JP5261508B2 - Method for manufacturing reinforced concrete member - Google Patents

Method for manufacturing reinforced concrete member Download PDF

Info

Publication number
JP5261508B2
JP5261508B2 JP2011004465A JP2011004465A JP5261508B2 JP 5261508 B2 JP5261508 B2 JP 5261508B2 JP 2011004465 A JP2011004465 A JP 2011004465A JP 2011004465 A JP2011004465 A JP 2011004465A JP 5261508 B2 JP5261508 B2 JP 5261508B2
Authority
JP
Japan
Prior art keywords
concrete
reinforced concrete
temperature
curing
concrete member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011004465A
Other languages
Japanese (ja)
Other versions
JP2011068146A (en
Inventor
哲務 片寄
勝 寺岡
和也 林
仁 佐々木
浩和 西田
幸博 佐藤
直樹 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2011004465A priority Critical patent/JP5261508B2/en
Publication of JP2011068146A publication Critical patent/JP2011068146A/en
Application granted granted Critical
Publication of JP5261508B2 publication Critical patent/JP5261508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

本発明は鉄筋コンクリート部材の製造方法に関し、より詳細には、高強度コンクリートを用いた鉄筋コンクリート部材の製造方法に関する。   The present invention relates to a method for manufacturing a reinforced concrete member, and more particularly to a method for manufacturing a reinforced concrete member using high-strength concrete.

普通強度コンクリートの自己収縮ひずみは小さく、鉄筋の拘束によって生じる応力も小さい値であり、鉄筋コンクリート部材の耐久性、使用性、耐震性に及ぼす影響は小さいと問題視されていない。
しかしながら、高強度コンクリート、特に設計基準強度F=120N/mm程度級あるいはそれを超える高強度コンクリートにおいては非常に自己収縮ひずみが大きく、外力が加わらなくともひび割れが発生するほどの鉄筋による拘束応力が作用していることが徐々に認識されつつある。
また、コンクリートは硬化過程で水和熱を発するが、高強度コンクリートは水和熱による温度上昇が大きく、また、高強度コンクリートが用いられる部材断面は大きい場合が多いため、断面の中心と側面で温度差が大きくなり、断面内の部位のお互いが熱膨張・収縮を拘束し、温度応力を生じさることも分かってきている。
Normal-strength concrete has a small self-shrinkage strain, and the stress generated by the restraint of the reinforcing bar is also a small value, and it is not regarded as a problem that the effect on the durability, usability, and earthquake resistance of the reinforced concrete member is small.
However, high-strength concrete, particularly high-strength concrete with a design standard strength of F c = 120 N / mm 2 class or higher, has a very large self-shrinkage strain and is restrained by reinforcing bars that cause cracks even when no external force is applied. It is gradually recognized that stress is acting.
In addition, concrete generates heat of hydration during the curing process, but high-strength concrete has a large temperature rise due to heat of hydration, and high-strength concrete often has large cross-sections. It has also been found that the temperature difference becomes large, and the portions in the cross section restrain thermal expansion / contraction and generate temperature stress.

そして、それら拘束応力と温度応力の合力(内部応力)が高強度コンクリートを用いた鉄筋コンクリート部材にひび割れを生じさせる可能性は非常に高いとされている。
しかし、高強度コンクリートを用いた鉄筋コンクリート部材を実用化するためには、内部応力によるひび割れ問題を解決する必要があるが、現状では明確な対策方法や品質管理方法、および施工方法は定まっていない(実施工で高強度コンクリートを用いる際は主にバケットを用いた現場打ちであり、現状では普通強度コンクリートと同様の施工および品質管理方法である)。
実用化する場合、施工性を向上させるためにPCa部材(プレキャスト部材)として高強度コンクリートを用いることが予想される。
しかし、普通強度コンクリートの場合は翌日脱型できるよう冬期は高温蒸気養生を行っているが、設計基準強度F=120N/mm程度級あるいはそれを超える高強度コンクリートの場合も同様の製造方法で品質が確保できるか確認がなされていない。
And the combined force (internal stress) of these restraint stress and temperature stress is very likely to cause a crack in a reinforced concrete member using high-strength concrete.
However, in order to put reinforced concrete members using high-strength concrete into practical use, it is necessary to solve the problem of cracking due to internal stress, but at present there are no clear countermeasures, quality control methods, and construction methods ( When high-strength concrete is used in the construction, it is mainly on-site using buckets, and at present it is the same construction and quality control method as normal-strength concrete).
When put into practical use, it is expected that high-strength concrete will be used as a PCa member (precast member) in order to improve workability.
However, in the case of ordinary strength concrete, high temperature steam curing is performed in winter so that it can be demolded the next day, but the same manufacturing method is also used in the case of high strength concrete with a design standard strength of F c = 120 N / mm 2 grade or higher. However, it has not been confirmed whether the quality can be secured.

高強度コンクリートを用いた鉄筋コンクリート部材(主に柱)には、コンクリートの自己収縮ひずみが鉄筋に拘束されることにより生じる拘束応力と、コンクリートの水和熱に起因する温度応力が同時に作用しており、その合力(内部応力)がひび割れ強度を超えた時、部材にはひび割れが生じる。
これは普通強度コンクリートを用いた鉄筋コンクリート部材では考慮しなくとも問題が無かったが、高強度コンクリートでは無視することができない特有の問題である。普通強度コンクリートと同様の方法で施工すると、ひび割れる可能性が非常に高い。
現場打ちの場合、高強度コンクリートは粘性が高く、ポンプ車による打設はできないので、バケット打ちとなるが、施工性が悪い。
また、高強度コンクリートは凝結が遅いため、PCa部材とする場合、高温蒸気養生等を実施しないと翌日脱型が難しい。しかし、従来と同様の方法で高温蒸気養生を行うと、自己収縮が急激に進み、同時に鉄筋とコンクリートの付着力が大きくなり、拘束応力が非常に大きくなってしまい、結果的に大きな内部応力が生じてひび割れてしまう危険性が高い。
従来、鉄筋コンクリート柱を製造するに際して、コンクリートを打設することでその断面の外側部分をまず製造し、つぎに、この外側部分を型枠としてその内部にコンクリートを打設することで断面の内側部分を製造する方法が知られている(非特許文献1)。
In reinforced concrete members (mainly columns) using high-strength concrete, the restraint stress caused by the self-shrinkage strain of the concrete being restrained by the rebar and the temperature stress caused by the heat of hydration of the concrete act simultaneously. When the resultant force (internal stress) exceeds the crack strength, the member is cracked.
This is a problem that cannot be ignored in high-strength concrete, although there was no problem without considering it in reinforced concrete members using ordinary-strength concrete. If it is constructed in the same way as ordinary strength concrete, the possibility of cracking is very high.
In the case of on-site hitting, high-strength concrete has high viscosity and cannot be driven by a pump car.
In addition, since high-strength concrete has a slow setting, when it is used as a PCa member, it is difficult to demold the next day unless high-temperature steam curing is performed. However, when high-temperature steam curing is performed in the same way as before, self-shrinkage proceeds rapidly, and at the same time, the adhesion between the rebar and concrete increases, resulting in a very large restraint stress, resulting in a large internal stress. There is a high risk of cracking.
Conventionally, when manufacturing a reinforced concrete column, the outer part of the cross section is first manufactured by placing the concrete, and then the inner part of the cross section is formed by placing the outer part as a formwork inside the concrete. There is known a method of manufacturing (Non-Patent Document 1).

日本コンクリート工学協会発行、「コンクリート工学」、vol40、NO10、13頁〜20頁、2002年10月Published by Japan Concrete Institute, “Concrete Engineering”, vol40, NO10, pp. 13-20, October 2002

しかしながら、この製造方法では、2回にわたってコンクリートを打設することから、養生期間も2倍となり、簡単に鉄筋コンクリート部材を製造できず、コストダウンを図ることができない問題があった。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、簡単に確実に鉄筋コンクリート部材を製造でき、コストダウンを図りつつひび割れを防止する上で有利な鉄筋コンクリート部材の製造方法を提供することにある。
However, in this manufacturing method, since the concrete is placed twice, the curing period is doubled, and there is a problem that the reinforced concrete member cannot be easily manufactured and the cost cannot be reduced.
The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a method for producing a reinforced concrete member that can easily and reliably produce a reinforced concrete member and is advantageous in preventing cracks while reducing costs. Is to provide.

前記目的を達成するため請求項1記載の発明は、型枠内に鉄筋を配筋しコンクリートを打設して養生することで製造する鉄筋コンクリート部材の製造方法であって、前記養生は、コンクリート打設時から水和熱によりコンクリートの温度が次第に上昇して最高温度になるまでの間、そのコンクリートの水和熱による温度上昇の予想最高温度で養生する第1の養生と、前記コンクリートが水和熱により最高温度になったのちコンクリートの温度が次第に下降していく際に、前記鉄筋コンクリート部材の断面の中心温度の下降に追従して、下降する前記鉄筋コンクリート部材の断面の中心温度と同じ温度で養生する第2の養生とを含んでいることを特徴とする。 In order to achieve the above object, the invention according to claim 1 is a method of manufacturing a reinforced concrete member manufactured by placing reinforcing bars in a mold, placing concrete and curing, and the curing is performed by placing concrete. From the time of installation until the temperature of the concrete gradually rises to the maximum temperature due to the heat of hydration, the first curing that cures at the expected maximum temperature rise due to the heat of hydration of the concrete, and the concrete is hydrated When the temperature of the concrete gradually decreases after reaching the maximum temperature due to heat, it follows the decrease in the center temperature of the cross section of the reinforced concrete member and is cured at the same temperature as the center temperature of the cross section of the reinforced concrete member that descends. And a second curing.

請求項1記載の発明によれば、コンクリート硬化時における部材の内部と表面との温度差が極力小さくでき、ひび割れを防止しつつ簡単かつ確実に鉄筋コンクリート部材を製造でき、鉄筋コンクリート部材のコストダウンを図る上で有利となる。 According to the first aspect of the invention, can minimize the temperature difference between the inside and the surface of the member during concrete curing, while preventing the cracking can be manufactured easily and reliably reinforced concrete members, the cost of the reinforced concrete member that advantageous and Do in achieving.

本実施の形態の製造方法により製造される鉄筋コンクリート部材の斜視図である。It is a perspective view of the reinforced concrete member manufactured by the manufacturing method of this Embodiment. 型枠内に鉄筋を配筋した説明図である。It is explanatory drawing which arranged the reinforcing bar in the formwork. 型枠内にコンクリートを打設し、養生槽で養生を行なう説明図である。It is explanatory drawing which places concrete in a formwork and cures in a curing tank. 鉄筋コンクリート部材の中心温度と第1、第2の養生との説明図である。It is explanatory drawing of the center temperature of a reinforced concrete member, and 1st, 2nd curing. (A)は従来の通常の製造方法における鉄筋、コンクリートのひずみと時間との関係線図、(B)は実施の形態の製造方法における鉄筋、コンクリートのひずみと時間との関係線図である。(A) is the relationship diagram of the reinforcement | strengthening in the conventional normal manufacturing method, the distortion | strain of concrete, and time, (B) is the relationship diagram of the reinforcement | strengthening, concrete distortion | strain, and time in the manufacturing method of embodiment. (A)は従来の通常の製造方法における断面の温度分布図、(B)は実施の形態の製造方法における断面の温度分布図である。(A) is the temperature distribution figure of the cross section in the conventional normal manufacturing method, (B) is the temperature distribution figure of the cross section in the manufacturing method of embodiment.

以下、本発明の実施の形態を図面にしたがって説明する。
本実施の形態の製造方法により図1に示す鉄筋コンクリート部材10が製造され、鉄筋コンクリート部材10は、断面の縦横の寸法よりも大きな寸法の軸方向長さを有しコンクリート中Cに、配筋された多数の鉄筋12が埋設されて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The reinforced concrete member 10 shown in FIG. 1 is manufactured by the manufacturing method of the present embodiment, and the reinforced concrete member 10 has an axial length that is larger than the vertical and horizontal dimensions of the cross section and is arranged in C in the concrete. A large number of reinforcing bars 12 are embedded.

まず、鉄筋コンクリート部材10を製造するに際して、図2に示すように、型枠30内に鉄筋12を配筋し、配筋した鉄筋12の温度を高温にし、鉄筋12に熱膨張による引張ひずみを生じさせておく。
本実施の形態では、この場合の高温は、鉄筋コンクリート部材10の温度が水和熱によりコンクリート打設時から次第に上昇してピークとなる鉄筋コンクリート部材10の断面の中心の最高温度であり、予め測定した値であり、あるいは計算に求めた値である予想最高温度である。
また、型枠30も、鉄筋12と同様に、予想最高温度にしておく。
なお、型枠30は、鉄筋コンクリート部材10の軸方向が水平方向に向くように形成しておき、これによりコンクリートを横打ちすることによりコンクリート内の圧力が小さくなり、自己収縮ひずみが小さくなることが期待できる。
また、型枠30と鉄筋12は、鉄筋12が型枠30の拘束を受けることなく熱膨張できるように、お互いに自由に伸縮できるようにしておく。
First, when manufacturing the reinforced concrete member 10, as shown in FIG. 2, the reinforcing bar 12 is arranged in the mold 30, the temperature of the arranged reinforcing bar 12 is raised, and tensile strain is generated in the reinforcing bar 12 due to thermal expansion. Let me.
In the present embodiment, the high temperature in this case is the maximum temperature at the center of the cross section of the reinforced concrete member 10 where the temperature of the reinforced concrete member 10 gradually increases from the time of concrete placement due to heat of hydration and peaks, and is measured in advance. It is a predicted maximum temperature that is a value or a value obtained by calculation.
In addition, the mold 30 is also set to the highest expected temperature, similarly to the reinforcing bar 12.
In addition, the mold 30 is formed so that the axial direction of the reinforced concrete member 10 is oriented in the horizontal direction, so that when the concrete is laterally placed, the pressure in the concrete is reduced, and the self-shrinkage strain is reduced. I can expect.
Further, the mold 30 and the reinforcing bar 12 are made to be able to freely expand and contract with each other so that the reinforcing bar 12 can be thermally expanded without being restrained by the mold 30.

次に、図3に示すように、型枠30内にコンクリートCを打設し、養生槽40内において養生を行なう。コンクリートCは、設計基準強度F=120N/mm程度級あるいはそれを超える高強度コンクリートである。
養生槽40では、予め養生槽40内の温度すなわち養生温度を前記予想最高温度にしておく。
本実施の形態では、上記の鉄筋12および型枠30が養生槽40内に入れられることで前記予想最高温度にされている。
そして、図4に示すように、コンクリート打設時から水和熱によりコンクリートCの温度が次第に上昇してピークとなるまでの間、前記予想最高温度で養生する第1の養生をおこなう。
さらに、温度上昇のピーク後にコンクリートCの温度が次第に下降していく際に、鉄筋コンクリート部材10の断面の中心温度の下降に追従して、下降する鉄筋コンクリート部材10の断面の中心温度と同じ温度で養生する第2の養生をおこなう。
Next, as shown in FIG. 3, concrete C is placed in the mold 30, and curing is performed in the curing tank 40. Concrete C is high-strength concrete having a design standard strength F c = 120 N / mm 2 grade or more.
In the curing tank 40, the temperature in the curing tank 40, that is, the curing temperature is set to the predicted maximum temperature in advance.
In the present embodiment, the predicted maximum temperature is achieved by placing the rebar 12 and the mold 30 in the curing tank 40.
Then, as shown in FIG. 4, the first curing is carried out at the predicted maximum temperature from the time of placing the concrete until the temperature of the concrete C gradually rises to the peak due to the heat of hydration.
Further, when the temperature of the concrete C gradually decreases after the peak of the temperature rise, the curing is performed at the same temperature as the center temperature of the cross section of the reinforced concrete member 10 that follows the decrease in the center temperature of the cross section of the reinforced concrete member 10. The second curing is done.

図5(A)に従来の通常の製造方法における鉄筋、コンクリートのひずみと時間との関係線図を示し、(B)に実施の形態の製造方法における鉄筋、コンクリートのひずみと時間との関係線図を示し、図6(A)に従来の通常の製造方法における断面の温度分布図を示し、(B)に実施の形態の製造方法における断面の温度分布図を示す。
図5、図6に示すように、本実施の形態の製造方法によれば、鉄筋12に熱膨張による引張ひずみを生じさせた状態でコンクリートCを打設するので、常温より鉄筋ひずみのゼロ点が引張側へシフトし、さらにコンクリートが水和熱で膨張する際にコンクリートとの付着によって鉄筋が引き伸ばされ(高温であるため付着力が通常より発現が早い)、コンクリートの収縮により鉄筋が収縮しても圧縮ひずみが小さくなり、鉄筋による拘束応力を小さく抑えることが可能となり、ひび割れが発生する可能性を低減できる。したがって、ひび割れを防止しつつ簡単かつ確実に鉄筋コンクリート部材10を製造でき、鉄筋コンクリート部材10のコストダウンを図る上で有利となる。
また、本実施の形態の製造方法によれば、第1の養生と第2の養生により、型枠30内にコンクリートCが打設された時点から養生終了後まで常に鉄筋コンクリート部材10の断面の中心と側面付近の温度差を小さく抑えることができ、言い換えると、断面内の温度分布を均一に保つことができ、これにより内部拘束ひずみ( 温度による膨張収縮を互いに拘束するために生じるひずみ)を小さくし、温度応力を低減することが可能となり、ひび割れが発生する可能性を低減できる。したがって、ひび割れを防止しつつ簡単かつ確実に鉄筋コンクリート部材10を製造でき、鉄筋コンクリート部材10のコストダウンを図る上で有利となる。
さらに、本実施の形態の製造方法によれば、鉄筋12に熱膨張による引張ひずみを生じさせた状態でコンクリートCを打設し、かつ、第1の養生と第2の養生を行なうので、それらの効果によって内部応力が低減され、ひび割れが発生する可能性をより一層低減する上で、また、コストダウンを図る上でより一層有利となる。
また、設計基準強度F=120N/mm程度級あるいはそれを超える高強度コンクリートを用いたPCa部材でも、第1の養生と第2の養生とにより高温養生が行なわれるため、コンクリートの硬化が促進され、翌日脱型も可能となり、したがって、短期間で鉄筋コンクリート部材を製造でき、コストダウンを図る上で有利となる。
FIG. 5 (A) shows a relationship line diagram of reinforcing bar and concrete strain and time in a conventional normal manufacturing method, and FIG. 5 (B) shows a relationship line between reinforcing bar and concrete strain and time in the manufacturing method of the embodiment. FIG. 6A shows a cross-sectional temperature distribution diagram in the conventional normal manufacturing method, and FIG. 6B shows a cross-sectional temperature distribution diagram in the manufacturing method of the embodiment.
As shown in FIGS. 5 and 6, according to the manufacturing method of the present embodiment, since the concrete C is placed in a state where tensile strain due to thermal expansion is generated in the rebar 12, the zero point of the rebar strain from room temperature. Shifts to the tension side, and when the concrete expands with heat of hydration, the rebar is stretched due to adhesion with the concrete (adhesion is more rapid than usual due to high temperature), and the rebar contracts due to shrinkage of the concrete. However, the compressive strain is reduced, the restraining stress due to the reinforcing bars can be kept small, and the possibility of cracking can be reduced. Therefore, the reinforced concrete member 10 can be manufactured easily and reliably while preventing cracks, which is advantageous in reducing the cost of the reinforced concrete member 10.
Further, according to the manufacturing method of the present embodiment, the center of the cross section of the reinforced concrete member 10 is always maintained from the time when the concrete C is placed in the mold 30 by the first curing and the second curing until after the curing is completed. The temperature difference near the side surface can be kept small, in other words, the temperature distribution in the cross section can be kept uniform, thereby reducing the internal restraint strain (strain caused by restraining expansion and contraction due to temperature). In addition, the temperature stress can be reduced, and the possibility of cracking can be reduced. Therefore, the reinforced concrete member 10 can be manufactured easily and reliably while preventing cracks, which is advantageous in reducing the cost of the reinforced concrete member 10.
Furthermore, according to the manufacturing method of the present embodiment, the concrete C is placed in a state where the tensile strain caused by thermal expansion is generated in the reinforcing bars 12, and the first curing and the second curing are performed. Due to the effect of the above, the internal stress is reduced, and it is further advantageous to further reduce the possibility of cracking and to reduce the cost.
In addition, even with PCa members using high-strength concrete having a design standard strength of F c = 120 N / mm 2 or higher, high-temperature curing is performed by the first curing and the second curing, so that the concrete is hardened. It is promoted and can be removed the next day. Therefore, a reinforced concrete member can be manufactured in a short period of time, which is advantageous for cost reduction.

なお、本発明で製造される鉄筋コンクリート部材は、鉄筋コンクリート柱部材、鉄筋コンクリート梁部材などの部材を広く含むものである。   In addition, the reinforced concrete member manufactured by this invention contains widely members, such as a reinforced concrete pillar member and a reinforced concrete beam member.

10……鉄筋コンクリート部材、12……鉄筋、30……型枠、40……養生槽。   10: Reinforced concrete member, 12: Reinforcing bar, 30: Formwork, 40: Curing tank.

Claims (3)

型枠内に鉄筋を配筋しコンクリートを打設して養生することで製造する鉄筋コンクリート部材の製造方法であって、
前記養生は、
コンクリート打設時から水和熱によりコンクリートの温度が次第に上昇して最高温度になるまでの間、そのコンクリートの水和熱による温度上昇の予想最高温度で養生する第1の養生と、
前記コンクリートが水和熱により最高温度になったのちコンクリートの温度が次第に下降していく際に、前記鉄筋コンクリート部材の断面の中心温度の下降に追従して、下降する前記鉄筋コンクリート部材の断面の中心温度と同じ温度で養生する第2の養生と、
を含んでいることを特徴とする鉄筋コンクリート部材の製造方法。
A method of manufacturing a reinforced concrete member manufactured by placing reinforcing bars in a formwork, placing concrete and curing,
The curing is
From the time of placing the concrete until the temperature of the concrete gradually rises to the highest temperature due to heat of hydration, the first curing that cures at the highest expected temperature rise due to the heat of hydration of the concrete,
After the concrete reaches its maximum temperature due to heat of hydration, when the concrete temperature gradually decreases, the center temperature of the cross section of the reinforced concrete member descends following the decrease in the center temperature of the cross section of the reinforced concrete member A second curing which is cured at the same temperature as
The manufacturing method of the reinforced concrete member characterized by including.
前記鉄筋コンクリート部材は断面の縦横の寸法よりも大きな寸法の軸方向長さを有し、
前記鉄筋コンクリート部材は前記型枠内でその軸方向長さを水平にしてコンクリートが打設されることを特徴とする請求項1記載の鉄筋コンクリート部材の製造方法。
The reinforced concrete member has an axial length that is larger than the vertical and horizontal dimensions of the cross section;
The reinforced concrete member manufacturing method according to claim 1 Symbol placement of reinforced concrete member, characterized in that the concrete in the horizontal its axial length within the mold is pouring.
前記コンクリートは、設計基準強度F=120N/m るいはそれを超える高強度コンクリートであることを特徴とする請求項1または2記載の鉄筋コンクリート部材の製造方法。 The concrete, design strength F c = 120N / m m 2 Ah Rui process according to claim 1 or 2, wherein the reinforced concrete member, characterized in that a high-strength concrete greater.
JP2011004465A 2011-01-13 2011-01-13 Method for manufacturing reinforced concrete member Active JP5261508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004465A JP5261508B2 (en) 2011-01-13 2011-01-13 Method for manufacturing reinforced concrete member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004465A JP5261508B2 (en) 2011-01-13 2011-01-13 Method for manufacturing reinforced concrete member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006104873A Division JP4683426B2 (en) 2006-04-06 2006-04-06 Method for manufacturing reinforced concrete member

Publications (2)

Publication Number Publication Date
JP2011068146A JP2011068146A (en) 2011-04-07
JP5261508B2 true JP5261508B2 (en) 2013-08-14

Family

ID=44013891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004465A Active JP5261508B2 (en) 2011-01-13 2011-01-13 Method for manufacturing reinforced concrete member

Country Status (1)

Country Link
JP (1) JP5261508B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094064B2 (en) * 2012-06-07 2017-03-15 株式会社大林組 Crack control method of mass concrete by heat curing.
CN109291208B (en) * 2018-10-29 2023-10-13 马鞍山钢铁建设集团有限公司 Large-span prestressed concrete double-T-plate construction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252691A (en) * 2002-03-04 2003-09-10 Yorin Kensetsu Kk Method and apparatus for curing concrete
JP2005154213A (en) * 2003-11-27 2005-06-16 Fuji Ps Corp Binder composition in high durable concrete, product of high durable concrete and method of manufacturing the same

Also Published As

Publication number Publication date
JP2011068146A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
CN104806022B (en) A kind of rib prestressed concrete construction process of shaped form marmem
CN101619781B (en) Carbon fiber concrete pipe and manufacture method thereof
JP5155380B2 (en) Method for manufacturing reinforced concrete member
KR101328045B1 (en) Reinforced concrete composite columns using precast high-performance fiber-reinforced cement
CN104816381A (en) Prestressed concrete construction technology for embedded-type shape memory alloy ribs
JP6357960B2 (en) Repair and reinforcement methods for existing tunnels
KR101652943B1 (en) Reinforced concrete column manufacturing method for high building
JP6255206B2 (en) Construction method of reinforcement structure
JP5261508B2 (en) Method for manufacturing reinforced concrete member
JP4826375B2 (en) Plastic hinge structure of concrete structure and manufacturing method of precast formwork
JP2012057443A (en) Steel pipe reinforced concrete composite pile and manufacturing method for the same
JP4683426B2 (en) Method for manufacturing reinforced concrete member
CN109610338B (en) Construction method for preventing slurry leakage at bottom opening of tower column of suspension bridge
JP2012092633A (en) Method of reducing cracks of reinforced concrete structure
KR101758596B1 (en) Half precast concrete slab with insulation
JP5922993B2 (en) Structure and lining method using multiple fine crack type fiber reinforced cement composites
KR101178255B1 (en) Non-synthetic arch rib for which steel and reinforced concrete were used and the arch bridge construction technique for which this was used
JP4999608B2 (en) Method for manufacturing ultra-high strength concrete member and method for analyzing unframed procedure
KR101664165B1 (en) Construction method of prestressed steel composite girder bridge
JP5702167B2 (en) Method for suppressing cracking of concrete with temperature prestress
KR101094099B1 (en) Constructing method of slab using convex type spacer
KR101405029B1 (en) An arch type slab and thereof manufacturing method
KR101912422B1 (en) Composite beam fabricating method with pre-load process and composite beam using the same
CN104786351A (en) Heat preservation formwork for reinforcement cage and construction method and forming die of heat preservation formwork
CN105544395B (en) A kind of high pier vertical prestressing pipe installation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250