JP5266817B2 - Polycrystalline silicon production equipment - Google Patents

Polycrystalline silicon production equipment Download PDF

Info

Publication number
JP5266817B2
JP5266817B2 JP2008068324A JP2008068324A JP5266817B2 JP 5266817 B2 JP5266817 B2 JP 5266817B2 JP 2008068324 A JP2008068324 A JP 2008068324A JP 2008068324 A JP2008068324 A JP 2008068324A JP 5266817 B2 JP5266817 B2 JP 5266817B2
Authority
JP
Japan
Prior art keywords
bottom plate
core rod
electrode holder
reactor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008068324A
Other languages
Japanese (ja)
Other versions
JP2009221058A (en
Inventor
俊秀 遠藤
昌之 手計
敏由記 石井
昌晃 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008068324A priority Critical patent/JP5266817B2/en
Publication of JP2009221058A publication Critical patent/JP2009221058A/en
Application granted granted Critical
Publication of JP5266817B2 publication Critical patent/JP5266817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible both to absorb the thermal expansion difference between the bottom plate of a reactor and the electrodes of the reactor and to keep good insulation therebetween. <P>SOLUTION: A plurality of electrodes 5 each having a vertically standing silicon core rod 4 are arranged on the bottom plate 2 of a reactor, and each electrode 5 has an electrode holder 22 which is provided in a state inserted into a through-hole 21 formed on the bottom plate 2 and through the inside of which a coolant medium is passed and a core rod holder part 23 provided on the upper end of each electrode holder 22 and holding the corresponding silicon core rod 4. An annular insulation material 34 surrounding the periphery of each electrode holder 22 inside the through-hole 21 between the inner circumference of the through-hole 21 and the electrode holder 22 is provided, and a heat-shielding ring 41 with a larger diameter than the upper end of the annular insulation material 34 is provided on the bottom plate 2 of the reactor in a manner to surround the electrode holder 22. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は加熱したシリコン芯棒の表面に多結晶シリコンを析出させて多結晶シリコンのロッドを製造する多結晶シリコン製造装置に関する。   The present invention relates to a polycrystalline silicon manufacturing apparatus for manufacturing polycrystalline silicon rods by depositing polycrystalline silicon on the surface of a heated silicon core rod.

従来、この種の多結晶シリコン製造装置としては、シーメンス法によるものが知られている。このシーメンス法による多結晶シリコン製造装置では、密閉された反応炉内にシリコン芯棒からなるシードを多数配設して加熱しておき、この反応炉にクロロシランガスと水素ガスとの混合ガスからなる原料ガスを供給して、加熱したシリコン芯棒に接触させ、その表面に原料ガスの熱分解及び水素還元によって生じた多結晶シリコンを析出させる構成とされる。   Conventionally, a Siemens method is known as this type of polycrystalline silicon manufacturing apparatus. In this polycrystalline silicon manufacturing apparatus by the Siemens method, a large number of seeds made of silicon core rods are placed in a sealed reaction furnace and heated, and the reaction furnace is made of a mixed gas of chlorosilane gas and hydrogen gas. A raw material gas is supplied, brought into contact with a heated silicon core rod, and polycrystalline silicon generated by thermal decomposition of the raw material gas and hydrogen reduction is deposited on the surface thereof.

このような多結晶シリコン製造装置において、シードとなるシリコン芯棒は、反応炉の内底部に配設した電極に立設状態に固定され、該電極からシリコン芯棒に通電して、その抵抗によってシリコン芯棒を発熱させ、下方から噴出される原料ガスをシリコン芯棒表面に接触させて多結晶シリコンのロッドを形成するようになっている。このシリコン芯棒を保持する電極は、反応炉の内底面のほぼ全域にわたって分散するように複数設けられており、特許文献1に記載されるように、反応炉の底板部の貫通孔内に、環状の絶縁材に囲まれた状態で設けられている。
特開2007−107030号公報
In such a polycrystalline silicon manufacturing apparatus, a silicon core rod serving as a seed is fixed in an upright state on an electrode disposed on the inner bottom portion of the reaction furnace. The silicon core rod is heated, and the raw material gas ejected from below is brought into contact with the surface of the silicon core rod to form a polycrystalline silicon rod. A plurality of electrodes for holding the silicon core rod are provided so as to be distributed over almost the entire inner bottom surface of the reaction furnace, and as described in Patent Document 1, in the through hole of the bottom plate portion of the reaction furnace, It is provided in a state surrounded by an annular insulating material.
JP 2007-107030 A

ところで、上述した多結晶シリコン製造装置において、反応炉内の温度は500〜600℃と高温になるため、シリコン芯棒を保持する電極は、内部に冷却水を流通させて冷却するようにしているが、反応炉の底板部との間に設けられる絶縁材は直接冷却することができず、反応炉内の熱を受けて形状が損なわれ易く、絶縁機能の劣化の原因となり易い。この場合、セラミックス系の絶縁材を使用するのでは、反応炉の底板部と電極との熱膨張差を吸収することができずに破損に至るおそれがある。   By the way, in the polycrystalline silicon manufacturing apparatus mentioned above, since the temperature in the reactor becomes as high as 500 to 600 ° C., the electrode holding the silicon core rod is cooled by circulating cooling water therein. However, the insulating material provided between the bottom plate portion of the reaction furnace cannot be cooled directly, is easily damaged by the heat in the reaction furnace, and is likely to cause deterioration of the insulating function. In this case, if a ceramic-based insulating material is used, the difference in thermal expansion between the bottom plate portion of the reactor and the electrode cannot be absorbed, and there is a risk of damage.

本発明は、このような事情に鑑みてなされたもので、反応炉の底板部と電極との熱膨張差を吸収できるとともに、良好な絶縁性を維持することができる多結晶シリコン製造装置の提供を目的とする。   The present invention has been made in view of such circumstances, and provides a polycrystalline silicon manufacturing apparatus capable of absorbing the difference in thermal expansion between the bottom plate portion of the reactor and the electrode and maintaining good insulation. With the goal.

上記目的を達成するために本発明の多結晶シリコン製造装置は、反応炉の底板部に配設された複数の電極に、上下方向に延びるシリコン芯棒をそれぞれ立設しておき、反応炉内に原料ガスを供給するとともに、前記シリコン芯棒に前記電極から通電することによりシリコン芯棒を発熱させて、該シリコン芯棒の表面に前記原料ガスによって多結晶シリコンを析出させる多結晶シリコン製造装置において、前記反応炉の底板部は、これを冷却する冷却流路を有しており、前記電極は、前記底板部に形成した貫通孔内に挿入状態に設けられ内部に冷却媒体が流通する電極ホルダと、該電極ホルダの上端部に設けられ前記シリコン芯棒を保持する芯棒保持部とを有し、前記貫通孔の内周面と前記電極ホルダとの間に前記貫通孔内で電極ホルダの周りを囲む環状絶縁材が設けられ、前記反応炉の底板部上に、前記環状絶縁材の上端部よりも大径の遮熱リングが前記電極ホルダを囲むように設けられていることを特徴とする。 In order to achieve the above object, the polycrystalline silicon production apparatus of the present invention has a silicon core rod extending up and down on each of a plurality of electrodes arranged on the bottom plate portion of the reaction furnace. A polycrystalline silicon manufacturing apparatus for supplying a raw material gas to the silicon core rod, causing the silicon core rod to generate heat by energizing the silicon core rod from the electrode, and depositing polycrystalline silicon on the surface of the silicon core rod by the raw material gas The bottom plate portion of the reactor has a cooling flow path for cooling the electrode, and the electrode is provided in an inserted state in a through-hole formed in the bottom plate portion, and the cooling medium flows therethrough. A holder and a core rod holding portion that is provided at an upper end portion of the electrode holder and holds the silicon core rod, and the electrode holder is disposed in the through hole between the inner peripheral surface of the through hole and the electrode holder. Around Annular insulating member is provided to surround, the upper to the bottom plate portion of the furnace, the heat insulating ring of larger diameter than the upper end of the annular insulating material and being provided so as to surround the electrode holder.

つまり、反応炉の底板部に挿入状態とされている環状絶縁材は、その上端部の上面が反応炉の内部に向けられることになるので、貫通孔の内周面と電極ホルダとの間から反応炉内に露出した状態のままであると、反応炉内のシリコン芯棒等からの輻射熱が貫通孔の内周面と電極ホルダとの間を経由して環状絶縁材の上端部に直接作用することになる。この発明では、環状絶縁材の上端部よりも大径の遮熱リングを反応炉の底板部の上に設けて、この遮熱リングによって電極ホルダを囲ったことにより、反応炉内からの輻射熱が遮熱リングに遮られて、環状絶縁材に直接作用することが防止される。また、同時に、底板部の上で遮熱リングがガスの流れを遮断するので、環状絶縁材に向かう対流伝熱をも抑制することができる。   In other words, since the upper surface of the upper end portion of the annular insulating material inserted into the bottom plate portion of the reaction furnace is directed to the inside of the reaction furnace, the gap between the inner peripheral surface of the through hole and the electrode holder If left exposed in the reaction furnace, the radiant heat from the silicon core in the reaction furnace acts directly on the upper end of the annular insulation material between the inner peripheral surface of the through hole and the electrode holder. Will do. In this invention, a heat shield ring having a diameter larger than that of the upper end portion of the annular insulating material is provided on the bottom plate portion of the reaction furnace, and the electrode holder is surrounded by the heat shield ring, so that radiant heat from the inside of the reaction furnace is generated. It is prevented from acting directly on the annular insulating material by being blocked by the heat shield ring. At the same time, since the heat shield ring blocks the gas flow on the bottom plate, convective heat transfer toward the annular insulating material can also be suppressed.

また、本発明の多結晶シリコン製造装置において、前記底板部の上面には前記貫通孔の開口部を拡径した座ぐり部が形成され、該座ぐり部内に前記遮熱リングが設けられていることを特徴とする。
反応炉の底板部に座ぐり部を設けたことにより、この座ぐり部の深さの範囲においては、遮熱リングの外周面が座ぐり部の内周面に対向することになる。したがって、その部分では、反応炉からの輻射熱が座ぐり部の内壁によって遮られることになり、遮熱リングに到達する輻射熱が低減される結果、環状絶縁材を輻射熱からより有効に保護することができる。
この場合、前記遮熱リングは前記座ぐり部の深さよりも大きい高さの帯状板材からなるとよい。
Further, in the polycrystalline silicon manufacturing apparatus of the present invention, a counterbore part having an enlarged diameter of the opening of the through hole is formed on the upper surface of the bottom plate part, and the heat shield ring is provided in the counterbore part. It is characterized by that.
By providing the counterbore portion on the bottom plate portion of the reactor, the outer peripheral surface of the heat shield ring faces the inner peripheral surface of the counterbore portion in the range of the depth of the counterbore portion. Therefore, in that part, the radiant heat from the reaction furnace is blocked by the inner wall of the counterbore part, and as a result of reducing the radiant heat reaching the heat shield ring, the annular insulating material can be more effectively protected from the radiant heat. it can.
In this case, the heat shield ring may be made of a strip-shaped plate material having a height larger than the depth of the spot facing portion.

また、本発明の多結晶シリコン製造装置において、前記電極ホルダには、前記環状絶縁材の上端部の上面に接触する拡径部が形成されていることを特徴とする。
貫通孔の内周面と電極ホルダとの間で反応炉の内部に向けられた環状絶縁材の上端部の上面が電極ホルダの拡径部により少なくとも一部分覆われた状態となるので、この上面に向かう輻射熱を電極ホルダが負担することになり、環状絶縁材に直接作用する輻射熱を少なくすることができる。しかも、この電極ホルダには冷却媒体が流通していることから、環状絶縁材の冷却効果も高めることができる。
In the polycrystalline silicon manufacturing apparatus according to the present invention, the electrode holder is formed with a diameter-expanded portion that contacts an upper surface of the upper end portion of the annular insulating material.
Since the upper surface of the upper end portion of the annular insulating material facing the inside of the reaction furnace between the inner peripheral surface of the through hole and the electrode holder is at least partially covered by the enlarged diameter portion of the electrode holder, The electrode holder bears the radiant heat to go, and the radiant heat directly acting on the annular insulating material can be reduced. In addition, since the cooling medium flows through the electrode holder, the cooling effect of the annular insulating material can be enhanced.

本発明の多結晶シリコン製造装置によれば、底板部上に設けた遮熱リングが、シリコン芯棒から環状絶縁材に至る輻射熱を遮断するとともに、ガスの対流による伝熱も遮断するので、環状絶縁材を反応時の熱から有効に保護することができ、環状絶縁材の絶縁性を良好に維持することができる。したがって、この環状絶縁材として合成樹脂等を使用することが可能であり、底板部と電極との間の絶縁を確保しつつ熱膨張差を吸収し得るなど、装置全体の健全性を維持することができる。   According to the polycrystalline silicon manufacturing apparatus of the present invention, the heat shield ring provided on the bottom plate portion cuts off radiant heat from the silicon core rod to the annular insulating material, and also cuts off heat transfer due to gas convection. The insulating material can be effectively protected from the heat during the reaction, and the insulating property of the annular insulating material can be maintained well. Therefore, it is possible to use a synthetic resin or the like as this annular insulating material, and maintain the soundness of the entire apparatus, such as being able to absorb the difference in thermal expansion while ensuring the insulation between the bottom plate portion and the electrode. Can do.

以下、本発明の多結晶シリコン製造装置の一実施形態について、図面に基づいて説明する。
図1は本発明が適用される多結晶シリコン製造装置の全体図であって、該多結晶シリコン製造装置の反応炉1は、炉底を構成する底板部2と、この底板部2上に脱着自在に取り付けられた釣鐘形状のベルジャ3とを具備している。この場合、底板部2の上面はほぼ平坦な水平面に形成されるが、ペルジャ3は、全体として釣鐘形状をしていて、天井がドーム型であるので、その内部空間は中央部が最も高く外周部が最も低く形成されている。また、底板部2及びペルジャ3の壁はジャケット構造(図示略)とされ、冷却水によって冷却されるようになっている。
Hereinafter, an embodiment of a polycrystalline silicon manufacturing apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view of a polycrystalline silicon manufacturing apparatus to which the present invention is applied. A reaction furnace 1 of the polycrystalline silicon manufacturing apparatus includes a bottom plate part 2 constituting a furnace bottom and a desorption on the bottom plate part 2. A bell-shaped bell jar 3 attached freely. In this case, the upper surface of the bottom plate portion 2 is formed in a substantially flat horizontal surface, but the Perja 3 has a bell shape as a whole and the ceiling is a dome shape, so that the inner space is the highest at the center and the outer periphery The part is formed lowest. The walls of the bottom plate portion 2 and the pelja 3 have a jacket structure (not shown) and are cooled by cooling water.

底板部2には、生成される多結晶シリコンの種棒(シード)となるシリコン芯棒4が取り付けられる複数対の電極5と、クロロシランガスと水素ガスとを含む原料ガスを炉内に噴出するための噴出ノズル(ガス供給口)6と、反応後のガスを炉外に排出するためのガス排出口7とがそれぞれ複数設けられている。   A plurality of pairs of electrodes 5 to which a silicon core rod 4 to be a seed rod (seed) of polycrystalline silicon to be generated is attached and a raw material gas including chlorosilane gas and hydrogen gas are jetted into the bottom plate portion 2. A plurality of ejection nozzles (gas supply ports) 6 and a plurality of gas discharge ports 7 for discharging the reacted gas to the outside of the furnace are provided.

この場合、原料ガスの噴出ノズル6は、各シリコン芯棒4に対して均一に原料ガスを供給することができるように、反応炉1の底板部2の上面のほぼ全域に分散して適宜の間隔をあけながら複数設置されている。これら噴出ノズル6は、反応炉1の外部の原料ガス供給源8に接続されている。また、ガス排出口7は、底板部2の上の外周部付近に周方向に適宜の間隔をあけて複数設置され、外部の排ガス処理系9に接続されている。なお、図2中符号10は、ジャケット構造とされた底板部2内の冷却流路を示す。 In this case, the raw material gas injection nozzles 6 are dispersed over almost the entire upper surface of the bottom plate portion 2 of the reactor 1 so that the raw material gas can be uniformly supplied to the silicon core rods 4. Several are installed at intervals. These ejection nozzles 6 are connected to a source gas supply source 8 outside the reactor 1. Further, a plurality of gas discharge ports 7 are installed in the vicinity of the outer peripheral portion on the bottom plate portion 2 with appropriate intervals in the circumferential direction, and are connected to an external exhaust gas treatment system 9. In addition, the code | symbol 10 in FIG. 2 shows the cooling flow path in the baseplate part 2 made into the jacket structure.

また、シリコン芯棒4は、下端部が電極5内に差し込まれた状態に固定されることにより、上方に延びて立設されており、そのうちの二本ずつを対として連結するように、上端部に1本の短尺の連結部材12が取り付けられている。この連結部材12もシリコン芯棒4と同じシリコンによって形成される。これら二本のシリコン芯棒4とこれらを連結する連結部材12とによって、全体として逆U字の鳥居形状となるようにシード組み立て体13が組み立てられ、これらシード組み立て体13は、電極5が反応炉1の中心から同心円状に配置されていることにより、全体としてほぼ同心円状に配置されている。   Further, the silicon core rod 4 is erected upward by being fixed in a state where the lower end portion is inserted into the electrode 5, and the upper end is connected so that two of them are connected in pairs. One short connecting member 12 is attached to the part. This connecting member 12 is also formed of the same silicon as the silicon core rod 4. The seed assembly 13 is assembled by the two silicon core rods 4 and the connecting member 12 that connects them so as to form a reverse U-shaped torii shape as a whole. Since they are arranged concentrically from the center of the furnace 1, they are arranged almost concentrically as a whole.

このシリコン芯棒4を保持している各電極5は、反応炉1の底板部2に形成した貫通孔21内に挿入状態に設けられた電極ホルダ22と、該電極ホルダ22の上端部に設けられシリコン芯棒4を保持する芯棒保持部23とから構成されている。   Each electrode 5 holding the silicon core rod 4 is provided in an electrode holder 22 inserted in a through hole 21 formed in the bottom plate portion 2 of the reaction furnace 1 and an upper end portion of the electrode holder 22. And a core rod holding portion 23 for holding the silicon core rod 4.

電極ホルダ22は、全体として棒状に形成され、貫通孔21内に上下方向に沿って挿入されたストレート状のロッド部24の上端部に、該ロッド部24よりも径の大きい拡径部25と、該拡径部25の上面からさらに上方に突出するねじ軸部26とが一体に形成されている。この場合、ロッド部24から拡径部25にかけて、内部に冷却媒体を流通させる冷却流路27が形成されており、また、ロッド部24の下部外周にはおねじ部28が形成されている。   The electrode holder 22 is formed in a rod shape as a whole, and has an enlarged diameter portion 25 having a diameter larger than that of the rod portion 24 at an upper end portion of a straight rod portion 24 inserted in the through hole 21 along the vertical direction. The screw shaft portion 26 that protrudes further upward from the upper surface of the enlarged diameter portion 25 is integrally formed. In this case, a cooling flow path 27 for circulating the cooling medium is formed from the rod portion 24 to the enlarged diameter portion 25, and a male screw portion 28 is formed on the lower outer periphery of the rod portion 24.

一方、この電極ホルダ22を挿入状態としている底板部2の貫通孔21は、下部がストレート部31、上部が上方に向けて漸次拡径するテーパ部32とされている。そのストレート部31の内径は、電極ホルダ22のロッド部24の外径よりも大きく形成され、該ロッド部24の周囲にリング状に空間を形成している。また、テーパ部32は、例えば垂直軸に対して5〜15°の傾斜角に形成されている。また、テーパ部32の上端開口部には、このテーパ部32の最大内径よりもさらに拡径した座ぐり部33が形成されている。   On the other hand, the through hole 21 of the bottom plate portion 2 in which the electrode holder 22 is inserted is a straight portion 31 at the lower portion and a tapered portion 32 whose diameter is gradually increased upward toward the upper portion. An inner diameter of the straight portion 31 is formed larger than an outer diameter of the rod portion 24 of the electrode holder 22, and a space is formed around the rod portion 24 in a ring shape. Moreover, the taper part 32 is formed in the inclination angle of 5-15 degrees with respect to the perpendicular axis, for example. Further, a counterbore portion 33 having a diameter larger than the maximum inner diameter of the tapered portion 32 is formed at the upper end opening of the tapered portion 32.

そして、この貫通孔21の内周面と電極ホルダ22のロッド部24との間に環状絶縁材34が電極ホルダ22を囲むように設けられている。この環状絶縁材34は、例えばポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)に代表されるフッ素系樹脂等の高融点の絶縁樹脂により形成され、貫通孔21のストレート部31に挿入されるつば付きスリーブ35と、貫通孔21のテーパ部32に配置されるコーン部材36との二つの部材から構成されている。コーン部材36は、その外面が貫通孔21のテーパ部32の内周面と同じ傾斜角度のテーパ状に形成され、底板部2の上方から貫通孔21に挿入されてそのテーパ部32の内面に当接させられている。また、このコーン部材36の上端部の上面には電極ホルダ22の拡径部25の下面が当接している。この場合、コーン部材36の最大外径の方が電極ホルダ22の拡径部25の外径よりもわずかに大きく設定されている。   An annular insulating material 34 is provided between the inner peripheral surface of the through hole 21 and the rod portion 24 of the electrode holder 22 so as to surround the electrode holder 22. The annular insulating material 34 is formed of a high melting point insulating resin such as a fluorine-based resin typified by polytetrafluoroethylene (PTFE) or perfluoroalkoxyalkane (PFA), and is inserted into the straight portion 31 of the through hole 21. It is comprised from two members, the sleeve 35 with a collar and the cone member 36 arrange | positioned at the taper part 32 of the through-hole 21. FIG. The outer surface of the cone member 36 is formed in a tapered shape having the same inclination angle as the inner peripheral surface of the tapered portion 32 of the through hole 21, and is inserted into the through hole 21 from above the bottom plate portion 2 to be formed on the inner surface of the tapered portion 32. It is made to contact. Further, the lower surface of the enlarged diameter portion 25 of the electrode holder 22 is in contact with the upper surface of the upper end portion of the cone member 36. In this case, the maximum outer diameter of the cone member 36 is set slightly larger than the outer diameter of the enlarged diameter portion 25 of the electrode holder 22.

一方、つば付きスリーブ35は、その下端部につば部37が一体に形成され、該つば部37が反応炉1の底板部2の裏面に当接され、電極ホルダ22のおねじ部28にねじ込まれたナット38によりつば部37の下面が支持された状態とされている。そして、このナット38を締め付けることにより、拡径部25とナット38との間に、環状絶縁部材34が挟持されるとともに、その挟持力によって貫通孔21のテーパ部32の内周面にコーン部材36の外周面が押し付けられ、これら環状絶縁材34と電極ホルダ22とが底板部2に一体的に固定される構成である。   On the other hand, the flanged sleeve 35 is integrally formed with a flange portion 37 at the lower end thereof, and the flange portion 37 is brought into contact with the back surface of the bottom plate portion 2 of the reactor 1 and screwed into the threaded portion 28 of the electrode holder 22. The bottom surface of the collar portion 37 is supported by the nut 38. By tightening the nut 38, the annular insulating member 34 is sandwiched between the enlarged diameter portion 25 and the nut 38, and the cone member is formed on the inner peripheral surface of the tapered portion 32 of the through hole 21 by the clamping force. The outer peripheral surface of 36 is pressed, and the annular insulating material 34 and the electrode holder 22 are integrally fixed to the bottom plate portion 2.

この固定状態において、環状絶縁材34のコーン部材36の上端部は、貫通孔21のテーパ部32よりわずかに上方に突出して座ぐり部33内に臨ませられており、その上端部を囲むように座ぐり部33内に遮熱リング41が設けられている。この遮熱リング41は、座ぐり部33の深さよりも大きい高さの石英からなる帯状の円弧板42が例えば3個組み合わせられることにより、リング状に構成されるものであり、その下端部で環状絶縁材34の上端部を囲むとともに、上端部で電極ホルダ22の拡径部25の大部分を囲った状態としている。例えば、座ぐり部33の深さが5〜30mmとされ、この座ぐり部33の深さよりも遮熱リング41は5〜20mm高く設定される。   In this fixed state, the upper end portion of the cone member 36 of the annular insulating material 34 protrudes slightly above the tapered portion 32 of the through hole 21 and faces the counterbore portion 33 so as to surround the upper end portion. A heat shield ring 41 is provided in the counterbore portion 33. The heat shield ring 41 is configured in a ring shape by combining, for example, three belt-like arc plates 42 made of quartz having a height larger than the depth of the counterbore portion 33, and at the lower end thereof. While enclosing the upper end part of the cyclic | annular insulating material 34, it is set as the state which enclosed most parts of the enlarged diameter part 25 of the electrode holder 22 by an upper end part. For example, the depth of the spot facing portion 33 is 5 to 30 mm, and the heat shield ring 41 is set 5 to 20 mm higher than the depth of the spot facing portion 33.

一方、芯棒保持部23は、電極ホルダ22のねじ軸部26にねじ込まれるめねじ部43を有する全体として円柱状に形成され、その上端部にシリコン芯棒4を挿入状態に固定する孔44が軸心に沿って形成されたものであり、カーボン等によって形成される。   On the other hand, the core rod holding portion 23 is formed in a cylindrical shape as a whole having a female screw portion 43 screwed into the screw shaft portion 26 of the electrode holder 22, and a hole 44 for fixing the silicon core rod 4 in an inserted state at the upper end portion thereof. Is formed along the axis, and is formed of carbon or the like.

このように構成される多結晶シリコン製造装置において、各電極5からシリコン芯棒4に通電してシリコン芯棒4を抵抗発熱状態とするとともに、各シリコン芯棒4どうしの間でも、隣接するシリコン芯棒4からの輻射熱を受けて加熱され、それらが相乗して高温状態となり、この高温状態のシリコン芯棒4の表面に接触した原料ガスが反応して多結晶シリコンを析出するのである。   In the polycrystalline silicon manufacturing apparatus configured as described above, the silicon core rod 4 is energized from each electrode 5 to bring the silicon core rod 4 into a resistance heating state, and adjacent silicon core rods 4 are also adjacent to each other. When heated by receiving radiant heat from the core rod 4, they synergistically reach a high temperature state, and the raw material gas contacting the surface of the silicon core rod 4 in the high temperature state reacts to deposit polycrystalline silicon.

このシリコン芯棒4からの輻射熱は反応炉1の底板部2上の各電極5にも作用し、熱に弱い環状絶縁材34も、上端部の一部が露出しているために熱の影響を受けることが考えられるが、この環状絶縁材34の上端部の上面には図2に示すように電極ホルダ22の拡径部25が覆い被さるように配置されているので、この上端面に直接作用する輻射熱は少なくなる。しかも、電極ホルダ22は内部を流通する冷却媒体によって冷却されていることから、環状絶縁材34も有効に冷却される。   The radiant heat from the silicon core rod 4 also acts on each electrode 5 on the bottom plate portion 2 of the reaction furnace 1, and the annular insulator 34 which is weak against heat is also exposed to heat because a part of the upper end portion is exposed. However, as shown in FIG. 2, the diameter-enlarged portion 25 of the electrode holder 22 is disposed so as to cover the upper surface of the upper end portion of the annular insulating material 34. Less radiant heat is applied. In addition, since the electrode holder 22 is cooled by the cooling medium flowing through the inside, the annular insulating material 34 is also effectively cooled.

また、反応炉1の底板部2の座ぐり部33内に遮熱リング41が配置されていることから、この遮熱リング41が、その内側の環状絶縁材34と隣接するシリコン芯棒4との間に介在して、該シリコン芯棒4から環状絶縁材34に至る輻射熱(図2に実線矢印で示している)を有効に遮断することができる。この場合、この遮熱リング41は、底板部2の座ぐり部33内に落とし込まれるように配置されて、その外周面が座ぐり部33の内周面に対向していることから、遮熱リング41の外周面に直接到達する輻射熱が座ぐり部33の内壁によって遮られ、その分、遮熱リング41の負担が軽減され、該遮熱リング41の内側の環状絶縁材34を輻射熱から有効に保護することができる。   Further, since the heat shield ring 41 is disposed in the counterbore portion 33 of the bottom plate portion 2 of the reactor 1, the heat shield ring 41 is connected to the silicon core rod 4 adjacent to the inner ring insulating material 34. Therefore, the radiant heat (shown by solid line arrows in FIG. 2) from the silicon core rod 4 to the annular insulating material 34 can be effectively blocked. In this case, the heat shield ring 41 is disposed so as to be dropped into the counterbore portion 33 of the bottom plate portion 2, and the outer peripheral surface thereof faces the inner peripheral surface of the counterbore portion 33. The radiant heat that directly reaches the outer peripheral surface of the heat ring 41 is blocked by the inner wall of the counterbore portion 33, and the burden on the heat shield ring 41 is reduced correspondingly, and the annular insulating material 34 inside the heat shield ring 41 is protected from the radiant heat. It can be effectively protected.

また、この遮熱リング41は、座ぐり部33の上面から立ち上がるようにして、環状絶縁材34の周りを囲っているので、この遮熱リング41の厚さ方向に流れるガス流(図2の破線矢印で示す)をも遮断することができ、対流による伝熱も有効に抑制することができる。このように、遮熱リング41は、隣接するシリコン芯棒4からの輻射熱と対流による伝熱との両方を遮断して環状絶縁材34を保護することができるものである。したがって、この環状絶縁材34としては、前述のフッ素系の合成樹脂としての性能低下を防止することができ、底板部2と電極5との間の絶縁を確保し、しかも両者の熱膨張差を吸収し得るなど、装置全体の健全性を長期に維持することができる。なお、この遮熱リング41は石英によって形成されているので、反応炉1内を汚染することはない。   Further, since the heat shield ring 41 stands up from the upper surface of the counterbore portion 33 and surrounds the annular insulating material 34, the gas flow flowing in the thickness direction of the heat shield ring 41 (see FIG. 2). (Shown by dashed arrows) can also be cut off, and heat transfer by convection can be effectively suppressed. As described above, the heat shield ring 41 can protect both the radiant heat from the adjacent silicon core rod 4 and the heat transfer by convection to protect the annular insulating material 34. Therefore, the annular insulating material 34 can prevent the performance deterioration as the above-mentioned fluorine-based synthetic resin, secures the insulation between the bottom plate portion 2 and the electrode 5, and further reduces the difference in thermal expansion between the two. The soundness of the entire apparatus can be maintained over a long period of time, such as being able to be absorbed. Since the heat shield ring 41 is made of quartz, the reaction furnace 1 is not contaminated.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、遮熱リングの各円弧板は、図2では遮熱リング41の円周を3個に分割した円弧長さのものとしているが、それよりも長く形成して、相互に重なり合ってリング状となる円弧長さのものでもよい。   In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention. For example, each arc plate of the heat shield ring has an arc length obtained by dividing the circumference of the heat shield ring 41 into three in FIG. 2, but it is formed longer than that and overlaps with each other to form a ring shape. The arc length may be as follows.

反応炉のベルジャを一部切欠いた斜視図である。It is the perspective view which notched the bell jar of the reaction furnace partially. 図1に示す反応炉の電極部分を示す拡大断面図である。It is an expanded sectional view which shows the electrode part of the reaction furnace shown in FIG. 図2のA−A線に沿う平断面図である。FIG. 3 is a plan sectional view taken along line AA in FIG. 2.

符号の説明Explanation of symbols

1 反応炉
2 底板部
3 ベルジャ
4 シリコン芯棒
5 電極
6 噴出ノズル
7 排気口
8 原料ガス供給源
9 排ガス処理系
10 冷却流路
12 連結部材
13 シード組み立て体
21 貫通孔
22 電極ホルダ
23 芯棒保持部
24 ロッド部
25 拡径部
26 ねじ軸部
27 冷却流路
28 おねじ部
31 ストレート部
32 テーパ部
33 座ぐり部
34 環状絶縁材
35 つば付きスリーブ
36 コーン部材
37 つば部
38 ナット
41 遮熱リング
42 円弧板
43 めねじ部
44 孔
DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Bottom plate part 3 Belger 4 Silicon core rod 5 Electrode 6 Injection nozzle 7 Exhaust port 8 Raw material gas supply source 9 Exhaust gas treatment system 10 Cooling flow path 12 Connecting member 13 Seed assembly 21 Through-hole 22 Electrode holder 23 Core rod holding Part 24 Rod part 25 Expanded part 26 Screw shaft part 27 Cooling flow path 28 Male thread part 31 Straight part 32 Tapered part 33 Counterbore part 34 Annular insulator 35 Sleeve with collar 36 Cone member 37 Brim part 38 Nut 41 Heat shield ring 42 Arc plate 43 Female thread 44 Hole

Claims (4)

反応炉の底板部に配設された複数の電極に、上下方向に延びるシリコン芯棒をそれぞれ立設しておき、反応炉内に原料ガスを供給するとともに、前記シリコン芯棒に前記電極から通電することによりシリコン芯棒を発熱させて、該シリコン芯棒の表面に前記原料ガスによって多結晶シリコンを析出させる多結晶シリコン製造装置において、
前記反応炉の底板部は、これを冷却する冷却流路を有しており、
前記電極は、前記底板部に形成した貫通孔内に挿入状態に設けられ内部に冷却媒体が流通する電極ホルダと、該電極ホルダの上端部に設けられ前記シリコン芯棒を保持する芯棒保持部とを有し、前記貫通孔の内周面と前記電極ホルダとの間に前記貫通孔内で電極ホルダの周りを囲む環状絶縁材が設けられ、前記反応炉の底板部上に、前記環状絶縁材の上端部よりも大径の遮熱リングが前記電極ホルダを囲むように設けられていることを特徴とする多結晶シリコン製造装置。
A plurality of electrodes arranged on the bottom plate portion of the reactor is provided with a silicon core rod extending vertically to supply a raw material gas into the reactor and energize the silicon core rod from the electrode. In the polycrystalline silicon manufacturing apparatus for causing the silicon core rod to generate heat and depositing polycrystalline silicon on the surface of the silicon core rod by the raw material gas,
The bottom plate part of the reactor has a cooling flow path for cooling it,
The electrode is provided in an inserted state in a through-hole formed in the bottom plate portion, and a cooling medium flows therethrough, and a core rod holding portion that is provided at the upper end of the electrode holder and holds the silicon core rod And an annular insulating material surrounding the electrode holder in the through hole is provided between the inner peripheral surface of the through hole and the electrode holder, and the annular insulation is provided on the bottom plate portion of the reactor. A polycrystalline silicon manufacturing apparatus, wherein a heat shield ring having a diameter larger than that of the upper end portion of the material is provided so as to surround the electrode holder.
前記底板部の上面には前記貫通孔の開口部を拡径した座ぐり部が形成され、該座ぐり部内に前記遮熱リングが設けられていることを特徴とする請求項1記載の多結晶シリコン製造装置。   The polycrystalline body according to claim 1, wherein a counterbore part having an enlarged diameter of the opening of the through hole is formed on an upper surface of the bottom plate part, and the heat shield ring is provided in the counterbore part. Silicon manufacturing equipment. 前記遮熱リングは前記座ぐり部の深さよりも大きい高さの帯状板材からなることを特徴とする請求項2記載の多結晶シリコン製造装置。3. The polycrystalline silicon manufacturing apparatus according to claim 2, wherein the heat shield ring is made of a strip-shaped plate material having a height larger than the depth of the spot facing portion. 前記電極ホルダには、前記環状絶縁材の上端部の上面に接触する拡径部が形成されていることを特徴とする請求項1から3のいずれか一項記載の多結晶シリコン製造装置。 The polycrystalline silicon manufacturing apparatus according to any one of claims 1 to 3, wherein the electrode holder is formed with a diameter-expanding portion that contacts an upper surface of an upper end portion of the annular insulating material.
JP2008068324A 2008-03-17 2008-03-17 Polycrystalline silicon production equipment Active JP5266817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068324A JP5266817B2 (en) 2008-03-17 2008-03-17 Polycrystalline silicon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068324A JP5266817B2 (en) 2008-03-17 2008-03-17 Polycrystalline silicon production equipment

Publications (2)

Publication Number Publication Date
JP2009221058A JP2009221058A (en) 2009-10-01
JP5266817B2 true JP5266817B2 (en) 2013-08-21

Family

ID=41238253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068324A Active JP5266817B2 (en) 2008-03-17 2008-03-17 Polycrystalline silicon production equipment

Country Status (1)

Country Link
JP (1) JP5266817B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840723B2 (en) * 2009-03-10 2014-09-23 Mitsubishi Materials Corporation Manufacturing apparatus of polycrystalline silicon
AU2013251286B2 (en) * 2009-11-26 2015-03-19 Shin-Etsu Chemical Co., Ltd. Carbon electrode and apparatus for manufacturing polycrystalline silicon rod
JP5415914B2 (en) * 2009-11-26 2014-02-12 信越化学工業株式会社 Carbon electrode and polycrystalline silicon rod manufacturing equipment
DE102011077967A1 (en) 2011-06-22 2012-12-27 Wacker Chemie Ag Electrode and method for powering a reactor
DE102011078727A1 (en) * 2011-07-06 2013-01-10 Wacker Chemie Ag Protective device for electrode holders in CVD reactors
JP2013018675A (en) * 2011-07-11 2013-01-31 Shin-Etsu Chemical Co Ltd Apparatus for manufacturing polycrystalline silicon
KR101210759B1 (en) 2012-06-11 2012-12-11 서경수 Electrode bar for manufacturing polysilicon
KR101225438B1 (en) * 2012-06-11 2013-01-22 서경수 Electrode bar for manufacturing polysilicon with structure exchange possible of electron parts and exchange method
DE102013207330A1 (en) 2013-04-23 2014-10-23 Wacker Chemie Ag Silicone elastomer isolated electrode in the CVD reactor
JP7106469B2 (en) 2019-02-20 2022-07-26 信越化学工業株式会社 Polycrystalline silicon manufacturing equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101410A (en) * 1984-10-24 1986-05-20 Hiroshi Ishizuka Production of polycrystalline silicon and apparatus therefor
JP3227549B2 (en) * 1992-12-10 2001-11-12 三菱マテリアルポリシリコン株式会社 Reactor for semiconductor grade polycrystalline silicon production
DE4424929C2 (en) * 1994-07-14 1997-02-13 Wacker Chemie Gmbh Holder for carrier bodies in a device for the deposition of semiconductor material
WO1999031013A1 (en) * 1997-12-15 1999-06-24 Advanced Silicon Materials, Inc. Chemical vapor deposition system for polycrystalline silicon rod production
DE10101040A1 (en) * 2001-01-11 2002-07-25 Wacker Chemie Gmbh Device and method for producing a polycrystalline silicon rod
JP3819252B2 (en) * 2001-05-21 2006-09-06 住友チタニウム株式会社 Seed holding electrode
US6503563B1 (en) * 2001-10-09 2003-01-07 Komatsu Ltd. Method of producing polycrystalline silicon for semiconductors from saline gas
JP4031782B2 (en) * 2004-07-01 2008-01-09 株式会社大阪チタニウムテクノロジーズ Polycrystalline silicon manufacturing method and seed holding electrode
JP4905638B2 (en) * 2005-10-11 2012-03-28 三菱マテリアル株式会社 Electrode short-circuit prevention method and short-circuit prevention plate

Also Published As

Publication number Publication date
JP2009221058A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5266817B2 (en) Polycrystalline silicon production equipment
JP5444860B2 (en) Polycrystalline silicon production equipment
ES2390109T3 (en) Polycrystalline silicon manufacturing apparatus
ES2543887T3 (en) Protective device for electrode fixation systems in CVD reactors
US8187382B2 (en) Polycrystalline silicon manufacturing apparatus
KR101620635B1 (en) Apparatus for producing polycrystalline silicon
US8303711B2 (en) Electrode anchoring structure in crystal-growing furnaces
KR101590607B1 (en) Apparatus for manufacturing polysilicon
KR101329035B1 (en) Fluidized Bed Reactor
JP5439018B2 (en) Catalytic CVD equipment
JP5157807B2 (en) Polycrystalline silicon production equipment
JP4943444B2 (en) Partition structure type heating unit and heating device using the same
CN112503944B (en) Furnace door assembly for vertical furnace and vertical furnace
JP4542859B2 (en) Vapor growth equipment
AU2015272980B2 (en) Ozone generation device
KR101651964B1 (en) An apparatus for growing a single crystal
JP2010195597A (en) Apparatus for producing polycrystalline silicon
JP6772753B2 (en) Polycrystalline silicon reactor
JP5130882B2 (en) Polycrystalline silicon manufacturing method and manufacturing apparatus
JP6309877B2 (en) Exhaust gas treatment equipment
JP2011157223A (en) Apparatus for manufacturing trichlorosilane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5266817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350