JP5256366B1 - Inter-unit sampling method for artificial geological contamination - Google Patents

Inter-unit sampling method for artificial geological contamination Download PDF

Info

Publication number
JP5256366B1
JP5256366B1 JP2012147062A JP2012147062A JP5256366B1 JP 5256366 B1 JP5256366 B1 JP 5256366B1 JP 2012147062 A JP2012147062 A JP 2012147062A JP 2012147062 A JP2012147062 A JP 2012147062A JP 5256366 B1 JP5256366 B1 JP 5256366B1
Authority
JP
Japan
Prior art keywords
artificial
unit
boundary
formation
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012147062A
Other languages
Japanese (ja)
Other versions
JP2014010062A (en
Inventor
久 楡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012147062A priority Critical patent/JP5256366B1/en
Application granted granted Critical
Publication of JP5256366B1 publication Critical patent/JP5256366B1/en
Publication of JP2014010062A publication Critical patent/JP2014010062A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】人工地層における特殊な地層単元の汚染調査方法を提供する。
【解決手段】地質ボーリングによる造成地などの人工地層内における有害重金属などの固体汚染部などを正確に把握する場合には、時間的同一地層単元境界を挟んだ部位から試料を採取し、分析する。また、その境界の上部、下部からも試料を採取し、両試料を分析する。時間的同一地層単元境界を挟んだ部位から採取した試料の分析値と境界上部、下部からの各試料分析値とを、それぞれ比較して、値の高い部位に試料採取を順次進める。
【選択図】図2
Disclosed is a method for investigating contamination of a special formation unit in an artificial formation.
In order to accurately grasp solid polluted parts such as toxic heavy metals in an artificial formation such as a site created by geological boring, samples are collected from a part sandwiching the same unit boundary in time and analyzed. . Samples are also taken from the top and bottom of the boundary, and both samples are analyzed. The analysis value of the sample collected from the part sandwiching the temporally identical formation unit boundary is compared with the sample analysis value from the upper part and the lower part of the boundary, respectively, and the sample collection is sequentially advanced to the part having a higher value.
[Selection] Figure 2

Description

本発明は、例えば、谷間、陸域の凹地または水域の凹地を埋め立して、形成された人工地層内の汚染状況を正確に調査して評価する方法に関するものである。   The present invention relates to, for example, a method for accurately investigating and evaluating a contamination state in an artificial formation formed by filling a valley, a land depression, or a water depression.

人工地層内の流体・固体の汚染物質は、地層の透過性や地層の吸着性に支配される。例えば、有害有機溶剤(VOCs)などの流体の汚染物質の挙動は、地層の透過性に支配される。また、有害重金属などの固体の汚染物質の挙動は、それぞれの地層の吸着性にも支配される。そして、現在人工地層の汚染物質に関わる正確な調査法は確立されていない。したがって、人工地層の形成過程と汚染物質の存在状態とを明らかにする調査法が必要である。   Fluid and solid contaminants in the artificial formation are governed by the permeability of the formation and the adsorption of the formation. For example, the behavior of fluid contaminants such as toxic organic solvents (VOCs) is governed by the permeability of the formation. In addition, the behavior of solid contaminants such as toxic heavy metals is governed by the adsorptive properties of the respective formations. And the exact investigation method regarding the pollutant of the artificial formation is not established now. Therefore, there is a need for an investigation method to clarify the formation process of artificial strata and the state of contamination.

自然地層の汚染状況を調査するものとしては、幾つかの方法がある。その公知に係る第1の方法として、環境省の土壌汚染対策法にともなうものである。土壌汚染対策法では土壌を地層としては見ず、地下の全地層を一括して土壌として扱う。したがって、汚染を調査する際の地質ボーリングによる試料採取にあたっては、地面から、50cm、1m、2m、3mといった画一的深度の試料が採取される。無単元調査法とも呼ばれている。   There are several ways to investigate the pollution status of natural strata. As the first method according to the public knowledge, it is accompanied by the soil contamination countermeasure law of the Ministry of the Environment. The Soil Contamination Countermeasures Law does not see soil as a stratum, but treats all subsurface strata as soil. Therefore, when collecting samples by geological boring when investigating contamination, samples with uniform depths of 50 cm, 1 m, 2 m, and 3 m are collected from the ground. It is also called the unitless survey method.

公知に係る第2の方法としては、特許になってないが、当該特許申請者やNPO日本地質汚染審査機構などで発明された自然地層の汚染に関わる単元調査法がある。   As a publicly known second method, there is a unit survey method related to pollution of natural strata, which has not been patented, but was invented by the patent applicant or the NPO Japan Geological Pollution Examination Organization.

この方法は、地質ボーリングによって、流体・固体の汚染物質の挙動を支配する地層の境界の上位や下位から分析試料を採取する方法である。そして、両試料の分析値の比較から汚染地層の単元を診断すると共に、砂礫層、砂層、泥層などを記載した地質汚染診断柱状図を作成する手法である。   In this method, analysis samples are collected from the upper and lower layers of the boundary of the formation that controls the behavior of fluid and solid pollutants by geological boring. Then, it is a technique for diagnosing the unit of the contaminated formation from the comparison of the analysis values of both samples and creating a geological contamination diagnostic column diagram describing the gravel layer, sand layer, mud layer and the like.

そして、複数の地質汚染診断柱状図をもって、各柱状図中の対応する砂礫層、砂層、泥層や汚染地層を連ね地質汚染断面図が作成されるので、汚染部位を断面図として把握できる。
したがって、公知に係る第1の方法は調査手法としては、多くの課題を持つが、公知に係る第2の方法は、前者の調査手法の課題を解決している。
Then, with a plurality of geological pollution diagnosis column diagrams, the corresponding gravel layer, sand layer, mud layer, and contaminated strata in each column diagram are created, so that the contaminated site can be grasped as a sectional view.
Therefore, the first method according to the public knowledge has many problems as the investigation technique, but the second method according to the public knowledge solves the problem of the former investigation technique.

しかし、公知に係る第2の単元調査方法も自然地層を対象にしたもので、人工地層に対応する調査手法ではない。   However, the publicly known second unit survey method is also intended for natural strata and is not a survey technique corresponding to artificial strata.

人工地層の汚染・土壌汚染に関わる試料採取方法で、特許に該当する文献はない。   There is no literature that falls under the patent for sampling methods related to contamination of artificial strata and soil contamination.

公知に係る第1の土壌汚染対策法の調査方法は、汚染物質の透過性や吸着性を支配する地層の単元を無視し、一括して土壌として扱われるために、地質ボーリングでの試料採取は50cm、1m、2m、3mといった地層単元とはかかわりなく画一的な深度で分析試料を採取する方法である。したがって、汚染されている部位の試料を採取されるとは、限らない。また、有害有機溶剤(VOCs)などの流体の汚染物質の汚染部位を正確に確認できないために、地質ボーリングでの試料採取の際に、高濃度汚染部位から下位方向への汚染拡大事故も発生している。公知に係る第2の方法である単元調査法は、前述の事故も解決する調査手法であるが、自然地層の汚染を対象に発展してきたものである。汚染人工地層には対応できない。   The first investigation method of the first soil pollution control method ignores the unit of the stratum that controls the permeability and adsorption of pollutants and is treated as soil all at once. This is a method of collecting an analysis sample at a uniform depth regardless of the formation unit of 50 cm, 1 m, 2 m, 3 m. Therefore, the sample of the contaminated part is not necessarily collected. In addition, because the pollutant site of fluid pollutants such as toxic organic solvents (VOCs) cannot be confirmed accurately, an accident of spreading contamination from the high-concentration pollutant site to the lower direction occurred during sampling in geological drilling. ing. The unit investigation method, which is a second method related to public knowledge, is an investigation method that solves the above-mentioned accidents, but has been developed for pollution of natural strata. It cannot cope with contaminated artificial strata.

ところで、谷間、陸域の凹地を埋め立てた造成地などの地下の人工地層においては、自然地層と違って、埋め立て状況に基づく特殊な地層形態になっている。例えば、ダンプカーなどで搬入された砂礫・砂・泥からなる土砂で、谷間や陸域の凹地が埋められて平坦な用地が形成されると、その造成地下の人工地層には、ダンプカー1台分として、ほぼ同一時間内に、土砂による時間的同一地層単元が形成される。この単元が、人工地層における最少単元にあたる。
搬入土砂による時間的同一地層単元は、谷間、陸域の凹地では、下方に砂礫、中部に砂、上方に泥で形成される。つまり、各単元においては、物理的に搬入した土砂の粒子が大きいものは転がり易いため谷間や凹地の底部にまで達して堆積し、粒径の小さいものは谷間や凹地の傾斜面に堆積するようになるのであり、その結果、谷間や凹地の傾斜面の上部側は泥などの細粒物質、底部側に行くに従って大きな粒子の砂礫などが堆積する。
By the way, the underground artificial strata such as the reclaimed land filled with valleys and land depressions have a special stratum form based on the landfill situation, unlike the natural strata. For example, when a flat land is formed by filling up valleys and land depressions with sand and sand made of gravel, sand, or mud that is brought in with a dump truck, etc. In the same time, the same temporal formation unit by the earth and sand is formed. This unit is the minimum unit in the artificial stratum.
The temporally identical formation unit by carrying-in earth sand is formed with gravel on the lower side, sand on the middle, and mud on the upper part in valleys and depressions in the land. In other words, in each unit, large particles of sand that are physically carried in are easy to roll, so they reach the bottom of the valleys and depressions, and those that have a small particle size accumulate on the slopes of the valleys and depressions. As a result, fine particles such as mud are deposited on the upper side of the inclined surface of the valleys and depressions, and large particles of sand and gravel accumulate on the bottom side.

谷間、陸域の凹地へのダンプカーによる土砂搬入が繰り返されると、時間的同一地層単元累重し、各時間的同一地層単元中の砂礫、砂、泥が連なり、砂礫の物性的同一地層単元、砂の物性的同一地層単元、泥の物性的同一地層単元が、それぞれ形成される。   When the dump trucks are repeatedly carried into the valleys and land depressions, the temporally identical formation unit accumulates, and the gravel, sand, and mud in each temporally identical formation unit are linked together, and the physical properties of the gravel are the same, The same physical formation unit of sand and the same physical formation unit of mud are formed.

水域の凹地を埋め立てた造成地などによる人工地層においても、自然地層と違って、埋め立て状況に基づく特殊な地層形態になる。例えば、水面下の砂礫・砂・泥からなる土砂を浚渫し、サンドポンプで水域凹地に流出されると砂礫・砂・泥からなる土砂で、水域の凹地が埋められて平坦な用地が形成される。造成地下には人工地層として、サンドポンプの運転開始から停止の時間内のほぼ同一時間内に、堆積した土砂による時間的同一地層単元が形成される。この単元が、水域の凹地内の人工地層における最少単元にあたる。   Unlike the natural strata, the artificial strata, such as those created by reclaiming recessed areas in water bodies, have a special stratum form based on landfill conditions. For example, when sand and gravel under the surface of the water is dredged and drained into the water area by a sand pump, the ground in the water area is filled with the earth and sand made of gravel, sand and mud, and a flat land is formed. The As an artificial stratum in the constructed underground, a temporally identical stratum unit is formed by the accumulated sediment within approximately the same time within the time from the start of operation of the sand pump to the stoppage. This unit is the minimum unit in the artificial strata in the depression of the water area.

流出土砂による時間的同一地層単元は、水域の凹地で、上流側に砂礫、中流部に砂、下流側に泥が堆積する。つまり、各単元においては、物理的にサンドポンプ噴出口から流出された土砂の粒子が大きいものが噴出口の周辺に砂礫、近距離に砂、遠距離に泥が堆積する。
サンドポンプ噴出口から土砂流出の開始から停止が繰り返されると、水域凹地には、時間的同一地層単元が累重し、各時間的同一地層単元中の砂礫、砂、泥が連なり、砂礫の物性的同一地層単元、砂の物性的同一地層単元、泥の物性的同一地層単元が、それぞれ形成される。
The temporally identical formation unit due to runoff soil is a depression in the water area, where gravel is deposited upstream, sand is deposited in the middle stream, and mud is deposited downstream. In other words, in each unit, the large particles of the earth and sand that have flowed physically from the sand pump spout accumulate sand gravel around the spout, sand at a short distance, and mud at a long distance.
When the sand pump discharge is repeated from the start of sediment discharge, the temporally identical formation units accumulate in the water depression, and the gravel, sand, and mud in each temporally identical formation unit are linked together, and the physical properties of the gravel The same physical formation unit, the same physical property unit of sand, and the same physical formation unit of mud are formed.

砂礫、砂、泥などの物性的同一地層単元は、各時間的同一地層単元中の砂礫、砂、泥が連なりから形成されることは、陸域凹地でも水域凹地でも同じである。
しかし、有害重金属なでの固体汚染物質は、時間的同一地層単元中にあり、そして
有害有機溶剤(VOCs)などの流体の汚染物質の存在は、物性的同一地層単元に支配される。
The same physical layer units such as gravel, sand, and mud are formed from a series of gravel, sand, and mud in the same temporal unit, which is the same for both land depressions and water depressions.
However, solid contaminants such as toxic heavy metals are in the same temporal formation unit, and the presence of fluid contaminants such as toxic organic solvents (VOCs) is dominated by the physical same formation unit.

本発明は、前記課題を解決する具体的手段として、第1の発明は、人工地層内の有害重金属汚染部を正確に把握するためには、時間的同一地層単元の境界を挟んで試料を採取して分析すると共に、その境界の上部、下部から試料を採取して分析し、前記時間的同一地層単元境界を挟んで採取した試料の分析値と境界上部、下部からの各試料分析値とを、それぞれ比較して、値の高い部位に試料採取を順次進めることを特徴とする人工地層汚染の調査方法を提供するものである。 The present invention is a specific means for solving the above-mentioned problems. The first invention is to collect a sample across the boundary of the same temporal formation unit in order to accurately grasp the harmful heavy metal contaminated part in the artificial formation. thereby to analyze, the upper portion of the boundary, and analyzed by taking a sample from the bottom, the analysis value and the boundary upper samples taken across the temporal same strata Unit boundary, with each sample analysis values from the lower Compared with each other, the present invention provides a method for investigating artificial geological contamination characterized by sequentially collecting samples to a high value part.

本発明に係る第2の発明は、人工地層における物性的同一地層単元における鋸歯状またはクサビ状の境界には、有害有機溶剤(VOCs)などの流体の汚染物質が存在するので、有害有機溶剤(VOCs)などの流体の汚染物質の調査にあったては、物性的同一地層単元境界を挟んで採取した試料の分析値と鋸歯状またはクサビ状の境界上部、下部からの各試料分析値とを、それぞれ比較して、値の高い部位に試料採取を順次進めることを特徴とする人工地層汚染の調査方法を提供するものである。 According to the second aspect of the present invention, there are harmful organic solvents (VOCs) and other fluid pollutants on the sawtooth or wedge-shaped boundary in the same physical unit in the artificial formation. When investigating the pollutants of fluids such as VOCs), the analysis value of the sample collected across the unit boundary of the same physical layer and the analysis value of each sample from the upper part and the lower part of the sawtooth or wedge-shaped boundary Compared with each other, the present invention provides a method for investigating artificial geological contamination characterized by sequentially collecting samples to a high value part.

本発明に係る第3の発明は、有害重金属汚染と有害有機溶剤(VOCs)などの流体の汚染物質を明らかにするため、前記第1の発明と前記第2の発明による分析試料採取法を併用することを特徴とする人工地層汚染の調査方法を提供するものである。 According to a third aspect of the present invention, the analytical sample collection method according to the first aspect and the second aspect of the present invention is used in combination in order to clarify toxic heavy metal contamination and fluid contaminants such as toxic organic solvents (VOCs). It is intended to provide a method for investigating artificial geological contamination characterized by

本発明に係る第1〜第3の発明によれば、人工地層であるからこそ、鋸歯状またはクサビ状の境界による特殊な形態に形成されている時間的同一地層単元と物性的同一地層単元になるのであり、それら地層単元の形態で生ずる汚染物質の存在位置から適正に且つ効率よく分析用試料を採取することができるのであり、それによって汚染状況を正しく調査できるという優れた効果を奏する。 According to the first to third invention according to the present invention, Karako its serrated or temporal same strata Unit which by wedge-shaped boundary is formed in a special form and properties identity formation Unit artificial strata and than become, and as it can be collected properly and efficiently analytical sample from the location of the contaminant occurring in those strata Unit forms an excellent effect that thereby investigate the pollution correctly.

本発明の調査対象とした人工地層と重金属汚染物質分布の一部のみを解りやすく拡大して示した説明図である。It is explanatory drawing which expanded and showed only a part of artificial stratum and heavy metal pollutant distribution which were the investigation object of this invention. 同人工地層の断面と重金属汚染物質分布を略示的に示した説明図である。It is explanatory drawing which showed schematically the cross section of the artificial stratum, and heavy metal contaminant distribution. 本発明の調査対象とした人工地層と有機溶剤(VOCs)などの流体の汚染物質分布の一部のみを解りやすく拡大して示した説明図である。It is explanatory drawing which expanded and showed only a part of pollutant distribution of the artificial stratum and the organic solvent (VOCs) etc. which were the investigation object of this invention. 同人工地層の断面と有機溶剤(VOCs)などの流体の汚染物質分布を略示的に示した説明図である。It is explanatory drawing which showed schematically the cross section of the artificial stratum, and the contaminant distribution of fluids, such as an organic solvent (VOCs).

本発明を図示の人工地層における調査実施について説明する。図1および図2は、台地上の砂利採取場の跡の凹地を利用して、人工地層の形成実験を行った成果である。つまり、図2の自然地層1の砂採取を行った凹地2を実験用に利用した。凹地2に各地発生した土砂をダンプカーにより運搬し、凹地上部から順次投入した。凹地2の全体を埋めることにより人工的に造成地3が形成される。   The present invention will be described with reference to the illustrated artificial formation. FIG. 1 and FIG. 2 show the results of an experiment for forming an artificial strata using the concave area of a gravel collection site on the plateau. That is, the depression 2 from which the sand of the natural stratum 1 in FIG. 2 was collected was used for the experiment. The earth and sand generated in various places in the depression 2 were transported by a dump truck and put in sequentially from the depression. The formation land 3 is artificially formed by filling the entire depression 2.

この造成地3において、ダンプカーにより投入された土砂類は、大小様々な粒子のものが含まれており、投入の行為によって物理的に粒径(粒子)の大きい砂礫などは、転がり易いので凹地2の底部側に堆積し、粒径(粒子)の小さい泥などは凹地2の側面側の上方に堆積し易いのであり、このように投入されたダンプカー1台分づつの土砂がそれぞれ時間的同一地層単元になるのであり、これら多数の時間的同一地層単元からなる物性的同一地層単元が累重して造成地3の下に人工地層が形成されるのである。   In this creation site 3, the earth and sand thrown in by the dump truck includes particles of various sizes, and sand and gravel having a large particle size (particles) due to the throwing action are easy to roll, so that the depression 2 It is easy to deposit mud with a small particle size (particles) on the bottom side of the pit 2 and the sediment for each dump truck that has been put in this way is the same in time. A unit of physical properties consisting of a large number of temporally identical formation units is accumulated to form an artificial formation under the formation area 3.

この人工地層については、図2、図4に示したように、累重した多数の時間的同一地層単元図2の5、6、7、図4の5’、6’、7’、…の一つ一つが人工地層における地層の基準となる最少単元である。自然地層における単層は、時間的同一地層単元の集合体である、物性的同一地層単元とほぼ同じといえる。しがって、自然地層での各単層は、上方部分が砂礫層5a、6a、7aで中間部分が砂粒層5b、6b、7bで下方部分が泥層5c、6c、7cとなるのである。   As shown in FIGS. 2 and 4, this artificial formation is composed of a number of accumulated temporally identical formation units 5, 6, 7 in FIG. 2, 5 ′, 6 ′, 7 ′ in FIG. 4. Each one is the minimum unit that is the basis of the formation in the artificial formation. A single layer in a natural stratum can be said to be almost the same as a physical unit with the same physical properties, which is an aggregate of temporally identical strata units. Therefore, each single layer in the natural stratum is composed of the gravel layers 5a, 6a and 7a in the upper part, the sand particle layers 5b, 6b and 7b in the middle part and the mud layers 5c, 6c and 7c in the lower part. .

また、ダンプカーで投入または投棄される土砂についても、同じ地域・場所から同じ成分のものが運ばれてきて投入されるとは限らないのであり、ダンプカー1台毎に違った成分を含んだ時間的同一地層単元が形成される場合があり、例えば、図1の時間的同一地層単元7には多くの固体の有害物質11が含んでいる。
また、時間的同一地層単元にあたる図1の5、6、7、図3の5’、6’、7’は、それぞれ各砂礫5a、6a、7aと砂粒5b、6b、7bと泥土5c、6c、7cに対応する砂礫、砂、泥が連続し物性的同一地層単元として形成される。
これら礫、砂、泥が連なる礫の物性的同一地層単元、砂の物性的同一地層単元、泥の物性的同一地層単元のそれぞれの接触面は、従来の地質学の層理面とは異なり、原則的に水平ではなく、鋸歯状またはクサビ状9を呈するのである。
In addition, the same or the same components are not always carried from the same region / location to the sand and sand thrown in or dumped by the dump truck. The same formation unit may be formed. For example, the temporal same formation unit 7 of FIG. 1 contains many solid harmful substances 11.
1, 5, 6, 7 ′ in FIG. 1, which correspond to the same temporal formation unit, are the gravel 5 a, 6 a, 7 a, the sand grains 5 b, 6 b, 7 b and the mud 5 c, 6 c, respectively. , 7c corresponding to the gravel, sand and mud are continuously formed as a unit of the same physical layer.
The contact surface of the same physical layer unit of gravel, sand, and mud, the same physical layer unit of sand, and the same physical layer unit of mud are different from the conventional geological layer surface, In principle, it is not horizontal but has a sawtooth or wedge shape 9.

本発明では、人工地層内の汚染物質の存在が、このような人工地層の形成に左右されるので、有効にしかも正確に汚染部位を検出することであって、地層単元毎に試料を採取することの重要性を物語っている。   In the present invention, since the presence of contaminants in the artificial formation depends on the formation of such an artificial formation, it is effective and accurate to detect the contaminated site, and samples are taken for each formation unit. It tells the importance of that.

まず、汚染物質が比較的大きな粒子(固体)の場合に、汚染していると認められる時間的同一地層単元内の粒子分級、すなわち、人工的同一地層単元7では、少なくとも3区分の砂礫7a、砂7bと泥の7cから分析用試料を採取する。   First, when the pollutant is a relatively large particle (solid), the particle classification within the same temporal formation unit recognized as contaminated, that is, in the artificial same formation unit 7, at least three sections of gravel 7a, Samples for analysis are taken from sand 7b and mud 7c.

また、時間的同一地層単元における境界部分4、つまり、時間的同一地層単元7の時間的同一地層単元6の境界に当たる砂礫7aと砂礫6a両側にまたがるように分析用試料を採取する。この場合に、汚染固体を含む7aと汚染固体を含まない6aとを混合した試料と分析することになる。そして、7aと6aの試料もそれぞれ分析し、前者の混合試料の分析値と比較検討し、汚染の拡がり状況を調べることができる。   In addition, a sample for analysis is collected so as to straddle both sides of the gravel 7a and the gravel 6a corresponding to the boundary portion 4 in the temporally identical formation unit, that is, the boundary of the temporally identical formation unit 6 of the temporally identical formation unit 7. In this case, a sample mixed with 7a containing contaminated solid and 6a not containing contaminated solid is analyzed. Then, the samples 7a and 6a are also analyzed, compared with the analysis value of the former mixed sample, and the spread state of contamination can be examined.

更に、汚染物質が液体・気体である場合、各物性的同一地層単元境界にあたる鋸歯状またはクサビ状9を両部位から分析用の試料を採取し、さらに隣接する上下の物性的同一地層単元、例えば、5’の泥5c、5’の砂5b、5とから分析用試料を採取し、各分析値の比較から汚染単元を判定するものである。   Furthermore, when the pollutant is liquid / gas, samples for analysis are taken from both parts of the sawtooth shape or wedge shape 9 corresponding to the boundary of each physical property unit, and the adjacent physical property unit units above and below, for example, Samples for analysis are collected from the 5 ′ mud 5c and the 5 ′ sand 5b, and the contamination unit is determined by comparing each analysis value.

このような分析用試料の採取については、造成地下の人工地層の形成状況がダンプカー1台分づつで地層単元が形成されるので、特殊な地層形態になるのであり、自然地層の形成状況と地層形態とが異なるのであり、造成地や埋め立て地下の人工地層においては、汚染物質が時間的同一地層単元か物性的同一地層単元の鋸歯状またはクサビ状9の境界部位を中心に、いずれかの物性的な単元に汚染濃度が集中して高くなるのである。   Regarding the collection of such samples for analysis, the formation of the artificial stratum in the constructed underground is formed for each dump truck, so the formation unit is formed. The form is different, and in the artificial land under construction or landfill underground, any of the physical properties of the pollutant is centered on the sawtooth or wedge-shaped 9 boundary part of the same temporal formation unit or the same physical formation unit. Contaminant concentration is concentrated on a common unit.

従って、人工地層のような特殊な地層形態での分析用試料の採取については、従来技術の方法では、汚染地層単元を正確に見つけることができないのであり、汚染状況について不正確な調査になってしまうのである。   Therefore, with regard to collecting samples for analysis in special formations such as artificial formations, the conventional method cannot accurately find the contaminated formation unit, which is an inaccurate investigation of the contamination status. It ends up.

本発明に係る人工地層汚染の調査方法は、人工地層であるからこそ有害重金属などの固体汚染物質の調査では時間的同一地層単元を指標に調査できる。そして、有害有機溶剤(VOCs)などの流体の汚染物質の調査の場合には、物性的同一地層単元を指標の調査できる。また、有害重金属などの固体汚染物質と有害有機溶剤(VOCs)などの流体の汚染物質の両者が汚染物質の場合には、時間的同一地層単元と物性的同一地層単元とを、それぞれ指標にすることができる。人工地層は形体は、特殊な形態で形成されていることが明らかになり、あり、その特殊な形態の地層単元に基づき正確性と効率とを考慮して分析用試料の採取を行うことができる。一方、人工地層に限らず、自然地層においても、地殻の***・陥没などによって同じような地層形態になっている場合もあり、そのような自然地層の調査においても、広く利用できるのである。   According to the method for investigating artificial geological contamination according to the present invention, since it is an artificial geological formation, it is possible to conduct an investigation using the same temporal geological unit as an index when investigating solid pollutants such as toxic heavy metals. In the case of investigation of pollutants in fluids such as toxic organic solvents (VOCs), it is possible to investigate indicators of the same physical layer unit. In addition, when both solid pollutants such as toxic heavy metals and fluid pollutants such as toxic organic solvents (VOCs) are pollutants, the same temporal unit and the same physical unit are used as indicators. be able to. It is clear that the shape of the artificial formation is formed in a special form, and it is possible to collect samples for analysis in consideration of accuracy and efficiency based on the formation unit of the special form . On the other hand, not only artificial strata, but also natural strata may have similar strata forms due to crust uplifts and depressions, and can be widely used in the investigation of such natural strata.

1 自然地層
2 谷間、陸域の凹地面または水域の凹地面(人自不整合面)
3 造成地
4 時間的同一地層単元境界
5、6、7 時間的同一地層単元 (陸域の場合)
5’、6’、7’ 時間的同一地層単元 (水域の場合)
5a、6a、7a 砂礫(5a、6a、7aが連続して砂礫の物性的同一地層単元)
5b、6b、7b 砂 (5b、6b、7b が連続して砂の物性的同一地層単元)
5c、6c、7c 泥 (5c、6c、7cが連続して泥の物性的同一地層単元)
8 流体の汚染物質
9 鋸歯状またはクサビ状の部分
10 物性的同一地層単元
11 固体の汚染物質
12 地下水位
1 Natural strata 2 Valleys, concave ground in land or concave ground in water (self-unmatched surface)
3 Development site 4 Temporal same formation unit boundary 5, 6, 7 Time same formation unit (in the case of land)
5 ', 6', 7 'Same temporal unit (in case of water area)
5a, 6a, 7a Gravel (5a, 6a, 7a are consecutive units of physical properties of gravel)
5b, 6b, 7b sand (5b, 6b, 7b is a unit of the same physical layer of sand)
5c, 6c, 7c mud (5c, 6c, 7c are consecutive units of physical properties of mud)
8 Fluid pollutant 9 Sawtooth or wedge-shaped part 10 Physically identical formation unit 11 Solid pollutant 12 Groundwater level

Claims (3)

人工地層内の有害重金属汚染部を正確に把握するためには、時間的同一地層単元の境界を挟んで試料を採取して分析すると共に、その境界の上部、下部から試料を採取して分析し、前記時間的同一地層単元境界を挟んで採取した試料の分析値と境界上部、下部からの各試料分析値とを、それぞれ比較して、値の高い部位に試料採取を順次進めることを特徴とする人工地層汚染の調査方法。 In order to accurately grasp the hazardous heavy metal contaminated part in the artificial formation, samples are taken and analyzed with the boundary of the same temporal formation unit in between, and samples are taken from the upper and lower parts of the boundary and analyzed. , analysis values and the boundary upper samples taken across the temporal same strata Unit boundary, with each sample analysis values from the lower, in comparison, respectively, and wherein the sequence advances that the sampling in the high value portion Survey method for artificial geological contamination. 人工地層における物性的同一地層単元における鋸歯状またはクサビ状の境界には、有害有機溶剤(VOCs)などの流体の汚染物質が存在するので、有害有機溶剤(VOCs)などの流体の汚染物質の調査にあったては、物性的同一地層単元境界を挟んで採取した試料の分析値と鋸歯状またはクサビ状の境界上部、下部からの各試料分析値とを、それぞれ比較して、値の高い部位に試料採取を順次進めることを特徴とする人工地層汚染の調査方法。 The physical properties of the artificial strata Units of fluids such as toxic organic solvents (VOCs) are investigated at the serrated or wedge-shaped boundaries in the unit of the same formation. In comparison, the analysis value of the sample collected across the same physical unit boundary is compared with each sample analysis value from the upper and lower edges of the sawtooth or wedge-shaped boundary, respectively, A method for investigating artificial geological contamination, characterized by the sequential sampling of samples. 有害重金属汚染と有害有機溶剤(VOCs)などの流体の汚染物質を明らかにするため、前記請求項1の発明と前記請求項2の発明による分析試料採取法を併用することを特徴とする人工地層汚染の調査方法。 In order to clarify the pollutants of toxic heavy metals and fluids such as toxic organic solvents (VOCs), the artificial stratum characterized by combining the invention of claim 1 and the analytical sampling method of the invention of claim 2 How to investigate contamination.
JP2012147062A 2012-06-29 2012-06-29 Inter-unit sampling method for artificial geological contamination Expired - Fee Related JP5256366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147062A JP5256366B1 (en) 2012-06-29 2012-06-29 Inter-unit sampling method for artificial geological contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147062A JP5256366B1 (en) 2012-06-29 2012-06-29 Inter-unit sampling method for artificial geological contamination

Publications (2)

Publication Number Publication Date
JP5256366B1 true JP5256366B1 (en) 2013-08-07
JP2014010062A JP2014010062A (en) 2014-01-20

Family

ID=49052937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147062A Expired - Fee Related JP5256366B1 (en) 2012-06-29 2012-06-29 Inter-unit sampling method for artificial geological contamination

Country Status (1)

Country Link
JP (1) JP5256366B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064028B1 (en) * 2021-01-22 2022-05-09 三井石油開発株式会社 Sample preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315897A (en) * 2005-07-11 2005-11-10 Fujiwara Seisakusho:Kk Soil sampler, and soil sampling method
JP2008080316A (en) * 2006-09-25 2008-04-10 Global Kankyo System Kenkyusho:Kk Method of waste disposal, and method of treating waste water at landfill place

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315897A (en) * 2005-07-11 2005-11-10 Fujiwara Seisakusho:Kk Soil sampler, and soil sampling method
JP2008080316A (en) * 2006-09-25 2008-04-10 Global Kankyo System Kenkyusho:Kk Method of waste disposal, and method of treating waste water at landfill place

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012067093; 楡井久: '不法投棄廃棄物層と単元調査法' いんだすと Vol.22,No.5, 20070505, p.52-57, 社団法人全国産業廃棄物連合会 *

Also Published As

Publication number Publication date
JP2014010062A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
Tedoldi et al. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review
Zhan et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation
Scanlon et al. Soil gas movement in unsaturated systems
Chen et al. Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns
Martínez-Pagán et al. A multidisciplinary study for mining landscape reclamation: A study case on two tailing ponds in the Region of Murcia (SE Spain)
Guo et al. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume
Zaini et al. Urban landfills investigation for leachate assessment using electrical resistivity imaging in Johor, Malaysia
Jeong et al. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea
Kim et al. Contributions of advective and diffusive oxygen transport through multilayer composite caps over mine waste
Fronczyk et al. Multilayer PRBs-effective technology for protection of groundwater environment in traffic infrastructure
Teramoto et al. Impact of water table fluctuations on the seasonal effectiveness of the pump-and-treat remediation in wet–dry tropical regions
JP5256366B1 (en) Inter-unit sampling method for artificial geological contamination
Slimene et al. Modeling water infiltration and solute transfer in a heterogeneous vadose zone as a function of entering flow rates
Abbaspour et al. Chemical clogging and geotextile serviceability in subdrains adjacent to recycled concrete
Pavlowsky et al. Distribution, geochemistry, and storage of mining sediment in channel and floodplain deposits of the Big River system in St. Francois, Washington, and Jefferson Counties, Missouri
Pedretti et al. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers
Deshmukh et al. Geoenvironmental behavior of lime-treated marine sediments
RU2337419C2 (en) Safeguarding method from groundwater pollution in storing areas and landfill areas, containing toxic or radioactive substances and device for its implementation
Korolev Electrokinetic remediation of a contaminated land in cities
Al-Hammad Light Non-Aqueous Phase Liquid Migration in Ground Subsurface
COSTIN et al. Preliminary data regarding the content of petroleum products in water and soil samples from Suplacu de Barcău area, Romania
Rozkošný et al. Development and Changes in Characteristics of Infiltration and Retention Facilities for Transport Infrastructure and Paved Area Surface Run-off Treatment
Marcoline Investigations of water and tracer movement in covered and uncovered unsaturated waste rock
Touze et al. Geomembranes over GCLS: The optimal combination for barriers against contaminant transport
Laallam Transport and retention of heavy metals in contaminated soil and groundwater: A case study from Pukeberg glassworks in Småland, Sweden

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5256366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees