JP5273563B2 - Tool position measuring method and apparatus - Google Patents

Tool position measuring method and apparatus Download PDF

Info

Publication number
JP5273563B2
JP5273563B2 JP2009291197A JP2009291197A JP5273563B2 JP 5273563 B2 JP5273563 B2 JP 5273563B2 JP 2009291197 A JP2009291197 A JP 2009291197A JP 2009291197 A JP2009291197 A JP 2009291197A JP 5273563 B2 JP5273563 B2 JP 5273563B2
Authority
JP
Japan
Prior art keywords
axis
integral value
axis direction
tool
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009291197A
Other languages
Japanese (ja)
Other versions
JP2011131297A (en
Inventor
俊 野村
和秀 神谷
幸男 前田
伸哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2009291197A priority Critical patent/JP5273563B2/en
Publication of JP2011131297A publication Critical patent/JP2011131297A/en
Application granted granted Critical
Publication of JP5273563B2 publication Critical patent/JP5273563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring a tool position, measuring a three-dimensional position of a blade edge of a rotary tool without contact, having a high repetitive accuracy, and reduced in an error of measurement caused by the difference between the blade edge shapes of the tools. <P>SOLUTION: The method has a rotary blade edge image-capturing step S11 capturing the image of the rotary blade edge obtained by viewing the blade edge 12a of the rotating rotary tool 12 from z-axis direction. Brightness distributions on x-axis and y-axis are found from the rotary blade edge image, assuming the position of a temporary rotation axis, which is an approximate position of the rotation axis &alpha;, to be the original point. X-integrated values each obtained by integrating the differences between the brightnesses in positions the same distance away in the x-axis direction from the x-reversing positions, which are a plurality of positions in the x-axis direction at the original point and its neighborhood, in the predetermined range along the x-axis direction, are calculated for every x-reversing position. Similarly, y-integrated values each obtained by integrating the differences between the brightnesses at positions the same distance away in the y-axis direction, are calculated for every y-reversing position. The coordinates determined by x-integrated value difference minimum position and y-integrated value difference minimum position where the x-integrated value and the y-integrated value are the smallest are taken to be the position of the rotation axis. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、いわゆるマイクロエンドミル等の微小な回転工具の位置を非接触で検出する工具位置測定方法と装置に関する。   The present invention relates to a tool position measuring method and apparatus for detecting the position of a minute rotating tool such as a so-called micro end mill in a non-contact manner.

従来、マイクロレンズアレイなどの光学部品の金型や、マイクロ流体機械の切削加工には、直径φ=0.01mm〜0.2mm程度のマイクロエンドミル等の微小な回転工具を用いることが多い。このような回転工具を使用する際、高精度な加工を行うために、回転工具の位置を正確に測定又は認識しなければならない。   Conventionally, a micro rotating tool such as a micro end mill having a diameter of about 0.01 mm to 0.2 mm is often used for a mold of an optical component such as a micro lens array or a cutting process of a micro fluid machine. When using such a rotary tool, the position of the rotary tool must be accurately measured or recognized in order to perform highly accurate machining.

切削加工用工具の位置の検出には種々の方法があり、例えば、特許文献1に開示されているように、工具に接触する摺動体を設けて、工具への接触を電気的に検知して工具位置の検出を行う工具位置検出装置がある。また、特許文献2に開示されているように透過型レーザ測定装置と電気マイクロメータ、及び顕微鏡等を用いて工具の測定を行う装置がある。その他、特許文献3に開示されているように、CCDカメラにより工具先端を撮像して、工具の位置合わせを行う方法もある。   There are various methods for detecting the position of the cutting tool. For example, as disclosed in Patent Document 1, a sliding body that contacts the tool is provided to electrically detect contact with the tool. There is a tool position detection device that detects a tool position. In addition, as disclosed in Patent Document 2, there is an apparatus for measuring a tool using a transmission laser measurement device, an electric micrometer, a microscope, and the like. In addition, as disclosed in Patent Document 3, there is also a method of aligning the tool by imaging the tip of the tool with a CCD camera.

特開2006−75908号公報JP 2006-75908 A 特開平6−109440号公報JP-A-6-109440 特開2006−142412号公報JP 2006-1442412 A

特許文献1に開示されている接触式の工具位置検出装置の場合、現実的には被削材に対して0.3N程度の測定力が加わり、極小径の回転工具の場合、切れ刃を破損することがしばしばある。また、特許文献2に開示されたような非接触式の工具位置測定装置の場合、回転工具の刃先形状の違いによる測定誤差が生じやすいという問題があった。また、上述した光学部品の金型などの微細加工では、回転工具の刃先位置を、X,Y,Z軸の3方向について高精度に検出することが不可欠であるが、特許文献1〜3の何れの装置も、3方向の位置を精度良く測定する、というものではなかった。   In the case of the contact-type tool position detection device disclosed in Patent Document 1, a measuring force of about 0.3 N is actually applied to the work material, and in the case of a rotating tool with a very small diameter, the cutting edge is broken. Often there is to do. Further, in the case of the non-contact type tool position measuring device as disclosed in Patent Document 2, there is a problem that a measurement error due to the difference in the shape of the cutting edge of the rotary tool is likely to occur. Further, in the fine processing such as the mold of the optical component described above, it is indispensable to detect the cutting edge position of the rotary tool with high accuracy in the three directions of the X, Y, and Z axes. None of these devices accurately measure positions in three directions.

この発明は、上記背景技術に鑑みて成されたもので、微小な回転工具の刃先の位置を非接触で測定することができ、繰り返し精度が高く、工具刃先形状の違いによる測定誤差が小さい工具位置測定方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned background art, and can measure the position of the edge of a minute rotary tool in a non-contact manner, has high repetition accuracy, and has a small measurement error due to the difference in the shape of the tool edge. An object is to provide a position measuring method and apparatus.

この発明は、互いに直交するXYZ三次元座標系のZ軸と平行な回転軸を有する切削加工用の回転工具の位置を非接触で測定する工具位置測定方法であって、回転する前記回転工具の刃先にZ軸方向の光を照射し、その反射光により前記刃先をZ軸方向から見た回転刃先画像を撮像する回転刃先撮像工程と、前記回転刃先画像から、前記回転軸が位置すると推定される仮回転軸位置を原点とするX軸上及びY軸上の各輝度分布を求め、前記原点及びその近傍のX軸方向の複数の位置であるX反転位置から、X軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でX軸方向に積分したX積分値を、前記X反転位置ごとに算出すると共に、前記原点及びその近傍のY軸方向の複数の位置であるY反転位置から、Y軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でY軸方向に積分したY積分値を、前記Y反転位置ごとに算出する輝度差積分値算出工程と、前記X反転位置ごとに算出した前記X積分値を比較して、前記X積分値が最も小さくなる前記X反転位置であるX積分値差最小位置を抽出すると共に、前記Y反転位置ごとに算出した前記Y積分値を比較して、前記Y積分値が最も小さくなる前記Y反転位置であるY積分値差最小位置を抽出し、抽出した前記X積分値差最小位置及び前記Y積分値差最小位置で定まるXY座標を、前記回転工具の回転軸位置として認識する回転軸位置認識工程とを備えた工具位置測定方法である。   The present invention is a tool position measuring method for measuring the position of a rotary tool for cutting having a rotation axis parallel to the Z axis of an XYZ three-dimensional coordinate system orthogonal to each other in a non-contact manner. It is estimated that the rotary shaft is located from a rotary blade tip imaging step of irradiating the blade tip with light in the Z-axis direction and capturing a rotary blade tip image of the blade tip viewed from the Z-axis direction by reflected light, and the rotary blade tip image. Luminance distributions on the X-axis and the Y-axis with the temporary rotation axis position as the origin as the origin, and the same distance in the X-axis direction from the X inversion positions, which are a plurality of positions in the X-axis direction near the origin and the vicinity. An X integral value obtained by integrating the difference in luminance between the distant positions in the X axis direction within a predetermined range is calculated for each X inversion position, and Y inversion that is a plurality of positions in the Y axis direction near the origin. The same distance from the position in the Y-axis direction A luminance difference integral value calculating step of calculating, for each Y inversion position, a Y integral value obtained by integrating the luminance difference between the determined positions in the Y-axis direction within a predetermined range, and the X integration calculated for each X inversion position. The X integration value difference minimum position, which is the X inversion position where the X integration value is the smallest, is extracted, and the Y integration value calculated for each Y inversion position is compared, and the Y integration value is compared. The minimum Y integrated value difference position, which is the Y reversal position where the integral value is the smallest, is extracted, and the XY coordinates determined by the extracted minimum X integrated value difference position and the minimum Y integrated value difference position are rotated by the rotary tool. It is a tool position measuring method provided with the rotation axis position recognition process recognized as an axis position.

前記輝度差積分値算出工程は、前記X反転位置を設定し、X反転位置ごとに、当該X軸上の輝度分布と、その輝度分布を前記X反転位置で反転させた反転輝度分布とを比較し、当該X反転位置から同一距離だけ離れた位置同士の輝度の差分をX軸方向に所定距離だけ積分したX積分値を算出すると共に、前記Y反転位置を設定し、Y反転位置ごとに、当該Y軸上の輝度分布と、その輝度分布を前記Y反転位置で反転させた反転輝度分布とを比較し、当該Y反転位置から同一距離だけ離れた位置同士の輝度の差分をY軸方向に所定距離だけ積分したY積分値を算出するものである。   The luminance difference integral value calculation step sets the X inversion position, and compares the luminance distribution on the X axis with the inverted luminance distribution obtained by inverting the luminance distribution at the X inversion position for each X inversion position. And calculating an X integral value obtained by integrating a luminance difference between positions separated by the same distance from the X inversion position by a predetermined distance in the X-axis direction, setting the Y inversion position, and for each Y inversion position, The luminance distribution on the Y axis is compared with the inverted luminance distribution obtained by inverting the luminance distribution at the Y inversion position, and the difference in luminance between positions separated by the same distance from the Y inversion position is indicated in the Y axis direction. A Y integral value obtained by integrating a predetermined distance is calculated.

さらに、前記輝度差積分値算出工程は、X積分値を算出するためのXの積分範囲、及びY積分値を算出するためのYの積分範囲を、前記回転工具の刃先の形状に応じて適宜調節することにより、前記回転軸位置の測定精度を調整することができるものである。   Further, in the luminance difference integral value calculating step, the X integration range for calculating the X integral value and the Y integration range for calculating the Y integral value are appropriately set according to the shape of the cutting edge of the rotary tool. By adjusting, the measurement accuracy of the rotational axis position can be adjusted.

また、前記回転刃先撮像工程の後、前記輝度差積分値算出工程の前に設けられる工程であって、前記回転刃先画像の最も輝度の高い位置を第一の仮回転軸位置として認識する第一の仮回転軸位置認識工程と、前記回転刃先画像から、前記第一の仮回転軸位置を原点とするX軸上及びY軸上の輝度分布を求め、当該X軸上の輝度分布を二分割するX位置であって、二分割された一方の側の輝度分布の平均値と他方の側の輝度の平均値とが等しくなるX均等分割位置を抽出すると共に、当該Y軸上の輝度分布を二分割するY位置であって、二分割された一方の側の輝度分布の平均値と他方の側の輝度の平均値とが等しくなるY均等分割位置を抽出し、抽出した前記X均等分割位置及び前記Y均等分割位置で定まる座標を第二の仮回転軸位置として認識する第二の仮回転軸位置認識工程とを備え、前記第二の仮回転軸位置認識工程で認識した前記第二の仮回転軸位置は、前記輝度差積分値算出工程における前記仮回転軸位置としても良い。   A first step of recognizing a position having the highest luminance of the rotary blade tip image as a first provisional rotary shaft position after the rotary blade tip imaging step and before the luminance difference integral value calculating step; From the preliminary rotational axis position recognition step and the rotary blade edge image, the luminance distribution on the X axis and the Y axis with the first temporary rotational axis position as the origin is obtained, and the luminance distribution on the X axis is divided into two X equal division positions where the average value of the luminance distribution on one side divided into two and the average value of the luminance on the other side are equal are extracted, and the luminance distribution on the Y axis is A Y-division position, which is a Y-position to be divided into two, where the average value of the luminance distribution on one side divided into two and the average value of the luminance on the other side is equal is extracted, and the extracted X-equal-division position And the coordinate determined by the Y equal division position as the second temporary rotation axis position A second temporary rotation shaft position recognition step, and the second temporary rotation shaft position recognized in the second temporary rotation shaft position recognition step is the temporary rotation shaft in the luminance difference integral value calculation step. It is good also as a position.

さらに、回転が停止した前記回転工具の刃先にZ軸方向の光を照射し、その反射光によりZ軸方向から見た停止刃先画像を、前記回転工具が前記回転軸上を移動するZ位置ごとに撮像する停止刃先撮像工程と、撮像した停止刃先画像ごとに、前記刃先の突端位置を通るXY平面内の所定軸線上の輝度分布に基づくコントラストを算出し、コントラストが最も大きくなるZ位置であるZコントラスト最大位置を前記刃先のZ方向の基準位置として認識するZ基準位置認識工程とを設けることができる。   Further, light in the Z-axis direction is irradiated on the cutting edge of the rotating tool whose rotation has stopped, and a stopped cutting edge image viewed from the Z-axis direction by the reflected light is displayed for each Z position where the rotating tool moves on the rotating axis. The Z position where the contrast is maximized by calculating the contrast based on the luminance distribution on the predetermined axis in the XY plane passing through the tip position of the cutting edge for each of the stopped cutting edge imaging step and the captured stop blade edge image. And a Z reference position recognition step of recognizing the maximum Z contrast position as a reference position of the cutting edge in the Z direction.

また、前記コントラスト算出工程では、輝度分布を求めるXY平面内の前記所定の軸線が、前記回転工具の刃表面に表れた研削条痕を横切る向きに設定されるものである。   Further, in the contrast calculation step, the predetermined axis in the XY plane for obtaining the luminance distribution is set in a direction crossing the grinding line appearing on the blade surface of the rotary tool.

またこの発明は、互いに直交するXYZ三次元座標系のZ軸と平行な回転軸を有する切削加工用の回転工具の位置を非接触で測定する工具位置測定装置であって、前記回転工具の刃先にZ軸方向の光を照射する光源を有し、その反射光により前記刃先をZ軸方向から見た刃先画像を撮像する撮像装置と、前記刃先画像をデータ分析する分析処理装置とを備え、前記分析処理装置は、前記回転刃先画像から、前記回転軸が位置すると推定される仮回転軸位置を原点とするX軸上及びY軸上の輝度分布を求め、前記原点及びその近傍のX軸方向の複数の位置であるX反転位置から、X軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でX軸方向に積分したX積分値を、前記X反転位置ごとに算出し、前記原点及びその近傍のY軸方向の複数の位置であるY反転位置から、Y軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でY軸方向に積分したY積分値を、前記Y反転位置ごとに算出し、
前記X反転位置ごとに算出した前記X積分値を比較して、前記X積分値が最も小さくなる前記X反転位置であるX積分値差最小位置を抽出すると共に、前記Y反転位置ごとに算出した前記Y積分値を比較して、前記Y積分値が最も小さくなる前記Y反転位置であるY積分値差最小位置を抽出し、抽出した前記X積分値差最小位置及び前記Y積分値差最小位置で定まるXY座標を、前記回転工具の回転軸位置とする工具位置測定装置である。
The present invention also provides a tool position measuring device for measuring the position of a rotary tool for cutting having a rotation axis parallel to the Z axis of an XYZ three-dimensional coordinate system orthogonal to each other, the tool tip of the rotary tool. A light source that irradiates light in the Z-axis direction, and includes an imaging device that captures a blade edge image of the blade edge viewed from the Z-axis direction by reflected light, and an analysis processing device that analyzes data of the blade edge image, The analysis processing apparatus obtains a luminance distribution on the X axis and the Y axis with the temporary rotation axis position estimated to be the position of the rotation axis as the origin from the rotary blade edge image, and the X axis near the origin and the vicinity thereof. X integral values obtained by integrating the luminance difference between positions separated by the same distance in the X axis direction from the X inversion positions, which are a plurality of positions in the direction, in the X axis direction within a predetermined range are calculated for each X inversion position. , Y-axis direction in the vicinity of the origin From Y reversing position is a plurality of positions, the Y integral value obtained by integrating the Y-axis direction at a predetermined range a difference between the luminance of a position between spaced apart by the same distance in the Y-axis direction, is calculated for each of the Y reversing position,
The X integral value calculated for each X reversal position is compared, and the X integral value difference minimum position, which is the X reversal position where the X integral value is the smallest, is extracted, and is calculated for each Y reversal position. The Y integral values are compared to extract the Y integral value difference minimum position, which is the Y inversion position where the Y integral value is the smallest, and the extracted X integral value difference minimum position and the Y integral value difference minimum position are extracted. Is a tool position measuring device in which an XY coordinate determined by is used as a rotational axis position of the rotary tool.

この発明の工具位置測定方法と装置は、マイクロエンドミル等の微小な回転工具の位置を、一方向から撮像した刃先画像データのみを分析して検出するので、測定装置の構成をシンプルにすることができる。また、非接触で、測定の繰り返し精度が高く、回転工具の刃先形状の違いによる測定誤差が生じにくいので、刃先の位置測定を高精度に行うことができ、これまで困難であったマイクロエンドミル等による微細加工が容易になる。   The tool position measuring method and apparatus of the present invention can detect the position of a minute rotary tool such as a micro end mill by analyzing only the blade edge image data imaged from one direction, thereby simplifying the configuration of the measuring apparatus. it can. Also, non-contact, high repeatability of measurement, and measurement errors due to differences in the shape of the cutting edge of a rotary tool are unlikely to occur, so the position of the cutting edge can be measured with high accuracy, such as a micro end mill that has been difficult until now Fine processing by is facilitated.

また、回転軸のXY方向の位置を検出するとき、まず、回転刃先画像から大まかな精度で第一の仮回転軸位置を認識し、その後、分析エリアを絞り込みながら、徐々に分析を厳密化して、第二の仮回転軸位置、回転軸位置を認識するという分析手順のため、回転軸位置の測定を高速に効率よく行うことができ、測定の全自動化も容易である。   Also, when detecting the position of the rotation axis in the XY direction, first, the first temporary rotation shaft position is recognized from the rotary blade image with rough accuracy, and then the analysis is gradually refined while narrowing down the analysis area. Because of the analysis procedure of recognizing the second temporary rotation axis position and the rotation axis position, the rotation axis position can be measured efficiently at high speed, and the measurement can be fully automated easily.

この発明の一実施形態の工具位置測定装置を示す全体構成図である。It is a whole lineblock diagram showing the tool position measuring device of one embodiment of this invention. 回転工具として用いられるボールエンドミル及びスクエアエンドミルの刃先を示す側面図(a),(b)である。It is a side view (a) and (b) which shows the edge of a ball end mill used as a rotary tool, and a square end mill. 図1の工具位置測定装置を用いて行う工具位置測定方法の実施形態を示すフローチャートである。It is a flowchart which shows embodiment of the tool position measuring method performed using the tool position measuring apparatus of FIG. この実施形態の工具位置測定方法で撮像したボールエンドミルの回転刃先画像(a)と、第一の仮回転軸位置を示す模式図(b)である。It is a schematic diagram (b) which shows the rotary blade tip image (a) of the ball end mill imaged with the tool position measuring method of this embodiment, and the 1st temporary rotation axis position. この実施形態の工具位置測定方法の第二の仮回転軸位置認識工程の内容を示すフロ−チャートである。It is a flowchart which shows the content of the 2nd temporary rotating shaft position recognition process of the tool position measuring method of this embodiment. この実施形態の工具位置測定方法における、第一の仮回転軸位置を原点とするX軸及びY軸上の輝度分布を示す図である。In the tool position measuring method of this embodiment, it is a figure which shows the luminance distribution on the X-axis and Y-axis which makes the origin the 1st temporary rotation axis position. この実施形態の工具位置測定方法における、X均等分割位置を説明する図(a)と、Y均等分割位置を説明する図(b)である。In the tool position measuring method of this embodiment, it is the figure (a) explaining the X equal division | segmentation position, and the figure (b) explaining the Y equal division | segmentation position. この実施形態の工具位置測定方法の輝度差積分値算出工程の内容を示すフローチャートである。It is a flowchart which shows the content of the brightness | luminance difference integral value calculation process of the tool position measuring method of this embodiment. この実施形態の工具位置測定方法における、第二の仮回転軸位置を原点とするX軸上の輝度分布を示す図(a)と反転輝度分布を示す図(b)である。In the tool position measuring method of this embodiment, it is the figure (a) which shows the luminance distribution on the X-axis which makes the origin the 2nd temporary rotating shaft position, and the figure (b) which shows inversion luminance distribution. この実施形態の工具位置測定方法における、X反転位置(X11,X12,X13)ごとのX積分値について説明する図(a),(b),(c)である。It is a figure (a), (b), and (c) explaining the X integral value for every X inversion position (X11, X12, X13) in the tool position measuring method of this embodiment. 図1の工具位置測定装置を用いて行う他の工具位置測定方法の実施形態を示すフローチャートである。It is a flowchart which shows embodiment of the other tool position measuring method performed using the tool position measuring apparatus of FIG. この実施形態の工具位置測定方法における、スクエアエンドミル及びスクエアエンドミルの停止刃先画像(a),(b)である。It is a stop edge image (a), (b) of a square end mill and a square end mill in the tool position measuring method of this embodiment. この実施形態の工具位置測定方法における、ボールエンドミルの刃先のZ位置とコントラストの変化を示すグラフである。It is a graph which shows the Z position of the blade end of a ball end mill, and the change of contrast in the tool position measuring method of this embodiment. この発明の工具位置測定方法の実施例1における、測定の繰り返し精度を示すグラフである。It is a graph which shows the repetition precision of a measurement in Example 1 of the tool position measuring method of this invention. この発明の工具位置測定方法の実施例2における、Z位置とコントラストの変化を示すグラフ(a),(b)である。It is graph (a), (b) which shows the change of Z position and contrast in Example 2 of the tool position measuring method of this invention. 実施例2における、測定の繰り返し精度を示す表である。10 is a table showing measurement repeatability in Example 2.

以下、この発明の工具位置測定装置の一実施形態について、図1、図2を用いて説明する。この実施形態の工具位置測定装置10は、加工機のチャック部に装着した回転工具12の回転中心である回転軸αの位置を測定する機能と、刃先12aの突端12bの回転軸α方向の基準位置を測定する機能を備えている。ここで、回転工具12の回転軸αは、互いに直交するXYZ三次元座標系の任意の方向であるZ軸と平行であり、Z軸と直交する例えば水平なXY平面に対して垂直に配置されているものとする。   Hereinafter, an embodiment of a tool position measuring apparatus according to the present invention will be described with reference to FIGS. 1 and 2. The tool position measuring device 10 of this embodiment has a function of measuring the position of the rotation axis α which is the rotation center of the rotary tool 12 mounted on the chuck portion of the processing machine, and a reference in the direction of the rotation axis α of the tip 12b of the blade edge 12a. It has a function to measure the position. Here, the rotation axis α of the rotary tool 12 is parallel to the Z axis, which is an arbitrary direction in the XYZ three-dimensional coordinate system orthogonal to each other, and is disposed perpendicular to, for example, a horizontal XY plane orthogonal to the Z axis. It shall be.

工具位置測定装置10は、図1に示すように、回転工具12の刃先12a側に配置された撮像装置14と、撮像装置14が撮像した画像データを分析する図示しない分析処理装置とを有している。撮像装置14は、光源、各種ミラー、各種レンズ及びカメラで構成され、光源16から光を放射し、その光をコリメートレンズ18を通して平行な光線にした後、ハーフミラー22によってZ軸方向に偏向し、対物レンズ20を通して回転工具12の刃先12aに照射する。そして、刃先12aからの反射光を、対物レンズ20、ハーフミラー22、結像レンズ24を通してミラー26によって偏向し、カメラ28で受光する。カメラ28は、刃先12aの反射光を受光して撮像するCCD等の撮像素子を内蔵しており、撮像した画像データを分析処理装置に向けて出力する。分析処理装置は、カメラ28の画像データを記憶手段に記憶し、カメラ28の画像データの分析を行うコンピュータである。   As shown in FIG. 1, the tool position measuring device 10 includes an imaging device 14 disposed on the blade edge 12a side of the rotary tool 12, and an analysis processing device (not shown) that analyzes image data captured by the imaging device 14. ing. The imaging device 14 includes a light source, various mirrors, various lenses, and a camera. The imaging device 14 radiates light from the light source 16, converts the light into parallel rays through the collimator lens 18, and then deflects the light in the Z-axis direction by the half mirror 22. Then, the blade 12 a of the rotary tool 12 is irradiated through the objective lens 20. Then, the reflected light from the blade edge 12 a is deflected by the mirror 26 through the objective lens 20, the half mirror 22 and the imaging lens 24, and received by the camera 28. The camera 28 has a built-in imaging element such as a CCD that receives and captures the reflected light of the blade edge 12a, and outputs the captured image data to the analysis processing apparatus. The analysis processing device is a computer that stores the image data of the camera 28 in a storage unit and analyzes the image data of the camera 28.

測定対象の回転工具12は、微小な刃先を有したマイクロエンドミルで、例えば、ボールエンドミル30やスクエアエンドミル32等ある。ボールエンドミル30は、図2(a)に示すように、側方から見て例えば半球状(R=0.05mm)の刃先30aを有し、突端30bが、刃先30aのほぼ中央にある。一方、スクエアエンドミル32は、図2(b)に示すように、例えば側方から見て僅かに円弧状に凹んだ刃先32a(φ=0.04mm)を有し、突端32bが、刃先32aの外周端にある。   The rotating tool 12 to be measured is a micro end mill having a minute cutting edge, such as a ball end mill 30 or a square end mill 32. As shown in FIG. 2A, the ball end mill 30 has, for example, a hemispherical (R = 0.05 mm) cutting edge 30a when viewed from the side, and the protruding end 30b is substantially at the center of the cutting edge 30a. On the other hand, as shown in FIG. 2B, the square end mill 32 has, for example, a cutting edge 32a (φ = 0.04 mm) slightly recessed in an arc shape when viewed from the side. At the outer edge.

次に、工具位置測定装置10によって行われる工具位置測定方法のうちXY平面上の位置測定について、図3〜図10を用いて説明する。この実施形態の工具位置測定方法は、加工機のチャック部に装着した回転工具12の回転中心である回転軸αの位置を測定する方法であり、5つの工程(S11〜S15)で構成されている。以下、図3のフローチャートに沿って各工程を説明する。   Next, position measurement on the XY plane in the tool position measurement method performed by the tool position measurement apparatus 10 will be described with reference to FIGS. The tool position measuring method of this embodiment is a method of measuring the position of the rotation axis α, which is the rotation center of the rotary tool 12 mounted on the chuck portion of the processing machine, and includes five steps (S11 to S15). Yes. Hereinafter, each process is demonstrated along the flowchart of FIG.

回転刃先撮像工程S11では、上述した撮像装置14を用いて、回転する回転工具12の刃先12aにZ軸方向の光を照明し、その反射光を受けて、刃先12aをZ方向から見た回転刃先画像を撮像する。このとき、回転工具12が回転している状態で撮像するため、回転刃先画像は、ほぼ回転対称な画像となる。例えば、回転工具12がボールエンドミル30の場合、回転刃先画像は、図4(a)のようになり、回転する刃先30aの様子が多重の円のように捉えられる。   In the rotary blade edge imaging step S11, the above-described imaging device 14 is used to illuminate the blade edge 12a of the rotating rotary tool 12 with light in the Z-axis direction, receive the reflected light, and rotate the blade edge 12a viewed from the Z direction. A blade edge image is taken. At this time, since the imaging is performed in a state where the rotary tool 12 is rotating, the rotary blade tip image is a substantially rotationally symmetric image. For example, when the rotary tool 12 is the ball end mill 30, the rotating blade edge image is as shown in FIG. 4A, and the state of the rotating blade edge 30a is captured as a multiple circle.

第一の仮回転軸位置認識工程S12では、回転刃先撮像工程S11で得られた回転刃先画像を分析し、回転軸αの概略位置を認識する。具体的には、回転刃先画像全体の輝度分布を求め、最も輝度の高い位置を抽出し、第一の仮回転軸位置P1として認識する。例えば図4(a)の回転刃先画像の場合、図4(b)のように第一の仮回転軸位置P1が認識される。図4(b)の例から分かるように、第一の仮回転軸位置P1は、回転軸αの位置からずれている場合が多いが、位置認識が簡単であるので高速に分析を行うことができる。   In the first temporary rotation axis position recognition step S12, the rotary blade edge image obtained in the rotary blade edge imaging step S11 is analyzed to recognize the approximate position of the rotation axis α. Specifically, the luminance distribution of the entire rotary blade edge image is obtained, the position with the highest luminance is extracted, and recognized as the first temporary rotation axis position P1. For example, in the case of the rotary blade edge image of FIG. 4A, the first temporary rotation shaft position P1 is recognized as shown in FIG. 4B. As can be seen from the example of FIG. 4B, the first temporary rotation shaft position P1 is often shifted from the position of the rotation shaft α. However, since position recognition is simple, analysis can be performed at high speed. it can.

第二の仮回転軸位置認識工程S13では、回転刃先撮像工程S11で得られた回転刃先画像を、第一の仮回転軸位置P1の近傍領域に絞ってさらに詳しく分析し、比較的高い精度で回転軸αの概略位置を認識する。以下、第二の仮回転軸位置認識工程S13の内容について、図5のフローチャートに沿って詳しく説明する。   In the second temporary rotation axis position recognition step S13, the rotary blade edge image obtained in the rotary blade edge imaging step S11 is analyzed in more detail by focusing on the vicinity of the first temporary rotation axis position P1, and with relatively high accuracy. Recognize the approximate position of the rotation axis α. Hereinafter, the contents of the second temporary rotation shaft position recognition step S13 will be described in detail along the flowchart of FIG.

まず、第一の仮回転軸位置P1を原点とするX軸及びY軸上の輝度分布を求める(ステップS131)。例えば、図4のボールエンドミル30の回転刃先画像の場合、図6に示すような2つの輝度分布が求まる。   First, the luminance distribution on the X axis and the Y axis with the first temporary rotation axis position P1 as the origin is obtained (step S131). For example, in the case of the rotating edge image of the ball end mill 30 in FIG. 4, two luminance distributions as shown in FIG. 6 are obtained.

次に、X軸上の輝度分布を二分割するX軸方向の位置であって、二分割された双方の輝度平均値(以下、二分割した中心軸に対して+側をAVE(+)−側をAVE(−)とする。)が互いに等しくなるX均等分割位置を抽出する(ステップS132)。ボールエンドミル30の場合、図7(a)に示すように、第一の仮回転位置P1のX位置とは異なるX均等分割位置のX1が抽出される。   Next, it is the position in the X-axis direction that divides the luminance distribution on the X-axis into two, and both of the two-divided luminance average values (hereinafter referred to as AVE (+) − X equal division positions where AVE (-) is equal to each other are extracted (step S132). In the case of the ball end mill 30, as shown in FIG. 7A, X1 at an X equally divided position different from the X position of the first temporary rotation position P1 is extracted.

同様に、Y軸上の輝度分布を二分割するY位置であって、二分割された双方の輝度平均値AVE(+)とAVE(−)とが互いに等しくなるY均等分割位置を抽出する(ステップS133)。ボールエンドミル30の場合、図7(b)に示すように、第一の仮回転位置P1のY位置とは異なるY均等分割位置のY1が抽出される。   Similarly, a Y position that divides the luminance distribution on the Y-axis into two, and a Y equal division position where the two average luminance values AVE (+) and AVE (−) are equal to each other is extracted ( Step S133). In the case of the ball end mill 30, as shown in FIG. 7B, Y1 at a Y equally divided position different from the Y position of the first temporary rotation position P1 is extracted.

次に、抽出したX均等分割位置X1とY均等分割位置Y1とで定まる座標を、第二の仮回転軸位置P2(X1,Y1)として認識する(ステップ134)。ボールエンドミル30の場合、X1とY1で定まる座標が第二の仮回転軸位置P2として認識される。   Next, the coordinates determined by the extracted X equal division position X1 and Y equal division position Y1 are recognized as the second temporary rotation axis position P2 (X1, Y1) (step 134). In the case of the ball end mill 30, a coordinate determined by X1 and Y1 is recognized as the second temporary rotation shaft position P2.

第二の仮回転軸位置認識工程S13(ステップS131〜S134)で抽出した第二の仮回転軸位置P2は、回転軸αの位置が、第一の仮回転軸位置P1よりも高い精度で認識される。図4に示す回転刃先画像が完全な回転対象であれば、第二の仮回転軸位置P2は回転軸αの位置と一致するが、現実には完全な回転対象にならないので、その分が測定の誤差となり、マイクロエンドミル等を用いた微細加工の用途に要求される高い精度は得られない。そこで、より高い精度で回転軸αの位置を認識するため、図3に示すように、輝度差積分値算出工程S14と回転軸位置認識工程S15が設けられている。以下、2つの工程S14,S15の内容について、図8のフローチャートに沿って詳しく説明する。   The second temporary rotation shaft position P2 extracted in the second temporary rotation shaft position recognition step S13 (steps S131 to S134) is recognized with higher accuracy in the position of the rotation shaft α than the first temporary rotation shaft position P1. Is done. If the rotary blade edge image shown in FIG. 4 is a complete rotation target, the second temporary rotation axis position P2 coincides with the position of the rotation axis α, but in reality it is not a complete rotation object, so that portion is measured. Therefore, the high accuracy required for micromachining applications using a micro end mill or the like cannot be obtained. Therefore, in order to recognize the position of the rotation axis α with higher accuracy, as shown in FIG. 3, a luminance difference integral value calculation step S14 and a rotation axis position recognition step S15 are provided. Hereinafter, the contents of the two steps S14 and S15 will be described in detail along the flowchart of FIG.

まず、第二の仮回転軸位置P2を原点とするX軸及びY軸上の輝度分布を求める(ステップS141)。ボールエンドミル30の場合、第一の仮回転軸位置P1を原点とした輝度分布(図6)と同様に、第二の仮回転軸位置P2を原点とするX軸上の輝度分布とY軸上の輝度分布が求まる。図9(a)は、X軸上の輝度分布である。   First, the luminance distribution on the X axis and the Y axis with the second temporary rotation axis position P2 as the origin is obtained (step S141). In the case of the ball end mill 30, the luminance distribution on the X axis and the Y axis with the second temporary rotation axis position P2 as the origin, similarly to the luminance distribution with the first temporary rotation axis position P1 as the origin (FIG. 6). Is obtained. FIG. 9A shows the luminance distribution on the X axis.

次に、第二の仮回転軸位置P2(X1,Y1)を境に輝度分布を分割し、分割した片方を仮想回転軸位置P2で反転させて、仮想回転軸を中心とした輝度の差分を計算する。先ず、X軸上の輝度分布に特定のX反転位置を定義し、X反転位置を中心に輝度分布のX軸上の目盛りの昇降を逆にした反転輝度分布を求める(ステップS142)。図9(a)に示すボールエンドミル30の輝度分布の場合、図9(b)のように、X軸を左右反対にしたような反転輝度分布が求まる。X反転位置は、第二の仮回転軸位置P2(X1,Y1)を基にして、その近傍にある所定のX範囲を細かく刻んで複数の位置が定義され、図9では、代表して3つのX反転位置のX11,X12,X13が示してある。   Next, the luminance distribution is divided at the second temporary rotation axis position P2 (X1, Y1) as a boundary, one of the divided portions is inverted at the virtual rotation axis position P2, and a difference in luminance around the virtual rotation axis is obtained. calculate. First, a specific X inversion position is defined in the luminance distribution on the X axis, and an inversion luminance distribution is obtained by reversing the elevation of the scale on the X axis of the luminance distribution around the X inversion position (step S142). In the case of the luminance distribution of the ball end mill 30 shown in FIG. 9A, an inverted luminance distribution in which the X axis is reversed left and right is obtained as shown in FIG. 9B. The X reversal position is defined based on the second provisional rotational axis position P2 (X1, Y1), and a plurality of positions are defined by finely dividing a predetermined X range in the vicinity thereof. Two X inversion positions X11, X12, and X13 are shown.

次に、X軸上の輝度分布と点P2または点P2近傍の特定のX反転位置に基づく反転輝度分布とを比較し、X反転位置から同一距離だけ離れた位置同士の輝度の差分を求め、その差分をX位置で積分したX積分値を算出する(ステップS143)。ボールエンドミル30の場合、例えば、X軸上の輝度分布とX11に基づく反転輝度分布とを比較する。図10(a)に示すように、2つの分布をX反転位置のX11を中心に重ね表示すると、2つの分布がさほど一致していない様子が見て取れる。この一致の度合いを数値化するため、X反転位置から同一距離だけ離れた位置同士の輝度の差分をとる。具体的には、撮像素子の各ピクセル単位で輝度の差を求める。さらに、X反転位置のX11を挟んで等距離の計算範囲であるCRS(Calculating Range of Symmetry)の範囲で、点X11からX軸上で例えばプラス方向に積分範囲を取って、上記差分を積分したX積分値を算出する。この実施例のX反転位置のX11では、2つの分布がさほど一致しておらず、X積分値は比較的大きな値になる。   Next, the luminance distribution on the X axis is compared with the inverted luminance distribution based on the specific X inversion position in the vicinity of the point P2 or the point P2, and the difference in luminance between positions separated by the same distance from the X inversion position is obtained. An X integral value obtained by integrating the difference at the X position is calculated (step S143). In the case of the ball end mill 30, for example, the luminance distribution on the X axis is compared with the inverted luminance distribution based on X11. As shown in FIG. 10A, when the two distributions are displayed with the X inversion position X11 as the center, it can be seen that the two distributions do not match much. In order to digitize the degree of coincidence, the difference in luminance between positions separated by the same distance from the X inversion position is taken. Specifically, the difference in brightness is obtained for each pixel of the image sensor. Further, in the range of CRS (Calculating Range of Symmetry) that is an equidistant calculation range across X11 at the X inversion position, the above difference is integrated by taking an integration range, for example, in the plus direction on the X axis from the point X11. X integral value is calculated. In X11 at the X inversion position of this embodiment, the two distributions do not match so much, and the X integral value is relatively large.

点P2またはその近傍での特定のX積分値についてX積分値が算出されると、X反転位置を移動して、次のX反転位置について、同様にX積分値を算出する(ステップS144)。ボールエンドミル30の場合、X反転位置のX12では、図10(b)に示すように、X軸上の輝度分布と反転輝度分布が広い範囲で一致し、X積分値が小さな値になる。また、X反転位置のX13では、図10(c)に示すように、2つの分布がさほど一致せず、X積分値が比較的大きな値になる。以上のステップ143,S144を繰り返し、定義された複数のX反転位置についてのX積分値を算出し終えると、ステップS145に進む。   When the X integration value is calculated for the specific X integration value at or near the point P2, the X inversion position is moved, and the X integration value is similarly calculated for the next X inversion position (step S144). In the case of the ball end mill 30, at the X inversion position X12, as shown in FIG. 10B, the luminance distribution on the X axis and the inversion luminance distribution coincide in a wide range, and the X integral value becomes a small value. Further, at X13 at the X inversion position, as shown in FIG. 10C, the two distributions do not match so much, and the X integral value becomes a relatively large value. When the above steps 143 and S144 are repeated and the calculation of the X integral values for the plurality of defined X inversion positions is completed, the process proceeds to step S145.

次に、上記のX軸方向の場合と同様に、Y軸上の輝度分布に特定のY反転位置を定義し、Y反転位置を中心に輝度分布のY軸上の目盛りの昇降を逆にした反転輝度分布を求める(ステップS145)。そして、Y軸上の輝度分布と特定のY反転位置に基づく反転輝度分布とを比較し、Y反転位置から同一距離だけ離れた位置同士の輝度の差分を求め、その差分をY位置で積分したY積分値を算出する(ステップS146)。さらに、特定のY反転位置のY積分値が算出されると、Y反転位置を移動して、次のY反転位置について、同様の考え方で次のY積分値を算出する(ステップS147)。Y軸についてのステップS145〜S147では、上記のX軸についてのステップS142〜S144と同様の処理が行われ、Y軸上の輝度分布と反転輝度分布とがよく一致していれば、Y積分値が小さな値になる。   Next, as in the case of the X-axis direction, a specific Y inversion position is defined for the luminance distribution on the Y axis, and the scale on the Y axis of the luminance distribution is reversed up and down around the Y inversion position. An inversion luminance distribution is obtained (step S145). Then, the luminance distribution on the Y axis is compared with the inverted luminance distribution based on the specific Y inversion position, the difference in luminance between the positions separated by the same distance from the Y inversion position is obtained, and the difference is integrated at the Y position. A Y integral value is calculated (step S146). Further, when the Y integral value at the specific Y inversion position is calculated, the Y inversion position is moved, and the next Y integration value is calculated for the next Y inversion position in the same way (step S147). In steps S145 to S147 for the Y axis, the same processing as in steps S142 to S144 for the X axis is performed. If the luminance distribution on the Y axis and the inverted luminance distribution are in good agreement, the Y integral value is obtained. Becomes a small value.

次に、回転軸位置認識工程S15に進み、回転軸αの位置を特定する。まず、最も小さな値が算出されたX反転位置を、X積分値最小位置として抽出する(ステップS151)。同様に、最も小さな値が算出されたY反転位置を、Y積分値最小位置として抽出する(ステップS152)。そして、X積分最小位置とY積分値最小位置とで定まる座標を回転軸位置として認識し、その位置が回転軸αの位置であると特定する(ステップS153)。これによって、回転刃先画像の輝度の平均値に着眼して抽出した第二の仮回転位置P2よりも極めて高い精度で、回転軸αのXY平面上の位置を特定することができる。   Next, it progresses to rotation axis position recognition process S15, and the position of rotation axis (alpha) is pinpointed. First, the X inversion position where the smallest value is calculated is extracted as the X integrated value minimum position (step S151). Similarly, the Y inversion position where the smallest value is calculated is extracted as the Y integrated value minimum position (step S152). Then, the coordinate determined by the X integration minimum position and the Y integration value minimum position is recognized as the rotation axis position, and the position is specified as the position of the rotation axis α (step S153). As a result, the position of the rotation axis α on the XY plane can be specified with extremely higher accuracy than the second temporary rotation position P2 extracted by focusing on the average value of the brightness of the rotary blade tip image.

以上説明したように、この実施形態の工具位置測定方法は、Z軸方向から撮像したほぼ回転対称な回転刃先画像の輝度を分析するため、非接触で繰り返し精度が高い。従って、回転工具12の回転軸αの位置測定を非常に高い精度で行うことができ、マイクロエンドミル等による微細加工の用途にも十分に対応することができる。   As described above, the tool position measurement method according to this embodiment analyzes the luminance of a substantially rotationally symmetric rotary blade image picked up from the Z-axis direction, and is therefore non-contact and highly accurate. Therefore, the position measurement of the rotation axis α of the rotary tool 12 can be performed with very high accuracy, and it can sufficiently cope with the use of micromachining by a micro end mill or the like.

また、この測定は、回転工具12が回転している状態で行われ、回転工具12自体の中心軸ではなく、切削加工時の回転中心である回転軸αの位置を測定するので、例えば、回転工具12を加工機のチャック部に装着したときのセンタリングの位置ずれや、切削加工時の熱等に起因する回転工具12の外形の変化等の影響も含めて測定される。従って、実際の切削加工に近い状態で測定が行われるので、実用性が高い。   In addition, this measurement is performed in a state where the rotary tool 12 is rotating, and the position of the rotation axis α which is the rotation center at the time of cutting is measured instead of the central axis of the rotary tool 12 itself. It is measured including the influence of the positional deviation of the centering when the tool 12 is mounted on the chuck portion of the processing machine, the change in the outer shape of the rotary tool 12 caused by the heat during the cutting process, and the like. Therefore, since the measurement is performed in a state close to actual cutting, the utility is high.

また、ステップS143,S146でX積分値及びY積分値を算出するときの計算範囲CRSを、測定対象の刃先12aの形状に応じて適宜調節することによって、測定精度をより高くすることも可能である。   In addition, the measurement accuracy can be further increased by appropriately adjusting the calculation range CRS when calculating the X integral value and the Y integral value in steps S143 and S146 according to the shape of the cutting edge 12a to be measured. is there.

次に、工具位置測定装置10によって行われる工具位置測定方法のZ軸方向の位置測定について、図11〜図13を用いて説明する。この工具位置測定方法は、加工機のチャック部に装着した回転工具12の刃先12aの突端12bについてのZ方向の基準位置を測定する方法で、停止刃先撮像工程S16(ステップS161,s162)と、Z基準位置認識工程S17(ステップS171〜S173)で構成されている。以下、図11のフローチャートに沿って各工程を説明する。   Next, position measurement in the Z-axis direction of the tool position measurement method performed by the tool position measurement apparatus 10 will be described with reference to FIGS. This tool position measuring method is a method of measuring the reference position in the Z direction with respect to the tip 12b of the cutting edge 12a of the rotary tool 12 mounted on the chuck portion of the processing machine, and includes a stop blade edge imaging step S16 (steps S161 and s162), The Z reference position recognition step S17 (steps S171 to S173) is configured. Hereinafter, each process is demonstrated along the flowchart of FIG.

まず、回転が停止している回転工具12が特定のZ位置にある状態で、撮像装置14を用いて刃先12aをZ方向から見た停止刃先画像を撮像する(ステップS161)。例えば、回転工具12がボールエンドミル30とスクエアエンドミル32の場合、図12(a),(b)の停止刃先画像が得られる。特定のZ位置の撮像が終わると、Z位置を移動して、次のZ位置で停止刃先画像を撮像する(ステップS162)。そして、ステップ161,S162を繰り返し、所定範囲の複数のZ位置での撮像を終えると、次のステップS171に進む。   First, in a state where the rotating tool 12 whose rotation is stopped is in a specific Z position, a stop blade edge image obtained by viewing the blade edge 12a from the Z direction is captured using the imaging device 14 (step S161). For example, when the rotary tool 12 is a ball end mill 30 and a square end mill 32, the stop edge image shown in FIGS. 12 (a) and 12 (b) is obtained. When imaging of a specific Z position is completed, the Z position is moved, and a stop blade edge image is captured at the next Z position (step S162). Steps 161 and S162 are repeated, and when imaging at a plurality of Z positions within a predetermined range is completed, the process proceeds to next step S171.

次に、回転工具12のZ位置ごとの停止刃先画像について、刃先12aの突端12b位置を通るXY平面内を通る軸線であって、刃先12aの研削条痕と略直角に交わる向きに設定した軸線Xaを定義し、軸線Xa上の輝度分布を求める(ステップS171)。研削条痕とは、回転工具12の製造時に刃面を研削することによって刃表面に生じた多数の縦縞状の痕跡をいい、図12(a),(b)の停止刃先画像で見ることができる。これにより、後述するコントラストが出しやすくなる。ここで、研削条痕を略直角に横切る向きの軸線をXa、軸線Xaと直交する向きの軸線をYaと定義する。   Next, with respect to the stop blade edge image for each Z position of the rotary tool 12, an axis line passing through the XY plane passing through the position of the tip 12b of the blade edge 12a and set in a direction that intersects with the grinding striation of the blade edge 12a at a substantially right angle. Xa is defined and a luminance distribution on the axis Xa is obtained (step S171). Grinding streak refers to a number of vertical stripes formed on the blade surface by grinding the blade surface during the production of the rotary tool 12, and can be seen in the stop blade edge images of FIGS. 12 (a) and 12 (b). it can. As a result, the contrast described later is easily produced. Here, an axis line in a direction that crosses the grinding striation substantially at a right angle is defined as Xa, and an axis line in a direction orthogonal to the axis line Xa is defined as Ya.

次に、ステップS171で求めた輝度分布ごとに、コントラストを算出する(ステップS172)。そして、コントラストが最大になるZ位置であるコントラスト最大Z位置を抽出し、回転工具12のZ方向の基準位置として認識する(ステップS173)。回転工具12のZ位置が変化すると、図13に示すように、Z位置の狭い範囲で急峻なピークを示す。そして、ピークの中心のZ位置であるZ1が、コントラスト最大Z位置に相当する。   Next, contrast is calculated for each luminance distribution obtained in step S171 (step S172). Then, the contrast maximum Z position, which is the Z position where the contrast is maximized, is extracted and recognized as the reference position in the Z direction of the rotary tool 12 (step S173). When the Z position of the rotary tool 12 changes, as shown in FIG. 13, a steep peak is shown in a narrow range of the Z position. And Z1, which is the Z position at the center of the peak, corresponds to the maximum contrast Z position.

以上説明したように、この工具位置測定方法は、Z軸方向から撮像した停止刃先画像を撮像し、図13に示すような尖鋭なコントラストピークが、Z軸方向の位置について得られる特性を利用して分析するため、非接触で、測定の繰り返し精度が高く、工具刃先形状の違いによる測定誤差が生じにくい。従って、刃先12aのZ位置の測定を非常に高い精度で行なうことができ、マイクロエンドミル等による微細加工の用途にも十分に対応することができる。   As described above, this tool position measurement method captures a stop edge image captured from the Z-axis direction, and utilizes the characteristic that a sharp contrast peak as shown in FIG. 13 is obtained for the position in the Z-axis direction. Therefore, measurement accuracy is not likely to occur due to the difference in the shape of the tool edge. Therefore, measurement of the Z position of the blade edge 12a can be performed with very high accuracy, and it can sufficiently cope with micromachining applications such as a micro end mill.

また、工具位置測定方法は、前述したXY平面の工具位置測定方法と同様に、回転工具12の刃先12aをZ軸方向から撮像するため、3次元的に工具測定を行う工具位置測定装置10の撮像装置14の構成を非常にシンプルにすることができる。   Further, the tool position measuring method is similar to the above-described tool position measuring method on the XY plane, and the tool position measuring apparatus 10 that performs three-dimensional tool measurement in order to image the cutting edge 12a of the rotary tool 12 from the Z-axis direction. The configuration of the imaging device 14 can be greatly simplified.

なお、この発明の工具位置測定方法と装置は、上記実施形態に限定されるものではない。例えば、工具位置測定装置の撮像装置は、回転軸の方向から回転工具の刃先を撮像する構成を備えていればよく、例えば、回転軸の方向が水平や斜めのときでも、それに合わせて各種ミラーやレンズの構成や配置を自由に変更することができる。   In addition, the tool position measuring method and apparatus of this invention are not limited to the said embodiment. For example, the imaging device of the tool position measuring device only needs to have a configuration for imaging the cutting edge of the rotary tool from the direction of the rotation axis. For example, even when the direction of the rotation axis is horizontal or oblique, various mirrors can be adjusted accordingly. And the configuration and arrangement of the lenses can be freely changed.

また、回転軸の位置を検出する工具位置測定方法の輝度差積分値算出工程と回転軸位置認識工程は、必ずしも直列的でなくてもよい。例えば、まず、X軸に関して上記2つの工程を実施し、その後、Y軸に関して上記2つの工程を実施することも可能である。   Further, the brightness difference integral value calculating step and the rotating shaft position recognizing step of the tool position measuring method for detecting the position of the rotating shaft are not necessarily in series. For example, it is possible to first perform the two steps with respect to the X axis and then perform the two steps with respect to the Y axis.

また、上記実施形態では、回転軸の位置を求めるとき、第一、第二の仮回転軸位置認識工程を設けることによって、概略の回転軸位置(仮回転軸位置)を容易に自動認識することができるが、あらかじめ概略の回転軸位置が分かっているときや、別の方法で推定できるときは、第一、第二の仮回転軸位置認識工程を省略してもよい。   In the above embodiment, when the position of the rotation shaft is obtained, the first and second temporary rotation shaft position recognition steps are provided to easily automatically recognize the approximate rotation shaft position (temporary rotation shaft position). However, when the approximate rotational axis position is known in advance or when it can be estimated by another method, the first and second temporary rotational axis position recognition steps may be omitted.

次に、この発明の工具位置測定方法と装置による工具位置の測定についての実験結果を説明する。実施例1では、上記実施形態の工具位置測定方法に基づき、R=0.05mmの刃先30aを有するボールエンドミル30を加工機に取り付け、回転軸αのXY平面上の位置を測定した。   Next, experimental results for measuring the tool position by the tool position measuring method and apparatus of the present invention will be described. In Example 1, based on the tool position measurement method of the above embodiment, a ball end mill 30 having a cutting edge 30a of R = 0.05 mm was attached to a processing machine, and the position of the rotation axis α on the XY plane was measured.

図14は、同一取り付け状態のボールエンドミル30に対して、上記の工具位置測定方法を20回繰り返し、繰り返し精度σを評価したものである。グラフの縦軸の繰り返し精度σは、測定値(n=20)の標準偏差であり、値が小さいほど繰り返し精度が高い。また、グラフの横軸は、輝度差積分値算出工程S14でX積分値とY積分値を算出するときの計算範囲CRSである。   FIG. 14 shows the evaluation of the repeatability σ by repeating the above tool position measurement method 20 times for the ball end mill 30 in the same mounting state. The repetition accuracy σ on the vertical axis of the graph is the standard deviation of the measured value (n = 20), and the smaller the value, the higher the repetition accuracy. The horizontal axis of the graph represents the calculation range CRS when the X integral value and the Y integral value are calculated in the luminance difference integral value calculation step S14.

実施例1のボールエンドミル30の場合、図14に示すように、計算範囲CRSが領域B(2.3μm≦CRS≦3,3μm)の範囲において、繰り返し精度σが最も小さくなった。従って、ボールエンドミル30の場合、計算範囲CRSを領域B内のいずれかの値に設定することによって、最も良好な測定を行うことができることが分かる。   In the case of the ball end mill 30 of Example 1, as shown in FIG. 14, the repeatability σ was the smallest when the calculation range CRS was in the region B (2.3 μm ≦ CRS ≦ 3, 3 μm). Therefore, in the case of the ball end mill 30, it is understood that the best measurement can be performed by setting the calculation range CRS to any value in the region B.

一方、計算範囲CRSを領域C,Dの範囲まで大きくしたり、領域Aの範囲まで小さくすると、繰り返し精度σが大きくなって好ましくない。これは、例えば、撮像装置14による撮像のピクセル数や回転刃先画像の輝度の不安定さが測定値に表れやすくなることが原因として挙げられる。従って、測定対象の刃先12aの形状や撮像装置14の性能に応じて計算範囲CRSを調節し、最適な値に設定することによって、極めて良好な繰り返し精度σを得ることができる。   On the other hand, if the calculation range CRS is increased to the ranges of the regions C and D or is decreased to the range of the region A, the repetition accuracy σ is increased, which is not preferable. This is because, for example, the number of pixels picked up by the image pickup device 14 and the luminance instability of the rotary blade tip image are likely to appear in the measured value. Therefore, by adjusting the calculation range CRS according to the shape of the cutting edge 12a to be measured and the performance of the imaging device 14 and setting it to an optimum value, a very good repetition accuracy σ can be obtained.

実施例2では、上記実施形態の工具位置測定方法に基づき、R=0.05mmの刃先30aを有するボールエンドミル30、及びφ=0.04mmの刃先32aを有するスクエアエンドミル32加工機に取り付け、刃先30a,32aの突端30b,32bについてのZ方向の基準位置を測定した。   In Example 2, on the basis of the tool position measuring method of the above embodiment, the cutting edge is attached to a ball end mill 30 having a cutting edge 30a of R = 0.05 mm and a square end mill 32 having a cutting edge 32a of φ = 0.04 mm. The reference position in the Z direction was measured for the protrusions 30b and 32b of 30a and 32a.

図15は、ボールエンドミル30の刃先30aのZ位置を移動させたときのコントラストの変化を示している。図15(a)は、上述の工具位置測定方法の通り、刃先30aの研削条痕と略直角に交わる向きに設定した軸線Xa上の輝度分布に基づいてコントラストを算出したもので、コントラスト最大Z位置のZ1を中心とする急峻なコントラストピークが得られた。なお、このコントラストピークの形状は、ガウス関数で定義されるカーブによく一致することが分かっている。   FIG. 15 shows a change in contrast when the Z position of the cutting edge 30a of the ball end mill 30 is moved. FIG. 15A shows the contrast calculated based on the brightness distribution on the axis Xa set in a direction intersecting with the grinding striation of the cutting edge 30a at a substantially right angle as in the above-described tool position measuring method. A sharp contrast peak centered on the position Z1 was obtained. It has been found that the shape of this contrast peak matches well with a curve defined by a Gaussian function.

一方、図15(b)は、上記と異なり、刃先30aの研削条痕とほぼ平行な向きに設定した軸線Ya上の輝度分布に基づいてコントラストを算出したものであり、図15(a)と比較してコントラストピークの先鋭度が低くなり、そのため、ガウス関数のカーブからの乖離量が目立ち、コントラスト最大Z位置であるZ1の認識がやや不安定になった。   On the other hand, FIG. 15B differs from the above in that the contrast is calculated based on the luminance distribution on the axis Ya set in a direction substantially parallel to the grinding striation of the cutting edge 30a. In comparison, the sharpness of the contrast peak is low, so that the amount of deviation from the curve of the Gaussian function is conspicuous, and recognition of Z1, which is the maximum contrast Z position, is somewhat unstable.

図16は、同一取り付け状態のボールエンドミル30とスクエアエンドミル32に対して、Z軸方向の工具位置測定方法を各20回繰り返し、繰り返し精度σを評価した結果を示す表である。繰り返し精度σは、測定値(n=20)の標準偏差であり、値が小さいほど繰り返し精度が高い。   FIG. 16 is a table showing the results of evaluating the repeatability σ by repeating the tool position measurement method in the Z-axis direction 20 times for the ball end mill 30 and the square end mill 32 in the same mounting state. The repeatability σ is the standard deviation of the measured value (n = 20). The smaller the value, the higher the repeatability.

この実験では、軸線Xa上の輝度分布に基づいて測定したとき、2種類のエンドミル30,32共に、繰り返し精度σが0.05μm以下という極めて良好な結果が得られた。また、軸線Ya上の輝度分布に基づいて測定したときも、2種類のエンドミル30,32共に、繰り返し精度σが20〜40μmという良好な結果が得られた。   In this experiment, when measured based on the luminance distribution on the axis Xa, the two types of end mills 30 and 32 had very good results with a repeatability σ of 0.05 μm or less. Also, when measured based on the luminance distribution on the axis Ya, the two types of end mills 30 and 32 had good results with a repeatability σ of 20 to 40 μm.

この実験結果から分かるように、数十μm程度の繰り返し精度が要求される切削の用途であれば、軸線の向きを自由に設定することができる。また、数十nm以下の極めて高い繰り返し精度が要求される切削の用途の場合は、刃先の研削条痕と略直角に交わる向きに軸線を設定することによって対応することができる。   As can be seen from the experimental results, the direction of the axis can be freely set for cutting applications that require a repeatability of about several tens of μm. Further, in the case of cutting applications that require extremely high repeatability of several tens of nanometers or less, this can be dealt with by setting the axis line in a direction that intersects with the grinding striations at the cutting edge substantially at right angles.

10 工具位置測定装置
12 回転工具
12a 刃先
12b 突端
14 撮像装置
16 光源
18 コリメートレンズ
20 対物レンズ
22 ハーフミラー
24 結像レンズ
26 ミラー
28 カメラ
30 ボールエンドミル
30a 刃先
30b 突端
32 スクエアエンドミル
32a 刃先
32b 突端
P1 第一の仮回転位置
P2 第二の仮回転位置
S11 回転刃先撮像工程
S12 第一の仮回転位置認識工程
S13 第二の仮回転位置認識工程
S14 輝度差積分値算出工程
S15 回転軸位置認識工程
S16 停止刃先撮像工程
S17 Z基準位置認識工程
α 回転軸
DESCRIPTION OF SYMBOLS 10 Tool position measuring device 12 Rotating tool 12a Cutting edge 12b Tip 14 Imaging device 16 Light source 18 Collimating lens 20 Objective lens 22 Half mirror 24 Imaging lens 26 Mirror 28 Camera 30 Ball end mill 30a Cutting edge 30b Tip 32 Square end mill 32a Cutting edge 32b Tip P1 First One temporary rotation position P2 Second temporary rotation position S11 Rotary blade edge imaging step S12 First temporary rotation position recognition step S13 Second temporary rotation position recognition step S14 Brightness difference integral value calculation step S15 Rotating shaft position recognition step S16 Stop Cutting edge imaging step S17 Z reference position recognition step α rotation axis

Claims (7)

互いに直交するXYZ三次元座標系のZ軸と平行な回転軸を有する切削加工用の回転工具の位置を非接触で測定する工具位置測定方法において、
回転する前記回転工具の刃先にZ軸方向の光を照射し、その反射光により前記刃先をZ軸方向から見た回転刃先画像を撮像する回転刃先撮像工程と、
前記回転刃先画像から、前記回転軸が位置すると推定される仮回転軸位置を原点とするX軸上及びY軸上の各輝度分布を求め、
前記原点及びその近傍のX軸方向の複数の位置であるX反転位置から、X軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でX軸方向に積分したX積分値を、前記X反転位置ごとに算出すると共に、
前記原点及びその近傍のY軸方向の複数の位置であるY反転位置から、Y軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でY軸方向に積分したY積分値を、前記Y反転位置ごとに算出する輝度差積分値算出工程と、
前記X反転位置ごとに算出した前記X積分値を比較して、前記X積分値が最も小さくなる前記X反転位置であるX積分値差最小位置を抽出すると共に、
前記Y反転位置ごとに算出した前記Y積分値を比較して、前記Y積分値が最も小さくなる前記Y反転位置であるY積分値差最小位置を抽出し、
抽出した前記X積分値差最小位置及び前記Y積分値差最小位置で定まるXY座標を、前記回転工具の回転軸位置として認識する回転軸位置認識工程とを備えたことを特徴とする工具位置測定方法。
In a tool position measuring method for measuring the position of a rotary tool for cutting having a rotation axis parallel to the Z axis of an XYZ three-dimensional coordinate system orthogonal to each other in a non-contact manner,
Rotating blade edge imaging step of irradiating light in the Z-axis direction to the blade edge of the rotating tool that rotates, and imaging a rotating blade edge image of the blade edge as viewed from the Z-axis direction by reflected light;
From the rotary blade edge image, obtain each luminance distribution on the X axis and the Y axis with the temporary rotation axis position estimated as the position of the rotation axis as the origin,
An X integral value obtained by integrating the difference in luminance between positions separated by the same distance in the X-axis direction from the X inversion position, which is a plurality of positions in the X-axis direction near the origin and the vicinity thereof, in the X-axis direction within a predetermined range, While calculating for each X reversal position,
A Y integral value obtained by integrating the difference in luminance between positions separated by the same distance in the Y axis direction from the Y reversal position, which is a plurality of positions in the Y axis direction near the origin and the vicinity thereof, in the Y axis direction within a predetermined range, A luminance difference integral value calculating step for calculating for each Y reversal position;
The X integral value calculated for each X inversion position is compared, and the X integration value difference minimum position which is the X inversion position at which the X integral value becomes the smallest is extracted.
Compare the Y integral value calculated for each Y inversion position, and extract the Y integral value difference minimum position that is the Y inversion position where the Y integral value is the smallest,
A tool position measurement comprising: a rotary axis position recognition step of recognizing an XY coordinate determined by the extracted minimum X integral value difference position and the minimum Y integral value difference position as a rotary axis position of the rotary tool. Method.
前記輝度差積分値算出工程は、前記X反転位置を設定し、X反転位置ごとに、当該X軸上の輝度分布と、その輝度分布を前記X反転位置で反転させた反転輝度分布とを比較し、当該X反転位置から同一距離だけ離れた位置同士の輝度の差分をX軸方向に所定距離だけ積分したX積分値を算出すると共に、
前記Y反転位置を設定し、Y反転位置ごとに、当該Y軸上の輝度分布と、その輝度分布を前記Y反転位置で反転させた反転輝度分布とを比較し、当該Y反転位置から同一距離だけ離れた位置同士の輝度の差分をY軸方向に所定距離だけ積分したY積分値を算出する請求項1記載の工具位置測定方法。
The luminance difference integral value calculation step sets the X inversion position, and compares the luminance distribution on the X axis with the inverted luminance distribution obtained by inverting the luminance distribution at the X inversion position for each X inversion position. And calculating an X integral value obtained by integrating the difference in luminance between positions separated by the same distance from the X inversion position by a predetermined distance in the X-axis direction,
The Y inversion position is set, and for each Y inversion position, the luminance distribution on the Y axis is compared with the inversion luminance distribution obtained by inverting the luminance distribution at the Y inversion position, and the same distance from the Y inversion position. The tool position measuring method according to claim 1, wherein a Y integrated value is calculated by integrating a difference in luminance between positions separated by a predetermined distance in the Y-axis direction.
前記輝度差積分値算出工程は、前記X積分値を算出するためのXの積分範囲、及び前記Y積分値を算出するためのYの積分範囲を、前記回転工具の刃先の形状に応じて適宜調節する請求項1記載の工具位置測定方法。   In the luminance difference integral value calculating step, an X integration range for calculating the X integral value and a Y integration range for calculating the Y integral value are appropriately determined according to the shape of the cutting edge of the rotary tool. The tool position measuring method according to claim 1 to adjust. 前記回転刃先撮像工程の後、前記輝度差積分値算出工程の前に設けられる工程であって、
前記回転刃先画像の最も輝度の高い位置を第一の仮回転軸位置として認識する第一の仮回転軸位置認識工程と、
前記回転刃先画像から、前記第一の仮回転軸位置を原点とするX軸上及びY軸上の輝度分布を求め、
当該X軸上の輝度分布を二分割するX位置であって、二分割された一方の側の輝度分布の平均値と他方の側の輝度の平均値とが等しくなるX均等分割位置を抽出すると共に、
当該Y軸上の輝度分布を二分割するY位置であって、二分割された一方の側の輝度分布の平均値と他方の側の輝度の平均値とが等しくなるY均等分割位置を抽出し、
抽出した前記X均等分割位置及び前記Y均等分割位置で定まる座標を第二の仮回転軸位置として認識する第二の仮回転軸位置認識工程とを備え、
前記第二の仮回転軸位置認識工程で認識した前記第二の仮回転軸位置は、前記輝度差積分値算出工程における前記仮回転軸位置とされる請求項1記載の工具位置測定方法。
A step provided after the rotating blade edge imaging step and before the luminance difference integral value calculating step,
A first temporary rotation axis position recognition step for recognizing a position with the highest luminance of the rotary blade edge image as a first temporary rotation axis position;
From the rotary blade image, obtain the luminance distribution on the X-axis and the Y-axis with the first temporary rotation axis position as the origin,
An X position that divides the luminance distribution on the X-axis into two and extracts an X equal division position where the average value of the luminance distribution on one side and the average value of the luminance on the other side are equal. With
A Y position that divides the luminance distribution on the Y-axis into two and extracts the Y equal division position where the average value of the luminance distribution on one side and the average value of the luminance on the other side are equal. ,
A second temporary rotation axis position recognition step of recognizing the coordinates determined by the extracted X equal division position and the Y equal division position as a second temporary rotation axis position;
The tool position measuring method according to claim 1, wherein the second temporary rotation shaft position recognized in the second temporary rotation shaft position recognition step is the temporary rotation shaft position in the luminance difference integral value calculation step.
回転が停止した前記回転工具の刃先にZ軸方向の光を照射し、その反射光によりZ軸方向から見た停止刃先画像を、前記回転工具が前記回転軸上を移動するZ軸方向の位置ごとに撮像する停止刃先撮像工程と、
撮像した停止刃先画像ごとに、前記刃先の突端位置を通るXY平面内の所定軸線上の輝度分布に基づくコントラストを算出し、コントラストが最も大きくなるZ軸方向の位置であるZコントラスト最大位置を、前記刃先のZ軸方向の基準位置として認識するZ基準位置認識工程とを備えた請求項1乃至4のいずれか記載の工具位置測定方法。
The Z-axis direction position at which the rotary tool moves on the rotation axis is obtained by irradiating the Z-axis direction light to the cutting edge of the rotary tool whose rotation has stopped, and the reflected blade light viewed from the Z-axis direction. Stop blade edge imaging process for imaging every time,
For each captured cutting edge image, a contrast based on the luminance distribution on a predetermined axis in the XY plane passing through the tip position of the cutting edge is calculated, and the Z contrast maximum position, which is a position in the Z-axis direction where the contrast is maximized, The tool position measuring method according to claim 1, further comprising a Z reference position recognition step for recognizing the reference position of the cutting edge in the Z-axis direction.
前記コントラスト算出工程では、輝度分布を求めるXY平面内の前記所定の軸線が、刃表面に表れた研削条痕を横切る向きに設定される請求項5記載の工具位置測定方法。   The tool position measuring method according to claim 5, wherein in the contrast calculating step, the predetermined axis in the XY plane for obtaining the luminance distribution is set in a direction crossing the grinding line appearing on the blade surface. 互いに直交するXYZ三次元座標系のZ軸と平行な回転軸を有する切削加工用の回転工具の位置を非接触で測定する工具位置測定装置において、
前記回転工具の刃先にZ軸方向の光を照射する光源を有し、その反射光により前記刃先をZ軸方向から見た刃先画像を撮像する撮像装置と、前記刃先画像をデータ分析する分析処理装置とを備え、
前記分析処理装置は、
前記回転刃先画像から、前記回転軸が位置すると推定される仮回転軸位置を原点とするX軸上及びY軸上の輝度分布を求め、
前記原点及びその近傍のX軸方向の複数の位置であるX反転位置から、X軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でX軸方向に積分したX積分値を、前記X反転位置ごとに算出し、
前記原点及びその近傍のY軸方向の複数の位置であるY反転位置から、Y軸方向に同一距離だけ離れた位置同士の輝度の差分を所定範囲でY軸方向に積分したY積分値を、前記Y反転位置ごとに算出し、
前記X反転位置ごとに算出した前記X積分値を比較して、前記X積分値が最も小さくなる前記X反転位置であるX積分値差最小位置を抽出すると共に、
前記Y反転位置ごとに算出した前記Y積分値を比較して、前記Y積分値が最も小さくなる前記Y反転位置であるY積分値差最小位置を抽出し、
抽出した前記X積分値差最小位置及び前記Y積分値差最小位置で定まるXY座標を、前記回転工具の回転軸位置とすることを特徴とする工具位置測定装置。
In a tool position measuring device that measures the position of a rotary tool for cutting having a rotation axis parallel to the Z axis of an XYZ three-dimensional coordinate system orthogonal to each other in a non-contact manner,
An imaging device that has a light source that irradiates light in the Z-axis direction on the cutting edge of the rotary tool, and that captures a cutting edge image of the cutting edge viewed from the Z-axis direction by reflected light, and analysis processing that analyzes data on the cutting edge image With the device,
The analysis processing apparatus includes:
From the rotary blade edge image, obtain the luminance distribution on the X axis and the Y axis with the temporary rotation axis position estimated to be the position of the rotation axis as the origin,
An X integral value obtained by integrating the difference in luminance between positions separated by the same distance in the X-axis direction from the X inversion position, which is a plurality of positions in the X-axis direction near the origin and the vicinity thereof, in the X-axis direction within a predetermined range, Calculate for each X reversal position,
A Y integral value obtained by integrating the difference in luminance between positions separated by the same distance in the Y axis direction from the Y reversal position, which is a plurality of positions in the Y axis direction near the origin and the vicinity thereof, in the Y axis direction within a predetermined range, Calculate for each Y reversal position,
The X integral value calculated for each X inversion position is compared, and the X integration value difference minimum position which is the X inversion position at which the X integral value becomes the smallest is extracted.
Compare the Y integral value calculated for each Y inversion position, and extract the Y integral value difference minimum position that is the Y inversion position where the Y integral value is the smallest,
A tool position measuring apparatus characterized in that an XY coordinate determined by the extracted minimum position of the X integral value difference and the minimum position of the Y integral value difference is set as a rotation axis position of the rotary tool.
JP2009291197A 2009-12-22 2009-12-22 Tool position measuring method and apparatus Expired - Fee Related JP5273563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291197A JP5273563B2 (en) 2009-12-22 2009-12-22 Tool position measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291197A JP5273563B2 (en) 2009-12-22 2009-12-22 Tool position measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2011131297A JP2011131297A (en) 2011-07-07
JP5273563B2 true JP5273563B2 (en) 2013-08-28

Family

ID=44344591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291197A Expired - Fee Related JP5273563B2 (en) 2009-12-22 2009-12-22 Tool position measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP5273563B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216503B (en) * 2016-09-29 2017-12-29 东莞市点亮软件有限公司 The angle recognition method and apparatus of cutting die on a kind of punch press
CN110900308B (en) * 2019-12-11 2020-10-02 中航飞机起落架有限责任公司 Cutter detection method for numerical control machining
CN114800038B (en) * 2021-01-29 2024-04-05 雷应科技股份有限公司 Tool detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326453U (en) * 1989-07-21 1991-03-18
JP2502933B2 (en) * 1993-12-27 1996-05-29 ユーエイチティー株式会社 A method for detecting the center position of a drill by image processing
JP2000074644A (en) * 1998-08-31 2000-03-14 Nachi Fujikoshi Corp Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
JP4491850B2 (en) * 1999-03-12 2010-06-30 Jfeスチール株式会社 Laser irradiation point detection device and seam position detection device in laser welding machine
JP2005088176A (en) * 2003-09-19 2005-04-07 J-Net:Kk Measuring device for ultrafine tool

Also Published As

Publication number Publication date
JP2011131297A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
US20170160077A1 (en) Method of inspecting an object with a vision probe
US20090196527A1 (en) Calibration method of image planar coordinate system for high-precision image measurement system
JP2010038923A (en) Stereoscopic three-dimensional measurement system and method
JP6559773B2 (en) In-line inspection of ophthalmic instruments using automatic alignment system and interferometer
Chang et al. Automated optical inspection for the runout tolerance of circular saw blades
JP7353757B2 (en) Methods for measuring artifacts
EP1674822A1 (en) Device and method for non-contact scanning of contact lens mold geometry
JP5273563B2 (en) Tool position measuring method and apparatus
JP5467962B2 (en) Measurement setting data creation device, measurement setting data creation method, program for measurement setting data creation device, and dimension measurement device
TWI387721B (en) Three-dimensional profile inspecting apparatus
JP5270138B2 (en) Calibration jig and calibration method
JP2012037257A (en) Measurement setting data creation device, measurement setting data creation method, and program for measurement setting data creation device
CN112161598A (en) Detection method and detection device of detection equipment
CN108151656A (en) A kind of axial position in hole inner mold face, length dimension measuring method and equipment
Vera et al. Determination of the center of radial distortion for a camera lens
Chian et al. Determination of tool nose radii of cutting inserts using machine vision
Hurník et al. Multi-view camera system for measurement of heavy forgings
Tian et al. Measurement strategies in optical 3-D surface measurement with focus variation
WO2018157676A1 (en) Image measuring device free from axis alignment and measuring method thereof
CN113510536B (en) On-machine detection device and method for machining center
CN106736867B (en) Machine tool chief axis double structure light quick calibrating method
Li et al. Free and global pose calibration of a rotating laser monocular vision sensor for robotic 3D measurement system
Sun et al. A 3D acquisition system combination of structured-light scanning and shape from silhouette
Chen et al. Analysing and evaluating a dual-sensor autofocusing method for measuring the position of patterns of small holes on complex curved surfaces
Zhang et al. Study on Key Methods of On-Machine Micro Milling Cutter Condition Inspection Based on Machine Vision

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees