JP5260894B2 - Method for producing adsorbent-containing molded body and adsorbent-containing molded body - Google Patents

Method for producing adsorbent-containing molded body and adsorbent-containing molded body Download PDF

Info

Publication number
JP5260894B2
JP5260894B2 JP2007157539A JP2007157539A JP5260894B2 JP 5260894 B2 JP5260894 B2 JP 5260894B2 JP 2007157539 A JP2007157539 A JP 2007157539A JP 2007157539 A JP2007157539 A JP 2007157539A JP 5260894 B2 JP5260894 B2 JP 5260894B2
Authority
JP
Japan
Prior art keywords
adsorbent
zeolite
wet clay
clay body
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007157539A
Other languages
Japanese (ja)
Other versions
JP2008307474A (en
Inventor
祐理子 森中
達也 小川
仁 大友
奈月 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Printing Co Ltd
Original Assignee
Kyodo Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Printing Co Ltd filed Critical Kyodo Printing Co Ltd
Priority to JP2007157539A priority Critical patent/JP5260894B2/en
Priority to TW97122215A priority patent/TW200920482A/en
Priority to PCT/JP2008/060842 priority patent/WO2008153126A1/en
Publication of JP2008307474A publication Critical patent/JP2008307474A/en
Application granted granted Critical
Publication of JP5260894B2 publication Critical patent/JP5260894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an adsorbent-containing molding being a molding having high zeolite content, which molding contains high-concentration zeolite of &ge;70 wt.% and is manufactured to have minute shapes with excellent size precision by an easy molding method without using a die individually and to provide the adsorbent-containing molding. <P>SOLUTION: The method for manufacturing the adsorbent-containing molding comprises the steps of: mixing a solvent consisting of one or both of water and alcohol, an inorganic binder and zeolite to form zeolite-containing wet clay; hardening the zeolite-containing wet clay to obtain a wet clay body; cutting the wet clay body; and drying the cut wet clay body to form a dried clay body and is characterized in that a deformation rate of the wet clay body is &gt;0% and &le;95%, an edged tool consisting of a single-edged blade is used at the step of cutting the wet clay body and the zeolite content of the dried clay body is 70-98 wt%. The adsorbent-containing molding is obtained by this manufacturing method. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、吸着剤含有成形体の製造方法及び吸着剤含有成形体に関し、詳しくは、型を個々に使用しないで成形されるゼオライト高濃度含有の吸着剤含有成形体の製造方法及び該製造方法により得られた吸着剤含有成形体に関する。   The present invention relates to a method for producing an adsorbent-containing molded article and an adsorbent-containing molded article, and more specifically, a method for producing an adsorbent-containing molded article containing a high concentration of zeolite that is molded without individually using a mold, and the production method. Relates to an adsorbent-containing molded article obtained by the above.

従来、水分を含む気体成分を吸着させるためにゼオライトが使用されていたが、高湿度環境下では気体成分よりも水分を多く吸着する傾向にあるが、ゼオライトのマクロポアのサイズを特定の範囲とすることにより選択的にガスを分離したり、電子部品や電子製品内部で発生するアウトガスを吸着したり、冷蔵庫フロン冷媒の吸着、有機溶媒中の水分の除去、近年環境保護の観点からは発電所等の燃焼排気ガスからの二酸化炭素吸着分離の用途に広く用いられている。   Conventionally, zeolite has been used to adsorb gas components containing moisture, but it tends to adsorb more moisture than gas components in a high humidity environment, but the size of the macropores in the zeolite is in a specific range. To selectively separate gases, adsorb outgas generated inside electronic parts and electronic products, adsorb refrigerator refrigerants, remove moisture in organic solvents, power plants from the viewpoint of environmental protection in recent years It is widely used for the adsorption separation of carbon dioxide from combustion exhaust gas.

特許文献1には、金属アルコキシド溶液と合成ゼオライトとの混合溶液を加水分解して、多孔質ガラス中に合成ゼオライトを分散させ、しかる後乾燥させる吸着剤組成物の製造方法が開示されている。しかしながら、合成ゼオライト含有量は30重量%以下と低含有量である。   Patent Document 1 discloses a method for producing an adsorbent composition in which a mixed solution of a metal alkoxide solution and a synthetic zeolite is hydrolyzed to disperse the synthetic zeolite in porous glass and then dried. However, the synthetic zeolite content is as low as 30% by weight or less.

特許文献2には、無機系バインダーの粘土とゼオライトをボールミルのような物理的力で混練し分散させ、250℃以上で焼成させたゼオライト多孔質体を開示している。   Patent Document 2 discloses a porous zeolite body in which an inorganic binder clay and zeolite are kneaded and dispersed by a physical force such as a ball mill and calcined at 250 ° C. or higher.

ゼオライト粉末の吸着力を維持したままの成形体を作るにはゼオライト粉末含有量を70重量%以上にする必要がある。しかしながら、ゼオライト粉末は集結性が無いため高含有させる困難であった。また、ゼオライト90重量%ビーズが製造されているが(例えば、特許文献3参照)、粘土系材料をバインダーとして混練し造粒機で製造しているのでビーズ形状のみであった。そのビーズ形状は、電子部品に組み込む微細形状からするとサイズ精度は劣るものであった。   In order to produce a compact with the adsorption power of the zeolite powder maintained, the zeolite powder content needs to be 70% by weight or more. However, it is difficult to make the zeolite powder highly contained because it has no aggregation property. Moreover, although 90 wt% zeolite beads are manufactured (see, for example, Patent Document 3), the beads are only in the shape of beads because they are kneaded using a clay-based material as a binder and manufactured by a granulator. The bead shape was inferior in size accuracy from the fine shape incorporated in the electronic component.

また、粘土系材料を用い成形体を個々に金型を使用して成形すると、型入れ、型抜き作業による成形品の欠け、破損が少なからず発生することは避けられず、微細形状を成形することは困難であった。   In addition, when moldings are individually molded using clay-based materials using molds, it is inevitable that molded parts will be chipped and broken due to mold insertion and die-cutting operations, and a fine shape is formed. It was difficult.

また、錠剤成形のような方法では、成形時に一次成形されたシート状のゼオライト材料を、更に二次成形で繰り返し加圧されるとゼオライトのマクロポアが潰れて吸着能力が低下することがある。   In a method such as tablet molding, if the sheet-shaped zeolite material that is primarily molded at the time of molding is further repeatedly pressed in the secondary molding, the macropores of the zeolite may be crushed and the adsorption capacity may be reduced.

そこで大規模な装置を使用せず、ゼオライト70重量%以上の成形体を電子部品に組み込むことができるような微細でサイズ精度が良い微細形状を作れる製造方法が望まれていた。
特開平5−293371号公報 特開昭62−297211号公報 特開平1−171554号公報
Accordingly, there has been a demand for a production method that can produce a fine shape with a fine size accuracy that can incorporate a molded body of 70% by weight or more of zeolite into an electronic component without using a large-scale apparatus.
JP-A-5-293371 JP-A-62-297211 JP-A-1-171554

本発明の目的は、吸着力を維持することができるようにゼオライトを70重量%以上の高濃度に含有したゼオライト高含有成形体の吸着剤含有成形体の製造方法及び該製造方法により得られた吸着剤含有成形体を提供することである。   The object of the present invention was obtained by a method for producing an adsorbent-containing molded article of a zeolite-rich molded article containing zeolite in a high concentration of 70% by weight or more so that the adsorption power can be maintained, and the production method. It is to provide an adsorbent-containing shaped article.

本発明の別の目的は、サイズ精度が良好な微細形状を型を個々に使用しなくても成形方法が容易な吸着剤含有成形体の製造方法を提供することである。   Another object of the present invention is to provide a method for producing an adsorbent-containing molded article that can be easily molded without using individual molds having fine shapes with good size accuracy.

本発明に従って、水及びアルコールの一方又は両方からなる溶媒、無機系バインダー及びゼオライトを混合してゼオライト含有湿潤粘土を形成する工程と、
該ゼオライト含有湿潤粘土を湿潤粘土体に硬化させる工程と、
該湿潤粘土体を切断する工程と、
該切断した湿潤粘土体を乾燥させて乾燥粘土体を形成する工程と、
を有する吸着剤含有成形体の製造方法であって、
該湿潤粘土体の変形率が0%超過95%以下であり、
該切断工程が一片の刃からなる刃物で湿潤粘土体を切断させる工程であり、
該乾燥粘土体のゼオライト含有率が70〜98重量%である、
ことを特徴とする吸着剤含有成形体の製造方法が提供される。
In accordance with the present invention, mixing a solvent comprising one or both of water and alcohol, an inorganic binder and zeolite to form a zeolite-containing wet clay;
Curing the zeolite-containing wet clay to a wet clay body;
Cutting the wet clay body;
Drying the cut wet clay body to form a dry clay body;
A method for producing an adsorbent-containing molded article having
The deformation rate of the wet clay body is 0% and 95% or less,
The cutting step is a step of cutting the wet clay body with a blade consisting of a single blade,
The dry clay body has a zeolite content of 70 to 98% by weight,
There is provided a method for producing an adsorbent-containing molded article characterized by the above.

また、本発明に従って、上記吸着剤含有成形体の製造方法により得られた吸着剤含有成形体が提供される。   Moreover, according to this invention, the adsorbent containing molded object obtained by the manufacturing method of the said adsorbent containing molded object is provided.

上述したように、本発明により、成形し易い、ゼオライトを70重量%以上と高含有した成形体が混練機や造粒機等の装置、更には個々に型を使用しなくても得られるようになった。   As described above, according to the present invention, it is possible to obtain a molded body that is easy to be molded and contains a high amount of zeolite of 70% by weight or more without using an apparatus such as a kneader or a granulator, or individually using a mold. Became.

また、本発明ではゼオライトを使用しているので、得られた成形体は水分以外の有機ガスや臭気を高効率で吸着でき、様々な用途に応用可能である。   In addition, since zeolite is used in the present invention, the obtained molded body can adsorb organic gas and odor other than moisture with high efficiency and can be applied to various uses.

本発明の製造方法によって、吸着剤を個々に型を使用しないで成形できるので、型入れ・型抜き作業が無くなり製造工程が簡素化することができ、型抜きによる成形品の欠け、破損が減少し、高い生産性で微細形状の成形体が作製することが可能となった。   With the manufacturing method of the present invention, the adsorbent can be molded without using a mold individually, so that there is no need to mold and unmould, the manufacturing process can be simplified, and chipping and breakage of molded products due to die cutting are reduced. In addition, it is possible to produce a compact shaped body with high productivity.

以下に、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明で用いるゼオライトは、親水性ゼオライト、疎水性ゼオライトのどちらでも構わず、天然ゼオライト又は合成ゼオライトを出発原料として鉱酸等を用いた脱アルミニウム処理等によって調製する方法、或はシリカ源、アルミナ源、アルカリ源及び有機鉱化剤を混合し結晶化する直接合成法等により得られる。ゼオライトは、分子の大きさの違いによって物質を分離するのに用いられる多孔質の粒状物質であり、均一な細孔を有する構造であって、細孔の空洞に入る小さな分子を吸着して一種のふるいの作用を示すため、吸着可能な分子の種類はゼオライト種類によって決まる。有機成分等の気体成分を吸着する場合は、ゼオライトの細孔入口径が吸着される分子径よりも大きければよい。通常は、細孔入口が酸素8、10又は12員環のゼオライトであればよい。本発明では、特に水分より有機ガスや臭気成分を優先的に吸着するものが好ましい。   The zeolite used in the present invention may be either a hydrophilic zeolite or a hydrophobic zeolite, and is prepared by a dealumination treatment using a mineral acid or the like using a natural zeolite or a synthetic zeolite as a starting material, or a silica source, alumina It can be obtained by a direct synthesis method in which a source, an alkali source and an organic mineralizer are mixed and crystallized. Zeolite is a porous granular material used to separate substances according to the difference in molecular size, and has a structure with uniform pores. Therefore, the type of molecules that can be adsorbed depends on the type of zeolite. When adsorbing a gas component such as an organic component, the pore inlet diameter of the zeolite may be larger than the molecular diameter to be adsorbed. Usually, the pore inlet may be a zeolite having an oxygen 8, 10 or 12 membered ring. In the present invention, those that preferentially adsorb organic gas and odor components over moisture are preferred.

本発明で用いる無機系バインダーは、金属アルコキシド加水分解物、コロイダルシリカ、アルミナゾル、ポリシロキサン及び粘土系鉱物からなる群から選択される。中でも金属アルコキシド加水分解物が好ましく、金属種としてはSi、Al、Tiが特に好ましい。粘土系鉱物としては、カオリン、ベントナイド等が挙げられる。   The inorganic binder used in the present invention is selected from the group consisting of metal alkoxide hydrolysates, colloidal silica, alumina sol, polysiloxane, and clay minerals. Of these, metal alkoxide hydrolysates are preferable, and Si, Al, and Ti are particularly preferable as the metal species. Examples of clay minerals include kaolin and bentonide.

本発明で用いる溶媒は、水及びアルコールの一方又は両方であり、無機バインダーが粘土系鉱物の場合は水のみで構わず、金属アルコキシド加水分解物、コロイダルシリカ、アルミナゾル、ポリシロキサン等は水及びアルコールの両方を混合して用いることができる。溶媒としてアルコールを用いる場合、イソプロピルアルコールやブタノール等の揮発性の低いアルコール使用すると湿潤粘土の変化率がなかなか変化しないので、メタノールやエタノールの低級アルコールを使用することが好ましい。溶媒における水とアルコールの比率は、水の濃度が20重量%以上であることが好ましい。溶媒の湿潤粘土体における含有量は30〜50重量%が好ましく、50重量%超過となると一次乾燥時に体積収縮率が大きくもろくなり、成形体にヒビが入り易い。   The solvent used in the present invention is one or both of water and alcohol. When the inorganic binder is a clay mineral, water may be used. Metal alkoxide hydrolyzate, colloidal silica, alumina sol, polysiloxane and the like are water and alcohol. Both of these can be used in combination. When alcohol is used as the solvent, it is preferable to use a lower alcohol such as methanol or ethanol because the change rate of wet clay does not change easily when a low-volatile alcohol such as isopropyl alcohol or butanol is used. The ratio of water to alcohol in the solvent is preferably such that the water concentration is 20% by weight or more. The content of the solvent in the wet clay body is preferably 30 to 50% by weight, and if it exceeds 50% by weight, the volume shrinkage becomes brittle during primary drying, and the molded body tends to crack.

本発明で示す湿潤粘土・湿潤粘土体の粘土とは、一般的に用いられるゲル状態をも含む。   The clay of the wet clay / wet clay body shown in the present invention includes a commonly used gel state.

水及びアルコールの一方又は両方からなる溶媒、無機系バインダー及びゼオライトを混合するとゼオライト含有湿潤粘土の状態は以下の様に、湿潤粘土状に変化し始め、
(1)流動性が有る状態(平らな面に流すと形状保持ができない状態)・・・変化率95%超過100%以下
(2)流動性が殆ど無い〜無い状態(粘土状)・・・変化率10%超過95%以下
(3)流動性が無い状態(寒天状)・・・変形率0%超過10%以下
時間を往うごとに順々に変化していく。
When a solvent composed of one or both of water and alcohol, an inorganic binder, and zeolite are mixed, the state of the zeolite-containing wet clay begins to change to a wet clay, as follows:
(1) State with fluidity (state in which shape cannot be maintained when flowed on a flat surface) ... Change rate over 95% and 100% or less (2) State with little or no fluidity (clay-like) ... Change rate 10% over 95% or less (3) State of no fluidity (agar-like) ... Deformation rate 0% over 10% or less It changes in order as time passes.

本発明では、生産性の点からは、以下の製法が好ましい。   In the present invention, the following production method is preferable from the viewpoint of productivity.

混合したものが流動性のあるうちに型に入れておき、流動性が殆ど無い〜無い状態、つまり変形率が0%超過95%以下の湿潤粘土体、その後、湿潤粘土体を加圧し、シート状に形成する。上記加圧で湿潤粘土体が延ばされることで圧力が分散されゼオライトのマクロポアが潰れて吸着能力が低下することがなく、更に成形体をより高硬度化させることができる。湿潤粘土体の変形率が95%超過と流動性が高い液体状では精度良く成形することが困難である。変形率は、静置時間を変化させることで本発明の範囲内にすることができる。 The mixed material is put in a mold while it is fluid, and there is almost no fluidity, that is, a wet clay body with a deformation rate exceeding 0% and 95% or less, and then the wet clay body is pressurized, To form. By extending the wet clay body by the above pressurization , the pressure is dispersed, the macropores of the zeolite are not crushed and the adsorption capacity is not lowered, and the molded body can be further hardened. If the wet clay body has a deformation rate exceeding 95% and is in a liquid state with high fluidity, it is difficult to mold with high accuracy. The deformation rate can be made within the scope of the present invention by changing the standing time.

得られた粘土状の流動性の無いシート状の湿潤粘土体は、一片の刃からなる刃物で切断される。このように、一片の刃からなる刃物で切断することで、湿潤粘土体の切断時の刃による応力がかかっても湿潤粘土体は塑性変形の範囲内で応力を分散させるのでサイズ精度が良好な微細形状を形成することができる。これに対し、3mm角以下の微細形状の湿潤粘土体を切断するために一片の刃からなる刃物を複数並べて同時に切断すると、刃と刃との間に挟まれる湿潤粘土体は上記一片の刃からなる刃物の切断時以上の応力がかかるのでサイズ精度に劣るものとなる。また、好ましくは湿潤粘土体を端部から切断することによりサイズ精度が良好になる。本発明における一片の刃からなる刃物としては、直線状の一枚の刃からなるものが好ましい。 The obtained clay-like non-fluid sheet-like wet clay body is cut with a blade consisting of a single blade. In this way, by cutting with a blade consisting of a single blade, the wet clay body disperses the stress within the range of plastic deformation even when stress is applied by the blade when cutting the wet clay body, so the size accuracy is good. A fine shape can be formed. On the other hand, when cutting a plurality of blades made of a single blade in order to cut a wet clay body having a fine shape of 3 mm square or less and simultaneously cutting the wet clay body, the wet clay body sandwiched between the blades is removed from the single blade. Since the stress more than at the time of cutting of the resulting cutter is applied, the size accuracy is inferior. Further, the size accuracy is preferably improved by cutting the wet clay body from the end. As the blade composed of a single blade in the present invention, a blade composed of a single straight blade is preferable.

シート状の湿潤粘土体を切断せず、後述の乾燥方法の後に切断しようとすると、乾燥粘土体が粉々に割れる等して、目的の形状を得ることは困難であり、乾燥粘土体にさせる形状が大きいと体積収縮が大きくなるためヒビが入ることがある。この様にシート状等の湿潤粘土体を切断することによって、短時間で大量の目的形状、特に微細形状の湿潤粘土体が得られ生産性を高められる。   If the sheet-shaped wet clay body is not cut, and if it is to be cut after the drying method described later, it is difficult to obtain the desired shape because the dry clay body breaks into pieces, etc. If the value is large, the volumetric shrinkage becomes large and cracks may occur. By cutting the wet clay body such as a sheet in this manner, a large amount of the target shape, particularly a fine shape wet clay body can be obtained in a short time, and the productivity can be improved.

本発明における変形率は、23℃/55%RHの環境下で、
(1)湿潤粘土体を、直径15mm×厚さ5mmに成形したものを水平な面に置く、
(2)上記湿潤粘土体を直径10mmの円柱(素材:SUS304ステンレス鋼)で20Nの負荷を掛ける、
(3)負荷を解除した3秒後(解除後は他に負荷がかかるようなことをしなければ形状維持している)に湿潤粘土体の厚みを測定し、下記式より変形率を算出する;
変形率=(負荷により凹んだ距離(mm)/5mm)×100%
で示される。
The deformation rate in the present invention is 23 ° C./55% RH environment,
(1) A wet clay body molded to a diameter of 15 mm and a thickness of 5 mm is placed on a horizontal surface.
(2) Applying a load of 20 N to the wet clay body with a cylinder having a diameter of 10 mm (material: SUS304 stainless steel),
(3) The thickness of the wet clay body is measured 3 seconds after releasing the load (the shape is maintained if no other load is applied after the release), and the deformation rate is calculated from the following equation. ;
Deformation rate = (distance recessed by load (mm) / 5 mm) × 100%
Indicated by

湿潤粘土体が含む溶媒分が多いと一次乾燥時に体積収縮率が大きくもろくなり、成形体にヒビが入り易いので、湿潤粘土体の固形分濃度は30重量%以上が好ましく、特には45重量%〜80重量%が好ましい。   When the wet clay body contains a large amount of solvent, the volume shrinkage ratio becomes large and brittle during primary drying, and the molded body is liable to crack. Therefore, the solid content concentration of the wet clay body is preferably 30% by weight or more, particularly 45% by weight. ~ 80 wt% is preferred.

本発明によって得られる成形体は、ゼオライト粉末の吸着力を維持したままの成形体を作るためゼオライトの含有量が70〜98重量%であることが必要で、吸着性の点からは好ましくは80〜95重量%である。本発明によるゼオライト含有率が高い、つまりバインダーが少ないので硬さを保持した成形体を作るのは難しく、微細形状を作製する際にもろさがないようにする必要がある。   The molded product obtained by the present invention needs to have a zeolite content of 70 to 98% by weight in order to produce a molded product while maintaining the adsorption power of the zeolite powder, and is preferably 80 from the viewpoint of adsorptivity. ~ 95 wt%. Since the zeolite content according to the present invention is high, that is, there are few binders, it is difficult to produce a molded product that retains hardness, and it is necessary to prevent brittleness when producing a fine shape.

そのため本発明では、ゼオライト含有の湿潤粘土体の乾燥方法として、粘土体の水分やアルコール分を揮発させるための一次乾燥を行い、無機系バインダーを焼結させるための二次乾燥を行うことが好ましい。一次乾燥においては、水分やアルコール分を揮発させるため室温(23℃±2℃)以上であれば乾燥させることができ、特に23℃〜120℃が好ましく、より好ましくは23℃〜60℃である。乾燥時間としては2分〜10分が好ましい。二次乾燥において、乾燥粘土体は無機系バインダーが焼結していないため硬度が低いので140℃以上で乾燥させることが好ましく、より好ましくは200℃〜600℃であり、更に好ましくは300℃〜500℃である。乾燥時間としては1時間〜3時間が好ましい。   Therefore, in the present invention, as a method for drying a zeolite-containing wet clay body, it is preferable to perform primary drying for volatilizing the moisture and alcohol content of the clay body and secondary drying for sintering the inorganic binder. . In the primary drying, water and alcohol are volatilized, so that it can be dried at room temperature (23 ° C. ± 2 ° C.) or more, particularly preferably 23 ° C. to 120 ° C., more preferably 23 ° C. to 60 ° C. . The drying time is preferably 2 minutes to 10 minutes. In the secondary drying, the dried clay body has a low hardness because the inorganic binder is not sintered, and is preferably dried at 140 ° C or higher, more preferably 200 ° C to 600 ° C, and still more preferably 300 ° C to 500 ° C. The drying time is preferably 1 hour to 3 hours.

以下に、具体的な実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.

(実施例1)
カオリン系粘土 13.7g
疎水性ゼオライト(商品名:HiSiV3000、ユニオン昭和社製) 46.16g
純水 60.4g
上記の材料を室温(23℃)で攪拌し、ゼオライト含有湿潤粘土を得た。ゼオライト含有湿潤粘土を50×50mmの正方形の型に入れ、23℃/55%RHの環境下で静置し、流動性が無い粘土状の湿潤粘土体(固形分濃度48質量%)を作製した。同様に測定用に作製した湿潤粘土体の変形率は40%であった。
Example 1
Kaolin clay 13.7g
Hydrophobic zeolite (trade name: HiSiV3000, manufactured by Union Showa) 46.16 g
60.4g of pure water
The above materials were stirred at room temperature (23 ° C.) to obtain zeolite-containing wet clay. Zeolite-containing wet clay was put into a 50 × 50 mm square mold and allowed to stand in an environment of 23 ° C./55% RH to produce a clay-like wet clay body (solid content concentration 48 mass%) having no fluidity. . Similarly, the deformation rate of the wet clay produced for measurement was 40%.

粘土状の湿潤粘土体を加圧し、厚さ3mmのシート状の湿潤粘土体を得た。その後、直線状の長さ100mmの一枚の刃からなるカッターを用いてシート状の湿潤粘土体の端部から順に切断し、湿潤粘土体を3×3×3mmに切断した後に、室温(23℃)で10分間一次乾燥させ、乾燥粘土体を作製した。 The clay-like wet clay body was pressurized to obtain a sheet-like wet clay body having a thickness of 3 mm. Then, using a cutter composed of a straight blade having a length of 100 mm, the sheet-like wet clay body is cut in order from the end, and the wet clay body is cut into 3 × 3 × 3 mm, and then room temperature (23 C.) for 10 minutes to produce a dried clay body.

次に、乾燥粘土体を電気炉で500℃で1時間二次乾燥させることにより、ゼオライト含有率80重量%の成形体が得られた。   Next, the dried clay body was subjected to secondary drying in an electric furnace at 500 ° C. for 1 hour to obtain a molded body having a zeolite content of 80% by weight.

得られたゼオライト成形体を下記の評価方法に従って評価を行った。結果を表1に示す。   The obtained zeolite compact was evaluated according to the following evaluation method. The results are shown in Table 1.

<評価>
「成形状態」
成形体のヒビ、欠け、収縮度合いを観察した。
<Evaluation>
"Molded state"
The molded body was observed for cracks, chipping and shrinkage.

「高さ精度(標準偏差σ)」
3×3×3mmの成形体の高さ(厚み)を3ヶ所マイクロスコープで測定し、1つの成形体での高さ差(最大値−最小値)を算出する。この測定を20個の成形体で行い標準偏差を算出する。
`` Height accuracy (standard deviation σ) ''
The height (thickness) of the 3 × 3 × 3 mm molded body is measured with three microscopes, and the height difference (maximum value−minimum value) of one molded body is calculated. This measurement is performed on 20 molded bodies, and the standard deviation is calculated.

(実施例2)
シランアルコキシド(TEOS) 25g
純水 23.5g
メタノール 37.6g
2N塩酸 7.0g
疎水性ゼオライト(商品名:HiSiV3000) 46.16g
上記の材料を用いて実施例1と同様にして流動性が無い粘土状の湿潤粘土体(固形分濃度45質量%)を作製した。測定用に作製した湿潤粘土体の変形率は20%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
(Example 2)
Silane alkoxide (TEOS) 25g
Pure water 23.5g
37.6g of methanol
2N hydrochloric acid 7.0g
Hydrophobic zeolite (trade name: HiSiV3000) 46.16 g
Using the above materials, a clay-like wet clay body having a fluidity (solid content concentration: 45% by mass) was prepared in the same manner as in Example 1. The deformation rate of the wet clay produced for measurement was 20%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(実施例3)
実施例1において、疎水性ゼオライトを104g、純水を75gに変更した以外は、同様にして流動性が無い粘土状の湿潤粘土体(固形分濃度60質量%)を作製した。測定用に作製した湿潤粘土体の変形率は35%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
(Example 3)
A clay-like wet clay body (solid content concentration 60 mass%) having no fluidity was produced in the same manner as in Example 1 except that the hydrophobic zeolite was changed to 104 g and the pure water was changed to 75 g. The deformation rate of the wet clay body prepared for measurement was 35%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(実施例4)
実施例2において、疎水性ゼオライトを104gに変更した以外は、同様にして流動性が無い粘土状の湿潤粘土体(固形分濃度59質量%)を作製した。測定用に作製した湿潤粘土体の変形率は15%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
Example 4
In Example 2, a clay-like wet clay body having a fluidity (solid content concentration: 59% by mass) was produced in the same manner except that the hydrophobic zeolite was changed to 104 g. The deformation rate of the wet clay produced for measurement was 15%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(実施例5)
カオリン系粘土 13.7g
親水性ゼオライト(3A) 46.16g
純水 50g
メタノール 10g
上記の材料を用いて実施例1と同様にして流動性が無い粘土状の湿潤粘土体(固形分濃度48質量%)を作製した。測定用に作製した湿潤粘土体の変形率は40%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
(Example 5)
Kaolin clay 13.7g
46.16 g of hydrophilic zeolite (3A)
50g of pure water
Methanol 10g
Using the above materials, a clay-like wet clay body (solid content concentration 48 mass%) having no fluidity was prepared in the same manner as in Example 1. The deformation rate of the wet clay produced for measurement was 40%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(実施例6)
シランアルコキシド(TEOS) 25g
純水 13g
メタノール 48g
2N塩酸 7g
親水性ゼオライト(3A) 46.16g
上記の材料を用いて実施例1と同様にして流動性が無い粘土状の湿潤粘土体(固形分濃度45質量%)を作製した。測定用に作製した湿潤粘土体の変形率は20%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
(Example 6)
Silane alkoxide (TEOS) 25g
13g of pure water
Methanol 48g
7g of 2N hydrochloric acid
46.16 g of hydrophilic zeolite (3A)
Using the above materials, a clay-like wet clay body having a fluidity (solid content concentration: 45% by mass) was prepared in the same manner as in Example 1. The deformation rate of the wet clay produced for measurement was 20%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(実施例7)
実施例1において、純水を146gに変更した以外は、同様にして流動性が殆ど無い粘土状の湿潤粘土体(固形分濃度28質量%)を作製した。測定用に作製した湿潤粘土体の変形率は90%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
(Example 7)
In Example 1, except that pure water was changed to 146 g, a clay-like wet clay body (solid content concentration 28% by mass) having almost no fluidity was produced in the same manner. The deformation rate of the wet clay body prepared for measurement was 90%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(実施例8)
実施例2において、純水を50g、メタノールを81gに変更した以外は、同様にして流動性が殆ど無い粘土状の湿潤粘土体(固形分濃度28質量%)を作製した。測定用に作製した湿潤粘土体の変形率は90%であった。その後、実施例1と同様にして乾燥させ成形体を作製し、評価を行った。結果を表1に示す。
(Example 8)
In Example 2, a clay-like wet clay body (solid content concentration: 28% by mass) having almost no fluidity was prepared in the same manner except that 50 g of pure water and 81 g of methanol were changed. The deformation rate of the wet clay body prepared for measurement was 90%. Then, it was made to dry like Example 1 and the molded object was produced, and evaluation was performed. The results are shown in Table 1.

(比較例1)
実施例1と同じ材料を用い湿潤粘土体の変形率が97%の状態でシート状に成形した。その後、直線状の長さ100mmの一枚の刃からなるカッターを用いてシート状の湿潤粘土体の端部から順に切断しようとしたが、流動性が有る状態では一定形状の成形は不可能であった。結果を表1に示す。
(Comparative Example 1)
Using the same material as in Example 1, the wet clay body was formed into a sheet shape with a deformation rate of 97%. After that, we tried to cut in order from the edge of the wet clay body in the form of a sheet using a cutter consisting of a single blade with a linear length of 100 mm. there were. The results are shown in Table 1.

(比較例2)
実施例1において、3mm間隔で直線状の長さ100mmのカッターを3枚並べた刃物を用いてシート状の湿潤粘土体を切断した以外は、同様にして成形体を作製し、評価を行った。結果を表1に示す。
(Comparative Example 2)
In Example 1, a molded body was prepared and evaluated in the same manner except that the sheet-like wet clay body was cut using a blade in which three linear cutters having a length of 100 mm were arranged at intervals of 3 mm. . The results are shown in Table 1.

(比較例3)
実施例2において、3mm間隔で直線状の長さ100mmのカッターを3枚並べた刃物を用いてシート状の湿潤粘土体を切断した以外は、同様にして成形体を作製し、評価を行った。結果を表1に示す。
(Comparative Example 3)
In Example 2, a molded body was prepared and evaluated in the same manner except that the sheet-like wet clay body was cut using a blade in which three linear cutters having a length of 100 mm were arranged at intervals of 3 mm. . The results are shown in Table 1.

Figure 0005260894
実施例1及び2は、本発明の範囲内であるのでヒビ等も入らず高さ精度の良好な成形体が得られた。実施例3及び4は、ゼオライトの割合が増え、湿潤粘土体の固形分濃度が増加したのに伴い溶媒分が減少したので体積収縮率が減少し精度の良好な成形体が得られた。実施例5及び6は、ゼオライトとして親水性ゼオライトを用いたが疎水性ゼオライトと同様にヒビ等も入らず高さ精度の良好な成形体が得られた。実施例7及び8は、溶媒分が増加し、湿潤粘土体の固形分濃度が減少したので体積収縮率が若干増えたが高さ精度に影響を及ぼすほどではなかった。
Figure 0005260894
Since Examples 1 and 2 were within the scope of the present invention, a molded article having good height accuracy without cracks or the like was obtained. In Examples 3 and 4, since the proportion of zeolite increased and the solid content concentration of the wet clay body increased, the solvent content decreased, so the volume shrinkage ratio decreased and a molded body with good accuracy was obtained. In Examples 5 and 6, hydrophilic zeolite was used as the zeolite, but as with the hydrophobic zeolite, cracks and the like did not enter, and a molded article with good height accuracy was obtained. In Examples 7 and 8, since the solvent content increased and the solid content concentration of the wet clay body decreased, the volume shrinkage ratio slightly increased, but not so much as to affect the height accuracy.

比較例1の変形率が本発明の範囲外の流動性が有る状態では一定形状の成形は不可能であった。3mm角の微細形状を複数のカッターで同時に切断した比較例2及び3ではカッターとカッターの間に挟まれる湿潤粘土体に切断時に応力がかかり精度に劣るものであった。   When the deformation rate of Comparative Example 1 had fluidity outside the range of the present invention, it was impossible to form a fixed shape. In Comparative Examples 2 and 3 in which a 3 mm square fine shape was simultaneously cut with a plurality of cutters, the wet clay body sandwiched between the cutters was stressed during cutting, and the accuracy was poor.

本発明の製造方法によって、吸着剤含有成形が個々に型を使用することなく、高い生産性で用途に合わせた微細形状も高い精度で作製でき、吸着分野に広く用いることが可能である。   According to the production method of the present invention, the adsorbent-containing molding can be produced with high accuracy and with high accuracy without using a mold individually, and can be widely used in the adsorption field.

Claims (9)

水及びアルコールの一方又は両方からなる溶媒、無機系バインダー及びゼオライトを混合してゼオライト含有湿潤粘土を形成する工程と、
該ゼオライト含有湿潤粘土を変形率が15%以上90%以下である湿潤粘土体に硬化させる工程と、
該湿潤粘土体をシート状に形成する工程と、
シート状の湿潤粘土体を一片の刃からなる刃物を単独で用いて切断する工程と、
該切断した湿潤粘土体を乾燥させて、高さ精度(標準偏差σ)が0.002〜0.015でゼオライト含有率が70〜98重量%である乾燥粘土体を形成する工程と、
を有する吸着剤含有成形体の製造方法。
Mixing a solvent composed of one or both of water and alcohol, an inorganic binder, and zeolite to form a zeolite-containing wet clay;
Curing the zeolite-containing wet clay to a wet clay body having a deformation rate of 15% or more and 90% or less ;
Forming the wet clay body into a sheet;
Cutting the sheet-like wet clay using a blade consisting of a single blade alone ;
Drying the cut wet clay body to form a dry clay body having a height accuracy (standard deviation σ) of 0.002 to 0.015 and a zeolite content of 70 to 98% by weight ;
Method for producing adsorbents containing shaped bodies that have a.
前記切断工程では、前記シート状の湿潤粘土体を3mm角以下の微細形状に切断する請求項1に記載の吸着剤含有成形体の製造方法。The method for producing an adsorbent-containing shaped body according to claim 1, wherein in the cutting step, the sheet-like wet clay body is cut into a fine shape of 3 mm square or less. 前記乾燥粘土体のゼオライト含有率が80〜95重量%である請求項1又は2に記載の吸着剤含有成形体の製造方法。 The method for producing an adsorbent-containing molded article according to claim 1 or 2 , wherein the dried clay body has a zeolite content of 80 to 95 wt%. 前記無機系バインダーが、金属アルコキシド加水分解物、コロイダルシリカ、アルミナゾル、ポリシロキサン及び粘土系鉱物からなる群から選択される請求項1〜3のいずれかに記載の吸着剤含有成形体の製造方法。 The method for producing an adsorbent-containing molded article according to any one of claims 1 to 3, wherein the inorganic binder is selected from the group consisting of a metal alkoxide hydrolyzate, colloidal silica, alumina sol, polysiloxane, and clay mineral. 前記乾燥粘土体を形成する工程における乾燥が温度23℃〜120℃での一次乾燥である請求項1〜4のいずれかに記載の吸着剤含有成形体の製造方法。 The method for producing an adsorbent-containing shaped body according to any one of claims 1 to 4 , wherein the drying in the step of forming the dried clay body is primary drying at a temperature of 23C to 120C. 前記乾燥粘土体を温度140℃以上で二次乾燥させる工程を、更に有する請求項1〜5のいずれかに記載の吸着剤含有成形体の製造方法。 The method for producing an adsorbent-containing shaped body according to any one of claims 1 to 5 , further comprising a step of secondary drying the dried clay body at a temperature of 140 ° C or higher. 前記湿潤粘土体の固形分濃度が30重量%以上である請求項1〜6のいずれかに記載の吸着剤含有成形体の製造方法。 The method for producing an adsorbent-containing shaped body according to any one of claims 1 to 6 , wherein the wet clay body has a solid content concentration of 30% by weight or more. 前記切断工程では、前記シート状の湿潤粘土体を端部から切断する請求項1〜7のいずれかに記載の吸着剤含有成形体の製造方法。 In the said cutting process , the manufacturing method of the adsorbent containing compact | molding | casting in any one of Claims 1-7 which cut | disconnects the said sheet-like wet clay body from an edge part . 請求項1〜8のいずれかに記載の吸着剤含有成形体の製造方法によって得られたことを特徴とする吸着剤含有成形体。   An adsorbent-containing molded article obtained by the method for producing an adsorbent-containing molded article according to any one of claims 1 to 8.
JP2007157539A 2007-06-14 2007-06-14 Method for producing adsorbent-containing molded body and adsorbent-containing molded body Expired - Fee Related JP5260894B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007157539A JP5260894B2 (en) 2007-06-14 2007-06-14 Method for producing adsorbent-containing molded body and adsorbent-containing molded body
TW97122215A TW200920482A (en) 2007-06-14 2008-06-13 Process for production of adsorbent-containing forms and adsorbent-containing forms
PCT/JP2008/060842 WO2008153126A1 (en) 2007-06-14 2008-06-13 Process for production of adsorbent-containing formed bodies and adsorbent-containing formed bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157539A JP5260894B2 (en) 2007-06-14 2007-06-14 Method for producing adsorbent-containing molded body and adsorbent-containing molded body

Publications (2)

Publication Number Publication Date
JP2008307474A JP2008307474A (en) 2008-12-25
JP5260894B2 true JP5260894B2 (en) 2013-08-14

Family

ID=40235580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157539A Expired - Fee Related JP5260894B2 (en) 2007-06-14 2007-06-14 Method for producing adsorbent-containing molded body and adsorbent-containing molded body

Country Status (1)

Country Link
JP (1) JP5260894B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822366B2 (en) * 1988-11-25 1996-03-06 新東北化学工業株式会社 Solid desiccant with deodorizing function
JPH11314913A (en) * 1998-05-07 1999-11-16 Tosoh Corp High strength low wear zeolite granule and its production
JP4188050B2 (en) * 2002-09-30 2008-11-26 日揮触媒化成株式会社 Method for producing zeolite microsphere molding
JP2005089194A (en) * 2003-07-22 2005-04-07 Kanatsu Giken Kogyo Kk Zeolite shaping method and clayish kneaded zeolite composition
WO2006054718A1 (en) * 2004-11-19 2006-05-26 Takenori Masada Zeolitic composition and, utilizing the same, porous firing product and building material

Also Published As

Publication number Publication date
JP2008307474A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
KR100585401B1 (en) Shaped body of zeolite, a process for its production and its use
CN109486208B (en) Metal organic framework forming body and preparation method thereof
CN103232228B (en) Preparation method of porous aluminum oxide composite ceramic
CN102040394A (en) Silicon oxygen carbon (SiOC) micro-mesoporous ceramic and preparation method thereof
JP5260894B2 (en) Method for producing adsorbent-containing molded body and adsorbent-containing molded body
US20090048092A1 (en) Method for manufacturing adsorbent-containing compact and an adsorbent-containing compact
JP5366277B2 (en) Adsorbent-containing molded product
CN101454129B (en) Method for producing ceramic honeycomb filter
KR100392701B1 (en) A mesoporus zeolite honeycomb and a method for producing thereof
JP2008178851A (en) Production method for adsorbent-containing molding body and adsorbent-containing molding body
JP2007268512A (en) Method for producing adsorbent-containing form and adsorbent-containing form
JP2009000621A (en) Method of manufacturing adsorbent-containing molded body and adsorbent-containing molded body
JP5016442B2 (en) Method for producing adsorbent-containing molded body and adsorbent-containing molded body
CN114988759B (en) Diatomite functional material and preparation method thereof
JP2010029741A (en) Zeolite-ceramic composite, composite membrane, and method for manufacturing the same
CN101400440A (en) Method for producing adsorbent-containing form and adsorbent-containing form
JP4226097B2 (en) Active alumina and method for producing activated alumina having a fine pore size distribution with a double peak distribution curve
Manap et al. Influence of concentration of pore forming agent on porosity of SiO2 ceramic from rice husk ash
Wu et al. Customizing the Pore Structure and Properties of Freeze‐Cast Porous Titanium by Zirconium Acetate Additive
TW200920482A (en) Process for production of adsorbent-containing forms and adsorbent-containing forms
TW201927725A (en) Manufacturing method of low-temperature sintered ceramics-based composite material which is safe, easy for manufacture, and efficient in energy consumption
KR101111642B1 (en) Manufacturing method of spherical form activated carbon
JPH10330172A (en) Porous ceramic material and porous ceramic filter for water-purifying equipment
JP2018035019A (en) Slurry and method for manufacturing silica glass
KR100353684B1 (en) A manufacturing process for a carbon materials of a porosity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees