JP5267992B2 - Recycling method of tantalum capacitors - Google Patents

Recycling method of tantalum capacitors Download PDF

Info

Publication number
JP5267992B2
JP5267992B2 JP2009067625A JP2009067625A JP5267992B2 JP 5267992 B2 JP5267992 B2 JP 5267992B2 JP 2009067625 A JP2009067625 A JP 2009067625A JP 2009067625 A JP2009067625 A JP 2009067625A JP 5267992 B2 JP5267992 B2 JP 5267992B2
Authority
JP
Japan
Prior art keywords
tantalum capacitor
specific gravity
concentration step
tantalum
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009067625A
Other languages
Japanese (ja)
Other versions
JP2010214352A (en
Inventor
達也 大木
幹男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009067625A priority Critical patent/JP5267992B2/en
Publication of JP2010214352A publication Critical patent/JP2010214352A/en
Application granted granted Critical
Publication of JP5267992B2 publication Critical patent/JP5267992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

本発明は、電子部品のリサイクル方法に関し、特に、タンタルコンデンサのリサイクル方法に関するものである。   The present invention relates to a method for recycling an electronic component, and more particularly to a method for recycling a tantalum capacitor.

タンタルは貴金属に次ぐ高価な金属であり、レアメタルの中で最も高価な金属の一つである。タンタルを主成分とする電子部品であるタンタルコンデンサは、小型で大容量を特徴とし、パソコン、携帯電話、デジカメ、カーオーディオなど多くの小型電気・電子機器類のプリント基板上に実装されている。
従来、プリント基板のリサイクルに関する技術の多くは、特許文献1〜3のように、銅や貴金属を対象とした金属と、ガラスエポキシ樹脂を構成するガラス及び樹脂などの非金属との分離に関する技術が知られていた。また、特許文献4〜6のように、使用済みのプリント基板から破砕機を利用して基板上の素子類を剥離する技術も知られているが、特に、タンタルコンデンサに着目したものはなかった。唯一、特許文献7に、タンタルコンデンサ製造工程で発生するタンタル粉末を回収する技術が知られているが、この技術は、使用済みのプリント基板から、基板に実装された素子類の中からタンタルコンデンサを回収してリサイクルすることに利用できるものではなかった。
Tantalum is the second most expensive metal after precious metals, and is one of the most expensive metals among rare metals. A tantalum capacitor, which is an electronic component mainly composed of tantalum, has a small size and a large capacity, and is mounted on a printed circuit board of many small electric / electronic devices such as a personal computer, a mobile phone, a digital camera, and a car audio.
Conventionally, many of the technologies related to the recycling of printed circuit boards are related to the separation of metals targeting copper and noble metals and non-metals such as glass and resin constituting glass epoxy resin, as in Patent Documents 1 to 3. It was known. In addition, as in Patent Documents 4 to 6, there is known a technique for peeling elements on a board from a used printed board by using a crusher, but there has been no particular focus on a tantalum capacitor. . Only Patent Document 7 discloses a technique for recovering tantalum powder generated in a tantalum capacitor manufacturing process. This technique is based on a tantalum capacitor among elements mounted on a substrate from a used printed circuit board. Was not available to collect and recycle.

特開平6−170276号公報JP-A-6-170276 特開平7−251154号公報Japanese Patent Laid-Open No. 7-251154 特開平11−76980号公報Japanese Patent Laid-Open No. 11-76980 特開平11−26918号公報JP-A-11-26918 特開2000−294919号公報JP 2000-294919 A 特開2003−10706号公報Japanese Patent Laid-Open No. 2003-10706 特開2004−115867号公報JP 2004-115867 A

使用済みのプリント基板上の素子類を剥離した破砕物中に占めるタンタルコンデンサの割合は非常に低く、タンタルコンデンサを比較的多く使用しているパソコンサーバーなどでも、全破砕物重量の数%程度でしかない。また、破砕物には類似の大きさ、形状をした他の素子類が多数混在しており、選別によりこれらの中から的確にタンタルコンデンサのみを回収するには、タンタルコンデンサと他の素子類の物性の差を詳細に見極めた選別プロセスの構築が課題となる。本発明では、使用済みのプリント基板上の素子類を剥離した破砕物に対して、汎用機器のみを利用して、スクリーニング(篩分け)、比重選別、磁選の3つのプロセスで、タンタルコンデンサの高濃縮産物を得るタンタルコンデンサのリサイクル方法を提供しようとするものである。   The proportion of tantalum capacitors in the crushed material from which the elements on the used printed circuit boards are peeled off is very low, and even a personal computer server that uses a relatively large amount of tantalum capacitors is only a few percent of the total crushed weight There is only. In addition, many other elements of similar size and shape are mixed in the crushed material, and in order to accurately recover only the tantalum capacitor from these, the tantalum capacitor and other elements can be recovered. Building a sorting process that details the differences in physical properties is an issue. In the present invention, the tantalum capacitor high-performance is obtained by three processes, screening (sieving), specific gravity sorting, and magnetic separation, using only general-purpose equipment for crushed material from which elements on a used printed circuit board have been peeled off. An object of the present invention is to provide a method for recycling a tantalum capacitor to obtain a concentrated product.

本発明のタンタルコンデンサのリサイクル方法では、使用済みのプリント基板から実装された素子類を剥離する剥離工程の後、タンタルコンデンサの物性に着目し、一次濃縮工程として篩分け選別を採用し、二次濃縮工程として比重選別を採用し、三次濃縮工程として磁選による選別を採用して、タンタルコンデンサの高濃縮産物を得るものである。
本発明のタンタルコンデンサのリサイクル方法は、使用済みプリント基板から基板上に実装された素子類を破砕機により剥離して回収する剥離工程と、剥離工程で剥離回収した素子類を篩で篩分け選別することによりタンタルコンデンサと同じ寸法範囲の粒子を回収する一次濃縮工程と、一次濃縮産物から比重選別によりタンタルコンデンサと同じ比重範囲のものを回収する二次濃縮工程と、二次濃縮産物から、弱い磁選により非磁着物を回収してタンタルコンデンサの高濃縮産物とする三次濃縮工程と、からなることを特徴とする。
また、本発明の方法は、上記タンタルコンデンサと同じ寸法範囲は、0.8mm〜4.3mm又は0.71mm〜4.75mmであることを特徴とする。
また、本発明の方法は、上記タンタルコンデンサと同じ比重範囲は、比重2.8〜4.3であることを特徴とする。
また、本発明の方法は、上記弱い磁選は、剥離工程でリード線部をタンタルコンデンサ側に付着した状態で剥離したタンタルコンデンサを磁着せずに非磁着物として選別するための磁束密度0.024T程度であることを特徴とする。
In the recycling method of the tantalum capacitor of the present invention, after the peeling process of peeling off the mounted elements from the used printed circuit board, paying attention to the physical properties of the tantalum capacitor, adopting sieving selection as the primary concentration process, the secondary A specific gravity sorting is employed as the concentration step, and a magnetic separation is employed as the tertiary concentration step to obtain a highly concentrated product of tantalum capacitors.
The recycling method of the tantalum capacitor according to the present invention is a separation process in which elements mounted on a printed circuit board are separated by a crusher and collected, and the elements separated and collected in the separation process are sieved and selected. Weakness from the primary concentration process that collects particles in the same size range as the tantalum capacitor, the secondary concentration process that collects the same specific gravity range as the tantalum capacitor by selecting the specific gravity from the primary concentrated product, and the secondary concentrated product And a tertiary concentration step in which non-magnetized substances are collected by magnetic separation to obtain a highly concentrated product of tantalum capacitors.
The method of the present invention is characterized in that the same size range as that of the tantalum capacitor is 0.8 mm to 4.3 mm or 0.71 mm to 4.75 mm.
In the method of the present invention, the same specific gravity range as that of the tantalum capacitor is a specific gravity of 2.8 to 4.3.
In the method of the present invention, the weak magnetic separation is performed in such a manner that the tantalum capacitor separated in a state where the lead wire portion is attached to the tantalum capacitor side in the separation step is selected as a non-magnetized material without magnetizing. It is characterized by a degree.

タンタルコンデンサを実装する多くの小型電気・電子機器内の使用済みプリント基板から、汎用機器を組み合わせた工程のみにより、容易にタンタルコンデンサの高濃縮産物を回収することが可能となった。   High-concentration products of tantalum capacitors can be easily recovered from used printed circuit boards in many small electrical and electronic devices on which tantalum capacitors are mounted only by a process that combines general-purpose devices.

図1は、代表的なタンタルコンデンサの寸法範囲を示した説明図である。FIG. 1 is an explanatory diagram showing a dimensional range of a typical tantalum capacitor. 図2は、パソコンサーバーの使用済みプリント基板から回収されたタンタルコンデンサの粒度分布を示す。FIG. 2 shows a particle size distribution of a tantalum capacitor recovered from a used printed circuit board of a personal computer server. 図3は、本発明のタンタルコンデンサのリサイクル方法を、パソコンサーバーに適用した実施例。FIG. 3 shows an embodiment in which the tantalum capacitor recycling method of the present invention is applied to a personal computer server.

本発明のタンタルコンデンサのリサイクル方法は、使用済みのプリント基板から基板上に実装された素子類を剥離する剥離工程の後、タンタルコンデンサの物性に着目し、一次濃縮工程として篩分け選別を採用し、二次濃縮工程として比重選別を採用し、三次濃縮工程として磁選による選別を採用することにより、使用済みプリント基板からタンタルコンデンサの高濃縮産物を得るものである。   The recycling method of the tantalum capacitor of the present invention employs sieving and selection as the primary concentration step, focusing on the physical properties of the tantalum capacitor after the peeling step of peeling off the elements mounted on the substrate from the used printed circuit board. By employing specific gravity sorting as the secondary concentration step and magnetic sorting as the tertiary concentration step, a highly concentrated product of tantalum capacitors is obtained from the used printed circuit board.

使用済みのプリント基板から基板上に実装された素子類を剥離する剥離工程については、例えば、上記特許文献4〜6にも示されているように、汎用の破砕機を用いれば十分である。発明者らは、10mm幅のスリット状スクリーンを備えた市販のハンマクラッシャ(吉田製作所製1018−B型)を用いて1分間程度破砕したところ、ガラスエポキシ基板から大部分の素子類が剥離したことを確認した。このように、プリント基板より素子類を剥離するには、破砕機などの既存の方法で実現が可能である。   About the peeling process which peels the elements mounted on the board | substrate from the used printed circuit board, it is sufficient if a general purpose crusher is used, for example, also by the said patent documents 4-6. The inventors crushed for about 1 minute using a commercially available hammer crusher (Yoshida Seisakusho 1018-B type) equipped with a slit screen having a width of 10 mm, and most of the elements were peeled off from the glass epoxy substrate. It was confirmed. Thus, in order to peel off elements from a printed circuit board, it is realizable with the existing methods, such as a crusher.

次に、剥離回収した素子類の中からタンタルコンデンサを一次濃縮する工程について説明する。
気流選別など粒子の比重に基づいた選別方法で濃縮するには、事前に狭い粒度幅に粒子サイズを揃えておくことが、効率よく濃縮を行う上で重要である。したがって、比重による選別を行う前に、サイズで選別しておく必要があり、このサイズで選別する工程を一次濃縮工程とする。
タンタルコンデンサのサイズはメーカーにより多少異なるものの、代表的なサイズを挙げると、図1に示した寸法範囲(W=0.8〜4.3mm、H=0.8〜2.8mm、L=1.6〜7.3mmの直方体)に収まる。そうすると、スクリーニング(篩分け)では、最も小さな面のサイズに基づいて分離がなされるので、図1で斜線の付された面のサイズ(H=0.8〜2.8mm、W=0.8〜4.3mm)が分離の基準となる。すなわち、篩の目開き0.8mm〜4.3mmで篩分けすれば、ほぼすべてのタンタルコンデンサが篩分けにより配分される。なお、標準篩を用いる場合には、このようなサイズはないので、標準篩を用いる場合は目開き0.71mm〜4.75mmで篩分けすることとなり、0.71mm角の穴サイズの篩と4.75mm角の穴サイズの篩とを用いて0.71mm〜4.75mmの粒子を篩分け選別すればよい。
上記タンタルコンデンサのサイズについては、すべての小型電気・電子機器に含まれるタンタルコンデンサを対象とした場合であるが、使用済みのプリント基板が特定の種類の機器を対象としたものであって、使用されているタンタルコンデンサが特定のサイズのものに限定される場合には、それに応じた目開きで篩分けすればよい。
Next, a process for primarily concentrating tantalum capacitors from the stripped and collected elements will be described.
In order to concentrate by a sorting method based on the specific gravity of particles such as airflow sorting, it is important to make the particle size uniform in a narrow particle size width in advance for efficient concentration. Therefore, it is necessary to sort by size before sorting by specific gravity, and the step of sorting by this size is the primary concentration step.
Although the size of the tantalum capacitor varies slightly depending on the manufacturer, the typical size is shown in FIG. 1 (W = 0.8 to 4.3 mm, H = 0.8 to 2.8 mm, L = 1). .6 to 7.3 mm rectangular parallelepiped). Then, in the screening (sieving), separation is performed based on the size of the smallest surface, so the size of the hatched surface in FIG. 1 (H = 0.8 to 2.8 mm, W = 0.8). -4.3 mm) is the standard for separation. That is, if sieving is performed with a sieve opening of 0.8 mm to 4.3 mm, almost all tantalum capacitors are distributed by sieving. In addition, since there is no such size when using a standard sieve, when using a standard sieve, it will be sieved with an aperture of 0.71 mm to 4.75 mm. What is necessary is just to screen and classify particles of 0.71 mm to 4.75 mm using a sieve having a 4.75 mm square hole size.
The size of the above tantalum capacitor is for tantalum capacitors included in all small electrical and electronic equipment. When the tantalum capacitor is limited to a specific size, it may be sieved with an opening corresponding to the tantalum capacitor.

次に、篩分けによって一次濃縮された素子類を、比重により選別する二次濃縮工程について説明する。
既に、上記一次濃縮工程の篩分けにより概ねサイズが揃っているから、精度の良い比重分離が期待できる。ここで、プリント基板から剥離された素子類の比重を調べたところ、基板の破砕物、コネクタ類、ICなどの樹脂を主成分とするものや、ケミカルコンデンサのようにアルミニウムを主成分とするものは、概ね、比重1.5〜2.5の範囲に分布し、セラミックコンデンサ、サーミスタ、コイル、銅線、ジャンパピンなど、鉄や銅など重い金属を主体とするものは、比重6.0以上であった。そして、その中間の比重を有するものは、チップ抵抗、タンタルコンデンサ、水晶振動子などに限られ、これらは比重2.8〜4.3の範囲に分布した。このことから、種々の比重選別方法により、この比重2.8〜4.3の範囲である中間比重群を回収すれば、タンタルコンデンサをさらに濃縮することができる。
Next, a secondary concentration step of selecting elements primarily concentrated by sieving by specific gravity will be described.
Already, the sizes are almost the same by sieving in the primary concentration step, so that it is possible to expect specific gravity separation with high accuracy. Here, the specific gravity of the elements peeled off from the printed circuit board was examined. As a result, the main component was a resin such as a crushed substrate, connector, or IC, or the main component was aluminum such as a chemical capacitor. Is generally distributed in the range of specific gravity of 1.5 to 2.5, and those mainly composed of heavy metals such as iron and copper, such as ceramic capacitors, thermistors, coils, copper wires and jumper pins, have a specific gravity of 6.0 or more. Met. Those having an intermediate specific gravity are limited to chip resistors, tantalum capacitors, crystal resonators, and the like, and these are distributed in a specific gravity range of 2.8 to 4.3. From this fact, the tantalum capacitor can be further concentrated by recovering the intermediate specific gravity group having the specific gravity in the range of 2.8 to 4.3 by various specific gravity selection methods.

次に、三次濃縮工程について説明する。
上記二次濃縮工程で回収された中間比重群のうち、水晶振動子は鉄を主成分とする素子といえるので極めて磁着しやすい。そこで、弱い力で磁選すれば、水晶振動子が磁着物として除去することができ、非磁着物を回収すればタンタルコンデンサが濃縮されることとなる。
ここで、弱い力の磁選としたのは、次のような理由による。すなわち、剥離工程において、タンタルコンデンサのリード線部分は、プリント基板側に残って剥離される場合と、タンタルコンデンサ側に残って剥離される場合とが生じる。したがって、強い磁選を行うと、剥離工程でプリント基板から剥離したタンタルコンデンサのうち、リード線部分をタンタルコンデンサ側に残して剥離したタンタルコンデンサまでもが水晶振動子とともに磁着産物として除去されてしまうからである。
Next, the tertiary concentration step will be described.
Of the intermediate specific gravity group recovered in the secondary concentration step, the quartz crystal resonator can be said to be an element containing iron as a main component, and thus is extremely easily magnetized. Therefore, if the magnetic force is selected with a weak force, the crystal resonator can be removed as a magnetic material, and if the non-magnetic material is recovered, the tantalum capacitor is concentrated.
Here, the reason why the magnetic selection is performed with a weak force is as follows. That is, in the peeling process, there are cases where the lead wire portion of the tantalum capacitor remains on the printed circuit board side and is peeled off, and where the lead wire portion is left on the tantalum capacitor side and peeled off. Therefore, when strong magnetic separation is performed, among the tantalum capacitors that have been peeled off from the printed circuit board in the peeling process, even the tantalum capacitors that have been peeled off while leaving the lead wire portion on the tantalum capacitor side will be removed together with the crystal unit as a magnetic product. Because.

以上のように、本発明では、使用済みプリント基板から基板上に実装された素子類を剥離する剥離工程と、剥離した素子類から篩分け選別により0.8mm〜4.3mm又は0.71mm〜4.75mmの粒子を回収する一次濃縮工程と、一次濃縮産物から比重選別により比重2.8〜4.3のものを回収する二次濃縮工程と、二次濃縮産物を弱い磁選により非磁着物を回収する三次濃縮工程とにより、使用済みプリント基板からタンタルコンデンサの高濃縮産物を得ることができ、タンタルコンデンサのリサイクル方法が実現できる。   As described above, in the present invention, a peeling process for peeling elements mounted on a substrate from a used printed circuit board, and 0.8 mm to 4.3 mm or 0.71 mm to 0.71 mm or more by sieving and sorting from the peeled elements. 4. Primary concentration step for collecting particles of 4.75 mm, secondary concentration step for recovering particles having a specific gravity of 2.8 to 4.3 by specific gravity selection from the primary concentrated product, and non-magnetized material by weak magnetic separation of the secondary concentrated product The highly concentrated product of tantalum capacitors can be obtained from the used printed circuit board by the third concentration step of recovering the tantalum, and a tantalum capacitor recycling method can be realized.

以下に、パソコンサーバー(PCサーバー)の使用済みプリント基板から、タンタルコンデンサを回収する場合の実験例を示す。図2は、比較的大型のタンタルコンデンサのみが使用されたPCサーバーのプリント基板から剥離回収された素子類における、タンタルコンデンサの篩分け粒度分布を示したものであり、縦軸が重量割合(%)、横軸が篩分け粒度(mm)である。図2より、このケースでは2.8mm〜4.75mmに全タンタルコンデンサの97%が存在した。そこで剥離した素子類から、一次濃縮工程として、2.8mm〜4.75mmの粒子をスクリーニング(篩分け)により回収し一次濃縮産物とした。このPCサーバーのプリント基板から回収された全素子類に占めるタンタルコンデンサの重量割合は3.4%であったが、2.8mm〜4.75mmにスクリーニング(篩分け)されたのちは、タンタルコンデンサの重量割合は23.3%に増大した。なお、破砕時の状態により、例えば、基板部品の一部分が付着したり、タンタルコンデンサのリード線が変形するなどによって、図2では4.75mm以上の粒群にも若干存在したが、その量は無視できる程度である。
ところで、上記のとおり、図1の断面サイズにあわせ、スクリーニング(篩分け)で0.71mm〜4.75mmの粒子を回収すれば、種々の製品のプリント基板が混在する場合においても高い回収率でタンタルコンデンサを回収することが出来るが、その分、スクリーリングによる濃縮の程度は低下する。一方、この実験例のように、特定の製品から回収されたタンタルコンデンサを対象とすれば、例えば、2.8mm〜4.75mmに回収粒度を限定することにより、濃縮効果は一層増大する。
なお、選別工程では、初期段階で磁選を行う場合がしばしばあるが、プリント基板から剥離されたタンタルコンデンサに対して磁選を実施すると、タンタルコンデンサのリード線部分が磁着するため、リード線が付いたまま剥離したものと、リード線をプリント基板側に残して剥離したものとに分離される。すなわち、タンタルコンデンサが磁着側と非磁着側に分割されてしまう。このことから、選別プロセスの最初には、磁選を実施せずに、スクリーニングを行うことが重要である。
Below, an experimental example in the case of recovering a tantalum capacitor from a used printed circuit board of a personal computer server (PC server) is shown. Fig. 2 shows the sieving particle size distribution of tantalum capacitors in the elements peeled and collected from the printed circuit board of a PC server in which only relatively large tantalum capacitors are used. ), The horizontal axis is the sieving particle size (mm). From FIG. 2, in this case, 97% of all tantalum capacitors existed at 2.8 mm to 4.75 mm. Thus, from the separated elements, as a primary concentration step, particles of 2.8 mm to 4.75 mm were collected by screening (sieving) to obtain a primary concentrated product. The weight ratio of tantalum capacitors in all elements collected from the printed circuit board of this PC server was 3.4%, but after being screened (screened) to 2.8 mm to 4.75 mm, the tantalum capacitors The weight percentage increased to 23.3%. In addition, depending on the state at the time of crushing, for example, a part of the substrate component is attached or the lead wire of the tantalum capacitor is deformed. It can be ignored.
By the way, according to the cross-sectional size of FIG. 1, if particles of 0.71 mm to 4.75 mm are collected by screening (sieving) in accordance with the cross-sectional size of FIG. The tantalum capacitor can be recovered, but the degree of concentration by screening is reduced accordingly. On the other hand, when the tantalum capacitor recovered from a specific product is targeted as in this experimental example, the concentration effect is further increased by limiting the recovery particle size to, for example, 2.8 mm to 4.75 mm.
In the sorting process, magnetic separation is often performed in the initial stage. However, when magnetic separation is performed on a tantalum capacitor that has been peeled off from a printed circuit board, the lead wire portion of the tantalum capacitor is magnetically attached. It is separated into those that have been peeled off and those that have been peeled off leaving the lead wires on the printed circuit board side. That is, the tantalum capacitor is divided into a magnetized side and a non-magnetized side. For this reason, it is important to perform screening without performing magnetic separation at the beginning of the selection process.

次に、2.8mm〜4.75mmの一次濃縮産物に対して、二次濃縮工程として比重選別を実施した。ここでは、大量かつ簡便に比重分離が可能な縦型気流選別機を使用した。その結果、まず、流速11m/s〜14m/sの上昇気流中で分離することにより、比重2.5以下の軽産物をオーバーフローさせて除去することができた。次いで、22〜24m/sの流速を持つ(上昇)気流中で分離することにより、比重6.0以上を重産物として残し、中間比重群をオーバーフローさせて二次濃縮産物として回収することができた。例えば、1回目に12.4m/s、2回目に23.6m/sで分離した場合、最終的に回収された二次濃縮産物中のタンタルコンデンサの重量割合は74.9%まで向上し、気流選別におけるタンタルコンデンサの回収率は97.7%となった。
なお、本実施例の場合は、タンタルコンデンサと同じ比重範囲2.8〜4.3の中間比重群より比重の軽い軽産物に含まれる素子類の比重は、2.5以下のものしかなく、逆に中間比重群より比重の重い重産物に含まれる素子類の比重は、6.0以上のものしかなかったので、比重選別は、上記のとおり、比重2.5以下のものを軽産物としてオーバーフローさせて除去し、比重6.0以上のものを重産物として残留させて除去すれば十分である。
Next, specific gravity sorting was performed as a secondary concentration step on the primary concentrated product of 2.8 mm to 4.75 mm. Here, a vertical airflow sorter capable of separating specific gravity in large quantities easily was used. As a result, first, light products having a specific gravity of 2.5 or less could be overflowed and removed by separation in an ascending airflow with a flow rate of 11 m / s to 14 m / s. Then, by separating in an (ascending) airflow with a flow rate of 22-24 m / s, a specific gravity of 6.0 or more remains as a heavy product, and the intermediate specific gravity group overflows and can be recovered as a secondary concentrated product. It was. For example, when separating at 12.4 m / s in the first time and 23.6 m / s in the second time, the weight ratio of the tantalum capacitor in the finally collected secondary concentrated product is improved to 74.9%, The recovery rate of tantalum capacitors in airflow sorting was 97.7%.
In the case of the present embodiment, the specific gravity of the elements contained in the light product having a lighter specific gravity than the intermediate specific gravity group in the same specific gravity range 2.8 to 4.3 as the tantalum capacitor is only 2.5 or less. Conversely, the specific gravity of elements contained in heavy products having a higher specific gravity than the intermediate specific gravity group was only 6.0 or higher. It is sufficient to remove it by overflowing it, leaving a specific gravity of 6.0 or more as a heavy product.

次に、二次濃縮産物に対して、三次濃縮工程の磁選を実施した。
上記二次濃縮工程で濃縮された二次濃縮産物について、タンタルコンデンサ以外の成分(25.1%分に相当)について調べてみた。この実験で使用した試料のチップ抵抗は1mm〜2.38mmの粒群に全てが存在し、2.8mm〜4.75mmの粒群には全く存在しなかった。したがって、タンタルコンデンサ以外の主要成分は、比重が類似している水晶振動子であった。水晶振動子は鉄を主成分とする素子であり、磁選によって容易に磁着分離が可能である。ここで、回収された二次濃縮産物に対し磁束密度0.024Tの非常に弱い磁力で磁選を実施した結果、タンタルコンデンサはほとんど磁着産物に含まれず、磁着力の強い水晶振動子のみが磁着産物に含まれていた。そこで、この弱い磁選の非磁着産物を回収してタンタルコンデンサの3次濃縮産物とすると、タンタルコンデンサの重量割合は85.0%まで向上し、磁選におけるタンタルコンデンサの回収率は98.2%となった。
Next, the secondary concentration product was subjected to magnetic separation in the tertiary concentration step.
The secondary concentrated product concentrated in the secondary concentration step was examined for components other than the tantalum capacitor (corresponding to 25.1%). The chip resistance of the sample used in this experiment was all present in the grain group of 1 mm to 2.38 mm, and was not present in the grain group of 2.8 mm to 4.75 mm. Therefore, the main component other than the tantalum capacitor is a crystal resonator having a similar specific gravity. A crystal resonator is an element containing iron as a main component, and can be easily separated by magnetic separation. Here, as a result of performing magnetic separation on the recovered secondary concentrated product with a very weak magnetic force of magnetic flux density 0.024T, tantalum capacitors are hardly included in the magnetic product, and only a crystal unit having a strong magnetic force is magnetic. It was included in the kimono. Therefore, if this weakly magnetized non-magnetized product is recovered and used as the third concentrated product of the tantalum capacitor, the weight ratio of the tantalum capacitor is increased to 85.0%, and the recovery rate of the tantalum capacitor in the magnetic separation is 98.2%. It became.

以上のように、タンタルコンデンサ品位(重量割合)3.4%の破砕素子類を、図3に示すスクリーニング(篩分け)−気流選別−磁選の3つの濃縮工程により、タンタルコンデンサ品位85.0%まで向上させることが出来た。また、3つの濃縮工程を合わせたタンタルコンデンサの回収率は92.8%となり、損失分はわずか7.2%であった。   As described above, crushing elements having a tantalum capacitor quality (weight ratio) of 3.4% are converted into a tantalum capacitor quality of 85.0% by the three concentration steps shown in FIG. I was able to improve it. The recovery rate of the tantalum capacitor combined with the three concentration steps was 92.8%, and the loss was only 7.2%.

なお、上記実験をノートPCやハードディスクドライブ中のプリント基板から剥離回収された素子類に対しても実施したところ、同様の工程で、ノートPCでは、タンタルコンデンサ品位1.8%から回収率82.3%で品位82.6%に向上し、また、ハードディスクドライブでは、タンタルコンデンサ品位4.5%から回収率92.8%で品位が94.8%まで向上した。
ここでは3製品の選別例について示したが、製品に応じて、タンタルコンデンサの含有率やサイズ分布が異なり、それによって品位向上の効果や回収率が変わることは言うまでもない。
In addition, when the above experiment was carried out on elements that were peeled and collected from a printed circuit board in a notebook PC or hard disk drive, the recovery rate of 82. 3% improved the quality to 82.6%, and the hard disk drive improved from 4.5% tantalum capacitor quality to 94.8% with a recovery rate of 92.8%.
Here, the example of selecting three products is shown, but it goes without saying that the content and size distribution of tantalum capacitors differ depending on the product, and the effect of improving the quality and the recovery rate change accordingly.

実施例として、PCサーバー、ノートPC、ハードディスクの使用済みプリント基板からタンタルコンデンサを回収する例を示したが、本発明は、タンタルコンデンサを実装したプリント基板を有する製品であれば、どのような製品のプリント基板であっても適用できる。
また、予め、プリント基板に実装されているタンタルコンデンサの大きさや比重が予め限定できる場合には、一次濃縮工程の篩分け選別により回収する粒子の数値範囲を縮小し、二次濃縮工程の比重選別により回収する比重の数値範囲を縮小して行えば、品位向上の効果や回収率の向上の効果が期待できる。
なお、一次濃縮工程の篩分け選別や二次濃縮工程の比重選別は、他のチップ型電子部品のリサイクルにも利用することができる。
As an example, an example in which a tantalum capacitor is recovered from a used printed board of a PC server, a notebook PC, and a hard disk has been shown. However, the present invention is not limited to any product as long as it has a printed board mounted with a tantalum capacitor. Even a printed circuit board can be applied.
In addition, when the size and specific gravity of the tantalum capacitor mounted on the printed circuit board can be limited in advance, the numerical range of particles to be collected is reduced by sieving selection in the primary concentration process, and the specific gravity selection in the secondary concentration process. If the numerical range of the specific gravity to be collected is reduced, the effect of improving the quality and the effect of improving the recovery rate can be expected.
Note that the sieving and sorting in the primary concentration process and the specific gravity selection in the secondary concentration process can be used for recycling other chip-type electronic components.

Claims (2)

使用済みプリント基板から当該使用済みプリント基板上に実装されたタンタルコンデンサを含む素子類を破砕機により剥離して回収する剥離工程と、
前記剥離工程で剥離回収したタンタルコンデンサを含む素子類を目開き0.8mm角の篩と目開き4.3mm角の篩で篩分け選別することにより最も小さな面のサイズ回収しようとするタンタルコンデンサの最も小さな面のサイズの寸法範囲と同じ寸法範囲である0.8mm角〜4.3mm角の粒子を回収する一次濃縮工程と、
前記一次濃縮工程で回収した一次濃縮産物から比重選別により回収しようとするタンタルコンデンサと同じ比重範囲である比重2.8〜4.3のものを回収する二次濃縮工程と、
前記二次濃縮工程で回収した二次濃縮産物から、磁束密度が0.024Tの弱い磁選により非磁着物を回収してタンタルコンデンサの高濃縮産物とする三次濃縮工程と、
からなることを特徴とするタンタルコンデンサのリサイクル方法。
A peeling step of peeling and collecting elements including a tantalum capacitor mounted on the used printed board from the used printed board by a crusher;
The tantalum capacitor to which the smallest surface size is to be recovered by screening the elements containing the tantalum capacitor peeled and collected in the peeling step with a sieve having a mesh size of 0.8 mm and a sieve having a mesh size of 4.3 mm. A primary concentration step of collecting particles having a size range of 0.8 mm square to 4.3 mm square, which is the same size range as the size range of the smallest surface of
A secondary concentration step of recovering a product having a specific gravity of 2.8 to 4.3 in the same specific gravity range as the tantalum capacitor to be recovered from the primary concentrated product recovered in the primary concentration step by specific gravity selection;
A tertiary concentration step in which non- magnetized substances are recovered from the secondary concentrated product recovered in the secondary concentration step by weak magnetic separation with a magnetic flux density of 0.024T to obtain a highly concentrated product of a tantalum capacitor;
A method for recycling a tantalum capacitor, comprising:
使用済みプリント基板から当該使用済みプリント基板上に実装されたタンタルコンデンサを含む素子類を破砕機により剥離して回収する剥離工程と、
前記剥離工程で剥離回収したタンタルコンデンサを含む素子類を目開き0.71mm角の標準篩と目開き4.75mm角の標準篩で篩分け選別することにより最も小さな面のサイズ回収しようとするタンタルコンデンサの最も小さな面のサイズの寸法範囲と同じ寸法範囲である0.71mm角〜4.75mm角の粒子を回収する一次濃縮工程と、
前記一次濃縮工程で回収した一次濃縮産物から比重選別により回収しようとするタンタルコンデンサと同じ比重範囲である比重2.8〜4.3のものを回収する二次濃縮工程と、
前記二次濃縮工程で回収した二次濃縮産物から、磁束密度が0.024Tの弱い磁選により非磁着物を回収してタンタルコンデンサの高濃縮産物とする三次濃縮工程と、
からなることを特徴とするタンタルコンデンサのリサイクル方法。
A peeling step of peeling and collecting elements including a tantalum capacitor mounted on the used printed board from the used printed board by a crusher;
The elements containing the tantalum capacitors peeled and collected in the peeling step are screened and sorted with a standard sieve having a 0.71 mm square and a 4.75 mm square standard sieve, so that the smallest surface size is collected. A primary concentration step of collecting particles having a size range of 0.71 mm square to 4.75 mm square, which is the same size range as the size range of the smallest surface of the tantalum capacitor;
A secondary concentration step of recovering a product having a specific gravity of 2.8 to 4.3 in the same specific gravity range as the tantalum capacitor to be recovered from the primary concentrated product recovered in the primary concentration step by specific gravity selection;
A tertiary concentration step in which non- magnetized substances are recovered from the secondary concentrated product recovered in the secondary concentration step by weak magnetic separation with a magnetic flux density of 0.024T to obtain a highly concentrated product of a tantalum capacitor;
A method for recycling a tantalum capacitor, comprising:
JP2009067625A 2009-03-19 2009-03-19 Recycling method of tantalum capacitors Active JP5267992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067625A JP5267992B2 (en) 2009-03-19 2009-03-19 Recycling method of tantalum capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067625A JP5267992B2 (en) 2009-03-19 2009-03-19 Recycling method of tantalum capacitors

Publications (2)

Publication Number Publication Date
JP2010214352A JP2010214352A (en) 2010-09-30
JP5267992B2 true JP5267992B2 (en) 2013-08-21

Family

ID=42973770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067625A Active JP5267992B2 (en) 2009-03-19 2009-03-19 Recycling method of tantalum capacitors

Country Status (1)

Country Link
JP (1) JP5267992B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570334B2 (en) * 2010-07-16 2014-08-13 Dowaエコシステム株式会社 Tantalum recovery method
WO2012132962A1 (en) * 2011-03-31 2012-10-04 三井金属鉱業株式会社 Tantalum recovery method
JP5775752B2 (en) * 2011-06-17 2015-09-09 三井金属鉱業株式会社 Method for recovering valuable metals from home appliances
CN102500600B (en) * 2011-11-02 2013-09-25 刘景洋 Method for separating capacitor from waste printed circuit board elements
CN104271267B (en) * 2012-03-28 2017-05-10 独立行政法人产业技术综合研究所 Particle sorting machine
US9539584B2 (en) 2012-03-28 2017-01-10 National Institute Of Advanced Industrial Science And Technology Magnetic separator
JP5988242B2 (en) * 2012-07-30 2016-09-07 国立研究開発法人産業技術総合研究所 Small electrical product identification method and sorting device
JP7076178B2 (en) * 2016-11-18 2022-05-27 Jx金属株式会社 How to dispose of scraps of electronic and electrical equipment parts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302100A (en) * 1989-05-17 1990-12-14 Ikegami Tsushinki Co Ltd Component sorter
JPH05329841A (en) * 1992-06-03 1993-12-14 Nec Corp Method for recovering valuables from printed circuit board
JPH10296225A (en) * 1997-04-25 1998-11-10 Ain Kosan Kk Method for recovering and granulating waste resin molded product
JP2000135450A (en) * 1998-10-30 2000-05-16 Mitsubishi Electric Corp Crusher, classifier, crushing and classification
JP3591412B2 (en) * 1999-05-31 2004-11-17 松下電器産業株式会社 Crushing equipment
JP2001237513A (en) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd Device for connecting to printed circuit board in tantalum capacitor

Also Published As

Publication number Publication date
JP2010214352A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5267992B2 (en) Recycling method of tantalum capacitors
JP5775752B2 (en) Method for recovering valuable metals from home appliances
JP7297019B2 (en) Processing method of electronic and electrical equipment parts waste
JP5860034B2 (en) Tantalum recovery method
WO2011125510A1 (en) Method for recovering tantalum
Baez et al. Characterization of industrially pre-treated waste printed circuit boards for the potential recovery of rare earth elements
JP4820423B2 (en) Method of recovering neodymium magnet from used equipment and neodymium magnet recovered or recycled by the method
WO2020203917A1 (en) Method for processing electronic/electrical device component scraps
Römer et al. Challenges and a possible solution for the recycling of tantalum from waste electrical and electronic equipment
JP2019025395A (en) Valuable metal recovery method and recovery system
JP2013255901A (en) Apparatus and method of recycling used electrical and electric equipment
RU2068010C1 (en) Method of noble metals extraction out of printed plates
JP6914220B2 (en) How to dispose of scraps of electronic and electrical equipment parts
TWI542417B (en) A resourced processing system of waste of metalliferous pcb
JP7123600B2 (en) Processing method of electronic and electrical equipment parts waste
Mori De Oliveira Study of metal recovery from printed circuit boards by physical-mechanical treatment processes
RU2014135C1 (en) Method for processing electrotechnical and radio engineering wastes
Dalmijn PROCESSING OF TELEVISIONS BY MECHANICAL SEPARATION TECHNIQUES Implications for future work in product design and recycling JM Krowinkel Delft University of Technology, Faculty of Applied Earth Sciences Department of Raw Materials Technology
Puspita et al. Evaluation of a recycling process for discarded integrated circuits using physical separation methods
RU2572938C2 (en) Method of processing electronic waste, primarily of electronic boards
Marinković et al. RECOMMENDATIONS FOR IMPROVEMENT OF CRITICAL AND RARE EARTH METALS RECOVERY FROM PRINTED CIRCUIT BOARDS IN PRE-TREATMENT PROCESSES
Oscar et al. Methodology for Recovery Precious Metals: Gold, Silver and Platinum Group from Electronic Waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250