JP5263085B2 - Production method of edible globular protein material - Google Patents

Production method of edible globular protein material Download PDF

Info

Publication number
JP5263085B2
JP5263085B2 JP2009199168A JP2009199168A JP5263085B2 JP 5263085 B2 JP5263085 B2 JP 5263085B2 JP 2009199168 A JP2009199168 A JP 2009199168A JP 2009199168 A JP2009199168 A JP 2009199168A JP 5263085 B2 JP5263085 B2 JP 5263085B2
Authority
JP
Japan
Prior art keywords
protein
protein material
solution
edible
anionic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009199168A
Other languages
Japanese (ja)
Other versions
JP2011050251A (en
Inventor
努 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2009199168A priority Critical patent/JP5263085B2/en
Publication of JP2011050251A publication Critical patent/JP2011050251A/en
Application granted granted Critical
Publication of JP5263085B2 publication Critical patent/JP5263085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing edible spherical protein material by which a novel intake mode of protein, that is a protein material applicable also to something like "dessert" casually taken, is provided, in view of the fact that the conventional intake of protein relies mainly on "accompanying dish". <P>SOLUTION: The method for producing edible spherical protein material includes applying, in particular, a polyion complex to easily obtain an edible spherical protein material focusing attention on a spherical protein material. Namely, according to the method, an anionic polymer solution and a cationic protein solution are mixed together by a certain method to easily obtain the edible spherical protein material. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、可食性球状蛋白素材及びその簡易な製造方法に関する。 The present invention relates to an edible globular protein material and a simple production method thereof.

可食性の球状蛋白素材を簡易に製造する方法に関する先行技術はほとんど見い出せない。
関連技術としては、たとえば特許文献1には、マイクロカプセルの生産方法に関し開示されている。マイクロカプセルとはその名のとおり、直径が最大でも1mm(1000μm)のカプセルであり、特許文献1においても、「マイクロカプセル化とは、そのサイズが1μm〜1mmの間であるような、」(特許文献1〔0002〕)と記載されている。特許文献1では、複合コアセルベーションによりマイクロカプセル化し、その後硬化処理を行っている。一般的に、球を構成する外殻の厚さを一定と考えた場合、球の直径が小さいほど、体積に占める外殻の割合が大きいため、球構造を維持するための外殻強度はそれほど必要ではない。しかし、体積が増すにつれ、体積に占める外殻の割合が低下するため、外殻にはより強い強度が求められる。
There is hardly any prior art relating to a method for easily producing an edible globular protein material.
As a related technique, for example, Patent Document 1 discloses a microcapsule production method. As the name suggests, a microcapsule is a capsule having a diameter of at most 1 mm (1000 μm), and even in Patent Document 1, “microencapsulation is such that its size is between 1 μm and 1 mm” ( Patent Document 1 [0002]). In Patent Document 1, microencapsulation is performed by composite coacervation, and then curing is performed. In general, when the thickness of the outer shell constituting the sphere is considered to be constant, the smaller the sphere diameter, the larger the proportion of the outer shell in the volume, so the outer shell strength to maintain the sphere structure is less. Not necessary. However, as the volume increases, the ratio of the outer shell to the volume decreases, so the outer shell is required to have stronger strength.

特許文献1においては、複合コアセルベーション化によりマイクロカプセルを形成しているため、一定粘度以下のポリマー溶液を使用せねばならず、複合コアセルベーション化のみでは不足するカプセル強度については、その後の硬化処理が必要である。ただしそれでも、マイクロカプセルと称する、直径が1mm程度のものが上限である。すなわち、直径が1mmを超えるカプセルについての技術的開示はなく、また、それ以下においても、強度を確保するためには硬化処理が必要であるなど、煩雑である。さらに、硬化処理には「グルタルアルデヒドのようなジアルデヒドおよびタンニン酸などのタンニンを含む群より選択される架橋剤を用いた架橋によって実行される」(特許文献1〔請求項9〕)ため、食品としての利用を考えた場合は問題がある。 In Patent Document 1, since microcapsules are formed by composite coacervation, a polymer solution having a constant viscosity or less must be used. For capsule strength that is insufficient only by composite coacervation, A curing process is required. However, the upper limit is still about 1 mm in diameter called a microcapsule. That is, there is no technical disclosure about capsules having a diameter exceeding 1 mm, and even below that, it is complicated such that a curing treatment is required to ensure strength. Furthermore, the curing treatment is “performed by crosslinking using a crosslinking agent selected from the group comprising dialdehydes such as glutaraldehyde and tannins such as tannic acid” (Patent Document 1 [Claim 9]), There is a problem when considering use as food.

特許文献2は、アニオン性高分子とカチオン性蛋白質との接触面に、ポリイオンコンプレックス膜が形成されることを開示している。しかし、特許発明2は当該ポリイオンコンプレックス膜を食品の水分移動防止用に用いることのみしか教えていない。   Patent Document 2 discloses that a polyion complex film is formed on a contact surface between an anionic polymer and a cationic protein. However, Patent Invention 2 only teaches that the polyion complex membrane is used for preventing moisture movement of food.

特表2004−532112号公報Special table 2004-532112 gazette 特開2008−206420号公報JP 2008-206420 A

本発明の目的は、従来にはない、蛋白質の摂取形態を提供することにある。 An object of the present invention is to provide an unconventional form of protein intake.

蛋白質は三大栄養素のひとつであり、あらゆる年齢層において、必要充分な量を摂取することが必要である。また一部の蛋白質には、栄養素としての働き以外にも、生理的に有益な作用を示すものもある。たとえば大豆蛋白には、血中コレステロールを低下する作用が知られており、一定量以上の大豆蛋白を日常的に摂取することが推奨されている。   Protein is one of the three major nutrients, and it is necessary to consume the necessary and sufficient amount in all ages. Some proteins have physiologically beneficial effects in addition to their function as nutrients. For example, soy protein is known to have an effect of lowering blood cholesterol, and it is recommended to take a certain amount or more of soy protein on a daily basis.

そして、従来の蛋白質摂取が、主に「おかず」に由来している状況に鑑み、より気軽に摂取できる「デザート」のようなものへも適用可能な蛋白素材の提供が必要であると考えた。そして、各種の検討から、その形態として球状の蛋白素材が適当であるとの考えに至った。特に、食品素材として現実的に使用可能なように、より低コストで、簡易に、またできるだけ食品添加物等を使用せずに調製できる方法を検討した。その結果、ポリイオンコンプレックスの技術を応用することで、比較的簡易に食感良好で見た目にも美しい、可食性球状蛋白素材を得ることができることを見出し、本発明を完成させた。   And in view of the situation where conventional protein intake is mainly derived from “side dishes”, we thought it was necessary to provide protein materials applicable to things like “desserts” that can be consumed more easily. . Various studies have led to the idea that a spherical protein material is appropriate as its form. In particular, a method that can be prepared at a lower cost, easily, and using as little food additives as possible so as to be practically usable as a food material was examined. As a result, it was found that an edible globular protein material having a good texture and beautiful appearance can be obtained by applying the polyion complex technology, and the present invention was completed.

即ち、本発明は
(1)アニオン性高分子溶液と、2.6〜25重量%のカチオン性蛋白質溶液を混合することにより得られる、可食性球状蛋白素材の製造法。
(2)アニオン性高分子溶液へ、2.6〜25重量%のカチオン性蛋白質溶液を滴下することにより得られる、可食性球状蛋白素材の製造法。
(3)アニオン性高分子溶液中へ、2.6〜25重量%のカチオン性蛋白質溶液を押し出すことにより得られる、可食性球状蛋白素材の製造法。
(4)カチオン性蛋白質が大豆蛋白質である、(1)〜(3)いずれか1つに記載の可食性球状蛋白素材の製造法。
(5)アニオン性高分子がアルギン酸,カラギーナン,ネイティブジェランガム,キサンタンガム及びこれらの塩類から選ばれる1以上である、(1)〜(4)いずれか1つに記載の、可食性球状蛋白素材の製造法。
(6)直径が0.01〜50mmである、(1)〜(5)いずれか1つに記載の、可食性球状蛋白素材。
に関するものである。
That is, the present invention is (1) a method for producing an edible globular protein material obtained by mixing an anionic polymer solution with 2.6 to 25% by weight of a cationic protein solution.
(2) A method for producing an edible globular protein material obtained by dropping 2.6 to 25% by weight of a cationic protein solution into an anionic polymer solution.
(3) A method for producing an edible globular protein material obtained by extruding a 2.6 to 25 wt% cationic protein solution into an anionic polymer solution.
(4) The method for producing an edible globular protein material according to any one of (1) to (3), wherein the cationic protein is soybean protein.
(5) Production of an edible globular protein material according to any one of (1) to (4), wherein the anionic polymer is one or more selected from alginic acid, carrageenan, native gellan gum, xanthan gum and salts thereof. Law.
(6) The edible globular protein material according to any one of (1) to (5), having a diameter of 0.01 to 50 mm.
It is about.

本発明によれば、簡易に可食性球状蛋白素材を得ることができる。 According to the present invention, an edible globular protein material can be easily obtained.

蛋白質の多くはゲルを形成する能力を持ち、何らかの球状の”型”に一定濃度以上の蛋白質溶液を充填後加熱することで、球状の蛋白素材を得ることができる場合がある。しかしこのような方法では、必要により各種の大きさの型を大量に準備せねばならず、また、型への充填、型からの回収など多くの工程が必要であり、煩雑である。
”型”を使用しない球状食品の製造法としては、人工イクラの製造法が知られている。人工イクラは塩化カルシウムの水溶液へアルギン酸ナトリウムの水溶液を滴下して製造される。しかし、塩化カルシウムの水溶液へ蛋白質の水溶液を滴下しても球状蛋白素材を得ることは困難と想定される。
Many proteins have the ability to form a gel. In some cases, a spherical protein material can be obtained by filling a certain spherical “mold” with a protein solution of a certain concentration or higher and then heating. However, in such a method, it is necessary to prepare a large number of molds of various sizes if necessary, and many steps such as filling into the mold and recovery from the mold are necessary, which is complicated.
An artificial salmon roe production method is known as a method for producing a spherical food that does not use a “mold”. Artificial salmon roe is produced by dropping an aqueous solution of sodium alginate into an aqueous solution of calcium chloride. However, it is assumed that it is difficult to obtain a globular protein material even when an aqueous protein solution is dropped into an aqueous calcium chloride solution.

本発明者は、蛋白質を等電点以下にした場合のカチオン性蛋白質が、アニオン性高分子と接触した場合に、ポリイオンコンプレックス膜を形成する現象に着目し、当該現象を応用することで、球状の蛋白素材が容易に製造できる方法を発明した。以下、本発明の詳細を説明する。   The inventor of the present invention pays attention to the phenomenon of forming a polyion complex film when the cationic protein when the protein is brought to the isoelectric point or less and in contact with the anionic polymer, and by applying this phenomenon, We have invented a method that can easily produce the protein material. Details of the present invention will be described below.

本発明で使用するアニオン性高分子とは、マイナスの荷電を帯びた、酸性多糖類若しくはアニオン性蛋白質である。
酸性多糖類とは、スルホン酸基やカルボキシル基などの酸性基を持つ多糖類で、アルギン酸,カラギーナン,ネイティブジェランガム,キサンタンガム,これらの塩類などが挙げられる。そして、これら酸性多糖類が水または含水溶媒に分散,溶解している状態のものである。より望ましくはアルギン酸ナトリウムである。
The anionic polymer used in the present invention is a negatively charged acidic polysaccharide or anionic protein.
The acidic polysaccharide is a polysaccharide having an acidic group such as a sulfonic acid group or a carboxyl group, and examples thereof include alginic acid, carrageenan, native gellan gum, xanthan gum, and salts thereof. These acidic polysaccharides are in a state where they are dispersed and dissolved in water or a hydrous solvent. More desirable is sodium alginate.

アニオン性の蛋白質としては、可食性の蛋白質であって、蛋白質を含む蛋白素材が、その等電点を超えるpHの環境で、水または含水溶媒に分散,溶解している状態のものである。蛋白質は大豆,乳,乳清,卵白,小麦など一般に食用にされている素材から抽出,分離した蛋白質が好ましく、例えば、分離大豆たん白,カゼインナトリウム,酸カゼイン,WPI,WPC,乾燥卵白,小麦グルテンなどの、可食性の蛋白質が好適であり、中でも、分離大豆蛋白質が適当である。
なお、酸性多糖類、アニオン性蛋白質全てを含めた「アニオン性高分子」として最も望ましいのは、アルギン酸ナトリウムである。
An anionic protein is an edible protein in which a protein material containing the protein is dispersed and dissolved in water or a hydrous solvent in an environment having a pH exceeding its isoelectric point. Proteins are preferably extracted and separated from generally edible materials such as soybeans, milk, whey, egg white, wheat, etc. For example, isolated soybean protein, sodium caseinate, acid casein, WPI, WPC, dried egg white, wheat Edible proteins such as gluten are preferred, and among them, isolated soy protein is suitable.
The most desirable “anionic polymer” including all of acidic polysaccharides and anionic proteins is sodium alginate.

本願発明においては、アニオン性高分子溶液の濃度は0.04〜5重量%が望ましく、より望ましくは0.4〜3重量%であり、更に望ましくは0.5〜2.5重量%である。アニオン性高分子溶液の濃度が低すぎる場合、充分な強度の球状蛋白素材を得られない場合がある。また、アニオン性高分子溶液の濃度が高すぎる場合は、粘度が高いためカチオン性蛋白質溶液が、その表面張力のみではきれいな球状とならない場合もある。   In the present invention, the concentration of the anionic polymer solution is preferably 0.04 to 5% by weight, more preferably 0.4 to 3% by weight, and still more preferably 0.5 to 2.5% by weight. . If the concentration of the anionic polymer solution is too low, a globular protein material with sufficient strength may not be obtained. In addition, when the concentration of the anionic polymer solution is too high, the cationic protein solution may not be a clean sphere only by its surface tension because the viscosity is high.

本発明で使用するカチオン性蛋白質とは、本発明の目的である、可食性球状蛋白素材の主体となる蛋白質であって、等電点未満のpHの環境でプラスの荷電を帯びているものである。具体的には、蛋白質を含む蛋白素材が、その等電点未満のpHの環境で、水若しくは含水溶媒に分散,溶解している状態のものである。なお、本発明の球状蛋白素材は、その見た目の美しさからは透明であることが望ましい。   The cationic protein used in the present invention is a protein that is the main component of the edible globular protein material, which is the object of the present invention, and has a positive charge in an environment with a pH below the isoelectric point. is there. Specifically, a protein material containing a protein is dispersed and dissolved in water or a water-containing solvent in an environment having a pH lower than its isoelectric point. In addition, the globular protein material of the present invention is desirably transparent in view of its beauty.

本発明に用いるカチオン性蛋白質は、大豆,乳,乳清,卵白,小麦など一般に食用にされている食品原料から抽出,分離した蛋白質が使用できる。例えば、分離大豆たん白,カゼインナトリウム,酸カゼイン,WPI(乳清たん白分離物),WPC(乳清たん白濃縮物),乾燥卵白,小麦グルテンなどが好適である。中でも、分離大豆蛋白質、特に酸性可溶大豆蛋白質が、最も優れ好ましい。これら蛋白質は酵素分解されていても構わないが、分解度が低いほうが、比較的強度ある球状蛋白素材を得ることができる。また、加熱処理等により高分子化が進んだ蛋白質が好ましい。   As the cationic protein used in the present invention, a protein extracted and separated from food materials generally used for food, such as soybean, milk, whey, egg white, and wheat, can be used. For example, isolated soybean protein, sodium caseinate, acid casein, WPI (whey protein isolate), WPC (whey protein concentrate), dried egg white, wheat gluten and the like are suitable. Of these, isolated soy protein, particularly acidic soluble soy protein, is most excellent and preferred. These proteins may be enzymatically degraded, but a relatively strong globular protein material can be obtained when the degree of degradation is low. Further, a protein that has been polymerized by heat treatment or the like is preferable.

分離大豆たん白は、脱脂された大豆蛋白原料を水系下で撹拌等して脱脂豆乳を抽出し、オカラ等の抽出残査である不溶性成分を除去した後、水溶性画分をpH4.5前後で等電点沈殿させ、ホエー等の水溶性成分を除去して得られる沈殿画分を分離し、中和,乾燥等して製造される。   Separated soy protein is extracted from defatted soymilk by stirring the defatted soy protein raw material in an aqueous system, removing insoluble components such as okara and the like, and then removing the water-soluble fraction to a pH of around 4.5 The precipitate fraction obtained by isoelectric precipitation with water and removing water-soluble components such as whey is separated, neutralized and dried.

分離大豆たん白はそのままでは、等電点が4.5付近と低いため、等電点未満のpH域が狭く限られる上に、一度等電点で沈殿したものは、更に等電点未満のpHに下げても高い溶解率で再溶解することは容易でない。そこで、広いpH域で高い溶解率を持つ酸性可溶大豆蛋白質を用いることで、より高機能なポリイオンコンプレックス膜を形成することができる。酸性可溶大豆蛋白質とは、pH4.0で60%以上の溶解率を示す大豆蛋白質である。この製造法としては、例えば大豆蛋白質を含む溶液を、該たん白質の等電点のpHより酸性域で、100℃を越える温度で該蛋質溶液を加熱処理することで得ることができ、特公昭53-19669号公報等が例示できる。特にWO02/67690号公報に開示されている製造法により得られた酸性可溶大豆蛋白質は、pH4.5での溶解率が60%以上であり、最も好ましい。   The isolated soy protein as it is has a low isoelectric point of around 4.5, so the pH range below the isoelectric point is limited to a narrow range, and once precipitated at the isoelectric point, the pH below the isoelectric point is further reduced. Even if it is lowered, it is not easy to redissolve at a high dissolution rate. Thus, by using an acidic soluble soy protein having a high dissolution rate in a wide pH range, a more highly functional polyion complex membrane can be formed. The acidic soluble soy protein is a soy protein exhibiting a dissolution rate of 60% or more at pH 4.0. As this production method, for example, a solution containing soybean protein can be obtained by heat-treating the protein solution at a temperature exceeding 100 ° C. in the acidic range from the pH of the isoelectric point of the protein. For example, Japanese Patent Publication No. 53-19669. In particular, the acid-soluble soybean protein obtained by the production method disclosed in WO02 / 67690 is most preferable because the solubility at pH 4.5 is 60% or more.

溶解率(%)は蛋白質の溶媒に対する可溶化の尺度であり、蛋白質粉末を蛋白質濃度が5.0重量%になるように水に分散させ十分撹拌した溶液を、必要に応じてpHを調整した後、10,000×gで5分間遠心分離した上清蛋白質の全蛋白質に対する割合を、ケルダール法,ローリー法等の蛋白質定量法により測定して求める事ができる。   Dissolution rate (%) is a measure of the solubilization of protein in a solvent. After adjusting the pH as necessary, a solution prepared by dispersing protein powder in water so that the protein concentration is 5.0% by weight is adjusted. The ratio of the supernatant protein obtained by centrifugation at 10,000 × g for 5 minutes to the total protein can be determined by measuring the protein quantitative method such as Kjeldahl method, Raleigh method.

本発明に用いるカチオン性蛋白質は水に分散ないし溶解して使用するが、その際の蛋白質濃度は球状蛋白素材の強度に直接影響を及ぼすため重要である。本願発明においては、カチオン性蛋白質溶液の濃度は2.6〜25重量%である必要があり、より望ましくは3〜15重量%であり、更に望ましくは3.5〜12重量%である。カチオン性蛋白質溶液の濃度が低すぎる場合、充分な強度の球状蛋白素材を得られない場合がある。また、カチオン性蛋白質溶液の濃度が高すぎる場合は、粘度が高いため表面張力のみではきれいな球状とならない場合もある。   The cationic protein used in the present invention is used after being dispersed or dissolved in water, and the protein concentration at that time is important because it directly affects the strength of the globular protein material. In the present invention, the concentration of the cationic protein solution needs to be 2.6 to 25% by weight, more preferably 3 to 15% by weight, and still more preferably 3.5 to 12% by weight. If the concentration of the cationic protein solution is too low, a globular protein material with sufficient strength may not be obtained. In addition, when the concentration of the cationic protein solution is too high, the viscosity is high, and the surface tension alone may not form a beautiful sphere.

本発明で言う「球状蛋白素材」の大きさは特に問わないが、蛋白質を摂取するという目的からすると、ある程度の大きさがあることが望ましく、具体的には直径が0.01mm〜50mmが望ましく、より望ましくは直径が0.1mm〜40mmであり、更に望ましくは直径が1.0mmをこえ、30mm以下である。   The size of the “globule protein material” referred to in the present invention is not particularly limited, but for the purpose of ingesting the protein, it is preferably a certain size, and specifically, the diameter is preferably 0.01 mm to 50 mm. More preferably, the diameter is 0.1 mm to 40 mm, and still more preferably, the diameter exceeds 1.0 mm and is 30 mm or less.

本願発明でいう「アニオン性高分子溶液と、2.6〜25重量%のカチオン性蛋白質溶液を混合する」とは、アニオン性高分子溶液とカチオン性蛋白質溶液を混合する際に、両液を攪拌することで、好ましくはアニオン性高分子溶液へカチオン性蛋白質溶液を添加する際、アニオン性高分子溶液を攪拌、混合することで、カチオン性蛋白質溶液を細かく分散させ、細かい球状蛋白質を得る製造法をさす。   In the present invention, “mixing an anionic polymer solution and 2.6 to 25% by weight of a cationic protein solution” means that the two solutions are mixed when the anionic polymer solution and the cationic protein solution are mixed. Manufacturing by adding a cationic protein solution to the anionic polymer solution, preferably by stirring and mixing the anionic polymer solution to finely disperse the cationic protein solution to obtain a fine globular protein Dictate the law.

本願発明でいう「アニオン性高分子溶液中へカチオン性蛋白質溶液を押し出す」とは、一例として、注射針様の中空管をアニオン性高分子溶液中へ入れ、カチオン性蛋白質溶液を注射器様装置により、当該中空管を通じ押し入れることによる可食性球状蛋白素材の製造法をさす。ここで、得られる球状蛋白素材の大きさは、注射針様中空管の太さや、注入速度等に依存するが、当業者であればこれらを適宜変更して球状蛋白素材の大きさを調整することができる。   In the present invention, “extruding a cationic protein solution into an anionic polymer solution” means, for example, that an injection needle-like hollow tube is put into an anionic polymer solution, and the cationic protein solution is injected into a syringe-like device. Refers to a method for producing an edible globular protein material by pushing it through the hollow tube. Here, the size of the globular protein material to be obtained depends on the thickness of the injection needle-like hollow tube, the injection speed, etc., but those skilled in the art can appropriately change these to adjust the size of the globular protein material. can do.

また本発明は、注射針様の中空管の径を極端に小さくすべく、中空管の先端に多孔性物質を装着し、カチオン性蛋白質溶液を、当該多孔性物質を経由してアニオン性高分子溶液中へ押し入れることで、多数の細かい球状蛋白素材を製造する方法をも含む。 The present invention also provides a porous substance at the tip of the hollow tube so that the diameter of the injection needle-like hollow tube is extremely small, and the cationic protein solution passes through the porous substance and is anionic. It also includes a method for producing a large number of fine globular protein materials by pressing them into a polymer solution.

本願発明においては、アニオン性高分子溶液とカチオン性蛋白質溶液が接触する際の温度も、得られる球状蛋白素材の強度に影響を与える場合がある。すなわち、温度は氷結点より高いことを前提に60℃以下が望ましく、より望ましくは40℃以下であり、更に望ましくは30℃以下である。温度が氷結点以下であれば操作が困難であることは言うまでもないが、温度が高すぎる場合、得られる球状蛋白素材の強度が低下する場合がある。   In the present invention, the temperature at which the anionic polymer solution and the cationic protein solution are in contact may also affect the strength of the resulting globular protein material. That is, assuming that the temperature is higher than the freezing point, it is preferably 60 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 30 ° C. or lower. Needless to say, if the temperature is below the freezing point, the operation is difficult, but if the temperature is too high, the strength of the globular protein material obtained may decrease.

本願発明においては、球構造形成後に加熱を行うことで、球の芯部までゲルを形成させることで、より強度のある球状蛋白素材を得ることができる。具体的には、60〜120℃、より望ましくは70〜100℃の温度にて、0.1〜60分、より望ましくは5〜40分の加熱を行うことが望ましい。   In the present invention, a stronger globular protein material can be obtained by forming the gel up to the core of the sphere by heating after the formation of the sphere structure. Specifically, it is desirable to perform heating at a temperature of 60 to 120 ° C., more desirably 70 to 100 ° C., for 0.1 to 60 minutes, and more desirably 5 to 40 minutes.

本発明が示す方法で得られる可食性球状蛋白素材は、ある一定の強度を持ち、さらに、加熱によって、強度を強化することができる。そのため、各種食品の素材として使用した場合、ある一定の操作に耐える点も特徴である。この点では、複合コアセルベーション法により調製したマイクロカプセルとは異なるものである。すなわち、複合コアセルベーション法においては、使用できるカチオン性蛋白溶液の粘度(濃度)に制限があり、ある一定の粘度(濃度)以上のカチオン性蛋白質溶液を用いて複合コアセルベーション法を適用しようとしても、粘度の高さゆえ適切な被覆作用を示しにくく、結果として被覆に寄与しないカチオン性蛋白質溶液は無駄となる場合がある。   The edible globular protein material obtained by the method of the present invention has a certain strength and can be strengthened by heating. Therefore, when used as a raw material for various foods, it is also characterized in that it can withstand certain operations. In this respect, it is different from the microcapsule prepared by the complex coacervation method. In other words, in the complex coacervation method, there is a limit to the viscosity (concentration) of the cationic protein solution that can be used, so let's apply the complex coacervation method using a cationic protein solution having a certain viscosity (concentration) or higher. Even so, a cationic protein solution that does not contribute to coating may be wasted because it is difficult to exhibit an appropriate coating action due to its high viscosity.

そのため、複合コアセルベーション法においては、実質的に、比較低濃度の薄いカチオン性蛋白質溶液を用いマイクロカプセルを形成し、その後に硬化処理を行うことを前提とせざるを得ない場合が多い。一方本願発明においては、カチオン性蛋白質溶液の濃度への制限が少なく、表面張力により球様構造を取りえる程度の粘度(濃度)であれば、適用可能であるし、それによって得られた可食性球状蛋白素材は、充分な強度を持つものである。 Therefore, in the complex coacervation method, it is often necessary to assume that a microcapsule is substantially formed using a comparatively low-concentration thin cationic protein solution, followed by a curing treatment. On the other hand, in the present invention, there is little restriction on the concentration of the cationic protein solution, and any viscosity (concentration) that can take a spherical structure by surface tension is applicable, and edible properties obtained thereby. The globular protein material has sufficient strength.

なお、本願でいう「可食性球状蛋白素材」は当然のことながら真球である必要はなく、球様形状を総称したものである。ただ、型を使用しないことは本発明の特徴であり、球様形状は、カチオン性蛋白質溶液の表面張力を主体とする力により球状となったものである。また、発明の構成以外の原材料については、食品として使用可能でかつ、本発明に影響を与えない範囲で適宜選択、使用することができる。

以下に実施例を記載する。%は特に断らない限り重量%とする。
It should be noted that the “edible globular protein material” in the present application need not be a true sphere as a matter of course, but is a general term for a spherical shape. However, the fact that no mold is used is a feature of the present invention, and the spherical shape is a spherical shape due to the force mainly composed of the surface tension of the cationic protein solution. In addition, raw materials other than the composition of the invention can be appropriately selected and used as long as they can be used as food and do not affect the present invention.

Examples are described below. % Is by weight unless otherwise specified.

「カチオン性蛋白質の調製」
WO02/67690号公報に記載されている内容にて、カチオン性蛋白質としての酸性可溶大豆蛋白質の調製を行った。
具体的な実施条件を以下に示す。
大豆を圧扁し、n-ヘキサンを抽出溶媒として油を抽出分離除去して得られた低変性脱脂大豆(窒素可溶指数(NSI):91)1重量部に7重量部の水を加え、希水酸化ナトリウム溶液でpH7に調整し、室温で1時間攪拌しながら抽出後、4,000Gで遠心分離しオカラおよび不溶分を分離し、脱脂豆乳を得た。この脱脂豆乳をリン酸にてpH4.5に調整後、連続式遠心分離機(デカンター)を用い2,000Gで遠心分離し、不溶性画分(酸沈殿カード)および可溶性画分(ホエー)を得た。酸沈殿カードを固形分10重量%になるように加水し酸沈殿カードスラリーを得た。
"Preparation of cationic protein"
An acidic soluble soybean protein as a cationic protein was prepared according to the contents described in WO02 / 67690.
Specific implementation conditions are shown below.
7 parts by weight of water was added to 1 part by weight of low-denatured defatted soybeans (nitrogen soluble index (NSI): 91) obtained by compressing soybeans and extracting and removing oil using n-hexane as an extraction solvent. The mixture was adjusted to pH 7 with a diluted sodium hydroxide solution, extracted while stirring at room temperature for 1 hour, and then centrifuged at 4,000 G to separate okara and insoluble matter, thereby obtaining skim milk soymilk. The defatted soymilk is adjusted to pH 4.5 with phosphoric acid and then centrifuged at 2,000 G using a continuous centrifuge (decanter) to obtain an insoluble fraction (acid precipitation card) and a soluble fraction (whey). It was. The acid precipitation card | curd was watered so that it might become 10 weight% of solid content, and the acid precipitation card | curd slurry was obtained.

これをリン酸でpH3.5に調整した後50℃になるように加温した。これらの溶液に固形分あたり1%の微生物由来のプロテアーゼ(新日本化学工業社製「スミチームAP」)を加え、加水分解を行った。反応後この加水分解物をpH3.5に調整し40℃に下げ、固形分あたり8unit相当のフィターゼ(新日本化学工業社製「スミチームPHY」)を加え、pH3.5で30分間酵素作用を行った。反応後この酵素作用物(フィチン酸含量0.04重量%/固形分、TCA可溶化率は実質的に変化なし)をpH3.5に再調整し連続式直接加熱殺菌装置にて120℃15秒間加熱した。これを噴霧乾燥し大豆蛋白質粉末を得た。
なお、プロテアーゼによる分解時間6分が酸性可溶大豆蛋白質A,分解時間20分が酸性可溶大豆蛋白質B、分解時間40分が酸性可溶大豆蛋白質Cである。
This was adjusted to pH 3.5 with phosphoric acid and then heated to 50 ° C. To these solutions, 1% of microorganism-derived protease (“Sumiteam AP” manufactured by Shin Nippon Chemical Industry Co., Ltd.) per solid was added for hydrolysis. After the reaction, this hydrolyzate is adjusted to pH 3.5, lowered to 40 ° C., phytase equivalent to 8 units per solid content (“Sumiteam PHY” manufactured by Shin Nippon Chemical Industry Co., Ltd.) is added, and the enzyme action is performed at pH 3.5 for 30 minutes. It was. After the reaction, the enzyme action product (phytic acid content 0.04% by weight / solid content, TCA solubilization rate substantially unchanged) was readjusted to pH 3.5, and 120 ° C for 15 seconds in a continuous direct heat sterilizer. Heated. This was spray-dried to obtain a soy protein powder.
The degradation time by protease is 6 minutes is acidic soluble soybean protein A, the degradation time is 20 minutes is acidic soluble soybean protein B, and the degradation time is 40 minutes is acidic soluble soybean protein C.

各酸性可溶大豆蛋白質の分解度は以下の通りである。
分解度
酸性可溶大豆蛋白質A 4%
酸性可溶大豆蛋白質B 15%
酸性可溶大豆蛋白質C 30%

分解度の測定方法
本発明で言う分解度は0.22M TCA可溶化率(%)を指し、蛋白粉末を蛋白質分が1.0重量%になるように水に分散させ十分撹拌した溶液に対し、全蛋白に対する0.22Mトリクロロ酢酸(TCA)可溶性蛋白の割合をケルダール法により測定したものである。
Degradation degree of each acidic soluble soybean protein is as follows.
Degradation degree acidic soluble soybean protein A 4%
Acid soluble soy protein B 15%
Acid soluble soy protein C 30%

Method of measuring degree of degradation The degree of degradation referred to in the present invention refers to 0.22M TCA solubilization rate (%). For a solution in which protein powder is dispersed in water so that the protein content is 1.0% by weight and sufficiently stirred. The ratio of 0.22 M trichloroacetic acid (TCA) soluble protein to the total protein was measured by the Kjeldahl method.

検討1「カチオン性蛋白質の種類と濃度の検討」
実施例1〜10、比較例1〜2
カチオン性蛋白質として各種酸性可溶大豆蛋白質を用い、各蛋白濃度にて以下の「基本操作1」に従い実験を行った。
アニオン性高分子としてはアルギン酸ナトリウム(和光純薬製)、濃度1重量%を用いた。
(表1の組み合わせに従い実験を行った)

表1 「カチオン性蛋白質の種類と濃度の検討」組み合わせ

Figure 0005263085
Study 1 “Examination of types and concentrations of cationic proteins”
Examples 1-10, Comparative Examples 1-2
Various acidic soluble soy proteins were used as cationic proteins, and experiments were conducted according to the following “Basic procedure 1” at each protein concentration.
As the anionic polymer, sodium alginate (manufactured by Wako Pure Chemical Industries), concentration of 1% by weight was used.
(Experiment was performed according to the combinations in Table 1)

Table 1 Combinations of “Examination of types and concentrations of cationic proteins”
Figure 0005263085

「基本操作1」
1.カチオン性蛋白質溶液(またはペースト)を調製する。
2.アニオン性高分子溶液を調製する。
3.1のカチオン性蛋白質溶液(またはペースト)を注射器に入れ、針先を2のアニオン性高分子溶液中に適宜注入する(球の大きさが5〜40mmとなるように、適宜量を調整する)。(カチオン性蛋白溶液とアニオン性高分子溶液の接触温度は25℃で実施)。その後、85℃、30分間加熱した。
4.結果の判定 きれいな球状蛋白素材が得られた場合は○。やや形状がいびつではあるが、合格範囲にあるものは△、求める球状蛋白素材が得られなかったものは×と判断する。
(各実施例、比較例で条件が別途設定されているものは、そちらを優先する。)

「基本操作2」
1.カチオン性蛋白質溶液(またはペースト)を調製する。
2.アニオン性高分子溶液を調製する。
3.1のカチオン性蛋白質溶液(またはペースト)を注射器に入れ、2のアニオン性高分子溶液へ滴下する。(カチオン性蛋白溶液とアニオン性高分子溶液の接触温度は25℃で実施)。その後、85℃、30分間加熱した。
4.結果の判定 きれいな球状蛋白素材が得られた場合は○。やや形状がいびつではあるが、合格範囲にあるものは△、求める球状蛋白素材が得られなかったものは×と判断する。
(各実施例、比較例で条件が別途設定されているものは、そちらを優先する。)
"Basic operation 1"
1. A cationic protein solution (or paste) is prepared.
2. An anionic polymer solution is prepared.
3. Place the cationic protein solution (or paste) of 3.1 into the syringe and inject the needle tip into the anionic polymer solution of 2 as appropriate (adjust the amount appropriately so that the sphere size is 5 to 40 mm) To do). (The contact temperature between the cationic protein solution and the anionic polymer solution is 25 ° C.). Then, it heated at 85 degreeC for 30 minutes.
4). Judgment of the result ○ when a clean globular protein material is obtained. Although the shape is slightly irregular, it is judged as Δ for those within the acceptable range, and x when the desired globular protein material was not obtained.
(If conditions are set separately in each of the examples and comparative examples, that is given priority.)

"Basic operation 2"
1. A cationic protein solution (or paste) is prepared.
2. An anionic polymer solution is prepared.
3. Place the cationic protein solution (or paste) of 3.1 into a syringe and drop it into the anionic polymer solution of 2. (The contact temperature between the cationic protein solution and the anionic polymer solution is 25 ° C.). Then, it heated at 85 degreeC for 30 minutes.
4). Judgment of the result ○ when a clean globular protein material is obtained. Although the shape is slightly irregular, it is judged as Δ for those within the acceptable range, and x when the desired globular protein material was not obtained.
(If conditions are set separately for each of the examples and comparative examples, that is given priority.)


結果
表2 「カチオン性蛋白質の種類と濃度の検討」結果

Figure 0005263085

以上のように、カチオン性蛋白質溶液として、蛋白濃度として2.6〜25重量%の範囲内であれば、求める球状蛋白素材が得られることが明らかとなった。
なお、酸性可溶大豆蛋白質Aの各濃度の溶液における25℃での粘度を測定したところ、2.5重量%で7cp、5.0重量%で36cp、7.5重量%で100cp、10.0重量%で350cpであった。また、酸性可溶大豆蛋白質Aの等電点は5付近であった。

実施例1の条件で基本操作2にても操作を行ったが(実施例1−1)、実施例1同様、良好な球状蛋白素材が得られた。(直径:3〜10mm)
実施例1−1の条件にて、アニオン性高分子溶液を攪拌した場合(実施例1−2)、より粒子の直径が小さい、良好な球状蛋白素材が得られた。(直径:1〜5mm)

Results Table 2 “Examination of types and concentrations of cationic proteins” results
Figure 0005263085

As described above, it was clarified that the desired globular protein material can be obtained if the protein concentration is within the range of 2.6 to 25% by weight as the cationic protein solution.
In addition, when the viscosity at 25 degreeC in the solution of each density | concentration of acidic soluble soybean protein A was measured, 7 cp by 2.5 weight%, 36 cp by 5.0 weight%, 100 cp by 7.5 weight%, 10. It was 350 cp at 0% by weight. Moreover, the isoelectric point of the acidic soluble soybean protein A was around 5.

Although the operation was performed in the basic operation 2 under the conditions of Example 1 (Example 1-1), a good globular protein material was obtained as in Example 1. (Diameter: 3-10mm)
When the anionic polymer solution was stirred under the conditions of Example 1-1 (Example 1-2), a good globular protein material having a smaller particle diameter was obtained. (Diameter: 1-5mm)

検討2「アニオン性高分子溶液の濃度の検討」
実施例11〜14
アニオン性高分子として使用するアルギン酸ナトリウムの濃度につき検討した。
(配合は表3の通り)(検討1記載の「基本操作1」にてテストを行った)
表3 「アニオン性高分子溶液の濃度の検討」配合

Figure 0005263085

結果
表4「アニオン性高分子溶液の濃度の検討」結果
Figure 0005263085

以上のように、幅広い濃度域のアニオン性高分子溶液において、求める球状蛋白素材が得られることが明らかとなった。
Study 2 "Concentration of anionic polymer solution"
Examples 11-14
The concentration of sodium alginate used as an anionic polymer was examined.
(Composition is as shown in Table 3) (Tested in "Basic Operation 1" described in Study 1)
Table 3 Formulation of “Concentration of anionic polymer solution”
Figure 0005263085

Results Table 4 “Examination of Concentration of Anionic Polymer Solution” Results
Figure 0005263085

As described above, it was revealed that the desired globular protein material can be obtained in an anionic polymer solution in a wide concentration range.

検討3「接触時の温度の検討」
実施例15〜18
アニオン性高分子溶液とカチオン性蛋白質溶液が接触する際の温度を検討した。
詳細な条件は表5の通り。検討1記載の「基本操作1」にてテストを行った。
アニオン性高分子としてはアルギン酸ナトリウム、濃度1重量%を用いた。
表5「接触時の温度の検討」条件

Figure 0005263085

結果
表6「接触時の温度の検討」結果
Figure 0005263085

以上のように、今回試験を行った温度においては、求める球状蛋白素材が得られることが明らかとなった。ただ、温度が高くなるに従い、合格範囲ではあるものの、得られる球状蛋白素材の形状がややいびつになる傾向があった。
Study 3 “Examination of temperature during contact”
Examples 15-18
The temperature at which the anionic polymer solution and the cationic protein solution were in contact was studied.
Detailed conditions are shown in Table 5. The test was performed in “Basic operation 1” described in Study 1.
As the anionic polymer, sodium alginate, concentration of 1% by weight was used.
Table 5 “Examination of temperature during contact” conditions
Figure 0005263085

Results Table 6 “Examination of temperature during contact” results
Figure 0005263085

As described above, it has been clarified that the desired globular protein material can be obtained at the temperature tested. However, as the temperature increased, the shape of the resulting globular protein material tended to become somewhat distorted although it was within the acceptable range.

検討4「アニオン性高分子の種類の検討」
実施例19〜24
アニオン性高分子の種類の検討を行った。
詳細な条件は表7のとおり。検討1記載の「基本操作1」にてテストを行った。
表7「アニオン性高分子の種類の検討」配合

Figure 0005263085

結果
表8「アニオン性高分子の種類の検討」結果
Figure 0005263085

以上のように、今回試験を行ったアニオン性高分子においては、求める球状蛋白素材が得られることが明らかとなった。
Study 4 “Examination of types of anionic polymers”
Examples 19-24
The kind of anionic polymer was examined.
Detailed conditions are shown in Table 7. The test was performed in “Basic operation 1” described in Study 1.
Table 7 “Examination of types of anionic polymers”
Figure 0005263085

Results Table 8 “Examination of types of anionic polymers” results
Figure 0005263085

As described above, it was revealed that the desired globular protein material can be obtained in the anionic polymer tested this time.

本発明の球状蛋白素材を使用することで、食品製造業者は、目新しく、かつ新規な食感を示す各種の食品を開発することができ、消費者にとっては選択肢の拡大につながる。   By using the globular protein material of the present invention, food manufacturers can develop a variety of foods that are novel and exhibit a new texture, leading to an expansion of options for consumers.

Claims (5)

アニオン性高分子溶液と、2.6〜25重量%の酸可溶大豆蛋白質溶液を混合することにより得られる、可食性球状蛋白素材の製造法。 A method for producing an edible globular protein material obtained by mixing an anionic polymer solution and a 2.6 to 25% by weight acid-soluble soybean protein solution. アニオン性高分子溶液へ、2.6〜25重量%の酸可溶大豆蛋白質溶液を滴下することにより得られる、可食性球状蛋白素材の製造法。 A method for producing an edible globular protein material, which is obtained by dropping 2.6 to 25% by weight of an acid-soluble soybean protein solution into an anionic polymer solution. アニオン性高分子溶液中へ、2.6〜25重量%の酸可溶大豆蛋白質溶液を押し出すことにより得られる、可食性球状蛋白素材の製造法。 A method for producing an edible globular protein material obtained by extruding a 2.6 to 25% by weight acid-soluble soybean protein solution into an anionic polymer solution. アニオン性高分子がアルギン酸,カラギーナン,ネイティブジェランガム,キサンタンガム及びこれらの塩類から選ばれる1以上である、請求項1〜3いずれか1項に記載の、可食性球状蛋白素材の製造法。 The method for producing an edible globular protein material according to any one of claims 1 to 3, wherein the anionic polymer is one or more selected from alginic acid, carrageenan, native gellan gum, xanthan gum and salts thereof. 直径が0.01〜50mmである、請求項1〜4いずれか1項に記載の、可食性球状蛋白素材。 The edible globular protein material according to any one of claims 1 to 4, having a diameter of 0.01 to 50 mm.
JP2009199168A 2009-08-31 2009-08-31 Production method of edible globular protein material Expired - Fee Related JP5263085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199168A JP5263085B2 (en) 2009-08-31 2009-08-31 Production method of edible globular protein material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199168A JP5263085B2 (en) 2009-08-31 2009-08-31 Production method of edible globular protein material

Publications (2)

Publication Number Publication Date
JP2011050251A JP2011050251A (en) 2011-03-17
JP5263085B2 true JP5263085B2 (en) 2013-08-14

Family

ID=43939934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199168A Expired - Fee Related JP5263085B2 (en) 2009-08-31 2009-08-31 Production method of edible globular protein material

Country Status (1)

Country Link
JP (1) JP5263085B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824756B1 (en) * 2001-05-16 2005-07-08 Mainelab MICROCAPSULES BASED ON PLANT PROTEINS
JP2008206420A (en) * 2007-02-23 2008-09-11 Fuji Oil Co Ltd Polyion complex film for preventing food moisture transport

Also Published As

Publication number Publication date
JP2011050251A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
Lorieau et al. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion
Ju et al. Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant
Bokkhim et al. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles
Turgeon et al. Protein+ polysaccharide coacervates and complexes: from scientific background to their application as functional ingredients in food products
Hu et al. Gelation of soybean protein and polysaccharides delays digestion
JP4389785B2 (en) Soy protein acidic gel food and production method thereof
CN105661543B (en) A kind of stable type intestines sustained release tea polyphenols microcapsules and preparation method thereof
Sah et al. Modulation of bovine whey protein digestion in gastrointestinal tract: A comprehensive review
Zhao et al. Changes in physico-chemical properties, microstructures, molecular forces and gastric digestive properties of preserved egg white during pickling with the regulation of different metal compounds
CN113372578A (en) preparation method of pH response type carboxymethyl chitosan/sodium alginate hydrogel spheres
CN105154502B (en) A kind of method that enzyme modification wheat gluten prepares meat products filler
JPWO2005082156A1 (en) Soy protein-containing solution or gel
Chang et al. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties
Zhuang et al. Fabrication of grape seed proanthocyanidin-loaded W/O/W emulsion gels stabilized by polyglycerol polyricinoleate and whey protein isolate with konjac glucomannan: Structure, stability, and in vitro digestion
CN103719534B (en) Method for carrying out enzymatic hydrolysis on isolated soybean protein
Grossmann et al. Heat-induced gel formation of a protein-rich extract from the microalga Chlorella sorokiniana
Chiarelli et al. Exploring the feasibility of developing novel gelatin powders from salted, dried cannonball jellyfish (Stomolophus meleagris)
Ngwuluka et al. Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part II-polysaccharides and proteins
Qiu et al. Preparation and characterization of 3D printed texture-modified food for the elderly using mung bean protein, rose powder, and flaxseed gum
Shu et al. Effect of internal and external gelation on the physical properties, water distribution, and lycopene encapsulation properties of alginate-based emulsion gels
Li et al. Transglutaminase, glucono-δ-lactone, and citric acid–induced whey protein isolation–milk fat emulsion gel embedding lutein and its application in processed cheese
CN113974137A (en) Process for preparing polysaccharide-based fat meat tissue based on microcapsule technology
TW201021715A (en) A composition for beverage use containing acidic soluble protein and process for producing the same
CN113527717A (en) Starch emulsion gel bead and preparation method and application thereof
JP5263085B2 (en) Production method of edible globular protein material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5263085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees