JP5276777B2 - Method for producing porous body - Google Patents

Method for producing porous body Download PDF

Info

Publication number
JP5276777B2
JP5276777B2 JP2006031582A JP2006031582A JP5276777B2 JP 5276777 B2 JP5276777 B2 JP 5276777B2 JP 2006031582 A JP2006031582 A JP 2006031582A JP 2006031582 A JP2006031582 A JP 2006031582A JP 5276777 B2 JP5276777 B2 JP 5276777B2
Authority
JP
Japan
Prior art keywords
porous body
pore
peak
volume
distribution curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006031582A
Other languages
Japanese (ja)
Other versions
JP2007210830A (en
Inventor
マヘンドラ カプール
幸一 北畑
正明 柳
宏暢 南部
義樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP2006031582A priority Critical patent/JP5276777B2/en
Publication of JP2007210830A publication Critical patent/JP2007210830A/en
Application granted granted Critical
Publication of JP5276777B2 publication Critical patent/JP5276777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous body having a new structure excellent in heat resistance and hydrothermal resistance and suitably utilizable for applications such as a catalyst or an adsorbent. <P>SOLUTION: This porous body is composed of an Si-containing substance in which the amount of Q<SP>4</SP>Si atom accounts for 90% or more of the total amount of Si atoms, and has at least one peak at the position of 40-80 &angst; d spacing. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、耐熱性及び耐水熱性に優れた新規多孔体に関する。   The present invention relates to a novel porous body excellent in heat resistance and hydrothermal resistance.

従来、触媒や吸着剤等として利用可能な無機系多孔質材料として、ゼオライト等が知られている。また、均一なメソ細孔を有する無機系多孔質材料として、界面活性剤のミセルを鋳型として合成されるシリカが知られ(例えば、非特許文献1参照)、ゼオライトの細孔では小さすぎて入れることが困難であった分子径の大きな化合物が関与する触媒や吸着剤としての利用が検討されている。しかしながら、このような多孔質材料はシラノール基が多く残存しており、触媒や吸着剤として利用する場合、耐熱性や耐水熱性の観点からその効果は必ずしも満足されるものではなかった。   Conventionally, zeolite or the like is known as an inorganic porous material that can be used as a catalyst, an adsorbent, or the like. As an inorganic porous material having uniform mesopores, silica synthesized using surfactant micelles as a template is known (see, for example, Non-Patent Document 1), and the zeolite pores are too small. The use as a catalyst or adsorbent involving a compound having a large molecular diameter, which has been difficult, has been studied. However, such a porous material has many silanol groups remaining, and when used as a catalyst or an adsorbent, its effect is not always satisfactory from the viewpoint of heat resistance and hydrothermal resistance.

Nature,Vol.359,p.710,1992Nature, Vol. 359, p. 710, 1992

本発明の目的は、耐熱性及び耐水熱性に優れた、新規な構造を持つ多孔体を提供することにある。   An object of the present invention is to provide a porous body having a novel structure which is excellent in heat resistance and hydrothermal resistance.

すなわち、本発明は、
〔1〕 珪素含有物質と、界面活性剤とを反応させて、珪素含有物質と界面活性剤とからなる複合体を形成させた後、該複合体から有機物を除去することを特徴とする、QSi原子の量がSi原子全体の量の90%より多いSi含有物質からなり、d間隔が40Åから80Åの位置に少なくとも1つのピークが存在するX線回折パターンを有する多孔体の製造方法、
〔2〕 多孔体のd間隔が40Åから80Åの位置に半価幅が0.4〜1.0の少なくとも1つのピークを有し、40Åから80Åの位置にある最強のピークの50%より大きい相対強度でd間隔が40Åより小さい位置にピークが存在しないX線回折パターンを有してなる前記〔1〕記載の製造方法、
〔3〕 多孔体の細孔分布曲線において細孔直径が10Åより小さい範囲と10Å以上の範囲とに各々ピークを少なくとも1つ有する前記〔1〕または〔2〕記載の製造方法、
〔4〕 多孔体の全細孔容積が0.4〜1.5cm/gであり、細孔分布曲線における細孔直径が10Å〜100Åの細孔の容積が0.2〜1.2cm/gであり、細孔分布曲線における細孔直径が10Åより小さい細孔の容積が0.1〜0.45cm/gである前記〔1〕〜〔3〕いずれか記載の製造方法、
〔5〕 多孔体の細孔分布曲線における細孔直径が10Å〜100Åの細孔の容積が全細孔容積の50〜80%を占める前記〔1〕〜〔4〕いずれか記載の製造方法、
〔6〕 多孔体の(細孔分布曲線における細孔直径が10Åより小さい細孔の容積)/[細孔分布曲線における細孔直径が10Åより小さい細孔の容積+(細孔分布曲線における細孔直径が100Åより大きい細孔の容積)]×100の値が60〜95である前記〔1〕〜〔5〕いずれか記載の製造方法、
〔7〕 多孔体の細孔壁の厚さが20〜50Åである前記〔1〕〜〔6〕いずれか記載の製造方法、
〔8〕 多孔体の細孔のチャネルが非直線である前記〔1〕〜〔7〕いずれか記載の製造方法、並びに
〔9〕 反応時間により、10Å〜100Åの範囲で多孔体の平均細孔直径を制御する前記〔1〕〜〔8〕いずれか記載の製造方法
に関する。
That is, the present invention
[1] A method comprising: reacting a silicon-containing substance with a surfactant to form a complex composed of the silicon-containing substance and the surfactant, and then removing an organic substance from the complex. 4 A method for producing a porous body having an X-ray diffraction pattern comprising an Si-containing material in which the amount of Si atoms is more than 90% of the total amount of Si atoms, and wherein at least one peak is present at a position where d interval is 40 to 80 inches,
[2] At least one peak having a half width of 0.4 to 1.0 at a position where the d interval of the porous body is 40 to 80 inches and greater than 50% of the strongest peak at a position of 40 to 80 inches The production method according to the above [1], which has an X-ray diffraction pattern having no peak at a position where the d interval is less than 40 mm in relative intensity.
[3] The production method according to the above [1] or [2], wherein the pore distribution curve of the porous body has at least one peak each in a range in which the pore diameter is less than 10 mm and in a range of 10 mm or more,
[4] The total pore volume of the porous body is 0.4 to 1.5 cm 3 / g, and the volume of pores having a pore diameter of 10 to 100 cm in the pore distribution curve is 0.2 to 1.2 cm 3. The production method according to any one of [1] to [3], wherein the pore volume in the pore distribution curve is 0.1 to 0.45 cm 3 / g.
[5] The production method according to any one of [1] to [4], wherein the volume of the pores having a pore diameter of 10 to 100 mm in the pore distribution curve of the porous body accounts for 50 to 80% of the total pore volume,
[6] Porous volume ( volume of pores whose pore diameter in pore distribution curve is smaller than 10 mm) / [ ( volume of pores whose pore diameter in pore distribution curve is smaller than 10 mm ) + (pore distribution curve The pore volume in which the pore diameter is greater than 100 mm)] × 100 is 60 to 95, the production method according to any one of [1] to [5] above,
[7] The method according to any one of [1] to [6], wherein the thickness of the pore wall of the porous body is 20 to 50 mm,
[8] The production method according to any one of [1] to [7] above, wherein the pore channels of the porous body are non-linear, and [9] the average pores of the porous body in the range of 10 to 100% depending on the reaction time It is related with the manufacturing method in any one of said [1]-[8] which controls a diameter.

本発明により、耐熱性、耐水熱性に優れた新規多孔体が得られるため、優れた触媒、吸着剤等としての利用が可能である。   According to the present invention, since a novel porous body excellent in heat resistance and hydrothermal resistance is obtained, it can be used as an excellent catalyst, adsorbent and the like.

本発明の多孔体は、QSi原子の量がSi原子全体の量の90%より多いSi含有物質からなり、d間隔が40Åから80Åの位置に半価幅が0.4〜1.0の少なくとも1つのピークを有することを一つの大きな特徴とする。かかる特徴を有することにより、本発明の多孔体は、耐熱性、耐水熱性等の特性が従来の無機多孔質材料と比較して格段に向上している。ここで、%は29Si MAS NMR測定により得られた化学シフト−98ppm〜−111ppm間のNMRスペクトルに対する−102ppm〜−111ppm間に最大ピークを有するQSi原子を示すNMRスペクトルの面積比を示す。またd間隔とは、格子面間隔でありX線回折により得られる。 The porous body of the present invention is made of a Si-containing material in which the amount of Q 4 Si atoms is more than 90% of the total amount of Si atoms, and the half-value width is 0.4 to 1.0 at a position where d interval is 40 to 80 inches. One major characteristic is that it has at least one peak. By having such characteristics, the porous body of the present invention is remarkably improved in properties such as heat resistance and hydrothermal resistance as compared with conventional inorganic porous materials. Here,% indicates the area ratio of the NMR spectrum showing the Q 4 Si atom having the maximum peak between −102 ppm and −111 ppm with respect to the NMR spectrum between −98 ppm and −111 ppm obtained by 29 Si MAS NMR measurement. . The d interval is a lattice plane interval and is obtained by X-ray diffraction.

本発明におけるQSi原子は珪素の周囲に存在する4つのシラノール基が全てシロキサン結合(Si−O)している珪素原子を示す。 The Q 4 Si atom in the present invention is a silicon atom in which all four silanol groups present around silicon are siloxane bonds (Si—O).

本発明の多孔体はまた、耐熱性及び耐水熱性等の特性の観点から、QSi原子の量がSi原子全体の量の95%以上のSi含有物質からなることがより好ましく、QSi原子の量がSi原子全体の量の99%以上のSi含有物質からなることがさらに好ましい。 Porous body of the present invention also in view of properties such as heat resistance and hydrothermal resistance, it is more preferable that the amount of Q 4 Si atoms is 95% or more Si-containing material in the amount of the total Si atoms, Q 4 Si More preferably, the amount of atoms is 99% or more of the total amount of Si atoms.

本発明の多孔体の細孔はまた、触媒活性の観点から、細孔分布曲線において、細孔直径が10Åより小さい範囲と10Å以上の範囲とに各々ピークを少なくとも1つ有することが好ましく、各々のピークの数は好ましくは1つである。さらに、10Åより小さい範囲と10Å以上の範囲とに各々ピークを1つ有することがより好ましく、各々のピークの数は好ましくは1つである。本発明において細孔分布曲線とは、窒素吸着等温線からt-プロット法等により算出して得られる。また、細孔直径は、細孔分布曲線のピーク位置より算出される。なお、本発明において特に断りなく細孔の長さに言及する場合には細孔直径を意味するものとする。   From the viewpoint of catalytic activity, the pores of the porous body of the present invention preferably have at least one peak in the pore distribution curve in the range where the pore diameter is less than 10 mm and in the range of 10 mm or more. The number of peaks is preferably one. Furthermore, it is more preferable to have one peak each in a range smaller than 10 mm and in a range larger than 10 mm, and the number of each peak is preferably one. In the present invention, the pore distribution curve is obtained by calculating from a nitrogen adsorption isotherm by a t-plot method or the like. The pore diameter is calculated from the peak position of the pore distribution curve. In the present invention, when referring to the length of the pore without particular notice, it means the pore diameter.

本発明の多孔体は細孔直径が10Å以上の細孔が存在することにより、主に細孔壁に存在する細孔直径が10Åより小さい細孔での基質の選択的吸着性、触媒活性を向上させることが出来る。   Since the porous body of the present invention has pores having a pore diameter of 10 mm or more, the substrate has selective adsorption and catalytic activity mainly on pores having a pore diameter of less than 10 mm. Can be improved.

本発明の多孔体はまた、選択的吸着性及び触媒活性の観点から、d間隔が40Åから80Åの位置に少なくとも1つのピークを有するX線回折パターンを有していることが好ましく、d間隔が40Åから80Åの位置に1つのピークを有するX線回折パターンを有していることがより好ましく、かつd間隔が40Åから80Åの位置にある最強のピークの50%より大きい相対強度でd間隔が40Åより小さい位置にピークが存在しないX線回折パターンを有していることが好ましく、d間隔が40Åから80Åの位置にある最強のピークの30%より大きい相対強度でd間隔が40Åより小さい位置にピークが存在しないX線回折パターンを有していることがより好ましく、d間隔が40Åから80Åの位置にある最強のピークの20%より大きい相対強度でd間隔が40Åより小さい位置にピークが存在しないX線回折パターンを有していることがさらに好ましい。   The porous body of the present invention preferably also has an X-ray diffraction pattern having at least one peak at a position where the d interval is 40 to 80 mm from the viewpoint of selective adsorption and catalytic activity. It is more preferable to have an X-ray diffraction pattern having one peak at a position of 40 to 80 inches, and the d interval is at a relative intensity greater than 50% of the strongest peak at a position of 40 to 80 inches. It is preferable to have an X-ray diffraction pattern in which no peak exists at a position smaller than 40 mm, and a position where the d interval is smaller than 40 mm with a relative intensity greater than 30% of the strongest peak at a position of 40 mm to 80 mm. It is more preferable to have an X-ray diffraction pattern in which no peak exists at 20% of the strongest peak at a position where the d interval is 40 to 80 mm. It is further preferred that the d-spacing has a X-ray diffraction pattern having no peak at 40Å positions less than a large relative intensity.

本発明の多孔体はまた、選択的吸着性及び触媒活性の観点から、d間隔が40Åから80Åの位置に有するピークの半価幅が0.4〜1.0のピークを少なくとも1つ有するX線回折パターンを有することが好ましく、d間隔が40Åから80Åの位置に有するピークの半価幅が0.5〜1.0のピークを少なくとも1つ有するX線回折パターンを有することがさらに好ましい。本発明の多孔体はまた、選択的吸着性及び触媒活性の観点から、d間隔が40Åから80Åの位置に有するピークの半価幅が好ましくは0.4〜1.0のピーク、さらに好ましくは0.5〜1.0のピークを1つ有するX線回折パターンを有することが好ましい。本発明において半価幅とは、回折ピークの1/2の高さにおけるピーク幅であり、X線回折パターンにより得られる。また、X線回折パターンは全自動X線回折装置(RINT ULTIMA II、理学電機株式会社製)により測定する。   The porous body of the present invention also has an X having at least one peak having a half-value width of 0.4 to 1.0 at a position where the d interval is in the range of 40 to 80 mm from the viewpoint of selective adsorption and catalytic activity. It preferably has a line diffraction pattern, and more preferably has an X-ray diffraction pattern having at least one peak having a half-value width of 0.5 to 1.0 at a position where the distance d is 40 to 80 mm. The porous body of the present invention also preferably has a peak half-value width of 0.4 to 1.0, more preferably from the viewpoint of selective adsorptivity and catalytic activity. It is preferable to have an X-ray diffraction pattern having one peak of 0.5 to 1.0. In the present invention, the half width is a peak width at half the height of a diffraction peak, and is obtained by an X-ray diffraction pattern. The X-ray diffraction pattern is measured by a fully automatic X-ray diffractometer (RINT ULTIMA II, manufactured by Rigaku Corporation).

本発明の多孔体の全細孔容積は、触媒活性の観点から、0.4〜1.5cm/gが好ましく、0.8〜1.5cm/gがより好ましく、0.99〜1.5cm/gがさらに好ましい。本発明おいて全細孔容積とは、公知の窒素吸着により算出される全細孔容積を指す。 Total pore volume of the porous material of the present invention, from the viewpoint of catalytic activity, preferably 0.4~1.5cm 3 / g, more preferably 0.8~1.5cm 3 / g, 0.99~1 More preferably, it is 0.5 cm 3 / g. In the present invention, the total pore volume refers to the total pore volume calculated by known nitrogen adsorption.

本発明の多孔体の細孔直径が10Å〜100Åの細孔の容積は、触媒活性の観点から、0.2〜1.2cm/gが好ましく、0.4〜1.2cm/gがより好ましく、0.6〜1.2cm/gが最も好ましい。本発明における細孔分布曲線における細孔直径が10Åより小さい細孔の容積は、触媒活性の観点から、0.1〜0.45cm/gが好ましく、0.2〜0.45cm/gがより好ましく、0.24〜0.45cm/gがさらに好ましい。 Porous volume of pores having a pore diameter of the pores of 10Å~100Å of the present invention, from the viewpoint of catalytic activity, preferably 0.2~1.2cm 3 / g, 0.4~1.2cm 3 / g is More preferred is 0.6 to 1.2 cm 3 / g. Volume of pore diameter of 10Å pores smaller than the pore distribution curve according to the present invention, from the viewpoint of catalytic activity, 0.1~0.45cm 3 / g are preferred, 0.2~0.45cm 3 / g Is more preferable, and 0.24-0.45 cm < 3 > / g is still more preferable.

本発明の多孔体の細孔分布曲線における細孔直径が10Å〜100Åの細孔の容積は、触媒活性の観点から、全細孔容積の50〜80%を占めることが好ましく、59%〜80%を占めることがより好ましい。   From the viewpoint of catalytic activity, the volume of pores having a pore diameter of 10 to 100 in the pore distribution curve of the porous body of the present invention preferably occupies 50 to 80% of the total pore volume, and 59 to 80%. % Is more preferable.

本発明の多孔体は、触媒活性の観点から、(細孔分布曲線における細孔直径が10Åより小さい細孔の容積)/[(細孔分布曲線における細孔直径が10Åより小さい細孔の容積)+(細孔分布曲線における細孔直径が100Åより大きい細孔の容積)]×100の値が、60〜95であることが好ましく、69〜95であることがより好ましい。   From the viewpoint of catalytic activity, the porous body of the present invention has a volume of pores having a pore diameter smaller than 10 mm in the pore distribution curve / [volume of pores having a pore diameter smaller than 10 mm in the pore distribution curve. ) + (Pore volume in pore distribution curve having pore diameter larger than 100 mm)] × 100 is preferably 60 to 95, and more preferably 69 to 95.

本発明の多孔体の細孔壁の厚さは、耐熱性及び耐水熱の観点から、20〜50Åが好ましく、25〜50Åがより好ましい。   From the viewpoint of heat resistance and hydrothermal resistance, the thickness of the pore wall of the porous body of the present invention is preferably 20 to 50 mm, and more preferably 25 to 50 mm.

本発明の多孔体の細孔壁の厚さは
式:(2×d100値/√3)−(平均細孔直径10〜100Åの範囲の細孔径)
により算出することができる。本発明の平均細孔直径は公知の窒素吸脱着により算出した。すなわち、平均細孔直径は公知のBJH法により算出した。ここで、d100は六方晶系における(100)面の面間隔を示しX線回折パターンより算出する。
The thickness of the pore wall of the porous body of the present invention is expressed by the formula: (2 × d 100 value / √3) − (pore diameter in the range of average pore diameter of 10 to 100 mm)
Can be calculated. The average pore diameter of the present invention was calculated by known nitrogen adsorption / desorption. That is, the average pore diameter was calculated by a known BJH method. Here, d 100 is calculated from the X-ray diffraction pattern indicates the spacing of (100) plane in the hexagonal system.

本発明の多孔体の比表面積は、選択的吸着性及び触媒活性の観点から、450〜1200m/gが好ましく、600〜1200m/gがより好ましく、650〜1200m/gがさらに好ましい。 The specific surface area of the porous body of the present invention, from the viewpoint of selective adsorption and catalytic activity, preferably 450~1200m 2 / g, more preferably 600~1200m 2 / g, more preferably 650~1200m 2 / g.

本発明の多孔体の細孔容積及び比表面積は公知の窒素脱吸着により算出することができる。   The pore volume and specific surface area of the porous body of the present invention can be calculated by known nitrogen desorption.

本発明の多孔体の1次粒子径は特に限定されるものではないが、選択的吸着性及び触媒活性の観点から、100nm〜800nmが好ましく、300〜400nmがより好ましい。   The primary particle diameter of the porous body of the present invention is not particularly limited, but is preferably 100 nm to 800 nm, more preferably 300 to 400 nm, from the viewpoint of selective adsorptivity and catalytic activity.

本発明の多孔体の細孔のチャネルは、触媒活性の観点から、非直線が好ましい。   The channel of the pores of the porous body of the present invention is preferably non-linear from the viewpoint of catalytic activity.

本発明の多孔体の1次粒子径及び細孔のチャネルは透過型電子顕微鏡により観察することができる。   The primary particle diameter and pore channels of the porous body of the present invention can be observed with a transmission electron microscope.

本発明の多孔体はSiを含有すれば特に限定されるものではないが、例えば、下記式:
MxAlySizO
(式中、MはAl以外の金属元素であり、xは0以上1以下であり、yは0以上1以下であり、zは0より大きく1以下である)
で表される。ここで、Mは、Al以外の金属架橋に用いられる1種以上の金属元素であり、例えば、Mn、Co、Ni、Fe、Mg、Cr、Ga、Ge、Ti等が挙げられる。Mが2種以上のカチオンである場合、その2種以上の金属元素を合計したものがxであればよい。
The porous body of the present invention is not particularly limited as long as it contains Si. For example, the following formula:
MxAlySizO 2
(Wherein M is a metal element other than Al, x is 0 or more and 1 or less, y is 0 or more and 1 or less, and z is greater than 0 and 1 or less)
It is represented by Here, M is one or more metal elements used for metal crosslinking other than Al, and examples thereof include Mn, Co, Ni, Fe, Mg, Cr, Ga, Ge, and Ti. When M is two or more kinds of cations, the sum of the two or more kinds of metal elements may be x.

本発明の多孔体の製造方法としては、特に限定されるものではないが、例えば、珪素含有物質を界面活性剤と混合し、反応させることにより、界面活性剤を鋳型としてそのまわりに珪素含有物質の骨格が形成された界面活性剤と珪素含有物質の複合体を形成させた後、得られた複合体から、有機物を除去する方法が挙げられる。   The method for producing the porous body of the present invention is not particularly limited. For example, a silicon-containing substance is mixed with a surfactant and reacted to cause a silicon-containing substance around the surfactant as a template. There is a method in which a complex of a surfactant having a skeleton of 5 and a silicon-containing substance is formed, and then organic substances are removed from the obtained complex.

珪素含有物質は、特に限定されるものではないが、例えば、シリコンアルコキシド等の有機シリカ、層状珪酸塩、非層状珪酸塩等の珪酸塩を含む物質及び珪酸塩以外の珪素を含有する物質が挙げられる。有機シリカとしては、、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトラメチルアンモニウム(TMA)シリケート、テトラエチルオルトシリケート等のシリコンアルコキシド等が挙げられ、層状珪酸塩としては、カネマイト(NaHSi・3HO)、ジ珪酸ナトリウム結晶(NaSi)、マカタイト(NaHSi・5HO)、アイラアイト(NaHSi17・XHO)、マガディアイト(NaHSi1429・XHO)、ケニヤアイト(NaHSi2041・XHO)等が挙げられ、非層状珪酸塩としては、水ガラス(珪酸ソーダ)、ガラス、無定形珪酸ナトリウムまた、珪酸塩以外の珪素を含有する物質としては、シリカ、シリカ酸化物、シリカ−金属複合酸化物などが挙げられる。これらは、単独で又は2種以上を混合して用いて良い。 The silicon-containing material is not particularly limited, and examples thereof include organic silica such as silicon alkoxide, materials containing silicates such as layered silicates and non-layered silicates, and materials containing silicon other than silicates. It is done. Examples of the organic silica include silicon alkoxides such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetramethylammonium (TMA) silicate, and tetraethylorthosilicate. Examples of the layered silicate include kanemite (NaHSi 2). O 5 · 3H 2 O), sodium disilicate crystal (Na 2 Si 2 O 5 ), macatite (NaHSi 4 O 9 · 5H 2 O), eyeraite (NaHSi 8 O 17 · XH 2 O), magadiite (Na 2 HSi 14 O 29 · XH 2 O), Kenyaite (Na 2 HSi 20 O 41 · XH 2 O) and the like, and non-layered silicates include water glass (sodium silicate), glass, amorphous sodium silicate, Examples of substances containing silicon other than silicate include silica and silica Product, silica - and metal composite oxides. These may be used alone or in admixture of two or more.

鋳型となる界面活性剤は単独で又は2種以上を混合して用いることができる。   Surfactants that serve as templates can be used alone or in admixture of two or more.

界面活性剤としては特に限定されるものではないが、耐熱性及び耐水熱の観点から、非イオン型界面活性剤が好ましい。   The surfactant is not particularly limited, but a nonionic surfactant is preferable from the viewpoint of heat resistance and hydrothermal resistance.

非イオン型界面活性剤としては、特に限定される物ではないが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン酸誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリプロピレングリコール、ポリエチレングリコール等のエーテル型のものや、ポリオキシエチレンアルキルアミン等の含窒素型のものを使用することができるが、触媒活性、選択的吸着性の観点から、ポリグリセリンに脂肪酸をエステル化したポリグリセリン脂肪酸エステルが好ましい。これらは単独で又は2種以上を混合して用いてもよい。   The nonionic surfactant is not particularly limited, but examples thereof include polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether, polyoxyethylene sterol ether, polyoxyethylene. Lanolinic acid derivatives, polyoxyethylene polyoxypropylene alkyl ethers, ether-types such as polypropylene glycol and polyethylene glycol, and nitrogen-containing types such as polyoxyethylene alkylamine can be used. From the viewpoint of static adsorptivity, polyglycerol fatty acid ester obtained by esterifying a fatty acid with polyglycerol is preferable. You may use these individually or in mixture of 2 or more types.

ポリグリセリン脂肪酸エステルは触媒活性、選択的吸着性の観点から、HLBが14.0〜18.0であることが好ましく、15.0〜18.0であることがさらに好ましく、15.0〜16.0であることが最も好ましい。ここで、HLBは分子中の親水基と親油基のバランスを表し、分子中の親水基が0%の時を0、100%の時を20として等分したもので、計算又は実験的に求められる。   From the viewpoint of catalytic activity and selective adsorptivity, the polyglycerol fatty acid ester preferably has an HLB of 14.0 to 18.0, more preferably 15.0 to 18.0, and more preferably 15.0 to 16 0.0 is most preferred. Here, HLB represents the balance between the hydrophilic group and the lipophilic group in the molecule and is equally divided into 0 when the hydrophilic group in the molecule is 0% and 20 when the hydrophilic group is 100%. Desired.

ポリグリセリン脂肪酸エステルは触媒活性、選択的吸着性の観点から、ポリグリセリン組成中、グリセリン3量体〜10量体の中から選ばれる1種のポリグリセリンの含量が35%以上であることが好ましい。この組成分布はガスクロマトグラフィーや液体クロマトグラフィーにより分析でき、特にポリグリセリンをトリメチルシリル化誘導体とした後、ガスクロマトグラフィーに付すことにより簡便に分析することができる。   From the viewpoint of catalytic activity and selective adsorptivity, the polyglycerin fatty acid ester preferably has a content of one kind of polyglycerin selected from glycerin trimer to demer in the polyglycerin composition is 35% or more. . This composition distribution can be analyzed by gas chromatography or liquid chromatography, and in particular, it can be easily analyzed by subjecting polyglycerin to a trimethylsilylated derivative followed by gas chromatography.

ポリグリセリン脂肪酸エステルは、触媒活性及び選択的吸着性の観点から、ポリグリセリン脂肪酸エステルの構成脂肪酸の炭素数は10〜14が好ましく、12〜14がさらに好ましい。   In the polyglycerol fatty acid ester, the number of carbon atoms of the constituent fatty acid of the polyglycerol fatty acid ester is preferably 10 to 14, and more preferably 12 to 14 from the viewpoint of catalytic activity and selective adsorptivity.

珪素含有物質と界面活性剤を混合する場合、適当な溶媒を用いても良い。溶媒としては、特に限定されるものではないが、水、アルコール等が挙げられる。   When the silicon-containing substance and the surfactant are mixed, an appropriate solvent may be used. Although it does not specifically limit as a solvent, Water, alcohol, etc. are mentioned.

珪素含有物質と界面活性剤の混合方法は、特に限定されるものではないが、界面活性剤を酸性溶液に溶解させた後、この溶液に珪素含有物質を添加し、22℃〜26℃で3時間〜14日間混合することが好ましい。珪素含有物質と界面活性剤の混合比(重量比)は特に限定されるものではないが、珪素含有物質:界面活性剤=1:0.5〜1:2が好ましく、1:1〜1:1.5がより好ましい。   The method for mixing the silicon-containing substance and the surfactant is not particularly limited. After the surfactant is dissolved in the acidic solution, the silicon-containing substance is added to the solution, and the mixture is added at 22 ° C. to 26 ° C. for 3 hours. It is preferable to mix for a time to 14 days. The mixing ratio (weight ratio) of the silicon-containing substance and the surfactant is not particularly limited, but silicon-containing substance: surfactant = 1: 0.5 to 1: 2 is preferable, and 1: 1 to 1: 1.5 is more preferable.

酸性溶液を調製するための酸性物質は特に限定されるものではないが、塩酸、臭化水素、ヨウ化水素、蟻酸、酢酸、硝酸、硫酸、燐酸等が挙げられる。   The acidic substance for preparing the acidic solution is not particularly limited, and examples thereof include hydrochloric acid, hydrogen bromide, hydrogen iodide, formic acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid and the like.

珪素含有物質と界面活性剤とを攪拌し反応させる際のpH条件は、耐熱性及び耐水熱性の観点から、酸性条件であれば特に限定されるものではないが、pH3〜pH−3が好ましく、pH1〜pH−3がより好ましく、pH0〜pH−3がさらに好ましい。   The pH condition when the silicon-containing substance and the surfactant are stirred and reacted is not particularly limited as long as it is acidic from the viewpoint of heat resistance and hydrothermal resistance, but preferably pH 3 to pH-3. pH 1 to pH-3 is more preferable, and pH 0 to pH-3 is more preferable.

界面活性剤と珪素含有物質の複合体から有機物を除去する方法としては、複合体を濾取し、水等により洗浄、乾燥した後、400℃〜600℃で焼成する方法や、有機溶媒等により抽出する方法が挙げられる。   As a method of removing the organic substance from the complex of the surfactant and the silicon-containing substance, the complex is collected by filtration, washed with water or the like, dried and then fired at 400 ° C. to 600 ° C., or by an organic solvent. The method of extracting is mentioned.

本発明の多孔体は、珪素含有物質と界面活性剤の反応時間により10Å〜100Åの範囲で多孔体の平均細孔直径を制御することができる。具体的には、例えば珪素含有物質としてテトラエトキシシラン(TEOS)、界面活性剤としてペンタグリセリンモノミリステート(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.0)を使用し、25℃で3時間〜14日間の範囲で反応時間を制御することにより、10Åより大きい範囲における平均細孔直径を30Å〜50Åの範囲で制御することができる。すなわち、反応時間が長いほど10Åより大きい範囲における平均細孔直径を30Å〜50Åの範囲で増大させることができる。   In the porous body of the present invention, the average pore diameter of the porous body can be controlled in the range of 10 to 100 に よ り depending on the reaction time of the silicon-containing substance and the surfactant. Specifically, for example, tetraethoxysilane (TEOS) is used as the silicon-containing substance, and pentaglycerin monomyristate (content of glycerin pentamer in the constituent polyglycerin is 42% · HLB15.0) is used as the surfactant. By controlling the reaction time in the range of 3 hours to 14 days at ° C, the average pore diameter in the range larger than 10 mm can be controlled in the range of 30 mm to 50 mm. That is, as the reaction time is longer, the average pore diameter in the range larger than 10 mm can be increased in the range of 30 mm to 50 mm.

本発明はまた、本発明の多孔体を含有してなる触媒に関する。本発明の触媒は、例えばクネーベナーゲル縮合反応を触媒する。   The present invention also relates to a catalyst comprising the porous body of the present invention. The catalyst of the present invention catalyzes, for example, the Kunebener gel condensation reaction.

本発明はまた、本発明の多孔体を含有してなる吸着剤に関する。本発明の吸着剤は、例えば、ホルムアルデヒド、アセトアルデヒド、酢酸、蟻酸、アンモニア、トルエン、ベンゼン、n-アルカン等を吸着することが出来る。   The present invention also relates to an adsorbent comprising the porous body of the present invention. The adsorbent of the present invention can adsorb, for example, formaldehyde, acetaldehyde, acetic acid, formic acid, ammonia, toluene, benzene, n-alkane and the like.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example.

製造例1
60mlの6N塩酸に1gの界面活性剤{ペンタグリセリンモノミリステート/商品名:サンソフトA−14E(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.0)太陽化学株式会社製}を添加混合し、界面活性剤を完全に溶解させた。この溶液に1.25gのテトラエトキシシラン(TEOS)を添加した。この溶液(pH0以下)を密封系にて25℃で24時間攪拌した。生じた沈殿物を濾過にて回収後、イオン交換水にて水洗・濾過を3回繰り返した。エタノールにて洗浄・濾過後、この固形物を60℃で3時間乾燥させ、その後540℃で6時間焼成を行い、多孔体A0.27gを得た。
Production Example 1
1 ml of surfactant in 60 ml of 6N hydrochloric acid {pentaglycerin monomyristate / trade name: Sunsoft A-14E (content of glycerin pentamer in constituent polyglycerin is 42%, HLB 15.0) manufactured by Taiyo Chemical Co., Ltd.} Were added and mixed to completely dissolve the surfactant. To this solution was added 1.25 g of tetraethoxysilane (TEOS). This solution (pH 0 or lower) was stirred in a sealed system at 25 ° C. for 24 hours. The resulting precipitate was collected by filtration, and then washed with ion-exchanged water and filtered three times. After washing with ethanol and filtration, the solid was dried at 60 ° C. for 3 hours, and then calcined at 540 ° C. for 6 hours to obtain 0.27 g of porous material A.

製造例2〜6
60mlの6N塩酸に1gの界面活性剤{ペンタグリセリンモノミリステート/商品名:サンソフトA−14E(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.0)太陽化学株式会社製}を添加混合し、界面活性剤を完全に溶解させた。この溶液(pH0以下)に1.25gのTEOSを添加した。この溶液を密封系にて25℃で3時間、3日間、7日間、10日間、及び14日間攪拌する以外は製造例1と同様にして、それぞれ多孔体B、C、D、E、Fを得た。
Production Examples 2-6
1 ml of surfactant in 60 ml of 6N hydrochloric acid {pentaglycerin monomyristate / trade name: Sunsoft A-14E (content of glycerin pentamer in constituent polyglycerin is 42%, HLB 15.0) manufactured by Taiyo Chemical Co., Ltd.} Were added and mixed to completely dissolve the surfactant. To this solution (pH 0 or lower), 1.25 g of TEOS was added. Porous bodies B, C, D, E, and F were respectively obtained in the same manner as in Production Example 1 except that this solution was stirred in a sealed system at 25 ° C. for 3 hours, 3 days, 7 days, 10 days, and 14 days. Obtained.

製造例7
界面活性剤として{ペンタグリセリンモノラウレート/商品名:サンソフトA-12E(構成ポリグリセリン中グリセリン5量体の含量が42%・HLB15.6)を使用した以外は製造例1と同様にして、多孔体Gを得た。
Production Example 7
The same as in Production Example 1 except that {pentaglycerin monolaurate / trade name: Sunsoft A-12E (content of glycerin pentamer in constituent polyglycerin is 42% · HLB 15.6) was used as the surfactant. A porous body G was obtained.

得られた多孔体Aの29Si MAS NMRを測定し、QSi原子のSi原子全体に対する割合を求めた。すなわち、得られた化学シフト−98ppm〜−111ppm間のNMRスペクトルを逆重畳積分(deconvolute)し、−102ppm〜−111ppm間に最大ピークを有するQSi原子を示すNMRスペクトルの面積比を求めた。結果を図1に示す。なお、NMRは、4-mm ZrO中マジック角回転プローブを含むBruker DRX-400検出器にて測定した。 29 Si MAS NMR of the obtained porous body A was measured, and the ratio of Q 4 Si atoms to the entire Si atoms was determined. That is, the obtained NMR spectrum between -98 ppm and -111 ppm was deconvolved, and the area ratio of the NMR spectrum showing the Q 4 Si atom having the maximum peak between -102 ppm and -111 ppm was determined. . The results are shown in FIG. NMR was measured with a Bruker DRX-400 detector including a magic angle rotating probe in 4-mm ZrO 2 .

図1に示したように多孔体A前駆体物質の29Si MAS NMRはQユニットに起因するピークとQユニットに起因するピークとQユニットに起因するピークを有したが、多孔体Aの29Si MAS NMRはQユニットに起因するピークのみを有し、QSi原子の量はSi原子全体の量は98%であった。 As shown in FIG. 1, 29 Si MAS NMR of the porous body A precursor material had a peak due to the Q 4 unit, a peak due to the Q 3 unit, and a peak due to the Q 2 unit. 29 Si MAS NMR had only a peak due to the Q 4 unit, and the amount of Q 4 Si atoms was 98% of the total Si atoms.

多孔体B〜Fについても同様にQSi原子はSi原子全体の90%より大きかった。 Similarly, in the porous bodies B to F, Q 4 Si atoms were larger than 90% of the entire Si atoms.

得られた多孔体A〜Fの細孔分布を測定した。多孔体A〜Fの細孔分布曲線を図2に示す。   The pore distribution of the obtained porous bodies A to F was measured. The pore distribution curves of the porous bodies A to F are shown in FIG.

図2に示したように得られた多孔体A〜Fの細孔は、細孔分布曲線において細孔直径が10Åより小さい範囲と10Å以上の範囲にそれぞれピークを1つ有した。   The pores of the porous bodies A to F obtained as shown in FIG. 2 each had one peak in the pore distribution curve in the range where the pore diameter was smaller than 10 mm and in the range larger than 10 mm.

得られた多孔体A〜FのX線回折パターンを測定した。多孔体A〜Cの結果を図3に、多孔体D〜Fの結果を図4に示す。   X-ray diffraction patterns of the obtained porous bodies A to F were measured. The results of porous bodies A to C are shown in FIG. 3, and the results of porous bodies D to F are shown in FIG.

図3及び図4に示すように得られた多孔体A〜FのX線回折パターンはd間隔が40Åから80Åの位置にピークを1つ有し、このピークの20%より大きい相対強度でd間隔が40Åより小さい位置にピークを有さなかった。また、この半価幅は0.4〜1.0の範囲であった。   The X-ray diffraction patterns of the porous bodies A to F obtained as shown in FIGS. 3 and 4 have one peak at a position where the d interval is 40 to 80 mm, and the relative intensity is greater than 20% of this peak. There was no peak at a position where the interval was less than 40 mm. Further, the half width was in the range of 0.4 to 1.0.

得られた多孔体A〜Fの半価幅、Si原子全体に対するQSi原子の量、及び細孔容積を求めた。結果を表1に示す。 The half width of the obtained porous bodies A to F, the amount of Q 4 Si atoms relative to the entire Si atoms, and the pore volume were determined. The results are shown in Table 1.


表1中、Iは全細孔容積(cm/g)であり、IIは細孔分布曲線における細孔直径が10Åより小さい細孔の容積(cm/g)であり、IIIは細孔分布曲線における細孔直径が10Å〜100Åの容積(cm/g)であり、IVは細孔分布曲線における細孔直径が100Åより大きい細孔の容積(cm/g)であり、Vは細孔分布曲線における細孔直径が10Åより小さい細孔の容積+細孔直径が100Åより大きい細孔の容積(cm/g)[II+IV]である。 In Table 1, I is the total pore volume (cm 3 / g), II is the pore diameter of 10Å pores smaller than the volume in the pore distribution curve (cm 3 / g), III pore The pore diameter in the distribution curve is a volume of 10 to 100 cm (cm 3 / g), IV is the volume of pores with a pore diameter in the pore distribution curve of more than 100 mm (cm 3 / g), and V is The pore volume in the pore distribution curve is the volume of pores smaller than 10 mm + the volume of pores having a pore diameter larger than 100 mm (cm 3 / g) [II + IV].

表1に示したように得られた多孔体A〜Fの全細孔容積は0.4〜1.5cm/gの範囲にあり、細孔分布曲線における細孔直径が10Å〜100Åの細孔の容積は0.2〜1.2cm/gの範囲にあり、細孔分布曲線における細孔直径が10Åより小さい細孔の容積は0.1〜0.45cm/gの範囲にあった。また、多孔体A〜Fの細孔分布曲線における細孔直径が10Å〜100Åの容積は全細孔容積の50〜80%の範囲にあった。また、式:(細孔分布曲線における細孔直径が10Åより小さい細孔の容積)/[(細孔分布曲線における細孔直径が10Åより小さい細孔の容積)+(細孔分布曲線における細孔直径が100Åより大きい細孔の容積)]×100の値は60〜95の範囲であった。 The total pore volume of the porous bodies A to F obtained as shown in Table 1 is in the range of 0.4 to 1.5 cm 3 / g, and the pore diameter in the pore distribution curve is as small as 10 to 100 cm. The pore volume is in the range of 0.2 to 1.2 cm 3 / g, and the pore diameter in the pore distribution curve is less than 10 mm, and the pore volume is in the range of 0.1 to 0.45 cm 3 / g. It was. Further, the volume of the pore diameters in the pore distribution curves of the porous bodies A to F was 10 to 100% was in the range of 50 to 80% of the total pore volume. Also, the formula: (volume of pores whose pore diameter is smaller than 10 mm in pore distribution curve) / [(volume of pores whose pore diameter is smaller than 10 mm in pore distribution curve) + (fine volume in pore distribution curve) The value of the pore volume with a pore diameter greater than 100 mm)] × 100 ranged from 60 to 95.

得られた多孔体A〜Fの細孔壁の厚さ、d100値及び比表面積を求めた。結果を表2に示す。 The thickness of the pore walls of the resulting porous body to F, were determined d 100 value and the specific surface area. The results are shown in Table 2.

表2に示したように得られた多孔体A〜Fの細孔壁は20〜50Åの範囲にあり、d100値は40〜80Åの範囲にあり、比表面積は450〜1200m/gの範囲にあった。 The pore walls of the porous bodies A to F obtained as shown in Table 2 are in the range of 20 to 50 mm, the d 100 value is in the range of 40 to 80 mm, and the specific surface area is 450 to 1200 m 2 / g. Was in range.

29Si MAS NMRは、4-mm ZrO中マジック角回転プローブを含むBruker DRX-400検出器にて測定した。細孔分布曲線、平均細孔直径、細孔容量、比表面積及び細孔壁は公知の窒素吸脱着により算出した。すなわち、平均細孔直径は公知のBJH法により算出し、細孔容量は公知のBJH法により算出し、比表面積は公知のBET法により算出し、細孔壁は、
式:(2×d100値/√3)−(細孔直径10〜100Åの範囲の細孔径)
により算出した。d100値及びX線回折パターンは、全自動X線回折装置(商品名:RINT ULTIMA II、理学電機株式会社製)により測定した。X線回折は、CuKα線(40kv、30mA)をX線源として1°〜10°まで、1°2θ/秒でスキャンした。
29 Si MAS NMR was measured with a Bruker DRX-400 detector containing a magic angle rotating probe in 4-mm ZrO 2 . The pore distribution curve, average pore diameter, pore volume, specific surface area and pore wall were calculated by known nitrogen adsorption / desorption. That is, the average pore diameter is calculated by a known BJH method, the pore volume is calculated by a known BJH method, the specific surface area is calculated by a known BET method,
Formula: (2 × d 100 value / √3) − (pore diameter in the range of pore diameter 10 to 100 mm)
Calculated by d 100 value and X-ray diffraction pattern were measured by a fully automatic X-ray diffraction apparatus (trade name: RINT ULTIMA II, manufactured by Rigaku Corporation). X-ray diffraction was scanned at 1 ° 2θ / second from 1 ° to 10 ° using CuKα rays (40 kv, 30 mA) as an X-ray source.

多孔体Aを透過型電子顕微鏡により観察した。透過型電子顕微鏡写真のイメージ図を図5、図6及び図7に示す。透過型電子顕微鏡はJEOL JEM-2010にて加速電圧100kVで測定した。   The porous body A was observed with a transmission electron microscope. Image diagrams of transmission electron micrographs are shown in FIGS. The transmission electron microscope was measured with JEOL JEM-2010 at an acceleration voltage of 100 kV.

図5に示すように多孔体Aの1次粒子は300nm〜400nmであった。図6に示すように多孔体Aの細孔の規則性は高くなかった。図7に示すように多孔体Aの細孔のチャネルは非直線であった。   As shown in FIG. 5, the primary particles of the porous body A were 300 nm to 400 nm. As shown in FIG. 6, the regularity of the pores of the porous body A was not high. As shown in FIG. 7, the channel of the pores of the porous body A was non-linear.

比較品の製造例1
Beckらの方法(J.Am.Chem.Soc.1992,114,10834−10843)にて論文に記載の多孔質材料、MCM−41を得た。MCM-41のX線回折パターンを測定した。結果を図8に示す。
Comparative product production example 1
The porous material described in the paper, MCM-41, was obtained by the method of Beck et al. (J. Am. Chem. Soc. 1992, 114, 10834-10843). The X-ray diffraction pattern of MCM-41 was measured. The results are shown in FIG.

図8に示したように多孔質材料MCM−41は半価幅が0.27のピークを有するX線回折パターンを示した。QSi原子の量がSi原子全体の量の70%であった。 As shown in FIG. 8, the porous material MCM-41 showed an X-ray diffraction pattern having a peak with a half width of 0.27. The amount of Q 4 Si atoms was 70% of the total amount of Si atoms.

比較品の製造例2
界面活性剤として{デカグリセリンモノミリステート/商品名:サンソフトQ−14S(構成ポリグリセリン中、グリセリン15%、グリセリン2量体18%、グリセリン3量体23%、グリセリン4量体16%、グリセリン5量体以上20%、環状ポリグリセリンが8%・HLB14.5)太陽化学株式会社製}を使用した以外は製造例1と同様にして、多孔体Hを得た。
Comparative product production example 2
As a surfactant {decaglycerin monomyristate / trade name: Sunsoft Q-14S (in constituent polyglycerin, glycerin 15%, glycerin dimer 18%, glycerin trimer 23%, glycerin tetramer 16%, Porous material H was obtained in the same manner as in Production Example 1 except that 20% of glycerin pentamer, 8% of cyclic polyglycerin and HLB 14.5) manufactured by Taiyo Kagaku Co., Ltd. were used.

比較品の製造例3
界面活性剤として{トリグリセリンモノミリステート/商品名:サンソフト A−141E
(構成ポリグリセリン中、グリセリン3量体の含量が42%・HLB13.0)太陽化学株式会社製}を使用した以外は製造例1と同様にして、多孔体Iを得た。
Comparative product production example 3
As a surfactant {triglycerin monomyristate / trade name: Sunsoft A-141E
Porous material I was obtained in the same manner as in Production Example 1 except that the content of glycerin trimer in the constituent polyglycerin was 42% · HLB13.0, manufactured by Taiyo Kagaku Co., Ltd.}.

比較品の製造例2及び3で得られた多孔体H、IのX線回折パターンを測定した。多孔体Hの結果を図9に、多孔体Iの結果を図10に示す。   The X-ray diffraction patterns of the porous bodies H and I obtained in Comparative Production Examples 2 and 3 were measured. The result of porous body H is shown in FIG. 9, and the result of porous body I is shown in FIG.

図9、図10に示したように得られた多孔体H、Iは、d間隔が40Åから80Åの位置に半価幅が0.4〜1.0のピークを有さなかった。   The porous bodies H and I obtained as shown in FIGS. 9 and 10 did not have a peak with a half-value width of 0.4 to 1.0 at a position where the d interval was 40 to 80 mm.

耐熱性試験
(1)製造例1にて得た多孔体Aを850℃で24時間加熱した。この時のX線回折パターンを図11に示す。また、このときの29Si MAS NMRの結果を図12に示す。
Heat resistance test (1) The porous body A obtained in Production Example 1 was heated at 850 ° C. for 24 hours. The X-ray diffraction pattern at this time is shown in FIG. Moreover, the result of 29 Si MAS NMR at this time is shown in FIG.

図11に示すように多孔体Aを850℃で24時間加熱後のX線回折パターンのd100のピーク強度を求めたところ加熱前の53.0%であった。 The porous body A was 53.0% before heating was determined peak intensities of d 100 of X-ray diffraction pattern after heating for 24 hours at 850 ° C. As shown in FIG. 11.

図12に示すようにQSi原子の量はSi原子全体の量の少なくとも90%より多かった。 As shown in FIG. 12, the amount of Q 4 Si atoms was at least 90% of the total amount of Si atoms.

(2)比較品の製造例1で得られたMCM-41を850℃で24時間加熱した。この時のX線回折パターンを図13に示す。 (2) MCM-41 obtained in Comparative Production Example 1 was heated at 850 ° C. for 24 hours. The X-ray diffraction pattern at this time is shown in FIG.

また、850℃で24時間加熱後のX線回折パターンのd100のピーク強度を求めたところ加熱前の44.1%であった。 Moreover, it was 44.1% before heating was determined peak intensities of d 100 of X-ray diffraction pattern after heating at 850 ° C. 24 hours.

耐水熱性試験
製造例1にて得た多孔体Aを50℃、60℃、及び70℃のイオン交換水中で2日間加熱した。この時のX線回折パターンを図14に示す。
Hydrothermal resistance test The porous body A obtained in Production Example 1 was heated in ion-exchanged water at 50 ° C, 60 ° C, and 70 ° C for 2 days. The X-ray diffraction pattern at this time is shown in FIG.

図14に示すように多孔体Aを50℃、60℃、及び70℃のイオン交換水中で2日間加熱後のX線回折パターンのd100のピーク強度を求めたところ、それぞれ加熱前の100%、89.3%、及び79.2%であった。 As shown in FIG. 14, the peak intensity of d 100 of the X-ray diffraction pattern after heating the porous body A in ion exchange water at 50 ° C., 60 ° C., and 70 ° C. for 2 days was determined. , 89.3%, and 79.2%.

本発明により耐熱性及び耐水熱性に優れた、新規な構造を持つ多孔体を提供することができ、触媒や吸着剤用途等に好適に用いられるものであり、その産業上の利用価値は大である。   According to the present invention, it is possible to provide a porous body having a novel structure excellent in heat resistance and hydrothermal resistance, and is suitably used for a catalyst or an adsorbent, and its industrial utility value is great. is there.

図1は、多孔体Aの29Si MAS NMR測定結果を示す図である。FIG. 1 is a diagram showing 29 Si MAS NMR measurement results of porous body A. FIG. 図2は、多孔体A〜Fの細孔分布曲線を示すグラフである。図2の上図は、120Åまでの細孔直径の分布曲線を示すグラフであり、下図は、上図の細孔直径10Å付近を拡大したグラフである。FIG. 2 is a graph showing pore distribution curves of porous bodies A to F. The upper diagram of FIG. 2 is a graph showing a pore diameter distribution curve up to 120 mm, and the lower diagram is an enlarged graph of the vicinity of the pore diameter of 10 mm in the upper diagram. 図3は、多孔体A〜CのX線回折パターンを示すグラフである。FIG. 3 is a graph showing X-ray diffraction patterns of porous bodies A to C. 図4は、多孔体D〜FのX線回折パターンを示すグラフである。FIG. 4 is a graph showing X-ray diffraction patterns of porous bodies D to F. 図5は、透過型電子顕微鏡により観察した多孔体Aのイメージ図である。FIG. 5 is an image diagram of the porous body A observed with a transmission electron microscope. 図6は、透過型電子顕微鏡により観察した多孔体Aのイメージ図である。FIG. 6 is an image diagram of the porous body A observed with a transmission electron microscope. 図7は、透過型電子顕微鏡により観察した多孔体Aのイメージ図である。FIG. 7 is an image diagram of the porous body A observed with a transmission electron microscope. 図8は、MCM−41のX線回折パターンを示すグラフである。FIG. 8 is a graph showing an X-ray diffraction pattern of MCM-41. 図9は、多孔体HのX線回折パターンを示すグラフである。FIG. 9 is a graph showing an X-ray diffraction pattern of the porous body H. 図10は、多孔体IのX線回折パターンを示すグラフである。FIG. 10 is a graph showing an X-ray diffraction pattern of porous body I. 図11は、多孔体Aを850℃で24時間加熱後のX線回折パターンを示すグラフである。FIG. 11 is a graph showing an X-ray diffraction pattern after heating the porous body A at 850 ° C. for 24 hours. 図12は、多孔体Aを850℃で24時間加熱後の29Si MAS NMR測定結果を示す図である。FIG. 12 is a diagram showing a 29 Si MAS NMR measurement result after heating the porous body A at 850 ° C. for 24 hours. 図13は、MCM−41を850℃で24時間加熱後のX線回折パターンを示すグラフである。FIG. 13 is a graph showing an X-ray diffraction pattern after heating MCM-41 at 850 ° C. for 24 hours. 図14は、多孔体Aを50℃、60℃、及び70℃のイオン交換水中で2日間加熱後のX線回折パターンを示すグラフである。FIG. 14 is a graph showing an X-ray diffraction pattern after heating the porous body A in ion exchange water at 50 ° C., 60 ° C., and 70 ° C. for 2 days.

符号の説明Explanation of symbols

1 多孔体C
2 多孔体A
3 多孔体B
4 多孔体D
5 多孔体E
6 多孔体F
7 加熱前
8 50℃
9 60℃
10 70℃
1 Porous material C
2 Porous material A
3 Porous body B
4 Porous body D
5 Porous body E
6 Porous body F
7 Before heating 8 50 ℃
9 60 ℃
10 70 ° C

Claims (9)

珪素含有物質と、界面活性剤とを反応させて、珪素含有物質と界面活性剤とからなる複合体を形成させた後、該複合体から有機物を除去することを特徴とする、QSi原子の量がSi原子全体の量の90%より多いSi含有物質からなり、d間隔が40Åから80Åの位置に少なくとも1つのピークが存在するX線回折パターンを有する多孔体の製造方法。 Q 4 Si atom, characterized in that a silicon-containing substance and a surfactant are reacted to form a complex composed of the silicon-containing substance and the surfactant, and then an organic substance is removed from the complex. A method for producing a porous body having an X-ray diffraction pattern in which at least one peak is present at a position where the d-interval is from 40 to 80 cm. 多孔体のd間隔が40Åから80Åの位置に半価幅が0.4〜1.0の少なくとも1つのピークを有し、40Åから80Åの位置にある最強のピークの50%より大きい相対強度でd間隔が40Åより小さい位置にピークが存在しないX線回折パターンを有してなる請求項1記載の製造方法。 It has at least one peak with a half width of 0.4 to 1.0 at a position where the d interval of the porous body is 40 to 80 mm and a relative intensity greater than 50% of the strongest peak at a position of 40 to 80 mm. The manufacturing method according to claim 1, comprising an X-ray diffraction pattern having no peak at a position where the d interval is smaller than 40 mm. 多孔体の細孔分布曲線において細孔直径が10Åより小さい範囲と10Å以上の範囲とに各々ピークを少なくとも1つ有する請求項1または2記載の製造方法。 The production method according to claim 1 or 2, wherein the pore distribution curve of the porous body has at least one peak in each of a pore diameter range of less than 10 mm and a range of 10 mm or more. 多孔体の全細孔容積が0.4〜1.5cm/gであり、細孔分布曲線における細孔直径が10Å〜100Åの細孔の容積が0.2〜1.2cm/gであり、細孔分布曲線における細孔直径が10Åより小さい細孔の容積が0.1〜0.45cm/gである請求項1〜3いずれか記載の製造方法。 The total pore volume of the porous body is 0.4 to 1.5 cm 3 / g, and the pore volume having a pore diameter of 10 to 100 cm in the pore distribution curve is 0.2 to 1.2 cm 3 / g. The method according to any one of claims 1 to 3, wherein the pore volume in the pore distribution curve is 0.1 to 0.45 cm 3 / g. 多孔体の細孔分布曲線における細孔直径が10Å〜100Åの細孔の容積が全細孔容積の50〜80%を占める請求項1〜4いずれか記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the volume of the pores having a pore diameter of 10 to 100 inches in the pore distribution curve of the porous body accounts for 50 to 80% of the total pore volume. 多孔体の(細孔分布曲線における細孔直径が10Åより小さい細孔の容積)/[細孔分布曲線における細孔直径が10Åより小さい細孔の容積+(細孔分布曲線における細孔直径が100Åより大きい細孔の容積)]×100の値が60〜95である請求項1〜5いずれか記載の製造方法。 Of the porous body (volume of pores having a pore diameter of less than 10 mm in the pore distribution curve) / [ ( volume of pores having a pore diameter of less than 10 mm in the pore distribution curve ) + (pores in the pore distribution curve ) The production method according to any one of claims 1 to 5, wherein a value of pores having a diameter larger than 100))] × 100 is 60 to 95. 多孔体の細孔壁の厚さが20〜50Åである請求項1〜6いずれか記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein the porous body has a pore wall thickness of 20 to 50 mm. 多孔体の細孔のチャネルが非直線である請求項1〜7いずれか記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the pore channels of the porous body are non-linear. 反応時間により、10Å〜100Åの範囲で多孔体の平均細孔直径を制御する請求項1〜8いずれか記載の製造方法。   The production method according to any one of claims 1 to 8, wherein the average pore diameter of the porous body is controlled in the range of 10 to 100 cm depending on the reaction time.
JP2006031582A 2006-02-08 2006-02-08 Method for producing porous body Expired - Fee Related JP5276777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006031582A JP5276777B2 (en) 2006-02-08 2006-02-08 Method for producing porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006031582A JP5276777B2 (en) 2006-02-08 2006-02-08 Method for producing porous body

Publications (2)

Publication Number Publication Date
JP2007210830A JP2007210830A (en) 2007-08-23
JP5276777B2 true JP5276777B2 (en) 2013-08-28

Family

ID=38489596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006031582A Expired - Fee Related JP5276777B2 (en) 2006-02-08 2006-02-08 Method for producing porous body

Country Status (1)

Country Link
JP (1) JP5276777B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101229B2 (en) * 2007-09-28 2012-12-19 太陽化学株式会社 Aldehyde adsorbent
JP5234452B2 (en) * 2008-02-06 2013-07-10 太陽化学株式会社 Alkali resistant glutaminase

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307406B2 (en) * 1991-01-14 2002-07-24 株式会社豊田中央研究所 Method for producing layered silica-metal oxide porous material
JP2001340755A (en) * 2000-03-31 2001-12-11 Toyota Central Res & Dev Lab Inc Porous material for adsorbing and separating gas and method of adsorbing and separating gas using the same

Also Published As

Publication number Publication date
JP2007210830A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis, characterization, and catalytic performance of copper-containing SBA-15 in the phenol hydroxylation
Yu et al. Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: the effects of NaOH etching pretreatment
Lv et al. Generalized synthesis of core–shell structured nano-zeolite@ ordered mesoporous silica composites
EP3305726B1 (en) Method for preparing metal oxide-silica composite aerogel
CN1234456C (en) Inorganic oxides with mesoporosity or combined neso- and microporosity and process for preparation thereof
KR101171799B1 (en) Method for recycling of silica etching waste and method for preparing mesoporous materials
El Hanache et al. Surfactant-modified MFI-type nanozeolites: Super-adsorbents for nitrate removal from contaminated water
González et al. Tuning the acidic and textural properties of ordered mesoporous silicas for their application as catalysts in the etherification of glycerol with isobutene
Jin et al. A Simple Route to Synthesize Mesoporous ZSM‐5 Templated by Ammonium‐Modified Chitosan
Misran et al. Nonsurfactant route of fatty alcohols decomposition for templating of mesoporous silica
Hao et al. Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption
Kim et al. Zeolite materials prepared using silicate waste from template synthesis of ordered mesoporous carbon
US20050031520A1 (en) Method of preparing highly ordered mesoporous molecular sieves
JP5276777B2 (en) Method for producing porous body
JP3391155B2 (en) Method for manufacturing porous body
Newalkar et al. Microwave-hydrothermal synthesis and characterization of microporous–mesoporous disordered silica using mixed-micellar-templating approach
Guo et al. Room-temperature synthesis of hydrothermally stable aluminum-rich periodic mesoporous organosilicas with wormlike pore channels
Mori et al. Synthesis of micro-mesoporous bimodal silica nanoparticles using lyotropic mixed surfactant liquid-crystal templates
Goto et al. Mesoporous phenylene–silica hybrid materials with 3D-cage pore structures
JP2004197018A (en) Spherical porous silica particle and method for producing the same
Shao et al. Synthesis and characterization of high hydrothermally stable Cr-MCM-48
Araujo Thermal analysis applied to template removal from siliceous MCM-48 nanoporous material
Liu Ordered mesoporous polymer-silica and carbon-silica nanocomposites co-templated by amphiphilic polydimethylsiloxane-poly (ethylene oxide) block copolymer
Sigoli et al. Porous silica matrix obtained from pyrex glass by hydrothermal treatment: Characterization and nature of the porosity
KR101983675B1 (en) Porous carbonaceous structure formed by using porous geopolymer, method of preparing the same, and use of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5276777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees