JP5273941B2 - Process for producing polyhedral silsesquioxane - Google Patents

Process for producing polyhedral silsesquioxane Download PDF

Info

Publication number
JP5273941B2
JP5273941B2 JP2007113698A JP2007113698A JP5273941B2 JP 5273941 B2 JP5273941 B2 JP 5273941B2 JP 2007113698 A JP2007113698 A JP 2007113698A JP 2007113698 A JP2007113698 A JP 2007113698A JP 5273941 B2 JP5273941 B2 JP 5273941B2
Authority
JP
Japan
Prior art keywords
group
silsesquioxane
diethylamine
polyhedral silsesquioxane
aliphatic amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007113698A
Other languages
Japanese (ja)
Other versions
JP2008266248A (en
Inventor
義輝 川上
義夫 加部
和夫 山口
勉 横澤
孝謙 芹澤
稔 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colcoat Co Ltd
Original Assignee
Colcoat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colcoat Co Ltd filed Critical Colcoat Co Ltd
Priority to JP2007113698A priority Critical patent/JP5273941B2/en
Publication of JP2008266248A publication Critical patent/JP2008266248A/en
Application granted granted Critical
Publication of JP5273941B2 publication Critical patent/JP5273941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a cage-type silsesquioxane having a stiff siloxane skeleton wherein the molecular structure is clarified is obtained in a good yield. <P>SOLUTION: A trifunctional silane represented by the general formula, RSi(OR')<SB>3</SB>(wherein, R represents an alkyl group, an aryl group which may have a substituent or an alkenyl group; and R' represents H or an alkyl group) or a low-order condensate thereof is reacted using an aliphatic amine as a catalyst in a water-soluble solvent. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、3官能シラン類からかご状のポリヘドラルシルセスキオキサンを製造する方法に関する。   The present invention relates to a method for producing a cage-shaped polyhedral silsesquioxane from trifunctional silanes.

かご状のシルセスキオキサン樹脂は、分子構造が明確で剛直な骨格を有しているので、熱可塑性樹脂の改質剤、層間絶縁膜、封止材料、難燃剤、塗料添加剤などに用いられている。このような有機基の結合した3官能シロキサン結合部分を有しているシルセスキオキサン樹脂(RT樹脂)としては、ケイ素を8、10、12または14個有するRT、RT10、RT12、RT14などが知られている。そして、それらの製法としては、フェニルトリクロロシランを加水分解し、その後苛性カリを用いて平衡化反応させて得る方法(非特許文献1)、フェニルシラントリオールを無触媒あるいは各種塩基性触媒の存在下に縮合させ、さらにおよそ100℃以上に加熱処理して、分子量分布Mw/Mnが2以下の、水酸基を多数有するフェニルポリシルセスキオキサンとする方法(特許文献1)などの方法が知られている。また、ケイ素原子全てに反応性有機官能基を有しているシルセスキオキサン樹脂の製法として、極性溶媒中での加水分解と非極性溶媒中での塩基性触媒の存在下での再縮合の2段階法(特許文献2)などの、多数の方法が知られている。
J.Am.Chem.Soc.82,6194-6195(1960] 特開平8−143578号公報 特開2004−143449号公報
Cage-like silsesquioxane resin has a clear and rigid molecular structure, so it is used as a modifier for thermoplastic resins, interlayer insulation films, sealing materials, flame retardants, paint additives, etc. It has been. Examples of the silsesquioxane resin (RT resin) having a trifunctional siloxane bond portion to which such an organic group is bonded include RT 8 , RT 10 , RT 12 having 8 , 10 , 12 , or 14 silicon. RT 14 and the like are known. And as a manufacturing method thereof, phenyltrichlorosilane is hydrolyzed and then equilibrated with caustic potash (Non-patent Document 1). Phenylsilanetriol is obtained without any catalyst or in the presence of various basic catalysts. Methods are known such as a method of condensing and further heat-treating at about 100 ° C. or more to obtain phenyl polysilsesquioxane having a molecular weight distribution Mw / Mn of 2 or less and having many hydroxyl groups (Patent Document 1). . In addition, silsesquioxane resins having reactive organic functional groups on all silicon atoms can be prepared by hydrolysis in a polar solvent and recondensation in the presence of a basic catalyst in a nonpolar solvent. Many methods, such as a two-stage method (Patent Document 2), are known.
J. Am. Chem. Soc. 82, 6194-6195 (1960) JP-A-8-143578 JP 2004-143449 A

非特許文献1および特許文献1に記載の方法では、生成物中に多数の水酸基を有し、かご型構造のように分子構造が明確化されておらず不特定構造を有し、強度的にも弱いシルセスキオキサンが得られ、また収率も低い。特許文献2の方法では、2段階の工程を経る必要があり、2段目の再縮合では反応温度が100℃以上とすることが必要で、更にトルエン、ベンゼン、キシレンなどの有毒な非極性溶媒が用いられる欠点がある。   In the method described in Non-Patent Document 1 and Patent Document 1, the product has a large number of hydroxyl groups, has a molecular structure that is not clarified like a cage structure, has an unspecified structure, Weak silsesquioxane is obtained and the yield is low. In the method of Patent Document 2, it is necessary to go through a two-stage process, and in the second-stage recondensation, the reaction temperature needs to be 100 ° C. or higher, and a toxic nonpolar solvent such as toluene, benzene, xylene and the like. Has the disadvantage of being used.

本発明は、分子構造が明確となっている剛直なシロキサン骨格を有するかご型シルセスキオキサンを収率よく取得する方法を提供しようとするものである。   The present invention is intended to provide a method for obtaining a cage silsesquioxane having a rigid siloxane skeleton with a clear molecular structure in a high yield.

本発明は、上記課題を解決するため、一般式RSi(OR’)(式中、Rはアルキル基、置換基を有していてもよいアリール基、またはアルケニル基を表し、R’はHまたはアルキル基を表す)で表される3官能性シランまたはその縮合体を、水溶性溶媒中で、脂肪族アミンを触媒として用いて、反応させることからなる、ポリヘドラルシルセスキオキサンの製造方法を提供する。 In order to solve the above problems, the present invention provides a general formula RSi (OR ′) 3 (wherein R represents an alkyl group, an aryl group which may have a substituent, or an alkenyl group, and R ′ represents H Or a condensate thereof in a water-soluble solvent using an aliphatic amine as a catalyst, and a method for producing polyhedral silsesquioxane, which comprises reacting an aliphatic amine as a catalyst. I will provide a.

本発明の方法によれば、分子構造がはっきりとしたRT、RT10、RT12などのポリヘドラルシルセスキオキサンを収率よく得ることができる。また、3官能性シランの低次縮合体であるRTOH やランダム型もしくははしご型の縮合体であるRT樹脂を原料とした場合には、アミン触媒を用いた反応で分子構造の再配列が行われ、不定形の構造から剛直な骨格の上記かご型シルセスキオキサンの収量が大きくなる。 According to the method of the present invention, polyhedral silsesquioxanes such as RT 8 , RT 10 , RT 12 having a clear molecular structure can be obtained in high yield. When RT OH n , which is a low-order condensate of trifunctional silane, or RT resin, which is a random-type or ladder-type condensate, is used as a raw material, rearrangement of the molecular structure is caused by reaction using an amine catalyst. As a result, the yield of the cage silsesquioxane having a rigid skeleton is increased due to the amorphous structure.

本発明で用いる3官能性シランのケイ素に結合するRは、電子吸引性の有機基であるのが好ましく、具体的にはアルキル基、置換基を有していてもよいアリール基、またはアルケニル基であり、特にフェニル基、ビニル基などが挙げられる。また、R’は、水素原子またはアルキル基であり、具体例としてはメチル基およびエチル基が挙げられ、特にメチル基が好ましい。かかる3官能性シランの具体例としては、フェニルトリメトキシシラン、ビニルトリメトキシシランなどを挙げることができる。本発明では、また、それらの縮合物を用いることもできる。   R bonded to silicon in the trifunctional silane used in the present invention is preferably an electron-withdrawing organic group, specifically an alkyl group, an aryl group which may have a substituent, or an alkenyl group. In particular, a phenyl group, a vinyl group and the like can be mentioned. R 'is a hydrogen atom or an alkyl group, and specific examples thereof include a methyl group and an ethyl group, and a methyl group is particularly preferable. Specific examples of such trifunctional silanes include phenyltrimethoxysilane and vinyltrimethoxysilane. In the present invention, a condensate thereof can also be used.

溶媒としては、テトラヒドロフラン、1,4−ジオキサン、アルコール、ジエチルエーテル、アセトンなどの水溶性の溶媒が用いられる。また、これらの水溶性溶媒とこれによく混合するメチルエチルケトン、酢酸エチルなどとの混合溶媒を用いてもよい。これらの溶媒の使用量は、原料の3官能性シランの濃度が0.04〜0.4Mとなる範囲であるのが好ましい。   As the solvent, water-soluble solvents such as tetrahydrofuran, 1,4-dioxane, alcohol, diethyl ether and acetone are used. Further, a mixed solvent of these water-soluble solvents and methyl ethyl ketone, ethyl acetate or the like which is well mixed therewith may be used. The amount of these solvents used is preferably in the range where the concentration of the raw material trifunctional silane is 0.04 to 0.4M.

触媒としては脂肪族アミンが用いられる。具体的には、トリエチルアミン、ジエチルアミン、n−ブチルアミン、ブチルジアミン(1,4−ブタンジアミン)が特に好ましい。脂肪族アミンの触媒能は、使用する3官能性シランの置換基によってやや異なり、例えば、フェニル基を有するシランの場合にはジエチルアミンなどの第2級アミンが好ましい。このようなアミン触媒の使用量としては、反応系におけるアミン濃度を0.04M以上とするのが好ましい。0.04M未満の濃度では、触媒効果が十分に発揮されないことがある。 An aliphatic amine is used as the catalyst. Specifically, triethylamine, diethylamine, n-butylamine, and butyldiamine (1,4-butanediamine) are particularly preferable. The catalytic ability of the aliphatic amine is slightly different depending on the substituent of the trifunctional silane used. For example, in the case of a silane having a phenyl group, a secondary amine such as diethylamine is preferable. As the amount of such an amine catalyst used, the amine concentration in the reaction system is preferably 0.04M or more. If the concentration is less than 0.04M, the catalytic effect may not be sufficiently exhibited.

また、反応を遂行するに際しては、反応系に水を添加するのが好ましい。水の添加量としては、シラン原料を加水分解するに十分な量であるのが好ましく、原料シラン1モルに対して1.5モル以上、特に3〜6モルの範囲が好ましい。添加水量の上限には特別の制限はないが、前記の範囲を超えるとビニル置換基を持つシラン原料などの場合、反応生成物の分離取得が困難となり、シルセスキオキサンの取得収率が低下することがある。   In carrying out the reaction, it is preferable to add water to the reaction system. The amount of water added is preferably an amount sufficient to hydrolyze the silane raw material, and is preferably in the range of 1.5 mol or more, particularly 3 to 6 mol relative to 1 mol of the raw material silane. The upper limit of the amount of water added is not particularly limited, but if it exceeds the above range, it will be difficult to separate and obtain reaction products in the case of silane raw materials with vinyl substituents, etc., and the acquisition yield of silsesquioxane will be reduced. There are things to do.

出発原料としてトリヒドロキシシランもしくはその低次縮合物を用いた場合、またはランダム型もしくははしご型のRT樹脂を用いた場合には、既に加水分解がほぼ完了しているので、あらためて水を加えなくてもよいし、あるいは僅かに加えるだけでもよい。   When trihydroxysilane or a low-order condensate thereof is used as a starting material, or when a random type or ladder type RT resin is used, hydrolysis has already been completed, so there is no need to add water again. Or just a slight addition.

反応時間は、温度にも依存するが、5〜200時間が好ましい。反応温度は35〜100℃の範囲が好ましいが、温度制御が容易であるなどの点から、溶媒を還流させながら行うことが好ましく、従って溶媒沸点がこの範囲にあるものを用いることが好ましい。例えば、アセトンを溶媒として用いた場合には、その沸点温度である約55℃で、還流下に、30〜200時間反応させることが好ましい。室温で反応させた場合でも反応は進行するが、反応生成物が溶媒から析出し始めるのに10日以上も必要とするので、室温よりも多少は昇温した温度で反応を行うことが好ましい。   Although reaction time is dependent also on temperature, 5-200 hours are preferable. The reaction temperature is preferably in the range of 35 to 100 ° C., but from the viewpoint of easy temperature control, it is preferable to carry out the reaction while refluxing the solvent. Therefore, it is preferable to use a solvent having a boiling point in this range. For example, when acetone is used as a solvent, the reaction is preferably performed at a boiling temperature of about 55 ° C. for 30 to 200 hours under reflux. Although the reaction proceeds even when the reaction is performed at room temperature, it takes 10 days or longer for the reaction product to start to precipitate from the solvent, and therefore, the reaction is preferably performed at a temperature slightly higher than the room temperature.

反応系からの生成物の取得は、反応液を冷却し、結晶析出させ、濾別して行う。あるいは、溶媒および触媒を減圧留去して、個体状物として取得する。このときの取得物は、T、T10などの混合物であり、これを更に分別するには、例えば、フェニル置換含有の場合は再結晶法により行うことができる。また、ビニル置換基含有の場合は、HPLC法やGPC法を用いて分離することができる。 Acquisition of the product from the reaction system is carried out by cooling the reaction solution, precipitating crystals, and separating by filtration. Or a solvent and a catalyst are depressurizingly distilled and it acquires as a solid substance. The obtained product at this time is a mixture of T 8 , T 10, and the like. For further fractionation, for example, in the case of containing phenyl substitution, it can be performed by a recrystallization method. In the case of containing a vinyl substituent, it can be separated by HPLC method or GPC method.

本発明の方法により得られるポリヘドラルシルセスキオキサンとしては、例えば、下記の構造を有するものを挙げることができるが、もちろんこれらのみに限定されるものではない。   Examples of the polyhedral silsesquioxane obtained by the method of the present invention include, but are not limited to, those having the following structures.

Figure 0005273941
また、本発明の方法における反応の一例としては、下記の反応を挙げることができる。
Figure 0005273941
Moreover, the following reaction can be mentioned as an example of reaction in the method of this invention.

Figure 0005273941
Figure 0005273941

以下に実施例を用いて本発明をさらに説明するが、本発明はこれらの実施例により何らの限定もされるものではない。   The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

実施例1
還流器を備えた反応容器に、溶媒としてアセトン50mlとフェニルトリメトキシシラン(Aldrich製)1.87ml、水1.08ml、ジエチルアミン(和光純薬工業製)0.517mlを入れて加熱し、アセトンの還流温度(55℃)で2日間加水分解縮合反応を行った。反応の結果白色沈殿が生成し、これを濾別することにより、白色粉末0.824gを、回収率65.9%で得た。
この白色粉末のHおよび13C−NMRを測定したところPhT(収率36.7%)に対応する1対のフェニル基シグナルとPhT12(収率29.2%)に対応する強度比1:2の2対のフェニル基シグナルの混合したシグナルを示し、MALDI TOF−MSからはPhTとPhT12の2種のオリゴシルセスキオキサン種のみが検出された。また、これらはCHClからの再結晶により分離することが可能であり、それぞれの結晶の単結晶X線構造解析を行った結果、下記の構造であることが確認された。
Example 1
In a reaction vessel equipped with a reflux condenser, 50 ml of acetone, 1.87 ml of phenyltrimethoxysilane (manufactured by Aldrich), 1.08 ml of water, and 0.517 ml of diethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) are placed as a solvent and heated. The hydrolysis condensation reaction was performed at reflux temperature (55 ° C.) for 2 days. As a result of the reaction, a white precipitate was formed, and this was filtered off to obtain 0.824 g of a white powder at a recovery rate of 65.9%.
As a result of measuring 1 H and 13 C-NMR of this white powder, a pair of phenyl group signals corresponding to PhT 8 (yield 36.7%) and an intensity ratio corresponding to PhT 12 (yield 29.2%) A mixed signal of two pairs of phenyl group signals of 1: 2 was shown, and only two oligosilsesquioxane species, PhT 8 and PhT 12 , were detected from MALDI TOF-MS. Further, these can be separated by recrystallization from CH 2 Cl 2 , and as a result of single crystal X-ray structural analysis of each crystal, it was confirmed that the following structures were obtained.

PhT
H−NMR(500MHz、CDCl
7.78(dd、2H;o−CH)、7.47(t、1H;p−CH)、7.39(t、2H;m−CH)
29Si−NMR(100MHz、CDCl
−78.3(PhSiO3/2
MALDI TOF−MS(2,5−dihydroxybenzoic acid、CHCl
[M+Na]:(found)1055.1;(calc.)1055.0
PhT 8
1 H-NMR (500 MHz, CD 2 Cl 2 )
7.78 (dd, 2H; o-CH), 7.47 (t, 1H; p-CH), 7.39 (t, 2H; m-CH)
29 Si-NMR (100 MHz, CD 2 Cl 2 )
-78.3 (PhSiO 3/2 )
MALDI TOF-MS (2,5-dihydroxybenzoic acid, CH 2 Cl 2 )
[M + Na + ]: (found) 1055.1; (calc.) 1055.0

PhT12
H−NMR(500MHz、CDCl
7.63(dd、2H;o−CH)、7.49(dd、4H;o−CH)、7.39(t、1H;p−CH)、7.32(t、2H;p−CH)、7.27(t、2H;m−CH)、7.16(t、4H;m−CH)
MALDI TOF−MS(2,5−dihydroxybenzoic acid、CHCl
[M+Na]:(found)1571.1;(calc.)1571.0
PhT 12
1 H-NMR (500 MHz, CD 2 Cl 2 )
7.63 (dd, 2H; o-CH), 7.49 (dd, 4H; o-CH), 7.39 (t, 1H; p-CH), 7.32 (t, 2H; p-CH) ), 7.27 (t, 2H; m-CH), 7.16 (t, 4H; m-CH)
MALDI TOF-MS (2,5-dihydroxybenzoic acid, CH 2 Cl 2 )
[M + Na + ]: (found) 1571.1; (calc.) 1571.0

実施例2
実施例1の操作を繰り返し、ただし反応時間を3日間として加水分解縮合反応を行った。反応の結果白色沈殿が生成し、これを濾別することにより、白色粉末1.05gを、回収率76.6%で得た。
この白色粉末のHおよび13C−NMRを測定したところPhT(収率42.7%)に対応する1対のフェニル基シグナルとPhT12(収率33.9%)に対応する強度比1:2の2対のフェニル基シグナルの混合したシグナルを示し、MALDI TOF−MSからはPhTとPhT12の2種のオリゴシルセスキオキサン種のみが検出された。また、これらはCHClからの再結晶により分離することが可能であり、それぞれの結晶の単結晶X線構造解析を行った結果、上記の構造であることが確認された。
Example 2
The operation of Example 1 was repeated except that the hydrolysis condensation reaction was carried out with a reaction time of 3 days. As a result of the reaction, a white precipitate was formed, which was filtered off to obtain 1.05 g of a white powder with a recovery rate of 76.6%.
As a result of measuring 1 H and 13 C-NMR of this white powder, an intensity ratio corresponding to a pair of phenyl group signals corresponding to PhT 8 (yield 42.7%) and PhT 12 (yield 33.9%) A mixed signal of two pairs of phenyl group signals of 1: 2 was shown, and only two oligosilsesquioxane species, PhT 8 and PhT 12 , were detected from MALDI TOF-MS. Moreover, these can be separated by recrystallization from CH 2 Cl 2 , and as a result of single crystal X-ray structural analysis of each crystal, it was confirmed that the above structure was obtained.

実施例3
還流器を備えた反応容器に、溶媒としてアセトン50mlとビニルトリメトキシシラン(Aldrich製)1.53ml、水0.252ml、ジエチルアミン(和光純薬工業製)0.517mlを入れて加熱し、アセトンの還流温度(55℃)で2日間加水分解縮合反応を行った。反応終了後溶媒とジエチルアミンなどの低沸分を減圧留去することにより、種々の有機溶媒に可溶な無色粘性固体0.7412gを、回収率93.8%で得た。
Example 3
In a reaction vessel equipped with a reflux condenser, 50 ml of acetone, 1.53 ml of vinyltrimethoxysilane (manufactured by Aldrich), 0.252 ml of water, and 0.517 ml of diethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) were placed and heated as a solvent. The hydrolysis condensation reaction was performed at reflux temperature (55 ° C.) for 2 days. After completion of the reaction, the solvent and low-boiling components such as diethylamine were distilled off under reduced pressure to obtain 0.7412 g of a colorless viscous solid soluble in various organic solvents at a recovery rate of 93.8%.

この粘性固体をGPCにより分離を行った結果、ランダム縮合物(収率11.8%)、高次カゴ状生成物Tn(n=20〜38の偶数)(収率21.5%)、カゴ状オリゴシルセスキオキサンT10(収率29.0%)とT12(収率31.6%)が得られた。それらは、MALDI TOF−MSから、それぞれ高次カゴ状生成物ViTn(n=20〜38の偶数)m/z1602〜3024(M+Na)とViT10、ViT12が検出されたことにより確認された。また、13C−NMRを測定したところViT10では1対、ViT12では1:2の強度の2対のビニル基シグナルが観測されたことから、下記の構造が確認された。 As a result of separation of this viscous solid by GPC, random condensate (yield 11.8%), higher-order cage product Tn (n = even number of 20 to 38) (yield 21.5%), basket The resulting oligosilsesquioxanes T 10 (yield 29.0%) and T 12 (yield 31.6%) were obtained. They were confirmed by the detection of higher order cage products ViTn (n = even number of 20-38) m / z 1602-3024 (M + Na + ), ViT 10 and ViT 12 from MALDI TOF-MS, respectively. . Further, when 13 C-NMR was measured, one pair was observed for ViT 10 and two pairs of vinyl signals having an intensity of 1: 2 were observed for ViT 12 , and the following structure was confirmed.

ViT10
H−NMR(500MHz、CDCl
5.88−6.10(m、CH=CH
13C−NMR(125MHz、CDCl
136.63(s、CH)、129.30(s、CH
29Si−NMR(100MHz、CDCl
−81.40(ViSiO3/2
MALDI TOF−MS(2,5−dihydroxybenzoic acid、CHCl
[M+Na]:(found)813.0;(calc.)812.9
ViT 10
1 H-NMR (500 MHz, CDCl 3 )
5.88-6.10 (m, CH = CH 2 )
13 C-NMR (125 MHz, CDCl 3 )
136.63 (s, CH), 129.30 (s, CH 2 )
29 Si-NMR (100 MHz, CDCl 3 )
-81.40 (ViSiO 3/2 )
MALDI TOF-MS (2,5-dihydroxybenzoic acid, CH 2 Cl 2 )
[M + Na + ]: (found) 813.0; (calc.) 812.9

ViT12
H−NMR(500MHz、CDCl
5.86−6.10(m、CH=CH
13C−NMR(125MHz、CDCl
136.41(s、CH)、136.09(s、CH)、130.13(s、CH)、129.64(s、CH
29Si−NMR(100MHz、CDCl
−80.24(ViSiO3/2)、−83.26(ViSiO3/2
MALDI TOF−MS(2,5−dihydroxybenzoic acid、CHCl
[M+Na]:(found)970.9;(calc.)970.9
ViT 12
1 H-NMR (500 MHz, CDCl 3 )
5.86-6.10 (m, CH = CH 2 )
13 C-NMR (125 MHz, CDCl 3 )
136.41 (s, CH), 136.09 (s, CH), 130.13 (s, CH 2 ), 129.64 (s, CH 2 )
29 Si-NMR (100 MHz, CDCl 3 )
−80.24 (ViSiO 3/2 ), −83.26 (ViSiO 3/2 )
MALDI TOF-MS (2,5-dihydroxybenzoic acid, CH 2 Cl 2 )
[M + Na + ]: (found) 970.9; (calc.) 970.9

本発明により収率よく得られたかご型ポリヘドラルシルセスキオキサンは、熱可塑性樹脂の耐熱性その他の改質剤、層間絶縁膜、封止材料、難燃剤、塗料添加剤、液晶分子コアー、有機無機ハイブリッドポリマーなどの多方面の用途に利用可能である。   The cage-type polyhedral silsesquioxane obtained in a good yield according to the present invention is a thermoplastic resin heat resistance and other modifiers, interlayer insulating film, sealing material, flame retardant, paint additive, liquid crystal molecular core, It can be used for various applications such as organic-inorganic hybrid polymers.

Claims (4)

一般式RSi(OR’)(式中、Rはアルキル基、置換基を有していてもよいアリール基、またはアルケニル基を表し、R’はHまたはアルキル基を表す)で表される3官能性シランまたはその縮合体を、水溶性溶媒中で、ブチルアミン、ジエチルアミン、トリエチルアミンおよび1,4−ブタンジアミンから選ばれる少なくとも1種の脂肪族アミンを触媒として用いて、反応させることからなり、Siの数が8より大きい成分を分離可能な量で含有し、Siの数が8、10、12、14もしくは20〜38の間の偶数の数であるポリヘドラルシルセスキオキサン混合体の製造方法。 3 represented by the general formula RSi (OR ′) 3 (wherein R represents an alkyl group, an aryl group which may have a substituent, or an alkenyl group, and R ′ represents H or an alkyl group). A functional silane or a condensate thereof is reacted in an aqueous solvent using at least one aliphatic amine selected from butylamine, diethylamine, triethylamine and 1,4-butanediamine as a catalyst; A method for producing a polyhedral silsesquioxane mixture containing separable amounts of components having a number of greater than 8 and an even number between 8 , 10, 12, 14 or 20 to 38 of Si . 3官能性シランがフェニルトリヒドロキシシラン、その低次縮合体、またはフェニルトリメトキシシランであり、脂肪族アミンがブチルアミン、ジエチルアミン、トリエチルアミンおよび1,4−ブタンジアミンから選ばれる少なくとも1種であり、生成物がSi数が8のフェニル基を有するポリヘドラルシルセスキオキサンとSi数が12のフェニル基を有するポリヘドラルシルセスキオキサンとが分離可能な量で含有されている混合体である、請求項1に記載の方法。   The trifunctional silane is phenyltrihydroxysilane, a low-order condensate thereof, or phenyltrimethoxysilane, and the aliphatic amine is at least one selected from butylamine, diethylamine, triethylamine, and 1,4-butanediamine. The product is a mixture containing separable amounts of polyhedral silsesquioxane having a phenyl group having 8 Si and polyhedral silsesquioxane having a phenyl group having 12 Si. Item 2. The method according to Item 1. 3官能性シランがビニルトリメトキシキシシランであり、脂肪族アミンがブチルアミン、ジエチルアミン、トリエチルアミンおよび1,4−ブタンジアミンから選ばれる少なくとも1種であり、生成物がSi数10のビニル基を有するポリヘドラルシルセスキオキサンと、Si数12のビニル基を有するポリヘドラルシルセスキオキサンと、およびSi数20〜38の偶数の数である高次かご状シルセスキオキサンとの混合体である、請求項1に記載の方法。   The trifunctional silane is vinyltrimethoxyxysilane, the aliphatic amine is at least one selected from butylamine, diethylamine, triethylamine and 1,4-butanediamine, and the product is a poly having a vinyl group with a Si number of 10. It is a mixture of a helical silsesquioxane, a polyhedral silsesquioxane having a Si group of 12 vinyl groups, and a higher-order cage silsesquioxane having an even number of Si numbers of 20 to 38, The method of claim 1. 3官能性シランがビニルトリメトキシキシシランであり、脂肪族アミンがジエチルアミンであり、生成物が、Si数10のビニル基を有するポリヘドラルシルセスキオキサン(29%)、およびSi数12のビニル基を有するポリヘドラルシルセスキオキサン(31.6%)、およびSi数20〜38の偶数の数である高次かご状シルセスキオキサン(21.5%)を含む混合体である請求項1または3に記載の方法。 The trifunctional silane is vinyltrimethoxyxysilane, the aliphatic amine is diethylamine, and the product is polyhedral silsesquioxane (29%) having a vinyl group with Si number of 10 and vinyl with Si number of 12. polyhedral silsesquioxane (31.6%), and higher order cage silsesquioxane is a even number of Si number 20-38 oxane a mixture of claim containing (21.5%) having a group 4. The method according to 1 or 3.
JP2007113698A 2007-04-24 2007-04-24 Process for producing polyhedral silsesquioxane Active JP5273941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113698A JP5273941B2 (en) 2007-04-24 2007-04-24 Process for producing polyhedral silsesquioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113698A JP5273941B2 (en) 2007-04-24 2007-04-24 Process for producing polyhedral silsesquioxane

Publications (2)

Publication Number Publication Date
JP2008266248A JP2008266248A (en) 2008-11-06
JP5273941B2 true JP5273941B2 (en) 2013-08-28

Family

ID=40046251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113698A Active JP5273941B2 (en) 2007-04-24 2007-04-24 Process for producing polyhedral silsesquioxane

Country Status (1)

Country Link
JP (1) JP5273941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045669A1 (en) * 2009-10-14 2011-04-21 Wacker Chemie Ag Process for the preparation of organooligosilsesquioxanes
CN113354817B (en) * 2021-06-10 2023-10-03 山东硅科新材料有限公司 Method for preparing double-cage POSS (polyhedral oligomeric silsesquioxanes) by solvothermal method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377940A (en) * 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JP4397980B2 (en) * 1997-09-10 2010-01-13 宇部日東化成株式会社 Method for producing polyorganosiloxane fine particles
CA2513002A1 (en) * 2003-01-09 2004-07-29 Degussa Ag Oligomer silasesquioxanes, method for the production thereof, and use of the same
JP2004262981A (en) * 2003-02-27 2004-09-24 Ube Nitto Kasei Co Ltd Preparation process for polyorganosiloxane particle and preparation process for silica particle
JP2007015991A (en) * 2005-07-08 2007-01-25 Tokyo Univ Of Science Method for producing basket-formed silsesquioxane

Also Published As

Publication number Publication date
JP2008266248A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
EP1208105B1 (en) Process for the formation of polyhedral oligomeric silsesquioxanes
US6972312B1 (en) Process for the formation of polyhedral oligomeric silsesquioxanes
JP4256756B2 (en) Method for producing cage-type silsesquioxane resin having functional group
US20060041098A1 (en) Synthesis and characterization of novel cyclosiloxanes and their self- and co-condensation with silanol-terminated polydimethylsiloxane
JP2009263596A (en) Incompletely condensed oligosilsesquioxane and its production method
JP2009167325A (en) Curable cage-type silsesquioxane compound containing silanol group, copolymer using the same and method for producing them
JP2007015991A (en) Method for producing basket-formed silsesquioxane
JP5273941B2 (en) Process for producing polyhedral silsesquioxane
KR101570512B1 (en) Synthesis of fluorocarbofunctional silsesquioxanes
JP2009263316A (en) Method for producing incompletely condensed oligosilsesquioxane
JP2011098939A (en) Completely condensed oligosilsesquioxane and method for producing the same
JPWO2006009123A1 (en) Polycarbosilane and method for producing the same
JP2009155287A (en) Cage-type siloxane compound containing alkoxy group, cage-type siloxane compound containing silanol group and production methods thereof
US7402648B2 (en) Method for producing cyclic organic silicon compound and organic silicon resin having alcoholic hydroxyl group
JP6944141B2 (en) Isocyanuric acid derivative having an alkoxyalkyl group and its production method
JP2010013653A (en) Organic silicon resin having alcoholic hydroxy group and its manufacturing method
JP6842621B2 (en) Method for producing silsesquioxane having a reactive substituent
KR20080087741A (en) Novel silicon compound, material thereof and method for producing the same
JP2007031327A (en) Perfluoroalkyl silsesquioxane derivative having silanol group and method for producing the same
RU2563037C1 (en) Method of producing polyorganosiloxanes based on organoalkoxysilanes
WO2017065311A1 (en) Cage-type silsesquioxane having four each different substituents facing each other
JP4276805B2 (en) Novel silazane compound and method for producing the same, and novel silazane compound polymer and method for producing the same
JP4891536B2 (en) Method for producing aminoaryl group-containing organosilicon compound, and method for producing an intermediate thereof
RU2456307C1 (en) Method of producing linear polymethylphenylsiloxane with terminal hydroxyl groups via polycondensation of methylphenyldialkoxysilane in active medium
CN115612105A (en) Increasing the molecular weight of low molecular weight alpha, omega-polysiloxane diols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250