank 15 is supplied to a waste water evaporator 22 by a pump 21.

水蒸気ガス化炉1から導出される800〜1000℃のガス化ガス5は、熱交換部23において、排熱回収ボイラ28の蒸発器24の清浄水25と伝熱管26を介して熱交換され、排熱回収ボイラ28により例えば230℃に調整された加熱用水蒸気27が生成される。   The gasified gas 5 of 800 to 1000 ° C. derived from the steam gasification furnace 1 is heat-exchanged in the heat exchanging unit 23 via the clean water 25 and the heat transfer pipe 26 of the evaporator 24 of the exhaust heat recovery boiler 28, Heating steam 27 adjusted to, for example, 230 ° C. is generated by the exhaust heat recovery boiler 28.

排熱回収ボイラ28で生成した230℃の加熱用水蒸気27は、加熱流体供給系路29により前記廃水蒸発器22内の伝熱管29aに導かれて廃水蒸発器22内の廃水10を加熱する。廃水蒸発器22では廃水10の加熱により蒸発が行われて清浄な反応用水蒸気30が生成され、一方、廃水10は加熱により濃縮されて濃縮廃水31となって廃水蒸発器22から取り出される。上記加熱・濃縮によって廃水蒸発器22から取り出される濃縮廃水31は、廃水処理設備により処理されて河川等に放流されるか、或いは有価物回収源として利用される。廃水10は廃水蒸発器22によって加熱・濃縮された濃縮廃水31は効果的に減容化されているため、廃水処理設備による処理負荷を軽減することができる。   The 230 ° C. heating steam 27 generated in the exhaust heat recovery boiler 28 is guided to the heat transfer pipe 29a in the waste water evaporator 22 by the heating fluid supply system 29 to heat the waste water 10 in the waste water evaporator 22. In the waste water evaporator 22, evaporation is performed by heating the waste water 10 to generate clean reaction water vapor 30. On the other hand, the waste water 10 is concentrated by heating to become concentrated waste water 31 and is taken out from the waste water evaporator 22. The concentrated waste water 31 taken out from the waste water evaporator 22 by the heating and concentration is processed by a waste water treatment facility and discharged into a river or the like, or used as a valuable resource recovery source. Since the concentrated waste water 31 heated and concentrated by the waste water evaporator 22 is effectively reduced in volume, the processing load of the waste water treatment facility can be reduced.

前記廃水10を加熱・濃縮する廃水蒸発器22では、廃水10を加熱する伝熱管29aの外表面に廃水10中のタール、カルシウム、マグネシウム等のスケールが付着・堆積することが知られており、このようなスケールは伝熱管29aの表面温度が約450〜500℃より高くなると付着量が急激に増加することが知られている。従って、廃水蒸発器22を安定して連続運転するためには、廃水蒸発器22の伝熱管29aの表面温度を例えば450℃以下に保持することが有効である。   In the wastewater evaporator 22 that heats and concentrates the wastewater 10, it is known that scales such as tar, calcium, and magnesium in the wastewater 10 adhere to and accumulate on the outer surface of the heat transfer tube 29a that heats the wastewater 10. It is known that the amount of adhesion of such a scale increases rapidly when the surface temperature of the heat transfer tube 29a becomes higher than about 450 to 500 ° C. Therefore, in order to stably operate the waste water evaporator 22, it is effective to keep the surface temperature of the heat transfer tube 29 a of the waste water evaporator 22 at, for example, 450 ° C. or less.

ここで、廃水蒸発器22の伝熱管29aは表面温度が低い程伝熱管29aが汚れる問題を低減できるため、前記加熱用水蒸気27の温度は低い方が好ましい。しかし、廃水蒸発器22で生成した反応用水蒸気を搬送するためには、廃水蒸発器22内を少なくとも飽和蒸気圧0.9ヘクトパスカルに維持する必要があり、この時の飽和蒸気温度が190℃であることから、廃水蒸発器22内を飽和蒸気温度190℃に維持するために必要な加熱用水蒸気の温度を略230℃としている。   Here, since the heat transfer tube 29a of the wastewater evaporator 22 can reduce the problem that the heat transfer tube 29a becomes dirty as the surface temperature is lower, the temperature of the heating steam 27 is preferably lower. However, in order to transport the reaction water vapor generated by the waste water evaporator 22, it is necessary to maintain the inside of the waste water evaporator 22 at at least a saturated vapor pressure of 0.9 hectopascals. Therefore, the temperature of the steam for heating necessary for maintaining the inside of the waste water evaporator 22 at the saturated steam temperature of 190 ° C. is set to about 230 ° C.

前記廃水蒸発器22において廃水10が加熱されて生成した反応用水蒸気30は、反応用水蒸気供給系路33により前記熱交換部23の昇温器34に供給されガス化ガス5と熱交換することにより例えば500℃程度まで加熱され、高温となった反応用水蒸気30(過熱水蒸気)は水蒸気ガス化炉1に供給されて原料2のガス化に供せられる。前記したように、例えば500℃程度まで温度を高めた反応用水蒸気30を水蒸気ガス化炉1に供給することにより、水蒸気ガス化炉1での水蒸気ガス化反応を高めることができる。   The reaction water vapor 30 generated by heating the waste water 10 in the waste water evaporator 22 is supplied to the temperature raising device 34 of the heat exchange section 23 through the reaction water vapor supply system 33 to exchange heat with the gasification gas 5. Thus, for example, the reaction steam 30 (superheated steam) heated to about 500 ° C. and having a high temperature is supplied to the steam gasification furnace 1 for gasification of the raw material 2. As described above, for example, the steam gasification reaction in the steam gasification furnace 1 can be enhanced by supplying the steam 30 for reaction whose temperature is increased to about 500 ° C. to the steam gasification furnace 1.

上記したように800〜1000℃のガス化ガス5を用いて排熱回収ボイラ28により例えば230℃の加熱用水蒸気27を生成し、この加熱用水蒸気27を用いて廃水蒸発器22において廃水10を加熱することから反応用水蒸気30を生成させ、この反応用水蒸気30を水蒸気ガス化炉1に供給するようにしたので、廃水10の水分を反応用水蒸気30として有効に活用することができ、よって水蒸気用水の製造設備及び製造費用を低減することができる。   As described above, for example, the steam 27 for heating at 230 ° C. is generated by the exhaust heat recovery boiler 28 using the gasified gas 5 at 800 to 1000 ° C., and the waste water 10 is removed from the waste water evaporator 22 by using the steam 27 for heating. Since the reaction water vapor 30 is generated by heating and the reaction water vapor 30 is supplied to the steam gasification furnace 1, the water content of the waste water 10 can be effectively used as the reaction water vapor 30. Steam water production equipment and production costs can be reduced.

本発明者らは、前記水蒸気ガス化炉1の実証炉において、排熱回収ボイラ28において生成した230℃の加熱用水蒸気27を用いて廃水蒸発器22により前記廃水10を加熱蒸発させた時の伝熱管29aの伝熱係数を計測する試験を行い、又、同様にして廃水蒸発器22に純水を収容して加熱蒸発させた時の伝熱管29aの伝熱係数を計測する試験を行い、その結果を図2に示した。図2の結果から、純水を蒸発させたときの伝熱係数と、廃水10を蒸発させたときの伝熱係数は処理時間が経過しても殆ど変化することがなく、よって230℃の加熱用水蒸気27を用いて廃水10を加熱しても伝熱管29aの汚れ(スケールの付着)は生じないことが判明した。ここで、伝熱管29aにスケールが付着した場合には、図2中一点鎖線で示すように、処理時間に応じて伝熱係数が低下する現象を生じることになるが、このような現象は全く見られなかった。   In the demonstration furnace of the steam gasification furnace 1, the present inventors have used the waste water evaporator 22 to heat and evaporate the waste water 10 by using the steam 27 for heating at 230 ° C. generated in the exhaust heat recovery boiler 28. A test for measuring the heat transfer coefficient of the heat transfer tube 29a is performed. Similarly, a test for measuring the heat transfer coefficient of the heat transfer tube 29a when pure water is stored in the waste water evaporator 22 and evaporated by heating is performed. The results are shown in FIG. From the results shown in FIG. 2, the heat transfer coefficient when pure water is evaporated and the heat transfer coefficient when waste water 10 is evaporated hardly change even after the treatment time elapses. It has been found that even if the waste water 10 is heated using the steam 27 for heating, the heat transfer tube 29a is not contaminated (scale adhesion). Here, when the scale adheres to the heat transfer tube 29a, as shown by a one-dot chain line in FIG. 2, a phenomenon that the heat transfer coefficient decreases according to the processing time occurs. I couldn't see it.

従って、前記廃水蒸発器22に導く加熱用水蒸気27の温度を廃水蒸発器22の廃水10の飽和蒸気温度190℃が維持される温度である略230℃に維持すると、廃水蒸発器22の伝熱管29aにスケールが付着する問題を防止でき、よって廃水蒸発器22が長期間に亘り安定して連続運転可能となることが判明した。   Therefore, if the temperature of the heating water vapor 27 led to the waste water evaporator 22 is maintained at about 230 ° C., which is the temperature at which the saturated steam temperature 190 ° C. of the waste water 10 of the waste water evaporator 22 is maintained, the heat transfer tube of the waste water evaporator 22 is maintained. It has been found that the problem of scale adhering to 29a can be prevented, so that the waste water evaporator 22 can be stably operated continuously over a long period of time.

図3は、前記図1の廃水処理装置の構成を循環流動層ガス化設備35に適用した場合の一例を示すものである。   FIG. 3 shows an example in which the configuration of the wastewater treatment apparatus of FIG. 1 is applied to a circulating fluidized bed gasification facility 35.

図3の循環流動層ガス化設備35は、下部から供給される空気36により燃料を流動燃焼させて循環粒子を加熱する流動燃焼炉37と、流動燃焼炉37からの燃焼流体38を燃焼排ガス39と循環粒子40とに分離する分離器41と、分離器41で分離した高温の循環粒子40と原料2を上部から導入し、水蒸気4を下部から導入し、原料2をガス化してガス化ガス5を生成する水蒸気ガス化炉1とを有しており、水蒸気ガス化炉1内の循環粒子40と共にガス化途中のチャー42を燃料として前記流動燃焼炉37に戻し、流動燃焼炉37でチャー42を燃焼することにより循環粒子40を加熱するようにしている。   The circulating fluidized bed gasification facility 35 in FIG. 3 is a fluidized combustion furnace 37 that heats circulating particles by fluidly burning fuel with air 36 supplied from below, and a combustion fluid 38 from the fluidized combustion furnace 37 as a combustion exhaust gas 39. The separator 41 is separated into the circulating particles 40, the hot circulating particles 40 separated by the separator 41 and the raw material 2 are introduced from the upper part, the water vapor 4 is introduced from the lower part, and the raw material 2 is gasified to be gasified gas. 5 is used to return the char 42 in the course of gasification together with the circulating particles 40 in the steam gasification furnace 1 to the fluidized combustion furnace 37 as a fuel. The circulating particles 40 are heated by burning 42.

前記水蒸気ガス化炉1で生成したガス化ガス5は、ガス導出系路6により図1と同様にスプレー塔7及び冷却器9に導いてタール及び水分等を除去しており、スプレー塔7及び冷却器9からの廃水10a,10bは油分分離手段11により軽質タール16及び重質タール19の油分を除去した後、廃水蒸発器22に導くようにしている。   The gasification gas 5 generated in the steam gasification furnace 1 is led to a spray tower 7 and a cooler 9 through a gas outlet system 6 in the same manner as in FIG. The waste waters 10a and 10b from the cooler 9 are guided to the waste water evaporator 22 after the oil content of the light tar 16 and heavy tar 19 is removed by the oil separation means 11.

一方、排熱回収ボイラ28は、前記分離器41からの燃焼排ガス39を導出する燃焼排ガス導出系路43に配置した熱交換部44に備えて燃焼排ガス39と熱交換する伝熱管45と、前記水蒸気ガス化炉1出口に配置した熱交換部23に備えてガス化ガス5と熱交換する伝熱管26とを備えて清浄水25を加熱し、230℃の加熱用水蒸気27を生成するようになっており、排熱回収ボイラ28で生成した加熱用水蒸気27は、加熱流体供給系路29により前記廃水蒸発器22に導いて廃水10を加熱することにより、廃水10から反応用水蒸気30を生成すると共に廃水10の濃縮を行うようになっている。尚、排熱回収ボイラ28は、230℃の加熱用水蒸気27を生成することができれば、前記燃焼排ガス39とガス化ガス5の一方と熱交換するようになっていてもよい。   On the other hand, the exhaust heat recovery boiler 28 includes a heat transfer tube 45 for heat exchange with the combustion exhaust gas 39 in the heat exchange section 44 disposed in the combustion exhaust gas deriving system passage 43 for extracting the combustion exhaust gas 39 from the separator 41, and Provided in the heat exchange section 23 arranged at the outlet of the steam gasification furnace 1 and provided with a heat transfer tube 26 that exchanges heat with the gasification gas 5 to heat the clean water 25 and generate steam 230 for heating at 230 ° C. The heating steam 27 generated in the exhaust heat recovery boiler 28 is guided to the waste water evaporator 22 by the heating fluid supply system 29 to heat the waste water 10, thereby generating the reaction steam 30 from the waste water 10. In addition, the waste water 10 is concentrated. The exhaust heat recovery boiler 28 may be configured to exchange heat with one of the combustion exhaust gas 39 and the gasified gas 5 as long as the steam 27 for heating at 230 ° C. can be generated.

前記廃水蒸発器22において廃水10の加熱によって生成した反応用水蒸気30は、反応用水蒸気供給系路33により前記水蒸気ガス化炉1出口に設けた熱交換部23の昇温器(第1昇温器)に導かれてガス化ガス5と熱交換することにより温度が高められた後、前記分離器41出口に設けた熱交換部44の第2昇温器46に導かれて燃焼排ガス39と熱交換することにより更に温度が高められ、例えば500℃の過熱水蒸気による反応用水蒸気30となって水蒸気ガス化炉1に供給するようにしている。   The reaction water vapor 30 generated by heating the waste water 10 in the waste water evaporator 22 is heated by a heater (first temperature increase) of the heat exchanging unit 23 provided at the outlet of the water vapor gasifier 1 through the reaction water vapor supply system 33. The temperature is raised by exchanging heat with the gasification gas 5 and then led to the second temperature raising unit 46 of the heat exchanging part 44 provided at the outlet of the separator 41 and the combustion exhaust gas 39. The temperature is further increased by performing heat exchange, and is supplied to the steam gasification furnace 1 as a steam 30 for reaction using, for example, superheated steam at 500 ° C.

図3の形態によれば、循環流動層ガス化設備35においても、水蒸気ガス化炉1のガス導出系路6から取り出される廃水10を廃水蒸発器22により安定して加熱・濃縮することができ、廃水蒸発器22おいて生成された反応用水蒸気30を容易に高い温度に過熱して水蒸気ガス化炉1に供給することができる。   According to the form of FIG. 3, also in the circulating fluidized bed gasification facility 35, the waste water 10 taken out from the gas outlet system path 6 of the steam gasification furnace 1 can be stably heated and concentrated by the waste water evaporator 22. The reaction steam 30 generated in the waste water evaporator 22 can be easily heated to a high temperature and supplied to the steam gasification furnace 1.

なお、本発明の水蒸気ガス化炉の廃水処理方法及び装置は上記形態にのみ限定されることなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the wastewater treatment method and apparatus of the steam gasification furnace of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows an example of the form which implements this invention. 実証炉で排熱回収ボイラからの加熱用蒸気を用いて廃水蒸発器の廃水を加熱蒸発させた時と、廃水蒸発器に収容した純水を加熱蒸発させた時の伝熱管の伝熱係数を計測した試験結果を示すグラフである。The heat transfer coefficient of the heat transfer tube when the wastewater of the wastewater evaporator is heated and evaporated using the heating steam from the exhaust heat recovery boiler in the demonstration furnace and when the pure water stored in the wastewater evaporator is heated and evaporated It is a graph which shows the measured test result. 図1の廃水処理装置の構成を循環流動層ガス化設備に適用した場合の一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example at the time of applying the structure of the waste-water-treatment apparatus of FIG. 1 to a circulating fluidized bed gasification equipment.

符号の説明Explanation of symbols

1 水蒸気ガス化炉
2 原料
4 水蒸気(反応用水蒸気)
5 ガス化ガス
6 ガス導出系路
10 廃水
10a,10b 廃水
11 油分分離手段
16 軽質タール(油分)
17 油分供給系路
19 重質タール(油分)
20 油分供給系路
22 廃水蒸発器
25 清浄水
27 加熱用水蒸気
28 排熱回収ボイラ
29 加熱流体供給系路
30 反応用水蒸気
33 反応用水蒸気供給系路
34 昇温器(第1昇温器)
35 循環流動層ガス化設備
37 流動燃焼炉
38 燃焼流体
39 燃焼排ガス
40 循環粒子
41 分離器
42 チャー
46 第2昇温器
1 Steam Gasification Furnace 2 Raw Material 4 Steam (Reaction Steam)
5 Gasification gas 6 Gas lead-out path 10 Waste water 10a, 10b Waste water 11 Oil content separating means 16 Light tar (oil content)
17 Oil supply system 19 Heavy tar (oil)
DESCRIPTION OF SYMBOLS 20 Oil supply system path 22 Waste water evaporator 25 Clean water 27 Heating steam 28 Waste heat recovery boiler 29 Heating fluid supply system 30 Reaction steam 33 Reaction steam supply system 34 Heating device (first heating device)
35 Circulating Fluidized Bed Gasification Equipment 37 Fluid Combustion Furnace 38 Combustion Fluid 39 Combustion Exhaust Gas 40 Circulating Particles 41 Separator 42 Char 46 Second Heating Device

Claims (9)

原料と水蒸気を導入してガス化を行う水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を廃水蒸発器に供給し、前記水蒸気ガス化炉出口のガス化ガスに清浄水を熱交換させて生成した加熱用水蒸気を前記廃水蒸発器に導き、前記廃水を加熱することにより反応用水蒸気を生成させて廃水を濃縮し、前記反応用水蒸気を水蒸気ガス化炉に供給して原料のガス化に供し、前記廃水蒸発器で生成される反応用水蒸気を、前記水蒸気ガス化炉出口のガス化ガスと熱交換して温度を高めて水蒸気ガス化炉に供給することを特徴とする水蒸気ガス化炉の廃水処理方法。 Waste water taken out from a gas outlet system for deriving gasified gas generated in a steam gasifier that performs gasification by introducing raw material and steam is supplied to a wastewater evaporator, and gasified gas at the outlet of the steam gasifier The heating steam generated by heat exchange of clean water is led to the waste water evaporator, and the waste water is heated to generate reaction steam to concentrate the waste water, and the reaction steam is supplied to the steam gasifier. Supplying it to gasification of the raw material, heat-reacting the steam for reaction generated in the waste water evaporator with the gasification gas at the outlet of the steam gasification furnace to increase the temperature and supplying it to the steam gasification furnace A method for treating wastewater from a steam gasifier characterized by the following. 前記ガス導出系路から取り出される廃水の油分を分離し分離した油分を前記水蒸気ガス化炉に導く請求項に記載の水蒸気ガス化炉の廃水処理方法。 The wastewater treatment method for a steam gasification furnace according to claim 1 , wherein the oil content of the wastewater taken out from the gas outlet system is separated and the separated oil is led to the steam gasification furnace. 燃料を燃焼して循環粒子を加熱する流動層燃焼炉と、流動層燃焼炉からの燃焼流体を燃焼排ガスと循環粒子とに分離する分離器と、分離器で分離した循環粒子と原料と水蒸気を導入し原料をガス化してガス化ガスを生成する水蒸気ガス化炉とを有し、水蒸気ガス化炉の循環粒子及びガス化途中のチャーを燃料として前記流動燃焼炉に戻すようにしている循環流動層ガス化設備において、前記水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を廃水蒸発器に供給し、前記分離器からの燃焼排ガスと水蒸気ガス化炉から導出されるガス化ガスの少なくとも一方に清浄水を熱交換させて生成した加熱用水蒸気を前記廃水蒸発器に導き、前記廃水を加熱することにより反応用水蒸気を生成させて廃水を濃縮し、前記反応用水蒸気を水蒸気ガス化炉に供給して原料のガス化に供し、前記廃水蒸発器で生成した反応用水蒸気を、前記分離器からの燃焼排ガスと水蒸気ガス化炉出口のガス化ガスの少なくとも一方と熱交換して温度を高めて水蒸気ガス化炉に供給することを特徴とする水蒸気ガス化炉の廃水処理方法。 A fluidized bed combustion furnace that burns fuel and heats circulating particles; a separator that separates combustion fluid from the fluidized bed combustion furnace into combustion exhaust gas and circulating particles; and circulating particles, raw material, and water vapor separated by the separator. A steam gasification furnace that gasifies the raw material and generates gasification gas, and circulates the circulating particles of the steam gasification furnace and the char during the gasification as fuel to return to the fluidized bed combustion furnace In a fluidized bed gasification facility, waste water taken out from a gas outlet system for deriving gasification gas generated in the steam gasification furnace is supplied to a wastewater evaporator, and from the combustion exhaust gas from the separator and the steam gasification furnace Heating steam generated by heat-exchanging clean water to at least one of the gasification gases to be led to the waste water evaporator, and heating the waste water to generate reaction steam to concentrate the waste water, The reaction for steam is supplied to the steam gasifier subjected to gasification of the raw materials, the reaction water vapor generated in the waste water evaporator, at least flue gas and steam gasifier outlet of the gasification gas from the separator A wastewater treatment method for a steam gasification furnace, characterized in that the temperature is increased by heat exchange with one side and the temperature is supplied to the steam gasification furnace. 前記廃水蒸発器で生成した反応用水蒸気を、前記水蒸気ガス化炉出口のガス化ガスと熱交換した後、分離器からの燃焼排ガスと熱交換して温度を高めて水蒸気ガス化炉に供給する請求項に記載の水蒸気ガス化炉の廃水処理方法。 The reaction steam generated in the waste water evaporator is heat exchanged with the gasification gas at the outlet of the steam gasification furnace, and then heat exchanged with the combustion exhaust gas from the separator to increase the temperature and supply the steam to the steam gasification furnace. A method for treating wastewater from a steam gasifier according to claim 3 . 前記ガス導出系路から取り出される廃水の油分を分離し分離した油分を前記水蒸気ガス化炉に導く請求項3又は4に記載の水蒸気ガス化炉の廃水処理方法。 The wastewater treatment method for a steam gasifier according to claim 3 or 4 , wherein the oil content of the wastewater taken out from the gas lead-out system is separated and the separated oil is led to the steam gasifier. 原料と水蒸気を導入して原料のガス化を行う水蒸気ガス化炉と、該水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を導入する廃水蒸発器と、前記水蒸気ガス化炉出口のガス化ガスに清浄水を熱交換させて加熱用水蒸気を生成する排熱回収ボイラと、該排熱回収ボイラで生成した加熱用水蒸気を前記廃水蒸発器に導いて廃水を加熱することにより反応用水蒸気を生成させる加熱流体供給系路と、前記廃水蒸発器での廃水の加熱により生成した反応用水蒸気を前記水蒸気ガス化炉に供給する反応用水蒸気供給系路とを有し、前記廃水蒸発器で生成した反応用水蒸気を前記水蒸気ガス化炉に供給する反応用水蒸気供給系路に、前記水蒸気ガス化炉出口のガス化ガスと反応用水蒸気を熱交換させて反応用水蒸気の温度を高める昇温器を有することを特徴とする水蒸気ガス化炉の廃水処理装置。 A steam gasification furnace for introducing a raw material and water vapor to gasify the raw material, a waste water evaporator for introducing waste water taken out from a gas outlet system for deriving a gasification gas generated in the steam gasification furnace, An exhaust heat recovery boiler that heat-exchanges clean water to the gasification gas at the outlet of the steam gasification furnace to generate steam for heating, and the heating steam generated by the exhaust heat recovery boiler is led to the waste water evaporator to generate waste water. Yes and heating fluid supply line to produce a reaction steam, and a reaction for steam supply line for supplying the reaction water vapor generated by the heating of the waste water in the waste water evaporator to the steam gasification furnace by heating The reaction steam generated in the waste water evaporator is supplied to the steam gasification furnace, and the gasification gas at the outlet of the steam gasification furnace and the reaction steam are heat-exchanged for reaction. Water vapor Waste water treatment apparatus of the steam gasifier, characterized in that it comprises a heating device to increase the degree. 前記ガス導出系路から取り出した廃水から油分を分離する油分分離手段と、該油分分離手段で分離した油分を前記水蒸気ガス化炉に導く油分供給系路を有する請求項に記載の水蒸気ガス化炉の廃水処理装置。 The steam gasification according to claim 6 , further comprising: an oil separation unit that separates oil from waste water taken out from the gas outlet system; and an oil supply system that guides the oil separated by the oil separation unit to the steam gasification furnace. Furnace wastewater treatment equipment. 燃料を燃焼して循環粒子を加熱する流動燃焼炉と、流動燃焼炉からの燃焼流体を燃焼排ガスと循環流体とに分離する分離器と、分離器で分離した循環粒子と原料と水蒸気を導入し原料をガス化してガス化ガスを生成する水蒸気ガス化炉とを有し、水蒸気ガス化炉の循環粒子及びガス化途中のチャーを燃料として前記流動燃焼炉に戻すようにしている循環流動層ガス化設備における前記水蒸気ガス化炉と、該水蒸気ガス化炉で生成したガス化ガスを導出するガス導出系路から取り出される廃水を導入する廃水蒸発器と、前記分離器からの燃焼排ガスと前記水蒸気ガス化炉出口のガス化ガスとの少なくとも一方に清浄水を熱交換させて加熱用水蒸気を生成する排熱回収ボイラと、該排熱回収ボイラで生成した加熱用水蒸気を前記廃水蒸発器に導いて廃水を加熱することにより反応用水蒸気を生成させる加熱流体供給系路と、前記廃水蒸発器での廃水の加熱により生成した反応用水蒸気を前記水蒸気ガス化炉に供給する反応用水蒸気供給系路とを有し、前記廃水蒸発器で生成した反応用水蒸気を水蒸気ガス化炉に供給する反応用水蒸気供給系路に、前記水蒸気ガス化炉出口のガス化ガスと反応用水蒸気を熱交換して反応用水蒸気の温度を高める第1昇温器と、第1昇温器出口の反応用水蒸気を分離器からの燃焼排ガスと熱交換して温度を高める第2昇温器とを有することを特徴とする水蒸気ガス化炉の廃水処理装置。 A fluidized bed combustion furnace that burns fuel to heat circulating particles, a separator that separates combustion fluid from the fluidized bed combustion furnace into combustion exhaust gas and circulating fluid, and circulating particles, raw material, and water vapor separated by the separator. A steam gasification furnace that gasifies the raw material and generates gasification gas, and circulates the circulating particles of the steam gasification furnace and the char during the gasification as fuel to return to the fluidized bed combustion furnace The steam gasification furnace in the fluidized bed gasification facility, the waste water evaporator for introducing the waste water taken out from the gas outlet system for leading the gasification gas generated in the steam gasification furnace, and the combustion exhaust gas from the separator And a gasification gas at the outlet of the steam gasification furnace to heat-exchange clean water to generate heating steam, and the heating steam generated by the exhaust heat recovery boiler is evaporated into the wastewater. vessel A heating fluid supply system that generates reaction steam by guiding and heating waste water, and a reaction steam supply system that supplies reaction steam generated by heating waste water in the waste water evaporator to the steam gasification furnace A reaction steam supply system for supplying the reaction steam generated by the waste water evaporator to the steam gasification furnace to exchange heat between the gasification gas at the outlet of the steam gasification furnace and the reaction steam. A first warmer that raises the temperature of the reaction steam and a second warmer that heats the reaction steam at the outlet of the first warmer to the combustion exhaust gas from the separator to raise the temperature. A wastewater treatment system for a steam gasifier. 前記ガス導出系路から取り出した廃水から油分を分離する油分分離手段と、該油分分離手段で分離した油分を前記水蒸気ガス化炉に導く油分供給系路を有する請求項に記載の水蒸気ガス化炉の廃水処理装置。 The steam gasification according to claim 8 , further comprising: an oil separation means for separating oil from waste water taken out from the gas lead-out system path; and an oil supply system path for guiding the oil component separated by the oil content separation means to the steam gasification furnace. Furnace wastewater treatment equipment.
JP2008060397A 2008-03-11 2008-03-11 Wastewater treatment method and apparatus for steam gasifier Active JP5277669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060397A JP5277669B2 (en) 2008-03-11 2008-03-11 Wastewater treatment method and apparatus for steam gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060397A JP5277669B2 (en) 2008-03-11 2008-03-11 Wastewater treatment method and apparatus for steam gasifier

Publications (2)

Publication Number Publication Date
JP2009214014A JP2009214014A (en) 2009-09-24
JP5277669B2 true JP5277669B2 (en) 2013-08-28

Family

ID=41186465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060397A Active JP5277669B2 (en) 2008-03-11 2008-03-11 Wastewater treatment method and apparatus for steam gasifier

Country Status (1)

Country Link
JP (1) JP5277669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387692B2 (en) * 2009-12-10 2014-01-15 株式会社Ihi Oil / water separation device and purification device
JP2012148209A (en) * 2011-01-17 2012-08-09 Ihi Corp Oil-water separator, and apparatus for refining gasified gas
JP2018095717A (en) * 2016-12-13 2018-06-21 株式会社Ihi Waste water treatment apparatus for use in twin tower gasification facility and twin tower gasification facility
JP7251132B2 (en) * 2018-12-17 2023-04-04 株式会社Ihi Gasification gas production device and gasification gas production method
CN110817998B (en) * 2019-11-29 2024-03-08 毅康科技有限公司 Papermaking wastewater treatment integrated device and wastewater treatment process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004209314A (en) * 2002-12-27 2004-07-29 Kogi Corp Treatment method and treatment apparatus of waste or the like by superheated steam
JP3933105B2 (en) * 2003-07-25 2007-06-20 石川島播磨重工業株式会社 Fluidized bed gasification system

Also Published As

Publication number Publication date
JP2009214014A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP7353993B2 (en) Process for the production of high biogenic concentration Fischer-Tropsch liquids derived from municipal solid waste (MSW) feedstock
KR100197758B1 (en) Partial oxidation process with production of power
JP4594821B2 (en) Purification method of gasification gas
JP5277669B2 (en) Wastewater treatment method and apparatus for steam gasifier
US5000099A (en) Combination of fuels conversion and pressurized wet combustion
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
JP2011214562A (en) Coal gasification combined power generation system
KR20060121899A (en) Method and apparatus for treating organic matter
RU2017135146A (en) CATALYTIC MODIFICATION OF PYROLYTIC VAPORS
US8440160B1 (en) Integrated sulfur recovery methods in power plants and low BTU gas fields
KR101612171B1 (en) Method for gasifying solid raw material containing carbon
JP5036608B2 (en) Gasification generator
JP2005139443A (en) Gasifying system of high water content organic material and latent heat recovery boiler
RU2007110409A (en) METHOD AND INSTALLATION FOR INTEGRATED THERMAL PROCESSING OF SOLID FUELS
SU1729296A3 (en) Coal gasification method
CN109748349B (en) System and method for treating phenolic wastewater through pyrolysis
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
WO2013146384A1 (en) Waste treatment facility
JP4596775B2 (en) Method and apparatus for purifying waste water containing tar
JP2009096888A (en) Gasification system effectively utilizing steam produced during drying of high-water content fuel
JP2020055946A (en) Gasification gas production apparatus, and production method of gasification gas
EA021586B1 (en) Method and system for the production of a combustible gas from a fuel
JP2018095717A (en) Waste water treatment apparatus for use in twin tower gasification facility and twin tower gasification facility
JP5339937B2 (en) Tar decomposition facility and its startup method
JP2020055947A (en) Gasification gas production apparatus, and production method of gasification gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5277669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250