JP5273167B2 - Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method - Google Patents

Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Download PDF

Info

Publication number
JP5273167B2
JP5273167B2 JP2011013246A JP2011013246A JP5273167B2 JP 5273167 B2 JP5273167 B2 JP 5273167B2 JP 2011013246 A JP2011013246 A JP 2011013246A JP 2011013246 A JP2011013246 A JP 2011013246A JP 5273167 B2 JP5273167 B2 JP 5273167B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
end state
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011013246A
Other languages
Japanese (ja)
Other versions
JP2012155087A (en
Inventor
規和 横井
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011013246A priority Critical patent/JP5273167B2/en
Priority to CN201510873801.3A priority patent/CN105388602B/en
Priority to CN201210016662.9A priority patent/CN102621675B/en
Priority to CN201510869315.4A priority patent/CN105388601B/en
Priority to IN189DE2012 priority patent/IN2012DE00189A/en
Priority to US13/358,042 priority patent/US9030755B2/en
Publication of JP2012155087A publication Critical patent/JP2012155087A/en
Application granted granted Critical
Publication of JP5273167B2 publication Critical patent/JP5273167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable power optical system that has optical performance sufficiently high. <P>SOLUTION: The variable power optical system comprises, in order from an object side along an optical axis, a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, a fourth lens group of negative refractive power, and a fifth lens group of positive refractive power. When power is varied from a wide angle end to a telephoto end, the first lens group moves with respect to an image surface, an interval between the first and second lens groups increases, an interval between the second and third lens groups decreases, an interval between the third and fourth lens groups changes, and an interval between the fourth and fifth lens groups changes. The variable power optical system satisfies the following expression: 6.500&lt;f1/(-f2)&lt;10.000, in which f1 is the focal distance of the first lens group and f2 is the focal distance of the second lens group. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、カメラ用交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系と、これを有する光学装置、および変倍光学系の製造方法に関する。   The present invention relates to a variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, and the like, an optical apparatus having the same, and a method for manufacturing the variable power optical system.

従来、一眼レフカメラ用交換レンズなどに用いられる変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが提案されている(例えば、特許文献1参照)。   Conventionally, as a variable magnification optical system used for an interchangeable lens for a single-lens reflex camera or the like, an optical system in which the lens group closest to the object has a positive refractive power has been proposed (for example, see Patent Document 1).

特開2008−3195号公報JP 2008-3195 A

しかしながら、従来の変倍光学系をさらに高変倍化しようとすると、充分に高い光学性能を得ることが困難であった。   However, it has been difficult to obtain sufficiently high optical performance when trying to further increase the magnification of the conventional variable magnification optical system.

本発明はこのような状況に鑑みてなされたものであり、充分に高い光学性能を備えた変倍光学系、当該変倍光学系を備えた光学装置、および当該変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a variable magnification optical system having sufficiently high optical performance, an optical device including the variable magnification optical system, and a method for manufacturing the variable magnification optical system. The purpose is to provide.

上記目的を達成するために、本発明に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、広角端状態から望遠端状態への変倍の際、前記第1レンズ群は像面に対して移動し、前記第1レンズ群と第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化し、次式の条件を満足することを特徴とする。
7.300 < f1/(−f2) < 10.000
5.200 < f1/fw < 11.000
0.280 < f1/ft < 0.480
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
In order to achieve the above object, a zoom optical system according to the present invention includes a first lens group having a positive refractive power and a second lens group having a negative refractive power in order from the object side along the optical axis. A third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, from the wide-angle end state to the telephoto end state During zooming, the first lens group moves with respect to the image plane, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group. The distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the fifth lens group changes, and the following equation is satisfied: And
7.300 <f1 / (− f2) <10.000
5.200 <f1 / fw <11.000
0.280 <f1 / ft <0.480
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state

また、本発明に係る光学装置は、上記変倍光学系を備えたことを特徴とする。   An optical apparatus according to the present invention includes the above-described variable magnification optical system.

また、本発明に係る変倍光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、前記第1レンズ群と前記第2レンズ群と前記第3レンズ群と前記第4レンズ群と前記第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して移動し、前記第1レンズ群と第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化するように構成し、次式の条件を満足するようにすることを特徴とする。
7.300 < f1/(−f2) < 10.000
5.200 < f1/fw < 11.000
0.280 < f1/ft < 0.480
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
The variable magnification optical system manufacturing method according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive lens in order from the object side along the optical axis. And a fourth lens group having negative refracting power and a fifth lens group having positive refracting power. When the lens group, the second lens group, the third lens group, the fourth lens group, and the fifth lens group are changed from the wide-angle end state to the telephoto end state, the first lens group has an image plane. , The distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the fourth lens group are decreased. The distance between the lens group is changed, and the distance between the fourth lens group and the fifth lens group is changed. Characterized in that so as to satisfy the expression conditions.
7.300 <f1 / (− f2) <10.000
5.200 <f1 / fw <11.000
0.280 <f1 / ft <0.480
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state

本発明によれば、充分に高い光学性能を備えた変倍光学系、当該変倍光学系を備えた光学装置、および当該変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system having sufficiently high optical performance, an optical device including the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

本発明の第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example of this invention. 第1実施例に係る変倍光学系の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 1 during focusing at infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. ing. 本発明の第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example of this invention. 第2実施例に係る変倍光学系の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。FIG. 7 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 during focusing at infinity, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. ing. 本発明の第3実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 3rd Example of this invention. 第3実施例に係る変倍光学系の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。FIG. 7 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 3 when focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. ing. 本発明の第4実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 4th Example of this invention. 第4実施例に係る変倍光学系の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 4 at the time of focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. ing. 本発明の第5実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 5th Example of this invention. 第5実施例に係る変倍光学系の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 5 during focusing at infinity, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. ing. 本発明の変倍光学系を備えたデジタル一眼レフカメラの概略を示す断面図である。It is sectional drawing which shows the outline of the digital single-lens reflex camera provided with the variable magnification optical system of this invention. 本発明に係る変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system which concerns on this invention.

以下、本発明に係る変倍光学系および光学装置について説明する。   Hereinafter, a variable magnification optical system and an optical apparatus according to the present invention will be described.

まず、本発明に係る変倍光学系から説明する。本発明に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少することで変倍可能な光学系を実現し、変倍に伴う歪曲収差の変動を抑えている。また、広角端状態から望遠端状態への変倍に際し、前記第3レンズ群と前記第4レンズ群との間隔を変化させ、前記第4レンズ群と前記第5レンズ群との間隔を変化させることにより、全系の高い変倍率を確保し、さらに歪曲収差の変動を抑えて高い光学性能を実現できる。   First, the variable magnification optical system according to the present invention will be described. A variable magnification optical system according to the present invention has a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power in order from the object side along the optical axis. A first lens having a third lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, during zooming from the wide-angle end state to the telephoto end state; The distance between the second lens group and the second lens group is increased, and the distance between the second lens group and the third lens group is decreased, thereby realizing an optical system capable of zooming. Fluctuation is suppressed. Further, upon zooming from the wide-angle end state to the telephoto end state, the distance between the third lens group and the fourth lens group is changed, and the distance between the fourth lens group and the fifth lens group is changed. As a result, a high zoom ratio can be ensured for the entire system, and further, high optical performance can be realized while suppressing fluctuations in distortion.

さらに、第1レンズ群は、広角端状態から望遠端状態への変倍に際し、像面に対して移動することが望ましい。このような構成とすることにより、広角端状態から望遠端状態への変倍時の非点収差の変動を抑えて高い光学性能を実現できる。   Furthermore, it is desirable that the first lens group move with respect to the image plane during zooming from the wide-angle end state to the telephoto end state. By adopting such a configuration, it is possible to realize high optical performance by suppressing fluctuations in astigmatism during zooming from the wide-angle end state to the telephoto end state.

さらに、f1を第1レンズ群の焦点距離とし、f2を第2レンズ群の焦点距離としたとき、次の条件式(1)を満足することが望ましい。
(1)6.500<f1/(−f2)<10.000
Further, when f1 is the focal length of the first lens group and f2 is the focal length of the second lens group, it is desirable to satisfy the following conditional expression (1).
(1) 6.500 <f1 / (− f2) <10.000

条件式(1)は、第2レンズ群の焦点距離に対する第1レンズ群の焦点距離の適切な範囲を規定し、充分な変倍比を確保しつつ、広角端状態から望遠端状態への変倍に際して発生する収差変動を抑え、変動範囲全体に亘って高い光学性能を実現するための条件式である。   Conditional expression (1) defines an appropriate range of the focal length of the first lens unit relative to the focal length of the second lens unit, and ensures a sufficient zoom ratio while changing from the wide-angle end state to the telephoto end state. This is a conditional expression for suppressing aberration fluctuations that occur during doubling and realizing high optical performance over the entire fluctuation range.

条件式(1)の対応値が下限値を下回った場合、第1レンズ群の屈折力が過度に強くなるため、変倍に伴う非点収差の変動を抑えることが困難になる。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(1)の下限値を7.000にすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(1)の下限値を7.300とすることが望ましい。   When the corresponding value of the conditional expression (1) is below the lower limit value, the refractive power of the first lens group becomes excessively strong, so that it is difficult to suppress fluctuations in astigmatism due to zooming. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (1) to 7.000. In order to further secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (1) to 7.300.

条件式(1)の対応値が上限値を上回った場合、第2レンズ群の屈折力が相対的に強くなるため、変倍に伴う軸外収差変動、特に歪曲収差や非点収差の補正が困難になる。その結果、高い光学性能を実現できなくなり好ましくない。なお、本発明の効果を確実にするために、条件式(1)の上限値を9.000とすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(1)の上限値を8.400とすることが望ましい。   When the corresponding value of the conditional expression (1) exceeds the upper limit value, the refractive power of the second lens group becomes relatively strong, so that off-axis aberration fluctuations associated with zooming, particularly distortion and astigmatism are corrected. It becomes difficult. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (1) to 9.000. In order to further secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (1) to 8.400.

また、本発明の変倍光学系は、次の条件式(2)を満足することが望ましい。
(2)0.500 < f3/(−f4) < 1.300
ただし、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present invention satisfies the following conditional expression (2).
(2) 0.500 <f3 / (-f4) <1.300
However,
f3: Focal length of the third lens group f4: Focal length of the fourth lens group

条件式(2)は、第3レンズ群の焦点距離に対する第4レンズ群の焦点距離の適切な範囲を規定し、変倍範囲全体に亘って高い光学性能を実現するための条件式である。   Conditional expression (2) defines a suitable range of the focal length of the fourth lens group relative to the focal length of the third lens group, and is a conditional expression for realizing high optical performance over the entire zooming range.

条件式(2)の対応値が下限値を下回ると、第3レンズ群の屈折力が第4レンズ群に対して相対的に大きくなりすぎ、広角端状態における第3レンズ群で発生する負の球面収差の補正が困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(2)の下限値を0.600とすることが望ましい。   When the corresponding value of the conditional expression (2) is below the lower limit value, the refractive power of the third lens group becomes too large relative to the fourth lens group, and a negative value generated in the third lens group in the wide-angle end state. It becomes difficult to correct spherical aberration. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (2) to 0.600.

条件式(2)の対応値が上限値を上回ると、第4レンズ群の屈折力が第3レンズ群に対して相対的に大きくなりすぎ、望遠端状態における第4レンズ群で発生する正の球面収差の補正が困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(2)の上限値を1.200とすることが望ましい。   If the corresponding value of the conditional expression (2) exceeds the upper limit value, the refractive power of the fourth lens group becomes too large relative to the third lens group, and a positive value generated in the fourth lens group in the telephoto end state. It becomes difficult to correct spherical aberration. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (2) to 1.200.

また、本発明の変倍光学系は、次の条件式(3)を満足することが望ましい。
(3)3.900 < f1/fw < 11.000
ただし、
fw:広角端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present invention satisfies the following conditional expression (3).
(3) 3.900 <f1 / fw <11.000
However,
fw: focal length of the entire variable magnification optical system in the wide-angle end state f1: focal length of the first lens group

条件式(3)は、第1レンズ群の最適な焦点距離範囲を規定し、広角端状態から望遠端状態への変倍に際して発生する軸外収差の変動を抑えて、高い光学性能を実現するための条件式である。   Conditional expression (3) defines the optimum focal length range of the first lens group, and suppresses fluctuations in off-axis aberrations that occur during zooming from the wide-angle end state to the telephoto end state, thereby realizing high optical performance. Is a conditional expression.

条件式(3)の対応値が下限値を下回ると、第1レンズ群の屈折力が過度に強くなり、変倍に伴う軸外収差、特に非点収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(3)の下限値を4.600にすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(3)の下限値を5.200とすることが望ましい。   If the corresponding value of conditional expression (3) is below the lower limit value, the refractive power of the first lens group becomes excessively strong, and it becomes difficult to suppress fluctuations in off-axis aberrations, particularly astigmatism associated with zooming. End up. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (3) to 4.600. In order to further secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (3) to 5.200.

条件式(3)の対応値が上限値を上回ると、第1レンズ群の屈折力が過度に弱くなるため、所定の変倍比を得るためには第1レンズ群の像面に対する移動量を増やす必要が出てくる。すると、広角端状態から望遠端状態への変倍に際して軸外光束の通る光軸からの高さの変動が大きくなるため、軸外収差、特に非点収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(3)の上限値を9.000にすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(3)の上限値を7.000とすることが望ましい。   When the corresponding value of the conditional expression (3) exceeds the upper limit value, the refractive power of the first lens group becomes excessively weak. Therefore, in order to obtain a predetermined zoom ratio, the amount of movement of the first lens group relative to the image plane is set. There is a need to increase it. As a result, when the magnification is changed from the wide-angle end state to the telephoto end state, the fluctuation in height from the optical axis through which the off-axis light beam passes increases, making it difficult to suppress fluctuations in off-axis aberrations, particularly astigmatism. End up. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (3) to 9.000. In order to further secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (3) to 7.000.

また、本発明の変倍光学系は、次の条件式(4)を満足することが望ましい。
(4) 0.280 < f1/ft < 0.520
ただし、
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present invention satisfies the following conditional expression (4).
(4) 0.280 <f1 / ft <0.520
However,
ft: focal length of the entire variable magnification optical system in the telephoto end state f1: focal length of the first lens group

条件式(4)は、第1レンズ群の最適な焦点距離範囲を規定し、広角端状態から望遠端状態への変倍に際して発生する収差変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (4) defines the optimum focal length range of the first lens unit, and is a conditional expression for realizing high optical performance by suppressing aberration fluctuations that occur during zooming from the wide-angle end state to the telephoto end state. It is.

条件式(4)の対応値が下限値を下回ると、第1レンズ群の屈折力が過度に強くなり、変倍に伴う球面収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(4)の下限値を0.310にすることが望ましい。   If the corresponding value of the conditional expression (4) is less than the lower limit value, the refractive power of the first lens unit becomes excessively strong, and it becomes difficult to suppress the variation of spherical aberration due to zooming. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (4) to 0.310.

条件式(4)の対応値が上限値を上回ると、第1レンズ群の屈折力が過度に弱くなるため、所定の変倍比を得るためには第1レンズ群の像面に対する移動量を増やす必要がある。そうすると、広角端状態から望遠端状態への変倍に際して軸外光束の通る光軸からの高さの変動が大きくなるため、軸外収差、特に非点収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(4)の上限値を0.480にすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(4)の上限値を0.440にすることが望ましい。   When the corresponding value of the conditional expression (4) exceeds the upper limit value, the refractive power of the first lens group becomes excessively weak. Therefore, in order to obtain a predetermined zoom ratio, the amount of movement of the first lens group relative to the image plane is set. Need to increase. Then, when the magnification is changed from the wide-angle end state to the telephoto end state, the variation in height from the optical axis through which the off-axis light beam passes increases, making it difficult to suppress off-axis aberrations, particularly astigmatism variation. End up. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (4) to 0.480. In order to further secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (4) to 0.440.

また、本発明の変倍光学系は、次の条件式(5)を満足することが望ましい。
(5) 0.0300 < (−f2)/ft < 0.0700
ただし、
ft:望遠端状態における変倍光学系全系の焦点距離
f2:前記第2レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present invention satisfies the following conditional expression (5).
(5) 0.0300 <(− f2) / ft <0.0700
However,
ft: focal length of the entire variable magnification optical system in the telephoto end state f2: focal length of the second lens group

条件式(5)は、広角端状態から望遠端状態への変倍に際し、第1レンズ群で発生した収差変動を補正しつつ、第2レンズ群で発生する収差変動を抑え、高い光学性能を実現するための条件式である。   Conditional expression (5) suppresses the aberration fluctuation generated in the second lens group and corrects the aberration fluctuation generated in the first lens group at the time of zooming from the wide-angle end state to the telephoto end state, and achieves high optical performance. It is a conditional expression for realizing.

条件式(5)の対応値が下限値を下回ると、第2レンズ群の屈折力が過度に強くなる。すると、広角端状態から望遠端状態への変倍に伴う球面収差や非点収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(5)の下限値を0.0360とすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(5)の下限値を0.0410とすることが望ましい。   When the corresponding value of conditional expression (5) is below the lower limit value, the refractive power of the second lens group becomes excessively strong. As a result, it becomes difficult to suppress variations in spherical aberration and astigmatism associated with zooming from the wide-angle end state to the telephoto end state. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (5) to 0.0360. In order to further secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (5) to 0.0410.

条件式(5)の対応値が上限値を上回ると、第2レンズ群の屈折力が過度に弱くなり、第2レンズ群の移動量が増大する。すると、広角端状態から望遠端状態への変倍の際、第1レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(5)の上限値を0.0630にすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(5)の上限値を0.0570にすることが望ましい。   When the corresponding value of conditional expression (5) exceeds the upper limit value, the refractive power of the second lens group becomes excessively weak, and the amount of movement of the second lens group increases. As a result, it becomes difficult to suppress fluctuations in spherical aberration and astigmatism that occur in the first lens group during zooming from the wide-angle end state to the telephoto end state. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (5) to 0.0630. In order to further secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (5) to 0.0570.

また、本発明の変倍光学系は、次の条件式(6)を満足することが望ましい。
(6) 0.050 < f3/ft < 0.150
ただし、
ft:望遠端状態における変倍光学系全系の焦点距離
f3:前記第3レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present invention satisfies the following conditional expression (6).
(6) 0.050 <f3 / ft <0.150
However,
ft: focal length of the entire variable magnification optical system in the telephoto end state f3: focal length of the third lens group

条件式(6)は、広角端状態から望遠端状態への変倍に際し、第1レンズ群で発生した収差変動を補正しつつ、第3レンズ群で発生する収差変動を抑え、高い光学性能を実現するための条件式である。   Conditional expression (6) suppresses the aberration fluctuation generated in the third lens group and corrects the aberration fluctuation generated in the first lens group at the time of zooming from the wide-angle end state to the telephoto end state, and achieves high optical performance. It is a conditional expression for realizing.

条件式(6)の対応値が下限値を下回ると、第3レンズ群の屈折力が過度に強くなる。すると、広角端状態から望遠端状態への変倍に伴う球面収差の変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(6)の下限値を0.065とすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(6)の下限値を0.075とすることが望ましい。   When the corresponding value of conditional expression (6) is below the lower limit value, the refractive power of the third lens group becomes excessively strong. Then, it becomes difficult to suppress the variation of the spherical aberration accompanying the zooming from the wide angle end state to the telephoto end state. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (6) to 0.065. In order to further secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (6) to 0.075.

条件式(6)の対応値が上限値を上回ると、第3レンズ群の屈折力が過度に弱くなる。すると、広角端状態から望遠端状態への変倍に伴う、第1レンズ群で発生する球面収差変動を抑えることが困難となってしまう。その結果、高い光学性能を実現できなくなり、好ましくない。なお、本発明の効果を確実にするために、条件式(6)の上限値を0.130にすることが望ましい。また、本発明の効果をさらに確実にするために、条件式(6)の上限値を0.110にすることが望ましい。   When the corresponding value of conditional expression (6) exceeds the upper limit value, the refractive power of the third lens group becomes excessively weak. Then, it becomes difficult to suppress spherical aberration fluctuations that occur in the first lens group due to zooming from the wide-angle end state to the telephoto end state. As a result, high optical performance cannot be realized, which is not preferable. In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (6) to 0.130. In order to further secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (6) to 0.110.

また、本発明の変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群は、像面に対して物体側へ移動することが望ましい。このような構成とすることにより、第1レンズ群の屈折力を弱くすることが可能となり、広角端状態から望遠端状態への変倍の際の非点収差の変動を抑えて高い光学性能を実現することができる。   In the zoom optical system according to the present invention, it is desirable that the first lens unit moves toward the object side with respect to the image plane when zooming from the wide-angle end state to the telephoto end state. With such a configuration, it is possible to weaken the refractive power of the first lens unit, and it is possible to suppress high fluctuations in astigmatism during zooming from the wide-angle end state to the telephoto end state, thereby achieving high optical performance. Can be realized.

また、本発明の変倍光学系は、広角端状態から望遠端状態への変倍の際、第3レンズ群と第4レンズ群との間隔は増加し、第4レンズ群と第5レンズ群との間隔は減少することが望ましい。このような構成とすることにより、広角端状態より望遠端状態の方が、第3レンズ群から第5レンズ群の合成の主点位置を物体側に移動できるため、効率的に変倍することが可能となる。その分各レンズ群の屈折力あるいは移動量を抑えることが可能となり、高い性能の変倍光学系を実現できる。   In the variable power optical system of the present invention, the distance between the third lens group and the fourth lens group increases during zooming from the wide-angle end state to the telephoto end state, and the fourth lens group and the fifth lens group. It is desirable that the interval between and be reduced. With such a configuration, in the telephoto end state than in the wide-angle end state, the main point position of the combination of the third lens unit to the fifth lens unit can be moved to the object side, so that the magnification can be changed efficiently. Is possible. Accordingly, it is possible to suppress the refractive power or the movement amount of each lens unit, and a high-performance variable power optical system can be realized.

また、本発明の変倍光学系は、広角端状態から望遠端状態への変倍の際、第3レンズ群と第5レンズ群とは像面に対して一体で移動することが望ましい。このような構成とすることにより、第3レンズ群と第5レンズ群とは一体で構成できるようになり、製造誤差による第3レンズ群から第5レンズ群間の相互偏心量を抑え、第3レンズ群から第5レンズ群間で発生する偏心コマ収差の発生を抑えることが可能となる。さらに変倍時に非点収差の変動を少なくすることができ、高い光学性能を実現できる。   In the zoom optical system of the present invention, it is desirable that the third lens group and the fifth lens group move integrally with respect to the image plane when zooming from the wide-angle end state to the telephoto end state. By adopting such a configuration, the third lens group and the fifth lens group can be configured integrally, and the amount of mutual eccentricity between the third lens group and the fifth lens group due to manufacturing errors is suppressed, and the third lens group is reduced. It is possible to suppress the occurrence of decentration coma generated between the lens group and the fifth lens group. Furthermore, astigmatism fluctuations can be reduced during zooming, and high optical performance can be realized.

また、本発明の変倍光学系は、第2レンズ群より像側に開口絞りを有することが望ましい。このような構成とすることにより、広角端状態から望遠端状態への変倍に伴う歪曲収差の変動を抑えて高い光学性能を実現できる。   Further, it is desirable that the variable magnification optical system of the present invention has an aperture stop closer to the image side than the second lens group. By adopting such a configuration, it is possible to realize high optical performance by suppressing fluctuations in distortion associated with zooming from the wide-angle end state to the telephoto end state.

また、本発明の変倍光学系は、第2レンズ群と第3レンズ群との間に開口絞りを有することが望ましい。このような構成とすることにより、広角端状態から望遠端状態への変倍に伴う歪曲収差の変動を抑えて、高い光学性能を実現できる。   In the zoom optical system of the present invention, it is desirable to have an aperture stop between the second lens group and the third lens group. By adopting such a configuration, it is possible to achieve high optical performance by suppressing fluctuations in distortion associated with zooming from the wide-angle end state to the telephoto end state.

また、本発明の変倍光学系は、広角端状態から望遠端状態への変倍の際、開口絞りは、第3レンズ群と一体に移動するように配置することが望ましい。このような構成とすることにより、広角端状態から望遠端状態への変倍に際し、第3レンズ群を通る軸外光線の変化を抑え、コマ収差や像面湾曲、非点収差の変動を抑えることが可能となり、高い光学性能を実現できる。   In the zoom optical system according to the present invention, it is desirable that the aperture stop be arranged so as to move integrally with the third lens group when zooming from the wide-angle end state to the telephoto end state. With such a configuration, during zooming from the wide-angle end state to the telephoto end state, changes in off-axis rays passing through the third lens group are suppressed, and variations in coma, field curvature, and astigmatism are suppressed. And high optical performance can be realized.

また、本発明の光学装置は、上述した構成の変倍光学系を有することを特徴とする。これにより、充分に高い光学性能を備えた光学装置を実現することができる。   The optical device of the present invention is characterized by having the variable magnification optical system having the above-described configuration. Thereby, an optical device having sufficiently high optical performance can be realized.

また、本発明の変倍光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、前記第1レンズ群と前記第2レンズ群と前記第3レンズ群と前記第4レンズ群と前記第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して移動し、前記第1レンズ群と第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化するように構成し、次の条件式(1)を満足するようにすることを特徴とする。
(1) 6.500 < f1/(−f2) < 10.000
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Further, the variable magnification optical system manufacturing method of the present invention includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing a variable magnification optical system having a third lens group having a refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, wherein the first lens The first lens group is placed on the image plane during zooming of the group, the second lens group, the third lens group, the fourth lens group, and the fifth lens group from the wide-angle end state to the telephoto end state. The distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the third lens group and the fourth lens The distance between the fourth lens group and the fifth lens group is changed. The distance between the fourth lens group and the fifth lens group is changed. Characterized in that so as to satisfy matter equation (1).
(1) 6.500 <f1 / (− f2) <10.000
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

斯かる変倍光学系の製造方法により、充分に高い光学性能を備えた変倍光学系を製造することができる。   With such a variable magnification optical system manufacturing method, a variable magnification optical system having sufficiently high optical performance can be manufactured.

(数値実施例)
以下、本発明の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(Numerical example)
A variable magnification optical system according to numerical examples of the present invention will be described below with reference to the accompanying drawings.

(第1実施例)
図1は、本発明の第1実施例に係る変倍光学系ZL1のレンズ構成を示す断面図である。
(First embodiment)
FIG. 1 is a sectional view showing the lens configuration of a variable magnification optical system ZL1 according to the first example of the present invention.

図1に示すように、本実施例に係る変倍光学系ZL1は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。   As shown in FIG. 1, the variable magnification optical system ZL1 according to this example includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. The lens group G2 includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

本実施例に係る変倍光学系ZL1は、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少し、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少する。また、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は物体側へ移動し、第3レンズ群G3と第4レンズ群G4と第5レンズ群G5とは単調に物体側へ移動する。また、第3レンズ群G3と第5レンズ群G5とは、像面Iに対して一体で移動する。   In the zoom optical system ZL1 according to the present embodiment, when zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 And the third lens group G3 are decreased, the distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is decreased. The first lens group G1 moves monotonously toward the object side with respect to the image plane I, the second lens group G2 moves toward the object side, and the third lens group G3, the fourth lens group G4, and the fifth lens. It moves to the object side monotonously with the group G5. The third lens group G3 and the fifth lens group G5 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、両凸レンズL13とから構成される。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex lens L12, and a biconvex lens L13.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成され、第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. The negative meniscus lens L21 including the lens and positioned closest to the object side of the second lens group G2 is a composite aspheric lens in which a resin layer is provided on the object side lens surface to form an aspheric surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成される。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. The

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成され、第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. The biconcave lens L41 located on the most object side of the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成され、第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、L54レンズから射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The positive meniscus lens L51 located on the most object side of the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side, and the light beam emitted from the L54 lens is coupled to the image plane I. Image.

以下の表1に、本発明の第1実施例に係る変倍光学系ZL1の諸元値を掲げる。   Table 1 below lists specifications of the variable magnification optical system ZL1 according to the first example of the present invention.

表1中の[全体諸元]において、fは変倍光学系全体の焦点距離、FNOはFナンバー、ωは半画角(単位:度)、Yは像高、TLは無限遠合焦状態における第1レンズ群G1の最も物体側の面から像面Iまでのレンズ全長をそれぞれ示している。Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態の各焦点距離状態をそれぞれ示す。   In [Overall specifications] in Table 1, f is the focal length of the entire variable magnification optical system, FNO is the F number, ω is the half angle of view (unit: degree), Y is the image height, and TL is in focus at infinity. The total lens length from the most object-side surface of the first lens group G1 to the image plane I in FIG. W indicates a wide angle end state, M indicates an intermediate focal length state, and T indicates a focal length state in a telephoto end state.

[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、(絞り)は開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示し、空気の屈折率d=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に*印を付して曲率半径rの欄には近軸曲率半径を示している。   In [Surface Data], the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surfaces, d is the distance between the lens surfaces, nd is the refractive index with respect to the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). The object plane indicates the object plane, (aperture) indicates the aperture stop S, and the image plane indicates the image plane I. Note that the radius of curvature r = ∞ indicates a plane, and the description of the refractive index of air d = 1.00000 is omitted. When the lens surface is an aspheric surface, the surface number is marked with * and the paraxial radius of curvature is shown in the column of the radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の近軸曲率半径r、円錐定数κ、および非球面係数A4〜A10を示す。   [Aspherical data] shows paraxial curvature radius r, conic constant κ, and aspherical coefficients A4 to A10 when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.

x=(h2/r)/[1+{1−κ(h/r)21/2]+A4h4+A6h6+A8h8+A10h10
ここで、xは、面の頂点を基準としたときの光軸からの高さhの位置での光軸方向の変位である。また、「E−n」は「×10−n」を示し、例えば、「1.234E−05」は、「1.234×10−5」を示す。
x = (h 2 / r) / [1+ {1-κ (h / r) 2 } 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, x is the displacement in the optical axis direction at the position of the height h from the optical axis when the vertex of the surface is used as a reference. In addition, “E−n” indicates “× 10 −n ”, for example, “1.234E-05” indicates “1.234 × 10 −5 ”.

[可変間隔データ]には、焦点距離f、可変間隔、および開口絞り径φの値を示す。   [Variable interval data] indicates values of the focal length f, the variable interval, and the aperture stop diameter φ.

[レンズ群データ]には、各レンズ群の始面番号と焦点距離を示す。   [Lens Group Data] indicates the start surface number and focal length of each lens group.

[条件式対応値]は各条件式の対応値をそれぞれ示す。   [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression.

ここで、表1に記載されている焦点距離fや曲率半径r、およびその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。   Here, “mm” is generally used as the unit of the focal length f, the radius of curvature r, and other lengths described in Table 1. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.

なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。   In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[全体諸元]
W M T
f 18.56080 104.15546 291.57422
FNO 3.60 5.60 5.87
2ω 77.91 14.91 5.42
Y 14.20 14.20 14.20
TL 163.29692 225.59510 252.97281

[面データ]
面番号 r d νd nd
物面 ∞
1) 205.09180 2.00000 40.76 1.882997
2) 67.52420 9.07190 91.20 1.456000
3) −361.42710 0.10000
4) 70.10040 6.86700 65.46 1.603001
5) −2470.83790 (D5)
*6) 84.76870 0.15000 38.09 1.553890
7) 73.93750 1.20000 42.72 1.834807
8) 17.03670 6.46970
9) −49.48220 1.00000 46.62 1.816000
10) 52.14060 0.15000
11) 31.61490 5.45080 26.56 1.761820
12) −44.44820 1.19350
13) −25.13580 1.00000 46.62 1.816000
14) 64.50360 2.42190 22.79 1.808090
15) −166.54310 (D15)
16) (絞り) ∞ 1.00000
17) 63.10220 3.49130 67.87 1.593190
18) −50.22150 0.10000
19) 58.68260 2.72200 70.41 1.487490
20) −121.43450 0.10000
21) 48.64320 4.10420 70.41 1.487490
22) −34.50080 1.00000 22.79 1.808090
23) −205.15990 (D23)
*24) −66.96860 1.00000 53.20 1.693501
25) 26.57120 2.15810 26.56 1.761820
26) 63.33840 4.78730
27) −24.70410 1.00000 54.66 1.729157
28) −74.86360 (D28)
*29) −569.79420 3.96090 61.16 1.589130
30) −23.53500 0.10000
31) 37.14850 5.00600 70.41 1.487490
32) −45.19690 1.71640
33) −107.03630 1.00000 40.76 1.882997
34) 23.36210 4.50160 45.79 1.548141
35) −637.55850 (BF)
像面 ∞

[非球面データ]
面番号:6
κ = 1.0000
A4 = 3.61880E−06
A6 =−6.10680E−09
A8 =−4.67380E−12
A10= 5.77660E−14

面番号:24
κ = 1.0000
A4 = 3.81940E−06
A6 =−1.72450E−09
A8 = 0.00000E+00
A10= 0.00000E+00

面番号:29
κ = 1.0000
A4 =−1.63630E−05
A6 = 8.94380E−09
A8 =−2.98150E−11
A10= 2.87630E−14

[可変間隔データ]
W M T
f 18.56080 104.15546 291.57422
D5 2.14670 55.86030 80.53690
D15 34.33830 11.46250 2.00000
D23 3.38750 10.66930 11.83690
D28 9.44940 2.16760 1.00000
BF 39.15242 70.61280 82.77641
φ 16.20 18.00 19.90

[レンズ群データ]
始面 焦点距離
G1 1 122.10406
G2 6 −15.86654
G3 16 26.56694
G4 24 −24.00147
G5 29 33.81791

[各条件式対応値]
(1)f1/(−f2)=7.696
(2)f3/(−f4)=1.107
(3)f1/fw=6.579
(4)f1/ft=0.419
(5)(−f2)/ft=0.0544
(6)f3/ft=0.0911
(Table 1) First Example [Overall Specifications]
W M T
f 18.56080 104.15546 291.57422
FNO 3.60 5.60 5.87
2ω 77.91 14.91 5.42
Y 14.20 14.20 14.20
TL 163.29692 225.59510 252.97281

[Surface data]
Surface number r d νd nd
Object ∞
1) 205.09180 2.00000 40.76 1.882997
2) 67.52420 9.07190 91.20 1.456000
3) −361.42710 0.10000
4) 70.10040 6.86700 65.46 1.603001
5) -2470.83790 (D5)
* 6) 84.76870 0.15000 38.09 1.553890
7) 73.93750 1.20000 42.72 1.834807
8) 17.03670 6.46970
9) −49.48220 1.00000 46.62 1.816000
10) 52.14060 0.15000
11) 31.61490 5.45080 26.56 1.761820
12) −44.44820 1.19350
13) −25.13580 1.00000 46.62 1.816000
14) 64.50360 2.42190 22.79 1.808090
15) −166.54310 (D15)
16) (Aperture) ∞ 1.00000
17) 63.10220 3.49130 67.87 1.593190
18) −50.22150 0.10000
19) 58.68260 2.72200 70.41 1.487490
20) −121.43450 0.10000
21) 48.64320 4.10420 70.41 1.487490
22) −34.50080 1.00000 22.79 1.808090
23) -205.15990 (D23)
* 24) -66.96860 1.00000 53.20 1.693501
25) 26.57120 2.15810 26.56 1.761820
26) 63.33840 4.78730
27) −24.70410 1.00000 54.66 1.729157
28) −74.86360 (D28)
* 29) -569.79420 3.96090 61.16 1.589130
30) −23.53500 0.10000
31) 37.14850 5.00600 70.41 1.487490
32) −45.19690 1.71640
33) −107.03630 1.00000 40.76 1.882997
34) 23.36210 4.50160 45.79 1.548141
35) −637.55850 (BF)
Image plane ∞

[Aspherical data]
Surface number: 6
κ = 1.0000
A4 = 3.61880E-06
A6 = −6.10680E−09
A8 = −4.67380E−12
A10 = 5.77660E-14

Surface number: 24
κ = 1.0000
A4 = 3.81940E-06
A6 = −1.72450E−09
A8 = 0.00000E + 00
A10 = 0.00000E + 00

Surface number: 29
κ = 1.0000
A4 = -1.663630E-05
A6 = 8.94380E−09
A8 = -2.98150E-11
A10 = 2.87630E-14

[Variable interval data]
W M T
f 18.56080 104.15546 291.57422
D5 2.14670 55.86030 80.53690
D15 34.33830 11.46250 2.00000
D23 3.38750 10.66930 11.83690
D28 9.44940 2.16760 1.00000
BF 39.15242 70.61280 82.77641
φ 16.20 18.00 19.90

[Lens group data]
Start surface Focal length
G1 1 122.10406
G2 6 −15.86654
G3 16 26.56694
G4 24 −24.00147
G5 29 33.81791

[Values for each conditional expression]
(1) f1 / (− f2) = 7.696
(2) f3 / (− f4) = 1.107
(3) f1 / fw = 6.579
(4) f1 / ft = 0.419
(5) (−f2) /ft=0.0544
(6) f3 / ft = 0.0911

図2は、第1実施例に係る変倍光学系ZL1の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。   2A and 2B are graphs showing various aberrations of the variable magnification optical system ZL1 according to the first example when focusing on infinity. FIG. 2A is a wide-angle end state, FIG. 2B is an intermediate focal length state, and FIG. Each end state is shown.

各収差図において、FNOはFナンバーを、Aは半画角(単位:度)をそれぞれ示している。また、図中のdはd線(波長λ=587.6nm)での収差曲線を示し、gはg線(波長λ=435.8nm)での収差曲線を示し、記載のないものはd線での収差曲線を示す。非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。コマ収差を示す収差図は、各半画角において、d線およびg線に対するメリディオナルコマ収差を表している。なお、以下に示す各実施例の諸収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO indicates an F number, and A indicates a half angle of view (unit: degree). In the figure, d indicates an aberration curve at the d-line (wavelength λ = 587.6 nm), g indicates an aberration curve at the g-line (wavelength λ = 435.8 nm), and those not described are d-line The aberration curve at is shown. In the aberration diagram showing astigmatism, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The aberration diagram showing coma represents the meridional coma with respect to the d-line and the g-line at each half angle of view. In addition, in the various aberration diagrams of the following examples, the same reference numerals as those of the present example are used.

各収差図から明らかなように、第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、高い光学性能を有することがわかる。   As is apparent from each aberration diagram, it is understood that the variable magnification optical system ZL1 according to the first example has excellent optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第2実施例)
図3は、本発明の第2実施例に係る変倍光学系ZL2のレンズ構成を示す断面図である。
(Second embodiment)
FIG. 3 is a sectional view showing the lens configuration of the variable magnification optical system ZL2 according to the second example of the present invention.

図3に示すように、本実施例に係る変倍光学系ZL2は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。   As shown in FIG. 3, the variable magnification optical system ZL2 according to the present embodiment includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. The lens group G2 includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

本実施例に係る変倍光学系ZL2は、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少し、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少する。また、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は物体側へ移動し、第3レンズ群G3と第4レンズ群G4と第5レンズ群G5とは単調に物体側へ移動する。また、第3レンズ群G3と第5レンズ群G5とは、像面Iに対して一体で移動する。   In the zoom optical system ZL2 according to the present embodiment, when zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 And the third lens group G3 are decreased, the distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is decreased. The first lens group G1 moves monotonously toward the object side with respect to the image plane I, the second lens group G2 moves toward the object side, and the third lens group G3, the fourth lens group G4, and the fifth lens. It moves to the object side monotonously with the group G5. The third lens group G3 and the fifth lens group G5 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成され、第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. The negative meniscus lens L21 including the lens and positioned closest to the object side of the second lens group G2 is a composite aspheric lens in which a resin layer is provided on the object side lens surface to form an aspheric surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成される。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. The

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成され、第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. The biconcave lens L41 located on the most object side of the fourth lens group G4 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成され、第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、L54レンズから射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The positive meniscus lens L51 located on the most object side of the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side, and the light beam emitted from the L54 lens is coupled to the image plane I. Image.

以下の表2に、本発明の第2実施例に係る変倍光学系ZL2の諸元値を掲げる。   Table 2 below lists specifications of the variable magnification optical system ZL2 according to the second example of the present invention.

(表2)第2実施例
[全体諸元]
W M T
f 18.52363 104.52143 291.21725
FNO 3.61 5.69 5.90
2ω 77.78 14.84 5.42
Y 14.20 14.20 14.20
TL 164.74420 225.48860 251.39424

[面データ]
面番号 r d νd nd
物面 ∞
1) 186.59960 2.20000 37.17 1.834000
2) 69.08900 8.80000 82.56 1.497820
3) −494.44545 0.10000
4) 73.40222 6.45000 67.87 1.593190
5) 2016.71160 (D5)
*6) 84.85000 0.10000 38.09 1.553890
7) 74.02192 1.20000 42.72 1.834810
8) 17.09747 6.95000
9) −37.97970 1.00000 46.63 1.816000
10) 77.67127 0.15000
11) 36.26557 5.30000 25.68 1.784720
12) −36.26557 0.80000
13) −25.69642 1.00000 46.63 1.816000
14) 66.08300 2.05000 22.79 1.808090
15) −666.70366 (D15)
16) (絞り) ∞ 1.00000
17) 68.30727 3.40000 67.87 1.593190
18) −47.99596 0.10000
19) 68.52367 2.45000 70.45 1.487490
20) −136.98392 0.10000
21) 46.52671 4.20000 70.45 1.487490
22) −36.16400 1.00000 22.79 1.808090
23) −202.95328 (D23)
*24) −55.09840 0.20000 38.09 1.553890
25) −57.24715 0.90000 55.52 1.696800
26) 28.15100 2.15000 28.46 1.728250
27) 87.70856 4.35000
28) −26.69877 1.00000 54.66 1.729160
29) −76.47707 (D29)
*30) −333.89500 4.65000 61.18 1.589130
31) −24.64395 0.10000
32) 31.19625 5.85000 70.45 1.487490
33) −43.38887 1.45000
34) −109.71645 1.00000 40.77 1.883000
35) 20.29920 5.30000 45.79 1.548140
36) −808.81321 (BF)
像面 ∞

[非球面データ]
面番号:6
κ = 1.0000
A4 = 3.13350E−06
A6 = 4.73080E−10
A8 =−3.40500E−11
A10= 1.16620E−13

面番号:24
κ = 1.0000
A4 = 5.24030E−06
A6 =−2.00730E−09
A8 = 0.00000E+00
A10= 0.00000E+00

面番号:30
κ = 1.0000
A4 =−1.54020E−05
A6 = 1.69500E−09
A8 = 1.34490E−11
A10=−2.07220E−13

[可変間隔データ]
W M T
f 18.52363 104.52143 291.21725
D5 2.15700 53.25650 76.94960
D15 33.80140 11.31350 2.00000
D23 3.45650 11.60170 13.04330
D29 10.58680 2.44160 1.00000
BF 39.44250 71.57530 83.10134
φ 15.80 17.50 19.60

[レンズ群データ]
始面 焦点距離
G1 1 118.96910
G2 6 −15.62542
G3 16 27.17463
G4 24 −25.41506
G5 30 34.39022

[各条件式対応値]
(1)f1/(−f2)=7.614
(2)f3/(−f4)=1.069
(3)f1/fw=6.423
(4)f1/ft=0.409
(5)(−f2)/ft=0.0537
(6)f3/ft=0.0933
(Table 2) Second embodiment [Overall specifications]
W M T
f 18.52363 104.52143 291.21725
FNO 3.61 5.69 5.90
2ω 77.78 14.84 5.42
Y 14.20 14.20 14.20
TL 164.74420 225.48860 251.39424

[Surface data]
Surface number r d νd nd
Object ∞
1) 186.59960 2.20000 37.17 1.834000
2) 69.08900 8.80000 82.56 1.497820
3) −494.44545 0.10000
4) 73.40222 6.45000 67.87 1.593190
5) 2016.71160 (D5)
* 6) 84.85000 0.10000 38.09 1.553890
7) 74.02192 1.20000 42.72 1.834810
8) 17.09747 6.95000
9) −37.97970 1.00000 46.63 1.816000
10) 77.67127 0.15000
11) 36.26557 5.30000 25.68 1.784720
12) −36.26557 0.80000
13) −25.69642 1.00000 46.63 1.816000
14) 66.08300 2.05000 22.79 1.808090
15) −666.70366 (D15)
16) (Aperture) ∞ 1.00000
17) 68.30727 3.40000 67.87 1.593190
18) −47.99596 0.10000
19) 68.52367 2.45000 70.45 1.487490
20) −136.98392 0.10000
21) 46.52671 4.20000 70.45 1.487490
22) −36.16400 1.00000 22.79 1.808090
23) −202.95328 (D23)
* 24) -55.09840 0.20000 38.09 1.553890
25) −57.24715 0.90000 55.52 1.696800
26) 28.15100 2.15000 28.46 1.728250
27) 87.70856 4.35000
28) −26.69877 1.00000 54.66 1.729160
29) −76.47707 (D29)
* 30) -333.89500 4.65000 61.18 1.589130
31) −24.64395 0.10000
32) 31.19625 5.85000 70.45 1.487490
33) −43.38887 1.45000
34) −109.71645 1.00000 40.77 1.883000
35) 20.29920 5.30000 45.79 1.548140
36) −808.81321 (BF)
Image plane ∞

[Aspherical data]
Surface number: 6
κ = 1.0000
A4 = 3.13350E-06
A6 = 4.73080E-10
A8 = -3.40500E-11
A10 = 1.16620E-13

Surface number: 24
κ = 1.0000
A4 = 5.24030E-06
A6 = −2.00730E−09
A8 = 0.00000E + 00
A10 = 0.00000E + 00

Surface number: 30
κ = 1.0000
A4 = -1.54020E-05
A6 = 1.69500E−09
A8 = 1.34490E-11
A10 = −2.07220E−13

[Variable interval data]
W M T
f 18.52363 104.52143 291.21725
D5 2.15700 53.25650 76.94960
D15 33.80140 11.31350 2.00000
D23 3.45650 11.60170 13.04330
D29 10.58680 2.44160 1.00000
BF 39.44250 71.57530 83.10134
φ 15.80 17.50 19.60

[Lens group data]
Start surface Focal length
G1 1 118.96910
G2 6 −15.62542
G3 16 27.17463
G4 24 −25.41506
G5 30 34.39022

[Values for each conditional expression]
(1) f1 / (− f2) = 7.614
(2) f3 / (− f4) = 1.069
(3) f1 / fw = 6.423
(4) f1 / ft = 0.409
(5) (−f2) /ft=0.0537
(6) f3 / ft = 0.0933

図4は、第2実施例に係る変倍光学系ZL2の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している。   4A and 4B are graphs showing various aberrations of the variable magnification optical system ZL2 according to the second example when focusing on infinity, where FIG. 4A is a wide-angle end state, FIG. 4B is an intermediate focal length state, and FIG. 4C is telephoto. Each end state is shown.

各収差図から明らかなように、第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、高い光学性能を有することがわかる。   As is apparent from each aberration diagram, it is understood that the variable magnification optical system ZL2 according to the second example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図5は、本発明の第3実施例に係る変倍光学系ZL3のレンズ構成を示す断面図である。
(Third embodiment)
FIG. 5 is a sectional view showing the lens configuration of the variable magnification optical system ZL3 according to the third example of the present invention.

図5に示すように、本実施例に係る変倍光学系ZL3は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。   As shown in FIG. 5, the variable magnification optical system ZL3 according to the present embodiment includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. The lens group G2 includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

本実施例に係る変倍光学系ZL3は、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少し、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少する。また、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は物体側へ移動し、第3レンズ群G3と第4レンズ群G4と第5レンズ群G5とは単調に物体側へ移動する。   In the variable magnification optical system ZL3 according to the present example, when the magnification is changed from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 And the third lens group G3 are decreased, the distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is decreased. The first lens group G1 moves monotonously toward the object side with respect to the image plane I, the second lens group G2 moves toward the object side, and the third lens group G3, the fourth lens group G4, and the fifth lens. It moves to the object side monotonously with the group G5.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成され、第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. The negative meniscus lens L21 including the lens and positioned closest to the object side of the second lens group G2 is a composite aspheric lens in which a resin layer is provided on the object side lens surface to form an aspheric surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成される。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. The

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成され、第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. The biconcave lens L41 located on the most object side of the fourth lens group G4 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第5レンズ群G5は、光軸に沿って物体側から順に、両凸レンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成され、第5レンズ群G5の最も物体側に位置する両凸レンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、L54レンズから射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a biconvex lens L51, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The biconvex lens L51 located on the object side is a glass mold aspheric lens having an aspheric lens surface on the object side, and the light beam emitted from the L54 lens forms an image on the image plane I.

以下の表3に、本発明の第3実施例に係る変倍光学系ZL3の諸元値を掲げる。   Table 3 below lists specifications of the variable magnification optical system ZL3 according to the third example of the present invention.

(表3)第3実施例
[全体諸元]
W M T
f 18.56060 104.65150 291.42454
FNO 3.58 5.62 5.81
2ω 77.60 14.88 5.44
Y 14.20 14.20 14.20
TL 164.76435 225.28899 250.61470

[面データ]
面番号 r d νd nd
物面 ∞
1) 175.60560 2.20000 37.16 1.834000
2) 67.43020 8.80000 82.52 1.497820
3) −587.78480 0.10000
4) 72.27100 6.45000 67.87 1.593190
5) 1826.13880 (D5)
*6) 84.76870 0.10000 38.09 1.553890
7) 73.93750 1.20000 42.72 1.834807
8) 17.18730 6.95000
9) −36.98220 1.00000 46.62 1.816000
10) 77.92630 0.15000
11) 36.63460 5.30000 25.68 1.784723
12) −36.63460 0.80000
13) −26.19910 1.00000 46.62 1.816000
14) 63.73960 2.05000 22.79 1.808090
15) −643.27060 (D15)
16) (絞り) ∞ 1.00000
17) 65.83650 3.40000 67.87 1.593190
18) −50.15460 0.10000
19) 65.68170 2.45000 70.41 1.487490
20) −154.97430 0.10000
21) 46.73330 4.20000 70.41 1.487490
22) −35.78330 1.00000 22.79 1.808090
23) −191.93180 (D23)
*24) −57.29660 0.20000 38.09 1.553890
25) −59.72500 0.90000 55.52 1.696797
26) 28.51000 2.15000 28.46 1.728250
27) 91.99760 4.14020
28) −32.89540 1.00000 54.66 1.729157
29) −144.33150 (D29)
*30) 6427.19190 4.65000 61.18 1.589130
31) −27.38180 0.10000
32) 31.47760 5.85000 70.41 1.487490
33) −43.75390 1.45000
34) −113.58970 1.00000 40.76 1.882997
35) 20.34810 5.30000 45.79 1.548141
36) −709.14530 (BF)
像面 ∞

[非球面データ]
面番号:6
κ = 1.0000
A4 = 2.88220E−06
A6 =−2.29350E−11
A8 =−2.35280E−11
A10= 9.21570E−14

面番号:24
κ = 1.0000
A4 = 4.32780E−06
A6 = 1.88460E−09
A8 = 0.00000E+00
A10= 0.00000E+00

面番号:30
κ = 1.0000
A4 =−1.36170E−05
A6 =−3.55860E−10
A8 = 1.83080E−11
A10=−1.86790E−13

[可変間隔データ]
W M T
f 18.56060 104.65150 291.42454
D5 2.15700 53.01000 76.25220
D15 33.36360 11.30360 2.00000
D23 3.46820 9.64300 9.62460
D29 11.83830 2.66290 1.00000
BF 38.84705 73.57929 86.64770
φ 15.80 17.50 19.60

[レンズ群データ]
始面 焦点距離
G1 1 117.72937
G2 6 −15.60945
G3 16 27.35473
G4 24 −26.50041
G5 30 35.20423

[各条件式対応値]
(1)f1/(−f2)=7.542
(2)f3/(−f4)=1.032
(3)f1/fw=6.343
(4)f1/ft=0.404
(5)(−f2)/ft=0.0536
(6)f3/ft=0.0939
(Table 3) Third Example [Overall Specifications]
W M T
f 18.56060 104.65150 291.42454
FNO 3.58 5.62 5.81
2ω 77.60 14.88 5.44
Y 14.20 14.20 14.20
TL 164.76435 225.28899 250.61470

[Surface data]
Surface number r d νd nd
Object ∞
1) 175.60560 2.20000 37.16 1.834000
2) 67.43020 8.80000 82.52 1.497820
3) −587.78480 0.10000
4) 72.27100 6.45000 67.87 1.593190
5) 1826.13880 (D5)
* 6) 84.76870 0.10000 38.09 1.553890
7) 73.93750 1.20000 42.72 1.834807
8) 17.18730 6.95000
9) −36.98220 1.00000 46.62 1.816000
10) 77.92630 0.15000
11) 36.63460 5.30000 25.68 1.784723
12) −36.63460 0.80000
13) −26.19910 1.00000 46.62 1.816000
14) 63.73960 2.05000 22.79 1.808090
15) −643.27060 (D15)
16) (Aperture) ∞ 1.00000
17) 65.83650 3.40000 67.87 1.593190
18) −50.15460 0.10000
19) 65.68170 2.45000 70.41 1.487490
20) -154.97430 0.10000
21) 46.73330 4.20000 70.41 1.487490
22) −35.78330 1.00000 22.79 1.808090
23) −191.93180 (D23)
* 24) -57.29660 0.20000 38.09 1.553890
25) −59.72500 0.90000 55.52 1.696797
26) 28.51000 2.15000 28.46 1.728250
27) 91.99760 4.14020
28) −32.89540 1.00000 54.66 1.729157
29) −144.33150 (D29)
* 30) 6427.19190 4.65000 61.18 1.589130
31) -27.38180 0.10000
32) 31.47760 5.85000 70.41 1.487490
33) −43.75390 1.45000
34) −113.58970 1.00000 40.76 1.882997
35) 20.34810 5.30000 45.79 1.548141
36) −709.14530 (BF)
Image plane ∞

[Aspherical data]
Surface number: 6
κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14

Surface number: 24
κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E−09
A8 = 0.00000E + 00
A10 = 0.00000E + 00

Surface number: 30
κ = 1.0000
A4 = −1.36170E−05
A6 = −3.55860E−10
A8 = 1.83080E-11
A10 = -1.86790E-13

[Variable interval data]
W M T
f 18.56060 104.65150 291.42454
D5 2.15700 53.01000 76.25220
D15 33.36360 11.30360 2.00000
D23 3.46820 9.64300 9.62460
D29 11.83830 2.66290 1.00000
BF 38.84705 73.57929 86.64770
φ 15.80 17.50 19.60

[Lens group data]
Start surface Focal length
G1 1 117.72937
G2 6 −15.60945
G3 16 27.35473
G4 24 -26.50041
G5 30 35.20423

[Values for each conditional expression]
(1) f1 / (− f2) = 7.542
(2) f3 / (− f4) = 1.032
(3) f1 / fw = 6.343
(4) f1 / ft = 0.404
(5) (−f2) /ft=0.0536
(6) f3 / ft = 0.0939

図6は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している
各収差図から明らかなように、第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、高い光学性能を有することがわかる。
6A and 6B are graphs showing various aberrations of the variable magnification optical system ZL3 according to the third example when focusing on infinity, where FIG. 6A is a wide-angle end state, FIG. 6B is an intermediate focal length state, and FIG. As is apparent from the respective aberration diagrams showing the end states, the variable magnification optical system ZL3 according to the third example has various optical aberrations well corrected from the wide-angle end state to the telephoto end state, and has high optical performance. It can be seen that

(第4実施例)
図7は、本発明の第4実施例に係る変倍光学系ZL4のレンズ構成を示す断面図である。
(Fourth embodiment)
FIG. 7 is a sectional view showing the lens configuration of the variable magnification optical system ZL4 according to the fourth example of the present invention.

図7に示すように、本実施例に係る変倍光学系ZL4は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。   As shown in FIG. 7, the variable magnification optical system ZL4 according to the present embodiment includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. The lens group G2 includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

本実施例に係る変倍光学系ZL4は、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少し、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少する。また、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は一旦物体側へ移動した後、像側へ移動し、第3レンズ群G3と第4レンズ群G4と第5レンズ群G5とは単調に物体側へ移動する。   In the variable magnification optical system ZL4 according to the present example, when the magnification is changed from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 And the third lens group G3 are decreased, the distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is decreased. Further, the first lens group G1 moves monotonously to the object side with respect to the image plane I, the second lens group G2 once moves to the object side, and then moves to the image side, and the third lens group G3 and the third lens group G3. The fourth lens group G4 and the fifth lens group G5 move to the object side monotonously.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成され、第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. The negative meniscus lens L21 including the lens and positioned closest to the object side of the second lens group G2 is a composite aspheric lens in which a resin layer is provided on the object side lens surface to form an aspheric surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と両凹レンズL34との接合レンズとから構成される。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a biconcave lens L34.

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、両凹レンズL43とから構成され、第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a biconcave lens L43. The biconcave lens L41 located closest to the object side of G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、光軸に沿って物体側から順に、両凸レンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成され、第5レンズ群G5の最も物体側に位置する両凸レンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、L54レンズから射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a biconvex lens L51, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The biconvex lens L51 located on the object side is a glass mold aspheric lens having an aspheric lens surface on the object side, and the light beam emitted from the L54 lens forms an image on the image plane I.

以下の表4に、本発明の第4実施例に係る変倍光学系ZL4の諸元値を掲げる。   Table 4 below lists specifications of the variable magnification optical system ZL4 according to the fourth example of the present invention.

(表4)第4実施例
[全体諸元]
W M T
f 18.53990 104.99890 290.97220
FNO 3.63 6.53 5.76
2ω 78.03 15.12 5.50
Y 14.20 14.20 14.20
TL 148.47975 223.45498 243.47962

[面データ]
面番号 r d νd nd
物面 ∞
1) 123.68736 2.00000 32.35 1.850260
2) 64.01149 7.49242 82.52 1.497820
3) −654.50843 0.10000
4) 62.71606 5.56614 67.87 1.593190
5) 338.21690 (D5)
*6) 86.10262 0.15000 38.09 1.553890
7) 74.17416 1.00000 42.72 1.834807
8) 14.60671 5.86842
9) −35.84059 1.00000 46.62 1.816000
10) 56.14027 0.10000
11) 30.62237 4.14127 26.56 1.761820
12) −34.27482 1.04557
13) −21.10387 1.00000 46.62 1.816000
14) 52.82811 2.37319 22.79 1.808090
15) −175.58495 (D15)
16) (絞り) ∞ 1.00000
17) 47.13420 3.04638 67.87 1.593190
18) −88.12740 0.10000
19) 45.40089 2.99049 70.41 1.487490
20) −120.66845 0.10000
21) 34.57498 3.89524 70.41 1.487490
22) −49.70198 1.00000 22.79 1.808090
23) 223.90298 (D23)
*24) −73.73632 1.00000 53.20 1.693501
25) 28.67060 2.32916 26.56 1.761820
26) 74.43881 3.83682
27) −142.03529 1.00000 54.66 1.729157
28) 611.00711 (D28)
*29) 180.26856 2.01608 61.16 1.589130
30) −89.35755 0.10000
31) 38.35930 4.60054 70.41 1.487490
32) −37.06377 0.10000
33) −77.14520 1.00000 40.76 1.882997
34) 26.69112 4.67728 45.79 1.548141
35) −63.34628 (BF)
像面 ∞

[非球面データ]
面番号:6
κ = 1.0000
A4 = 8.23380E−06
A6 =−7.61930E−09
A8 =−1.62910E−11
A10= 3.10500E−13

面番号:24
κ = 1.0000
A4 = 2.55060E−06
A6 = 8.47220E−09
A8 = 0.00000E+00
A10= 0.00000E+00

面番号:29
κ = 1.0000
A4 =−1.75960E−05
A6 = 2.57870E−09
A8 =−1.64390E−10
A10= 4.18260E−13

[可変間隔データ]
W M T
f 18.53990 104.99890 290.97220
D5 2.10000 42.81506 66.17464
D15 29.13697 9.15693 2.00000
D23 3.71917 3.41648 2.87636
D28 9.89485 2.31118 1.50000
BF 38.99975 101.12632 106.29961
φ 16.40 16.40 19.40

[レンズ群データ]
始面 焦点距離
G1 1 101.82826
G2 6 −12.57853
G3 16 26.11926
G4 24 −41.23076
G5 29 49.44213

[各条件式対応値]
(1)f1/(−f2)=8.095
(2)f3/(−f4)=0.633
(3)f1/fw=5.492
(4)f1/ft=0.350
(5)(−f2)/ft=0.0432
(6)f3/ft=0.0898
(Table 4) Fourth Example [Overall Specifications]
W M T
f 18.53990 104.99890 290.97220
FNO 3.63 6.53 5.76
2ω 78.03 15.12 5.50
Y 14.20 14.20 14.20
TL 148.47975 223.45498 243.47962

[Surface data]
Surface number r d νd nd
Object ∞
1) 123.68736 2.00000 32.35 1.850260
2) 64.01149 7.49242 82.52 1.497820
3) −654.50843 0.10000
4) 62.71606 5.56614 67.87 1.593190
5) 338.21690 (D5)
* 6) 86.10262 0.15000 38.09 1.553890
7) 74.17416 1.00000 42.72 1.834807
8) 14.60671 5.86842
9) −35.84059 1.00000 46.62 1.816000
10) 56.14027 0.10000
11) 30.62237 4.14127 26.56 1.761820
12) −34.27482 1.04557
13) −21.10387 1.00000 46.62 1.816000
14) 52.82811 2.37319 22.79 1.808090
15) −175.58495 (D15)
16) (Aperture) ∞ 1.00000
17) 47.13420 3.04638 67.87 1.593190
18) −88.12740 0.10000
19) 45.40089 2.99049 70.41 1.487490
20) −120.66845 0.10000
21) 34.57498 3.89524 70.41 1.487490
22) −49.70198 1.00000 22.79 1.808090
23) 223.90298 (D23)
* 24) -73.73632 1.00000 53.20 1.693501
25) 28.67060 2.32916 26.56 1.761820
26) 74.43881 3.83682
27) −142.03529 1.00000 54.66 1.729157
28) 611.00711 (D28)
* 29) 180.26856 2.01608 61.16 1.589130
30) −89.35755 0.10000
31) 38.35930 4.60054 70.41 1.487490
32) −37.06377 0.10000
33) −77.14520 1.00000 40.76 1.882997
34) 26.69112 4.67728 45.79 1.548141
35) −63.34628 (BF)
Image plane ∞

[Aspherical data]
Surface number: 6
κ = 1.0000
A4 = 8.23380E-06
A6 = −7.61930E−09
A8 = -1.62910E-11
A10 = 3.10500E-13

Surface number: 24
κ = 1.0000
A4 = 2.55060E-06
A6 = 8.47220E−09
A8 = 0.00000E + 00
A10 = 0.00000E + 00

Surface number: 29
κ = 1.0000
A4 = -1.775960E-05
A6 = 2.57870E−09
A8 = -1.664390E-10
A10 = 4.18260E-13

[Variable interval data]
W M T
f 18.53990 104.99890 290.97220
D5 2.10000 42.81506 66.17464
D15 29.13697 9.15693 2.00000
D23 3.71917 3.41648 2.87636
D28 9.89485 2.31118 1.50000
BF 38.99975 101.12632 106.29961
φ 16.40 16.40 19.40

[Lens group data]
Start surface Focal length
G1 1 101.82826
G2 6 −12.57853
G3 16 26.11926
G4 24 −41.23076
G5 29 49.44213

[Values for each conditional expression]
(1) f1 / (− f2) = 8.095
(2) f3 / (− f4) = 0.633
(3) f1 / fw = 5.492
(4) f1 / ft = 0.350
(5) (−f2) /ft=0.0432
(6) f3 / ft = 0.0898

図8は、第4実施例に係る変倍光学系ZL4の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している
各収差図から明らかなように、第4実施例に係る変倍光学系ZL4は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、高い光学性能を有することがわかる。
FIGS. 8A and 8B are graphs showing various aberrations of the variable magnification optical system ZL4 according to the fourth example at the time of focusing on infinity. FIG. 8A is a wide-angle end state, FIG. 8B is an intermediate focal length state, and FIG. As is apparent from the respective aberration diagrams showing the end states, the variable magnification optical system ZL4 according to the fourth example has various optical aberrations well corrected from the wide-angle end state to the telephoto end state, and has high optical performance. It can be seen that

(第5実施例)
図9は、本発明の第5実施例に係る変倍光学系ZL5のレンズ構成を示す断面図である。
(5th Example)
FIG. 9 is a sectional view showing a lens configuration of a variable magnification optical system ZL5 according to the fifth example of the present invention.

図9に示すように、本実施例に係る変倍光学系ZL5は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成される。   As shown in FIG. 9, the variable magnification optical system ZL5 according to the present embodiment includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. Lens group G2, third lens group G3 having positive refractive power, fourth lens group G4 having negative refractive power, fifth lens group G5 having positive refractive power, and negative refractive power The sixth lens group G6.

本実施例に係る変倍光学系ZL5は、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少し、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少し、第5レンズ群G5と第6レンズ群G6との間隔は増大する。また、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は物体側へ移動し、第3レンズ群G3と第4レンズ群G4と第5レンズ群G5と第6レンズ群G6とは単調に物体側へ移動する。   In the zoom optical system ZL5 according to the present embodiment, when zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 Between the third lens group G3 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, the distance between the fourth lens group G4 and the fifth lens group G5 decreases, The distance between the fifth lens group G5 and the sixth lens group G6 increases. The first lens group G1 moves monotonously toward the object side with respect to the image plane I, the second lens group G2 moves toward the object side, and the third lens group G3, the fourth lens group G4, and the fifth lens. The group G5 and the sixth lens group G6 move to the object side monotonously.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成され、第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. The negative meniscus lens L21 including the lens and positioned closest to the object side of the second lens group G2 is a composite aspheric lens in which a resin layer is provided on the object side lens surface to form an aspheric surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成される。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. The

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成され、第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. The biconcave lens L41 located on the most object side of the fourth lens group G4 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成され、第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The positive meniscus lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第6レンズ群G6は、物体側に凹面を向けた負メニスカスレンズL61から構成され、L61から射出した光線は像面Iに結像する。   The sixth lens group G6 includes a negative meniscus lens L61 having a concave surface directed toward the object side, and the light beam emitted from L61 forms an image on the image plane I.

以下の表5に、本発明の第5実施例ZL5に係る変倍光学系の諸元値を掲げる。   Table 5 below gives data values of the variable magnification optical system according to the fifth example ZL5 of the present invention.

(表5)第5実施例
[全体諸元]
W M T
f 18.54304 104.53686 291.20646
FNO 3.62 5.69 5.89
2ω 38.85 7.42 2.71
Y 14.20 14.20 14.20
TL 165.55254 226.22585 251.75712

[面データ]
面番号 r d νd nd
物面 ∞
1) 183.81280 2.20000 37.16 1.834000
2) 68.69030 8.80000 82.52 1.497820
3) −504.73840 0.10000
4) 73.06060 6.45000 67.87 1.593190
5) 2000.32320 (D5)
*6) 84.76870 0.10000 38.09 1.553890
7) 73.93750 1.20000 42.72 1.834807
8) 17.06200 6.95000
9) −37.93160 1.00000 46.62 1.816000
10) 77.23180 0.15000
11) 36.29670 5.30000 25.68 1.784723
12) −36.29670 0.80000
13) −25.70960 1.00000 46.62 1.816000
14) 66.95460 2.05000 22.79 1.808090
15) −589.98310 (D15)
16) (絞り) ∞ 1.00000
17) 67.92220 3.40000 67.87 1.593190
18) −48.85560 0.10000
19) 69.84590 2.45000 70.41 1.487490
20) −136.55010 0.10000
21) 47.36510 4.20000 70.41 1.487490
22) −36.08960 1.00000 22.79 1.808090
23) −200.73470 (D23)
*24) −53.53560 0.20000 38.09 1.553890
25) −55.64520 0.90000 55.52 1.696797
26) 28.77750 2.15000 28.46 1.728250
27) 94.20020 4.31840
28) −27.43210 1.00000 54.66 1.729157
29) −77.96130 (D29)
*30) −362.45900 4.65000 61.18 1.589130
31) −24.87170 0.10000
32) 31.18750 5.85000 70.41 1.487490
33) −43.35070 1.45000
34) −109.50450 1.00000 40.76 1.882997
35) 20.35760 5.30000 45.79 1.548141
36) −592.95680 (D36)
37) −685.03610 1.20000 70.41 1.487490
38) −1867.91160 (BF)
像面 ∞

[非球面データ]
面番号:6
κ = 1.0000
A4 = 3.14000E−06
A6 = 5.15000E−10
A8 =−3.39000E−11
A10= 1.15000E−13

面番号:24
κ = 1.0000
A4 = 5.16000E−06
A6 =−1.44000E−09
A8 = 0.00000E+00
A10= 0.00000E+00

面番号:30
κ = 1.0000
A4 =−1.53000E−05
A6 = 9.53000E−10
A8 = 1.81000E−11
A10=−2.21000E−13

[可変間隔データ]
W M T
f 18.54304 104.53686 291.20646
D5 2.15700 53.00860 76.40530
D15 33.96250 11.43850 2.00000
D23 3.47700 11.57560 13.01220
D29 10.53510 2.43660 1.00000
D36 1.00000 5.00490 10.10370
BF 37.95254 66.29325 72.76752
φ 15.80 17.50 19.60

[レンズ群データ]
始面 焦点距離
G1 1 118.23472
G2 6 −15.62566
G3 16 27.50442
G4 24 −25.94244
G5 30 34.27114
G6 37 −2219.77745

[各条件式対応値]
(1)f1/(−f2)=7.567
(2)f3/(−f4)=1.060
(3)f1/fw=6.376
(4)f1/ft=0.406
(5)(−f2)/ft=0.0537
(6)f3/ft=0.0944
(Table 5) Fifth embodiment [Overall specifications]
W M T
f 18.54304 104.53686 291.20646
FNO 3.62 5.69 5.89
2ω 38.85 7.42 2.71
Y 14.20 14.20 14.20
TL 165.55254 226.22585 251.75712

[Surface data]
Surface number r d νd nd
Object ∞
1) 183.81280 2.20000 37.16 1.834000
2) 68.69030 8.80000 82.52 1.497820
3) -504.73840 0.10000
4) 73.06060 6.45000 67.87 1.593190
5) 2000.32320 (D5)
* 6) 84.76870 0.10000 38.09 1.553890
7) 73.93750 1.20000 42.72 1.834807
8) 17.06 200 6.95000
9) −37.93160 1.00000 46.62 1.816000
10) 77.23180 0.15000
11) 36.29670 5.30000 25.68 1.784723
12) −36.29670 0.80000
13) −25.70960 1.00000 46.62 1.816000
14) 66.95460 2.05000 22.79 1.808090
15) −589.98310 (D15)
16) (Aperture) ∞ 1.00000
17) 67.92220 3.40000 67.87 1.593190
18) −48.85560 0.10000
19) 69.84590 2.45000 70.41 1.487490
20) −136.55010 0.10000
21) 47.36510 4.20000 70.41 1.487490
22) −36.08960 1.00000 22.79 1.808090
23) −200.73470 (D23)
* 24) -53.53560 0.20000 38.09 1.553890
25) −55.64520 0.90000 55.52 1.696797
26) 28.77750 2.15000 28.46 1.728250
27) 94.20020 4.31840
28) -27.43210 1.00000 54.66 1.729157
29) −77.96130 (D29)
* 30) −362.45900 4.65000 61.18 1.589130
31) −24.87170 0.10000
32) 31.18750 5.85000 70.41 1.487490
33) −43.35070 1.45000
34) −109.50450 1.00000 40.76 1.882997
35) 20.35760 5.30000 45.79 1.548141
36) −592.95680 (D36)
37) -685.03610 1.20000 70.41 1.487490
38) −1867.91160 (BF)
Image plane ∞

[Aspherical data]
Surface number: 6
κ = 1.0000
A4 = 3.14000E−06
A6 = 5.15000E-10
A8 = -3.39000E-11
A10 = 1.15000E-13

Surface number: 24
κ = 1.0000
A4 = 5.16000E-06
A6 = -1.44000E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00

Surface number: 30
κ = 1.0000
A4 = -1.53000E-05
A6 = 9.53000E-10
A8 = 1.81000E-11
A10 = −2.21000E−13

[Variable interval data]
W M T
f 18.54304 104.53686 291.20646
D5 2.15700 53.00860 76.40530
D15 33.96250 11.43850 2.00000
D23 3.47700 11.57560 13.01220
D29 10.53510 2.43660 1.00000
D36 1.00000 5.00490 10.10370
BF 37.95254 66.29325 72.76752
φ 15.80 17.50 19.60

[Lens group data]
Start surface Focal length
G1 1 118.23472
G2 6 −15.62566
G3 16 27.50442
G4 24 −25.94244
G5 30 34.27114
G6 37 −2219.77745

[Values for each conditional expression]
(1) f1 / (− f2) = 7.567
(2) f3 / (− f4) = 1.060
(3) f1 / fw = 6.376
(4) f1 / ft = 0.406
(5) (−f2) /ft=0.0537
(6) f3 / ft = 0.0944

図10は、第5実施例に係る変倍光学系ZL5の無限遠合焦時における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示している
各収差図から明らかなように、第5実施例に係る変倍光学系ZL5は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、高い光学性能を有することがわかる。
FIGS. 10A and 10B are graphs showing various aberrations of the variable magnification optical system ZL5 according to the fifth example at the time of focusing on infinity. FIG. 10A is a wide-angle end state, FIG. 10B is an intermediate focal length state, and FIG. As is apparent from the respective aberration diagrams showing the end states, the variable magnification optical system ZL5 according to the fifth example has various optical aberrations well corrected from the wide-angle end state to the telephoto end state, and has high optical performance. It can be seen that

以上説明したように、上記各実施例によれば、高い光学性能を有する変倍光学系を実現することができる。   As described above, according to each of the above embodiments, a variable magnification optical system having high optical performance can be realized.

ここで、上記各実施例は本発明の一具体例を示しているものであり、本発明はこれらに限定されるものではない。以下に記載の内容は、光学性能を損なわない範囲で適宜採用することが可能である。   Here, each said Example has shown the specific example of this invention, and this invention is not limited to these. The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本発明の変倍光学系の数値実施例として5群または6群構成のものを示したが、本発明はこれに限られず、他の群構成(例えば7群等)の変倍光学系を構成することも可能である。具体的には、本発明の変倍光学系の最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。なお、レンズ群とは、空気間隔で分離された少なくとも1枚のレンズを有する部分を示す。   The numerical examples of the variable magnification optical system of the present invention are shown in the five-group or six-group configuration, but the present invention is not limited to this, and the variable-magnification optical system of other group configurations (for example, seven groups) is configured. It is also possible to do. Specifically, a configuration in which a lens or a lens group is added to the most object side of the variable magnification optical system of the present invention, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group indicates a portion having at least one lens separated by an air interval.

また、本発明の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、あるいは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としても良い。合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。特に第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。   Further, the variable magnification optical system of the present invention uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group in order to focus from an object at infinity to an object at a short distance. It is good also as a structure moved to an optical axis direction. The focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor. In particular, it is preferable that at least a part of the second lens group is a focusing lens group.

また、本発明の変倍光学系において、何れかのレンズ群全体またはその一部を、防振レンズ群として光軸に直交する方向の成分を含むように移動させ、または光軸を含む面内方向へ回転移動(揺動)させることで、手ブレによって生じる像ブレを補正する構成とすることもできる。特に、第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present invention, either the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component in a direction orthogonal to the optical axis, or in an in-plane including the optical axis. It is also possible to adopt a configuration in which image blur caused by camera shake is corrected by rotationally moving (swinging) in the direction. In particular, it is preferable that at least a part of the fourth lens group is an anti-vibration lens group.

また、本発明の変倍光学系を構成するレンズのレンズ面は、球面または平面としても良く、あるいは非球面としても良い。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、レンズ加工および組立調整の誤差による光学性能の劣化を防止することができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、またはガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも良い。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   The lens surface of the lens constituting the variable magnification optical system of the present invention may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspheric, any of aspherical surfaces by grinding, a glass mold aspherical surface formed by molding glass into an aspherical surface, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical surface An aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本発明の変倍光学系の開口絞りSは第3レンズ群近傍に配置されることが好ましいが、開口絞りとして部材を設けずにレンズ枠でその役割を代用しても良い。   In addition, the aperture stop S of the zoom optical system according to the present invention is preferably disposed in the vicinity of the third lens group, but the role may be substituted by a lens frame without providing a member as the aperture stop.

また、本発明の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの光学性能を達成することができる。   Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present invention. Thereby, flare and ghost can be reduced and high contrast optical performance can be achieved.

次に、本発明の変倍光学系ZLを備えた光学装置について説明する。   Next, an optical apparatus provided with the variable magnification optical system ZL of the present invention will be described.

図11は、本発明の変倍光学系を備えたデジタル一眼レフカメラの概略を示す断面図である。図11に示すデジタル一眼レフカメラ1において、図示しない物体(被写体)からの光は、変倍光学系ZLで集光されて、クイックリターンミラー3を介して集点板5に結像される。そして、集点板5に結像された光は、ペンタプリズム7中で複数回反射されて接眼レンズ9へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ9を介して正立像として観察することができる。   FIG. 11 is a cross-sectional view showing an outline of a digital single-lens reflex camera provided with the variable magnification optical system of the present invention. In the digital single-lens reflex camera 1 shown in FIG. 11, light from an object (subject) (not shown) is collected by the variable magnification optical system ZL and is focused on the focusing plate 5 via the quick return mirror 3. The light imaged on the collecting plate 5 is reflected a plurality of times in the pentaprism 7 and guided to the eyepiece lens 9. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 9.

また、撮影者によって図示しないレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、変倍光学系ZLで集光された物体(被写体)の光は撮像素子11上に被写体像を形成する。これにより、物体からの光は、撮像素子11により撮像され、物体画像としてメモリ(図示省略)に記憶される。このようにして、撮影者はカメラ1による物体の撮影を行うことができる。   When a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and the light of the object (subject) collected by the zoom optical system ZL forms an object image on the image sensor 11. Form. Thereby, the light from the object is picked up by the image pickup device 11 and stored in a memory (not shown) as an object image. In this way, the photographer can photograph an object with the camera 1.

以上の構成により、本発明に係る変倍光学系ZLを備えたデジタル一眼レフカメラ1は、諸収差を良好に補正し、高い光学性能を実現することができる。なお、図11のカメラ1は、撮影レンズを着脱可能に保持するものでも良く、撮影レンズと一体に成形されるものでも良い。また、カメラは、一眼レフカメラでも良く、クイックリターンミラー等を有さないカメラでも良い。   With the above configuration, the digital single-lens reflex camera 1 including the variable magnification optical system ZL according to the present invention can correct various aberrations satisfactorily and achieve high optical performance. Note that the camera 1 in FIG. 11 may hold the photographic lens in a detachable manner, or may be formed integrally with the photographic lens. The camera may be a single-lens reflex camera or a camera that does not have a quick return mirror or the like.

次に、本発明の変倍光学系ZLの製造方法について説明する。   Next, a method for manufacturing the variable magnification optical system ZL of the present invention will be described.

図12は、本発明に係る変倍光学系ZLの製造方法の概略を示す図である。   FIG. 12 is a diagram showing an outline of a method for manufacturing the variable magnification optical system ZL according to the present invention.

本発明の変倍光学系ZLの製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、図12に示すように、以下の各ステップS1〜S2を含むものである。   The method of manufacturing the variable magnification optical system ZL according to the present invention includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction. FIG. 12 shows a method of manufacturing a variable magnification optical system having a third lens group having power, a fourth lens group having negative refractive power, and a fifth lens group having positive refractive power. In addition, the following steps S1 to S2 are included.

ステップS1:第1レンズ群と第2レンズ群と第3レンズ群と第4レンズ群と第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、第1レンズ群は像面に対して移動し、第1レンズ群と第2レンズ群との間隔は増大し、第2レンズ群と第3レンズ群との間隔は減少し、第3レンズ群と第4レンズ群との間隔は変化し、第4レンズ群と第5レンズ群との間隔は変化するように構成する。   Step S1: When zooming the first lens group, the second lens group, the third lens group, the fourth lens group, and the fifth lens group from the wide-angle end state to the telephoto end state, the first lens group The distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the distance between the third lens group and the fourth lens group Is changed, and the distance between the fourth lens group and the fifth lens group is changed.

ステップS2:次の条件式(1)を満足するようにする
(1) 6.500 < f1/(−f2) < 10.000
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Step S2: The following conditional expression (1) is satisfied (1) 6.500 <f1 / (− f2) <10.000
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

斯かる本発明の変倍光学系の製造方法によれば、高い光学性能を備えた変倍光学系を製造することができる。   According to the method for manufacturing a variable magnification optical system of the present invention, a variable magnification optical system having high optical performance can be manufactured.

ZL 変倍光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
S 開口絞り
I 像面
1 光学機器
3 クイックリターンミラー
5 集点板
7 ペンタプリズム
9 接眼レンズ
11 撮像素子
ZL variable magnification optical system G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group S Aperture stop I Image surface 1 Optical equipment 3 Quick return mirror 5 Concentration plate 7 Penta prism 9 Eyepiece 11 Image sensor

Claims (12)

光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、
広角端状態から望遠端状態への変倍の際、前記第1レンズ群は像面に対して移動し、前記第1レンズ群と第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化し、次式の条件を満足することを特徴とする変倍光学系。
7.300 < f1/(−f2) < 10.000
5.200 < f1/fw < 11.000
0.280 < f1/ft < 0.480
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power in order from the object side along the optical axis. And a fourth lens group having a positive refractive power,
During zooming from the wide-angle end state to the telephoto end state, the first lens group moves relative to the image plane, the distance between the first lens group and the second lens group increases, and the second lens group And the third lens group are decreased, the distance between the third lens group and the fourth lens group is changed, the distance between the fourth lens group and the fifth lens group is changed, and A variable magnification optical system characterized by satisfying the condition of the expression.
7.300 <f1 / (− f2) <10.000
5.200 <f1 / fw <11.000
0.280 <f1 / ft <0.480
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state
次式の条件を満足することを特徴とする請求項1に記載の変倍光学系。
0.500 < f3/(−f4) < 1.300
ただし、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
2. The variable magnification optical system according to claim 1, wherein a condition of the following formula is satisfied.
0.500 <f3 / (− f4) <1.300
However,
f3: Focal length of the third lens group f4: Focal length of the fourth lens group
次式の条件を満足することを特徴とする請求項1または2に記載の光学系。
0.0300 < (−f2)/ft < 0.0700
ただし、
ft:望遠端状態における変倍光学系全系の焦点距離
f2:前記第2レンズ群の焦点距離
Optical system according to claim 1 or 2, characterized in that the following conditional expression is satisfied:.
0.0300 <(− f2) / ft <0.0700
However,
ft: focal length of the entire variable magnification optical system in the telephoto end state f2: focal length of the second lens group
次式の条件を満足することを特徴とする請求項1からの何れか一項に記載の光学系。
0.050 < f3/ft < 0.150
ただし、
ft:望遠端状態における変倍光学系全系の焦点距離
f3:前記第3レンズ群の焦点距離
The optical system according to any one of claims 1 to 3 , wherein a condition of the following formula is satisfied.
0.050 <f3 / ft <0.150
However,
ft: focal length of the entire variable magnification optical system in the telephoto end state f3: focal length of the third lens group
広角端状態から望遠端状態への変倍の際、前記第1レンズ群は、像面に対して物体側に移動することを特徴とする請求項1からの何れか一項に記載の変倍光学系。 During zooming from the wide-angle end state to the telephoto end state, the first lens group, varying according to claims 1, characterized in that moves toward the object side in any one of 4 with respect to the image plane Double optical system. 広角端状態から望遠端状態への変倍の際、前記第3レンズ群と前記第4レンズ群との間隔は増加し、前記第4レンズ群と前記第5レンズ群との間隔は減少することを特徴とする請求項1からの何れか一項に記載の変倍光学系。 When zooming from the wide-angle end state to the telephoto end state, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases. The zoom lens system according to any one of claims 1 to 5 , wherein: 広角端状態から望遠端状態への変倍の際、前記第3レンズ群と前記第5レンズ群とは像面に対して一体で移動することを特徴とする請求項1からの何れか一項に記載の変倍光学系。 During zooming from the wide-angle end state to the telephoto end state, claim 1, characterized in that move integrally 6 with respect to the image plane from said fifth lens group and the third lens group one The zoom optical system according to item. 前記第2レンズ群より像側に開口絞りを有することを特徴とする請求項1からの何れか一項に記載の変倍光学系。 Variable-power optical system according to any one of claims 1 to 7, characterized in that an aperture stop from the image side second lens group. 前記第2レンズ群と前記第3レンズ群との間に前記開口絞りを有することを特徴とする請求項に記載の変倍光学系。 9. The variable magnification optical system according to claim 8 , wherein the aperture stop is provided between the second lens group and the third lens group. 広角端状態から望遠端状態への変倍の際、前記開口絞りは、前記第3レンズ群と一体に移動することを特徴とする請求項に記載の変倍光学系。 10. The zoom optical system according to claim 9 , wherein the aperture stop moves integrally with the third lens group during zooming from the wide-angle end state to the telephoto end state. 請求項1から10の何れか一項に記載の変倍光学系を有することを特徴とする光学装置。 Optical apparatus characterized by having a variable magnification optical system according to any one of claims 1 to 10. 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、
前記第1レンズ群と前記第2レンズ群と前記第3レンズ群と前記第4レンズ群と前記第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して移動し、前記第1レンズ群と第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化するように構成し、次式の条件を満足するようにすることを特徴とする変倍光学系の製造方法。
7.300 < f1/(−f2) < 10.000
5.200 < f1/fw < 11.000
0.280 < f1/ft < 0.480
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power in order from the object side along the optical axis. A variable power optical system having a fourth lens group having a positive refractive power and a fifth lens group having a positive refractive power,
When changing the first lens group, the second lens group, the third lens group, the fourth lens group, and the fifth lens group from the wide-angle end state to the telephoto end state, the first lens group Moves with respect to the image plane, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the third lens group The distance between the fourth lens group is changed, and the distance between the fourth lens group and the fifth lens group is changed to satisfy the following condition. A method of manufacturing a double optical system.
7.300 <f1 / (− f2) <10.000
5.200 <f1 / fw <11.000
0.280 <f1 / ft <0.480
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire variable magnification optical system in the telephoto end state
JP2011013246A 2011-01-25 2011-01-25 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Active JP5273167B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011013246A JP5273167B2 (en) 2011-01-25 2011-01-25 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
CN201510873801.3A CN105388602B (en) 2011-01-25 2012-01-18 Zoom lens system and optical device
CN201210016662.9A CN102621675B (en) 2011-01-25 2012-01-18 Zoom lens system, optical device and the method for the manufacture of Zoom lens system
CN201510869315.4A CN105388601B (en) 2011-01-25 2012-01-18 Zoom lens system and optical device
IN189DE2012 IN2012DE00189A (en) 2011-01-25 2012-01-23
US13/358,042 US9030755B2 (en) 2011-01-25 2012-01-25 Zoom lens system, optical apparatus, and method for manufacturing zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013246A JP5273167B2 (en) 2011-01-25 2011-01-25 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2012155087A JP2012155087A (en) 2012-08-16
JP5273167B2 true JP5273167B2 (en) 2013-08-28

Family

ID=46836881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013246A Active JP5273167B2 (en) 2011-01-25 2011-01-25 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP5273167B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014006653A1 (en) * 2012-07-04 2016-06-02 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device and camera
CN104620152B (en) * 2012-09-14 2017-04-05 富士胶片株式会社 Zoom lens and camera head
JP6218216B2 (en) * 2013-05-02 2017-10-25 株式会社タムロン Small high zoom lens
WO2015075943A1 (en) * 2013-11-22 2015-05-28 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens
JP6406870B2 (en) * 2014-05-08 2018-10-17 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6664068B2 (en) 2017-10-27 2020-03-13 パナソニックIpマネジメント株式会社 Zoom lens system and imaging device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090601A (en) * 1996-09-12 1998-04-10 Nikon Corp Zoom lens having vibration proofing function
JPH10111456A (en) * 1996-10-07 1998-04-28 Nikon Corp Zoom lens provided with vibration-proof function
JP3958489B2 (en) * 2000-02-14 2007-08-15 オリンパス株式会社 Zoom lens
JP4876509B2 (en) * 2005-09-28 2012-02-15 株式会社ニコン Zoom lens
JP5201809B2 (en) * 2006-07-06 2013-06-05 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5064837B2 (en) * 2007-03-01 2012-10-31 キヤノン株式会社 Zoom lens with anti-vibration function
JP5488000B2 (en) * 2009-02-02 2014-05-14 リコーイメージング株式会社 High zoom ratio zoom lens system
JP5448574B2 (en) * 2009-05-26 2014-03-19 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP2012155087A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5641680B2 (en) Zoom lens and optical apparatus having the same
JP5904273B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5742100B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5582303B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2009014766A (en) Variable power optical system, optical apparatus, and power changing method for variable power optical system
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5273167B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5919840B2 (en) Zoom lens and optical device
JP6583420B2 (en) Zoom lens and optical equipment
WO2017131223A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens
WO2016194774A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP6268792B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5212813B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP5278799B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP5333903B2 (en) Zoom lens and optical equipment
JP6265022B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6446821B2 (en) Magnification optical system and optical equipment
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5338865B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6251947B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250