JP5252453B2 - CO selective oxidation catalyst - Google Patents

CO selective oxidation catalyst Download PDF

Info

Publication number
JP5252453B2
JP5252453B2 JP2009153927A JP2009153927A JP5252453B2 JP 5252453 B2 JP5252453 B2 JP 5252453B2 JP 2009153927 A JP2009153927 A JP 2009153927A JP 2009153927 A JP2009153927 A JP 2009153927A JP 5252453 B2 JP5252453 B2 JP 5252453B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
selectivity
platinum
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009153927A
Other languages
Japanese (ja)
Other versions
JP2011005461A (en
Inventor
豊 多井
恵一 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009153927A priority Critical patent/JP5252453B2/en
Publication of JP2011005461A publication Critical patent/JP2011005461A/en
Application granted granted Critical
Publication of JP5252453B2 publication Critical patent/JP5252453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、水素中の一酸化炭素除去に有用な、選択酸化触媒(PROX触媒)等への応用が期待される、新規な高選択性触媒に関するものである。   The present invention relates to a novel highly selective catalyst that is expected to be applied to a selective oxidation catalyst (PROX catalyst) useful for removing carbon monoxide in hydrogen.

水素中に微量に混入する一酸化炭素(CO)を酸化除去する反応は、たとえば、固体高分子型燃料電池(PEFC)アノードの白金に対する被毒を軽減し、電池の長寿命化を実現するものとして重要である。家庭用の定置型燃料電池の場合では、原料となる都市ガスを400〜700℃の温度下で水蒸気改質することにより、燃料となる水素ガスを得る(反応式1)。   The reaction that oxidizes and removes carbon monoxide (CO) mixed in a trace amount in hydrogen, for example, reduces the poisoning of platinum on the anode of a polymer electrolyte fuel cell (PEFC) and realizes a longer battery life. As important. In the case of a stationary fuel cell for home use, hydrogen gas serving as fuel is obtained by steam reforming the city gas serving as a raw material at a temperature of 400 to 700 ° C. (Reaction Formula 1).

CH4+H2O → CO+3H2 (反応式1)
この際、副生成物として、10vol%程度のCOが生成する。
CH 4 + H 2 O → CO + 3H 2 (Scheme 1)
At this time, CO of about 10 vol% is generated as a by-product.

この後、さらに200〜400℃の温度下で、水性ガスシフト反応により、燃料ガス中の水素濃度を上昇するとともに、COを1vol%以下まで酸化除去する(反応式2)。   Thereafter, the hydrogen concentration in the fuel gas is increased by a water gas shift reaction at a temperature of 200 to 400 ° C., and CO is oxidized and removed to 1 vol% or less (Reaction Formula 2).

CO+H2O → CO2+H2 (反応式2)
最終段階では、微量の空気を導入することにより、80〜200℃で、COを10ppm以下まで酸化除去する(PROX反応、反応式3)。
CO + H 2 O → CO 2 + H 2 (Scheme 2)
In the final stage, CO is oxidized and removed to 80 ppm or less at 80 to 200 ° C. by introducing a small amount of air (PROX reaction, reaction formula 3).

CO+1/2O2 → CO2 (反応式3)
しかしながら、このとき反応式4に示す副反応が起こり、燃料である水素が酸化される。
CO + 1 / 2O 2 → CO 2 (Reaction formula 3)
However, at this time, a side reaction shown in the reaction formula 4 occurs, and hydrogen as a fuel is oxidized.

H2+1/2O2 → H2O (反応式4)
従って、水素を酸化せずにCOのみを選択的に酸化する、高い選択反応活性を持つ触媒が望まれることになる。
H 2 + 1 / 2O 2 → H 2 O (Scheme 4)
Therefore, a catalyst having high selective reaction activity that selectively oxidizes only CO without oxidizing hydrogen is desired.

理論的には反応式3で、選択性が100%の場合、導入されるべき酸素とCOの比(O/CO)は0.5であるが、現状で実際に用いられている触媒では、CO酸化選択性が低いために、1.5〜2.5程度の範囲で運転されている。このような過剰量の酸素の導入は、前記反応式4による副反応での水素消費の要因となる。 Theoretically, when the selectivity is 100% and the selectivity is 100%, the ratio of oxygen to CO to be introduced (O 2 / CO) is 0.5, but the catalyst actually used at present is Because of low CO oxidation selectivity, it is operated in the range of about 1.5 to 2.5. The introduction of such an excessive amount of oxygen becomes a factor of hydrogen consumption in the side reaction according to the reaction formula 4.

また、一方で、現状での前記反応式3でのPROX触媒は典型的には150℃程度の温度で使用されているが、このような温度下では、メタン化反応(反応式5)が起きる可能性がある。かつまた、PEFC自体の動作温度は80℃付近であるので、これに近い温度で運転できる触媒であることが望まれている。このようなことからは、低温下でのCO酸化選択性の高い触媒が求められていることがわかる。しかしながら、アルミナ担持白金触媒のような典型的な酸化触媒においては、CO酸化選択性は、高温ほど高くなる傾向がある。   On the other hand, the current PROX catalyst in the reaction formula 3 is typically used at a temperature of about 150 ° C. Under such a temperature, a methanation reaction (reaction formula 5) occurs. there is a possibility. Moreover, since the operating temperature of PEFC itself is around 80 ° C., a catalyst that can be operated at a temperature close to this is desired. From this, it can be seen that there is a demand for a catalyst having high CO oxidation selectivity at low temperatures. However, in a typical oxidation catalyst such as an alumina-supported platinum catalyst, CO oxidation selectivity tends to be higher at higher temperatures.

CO+3H2 → CH4+H2O (反応式5)
従来では、COの酸化に対して高い選択性を有する触媒としては、白金-ルテニウム合金をアルミナに担持した触媒(特許文献1)や、白金と鉄等の遷移金属によるバイメタルをアルミナに担持した触媒(特許文献2、3)、ルテニウムとチタン等の複合酸化物を担持した触媒(特許文献4)、酸化コバルトおよびその複合酸化物を用いる触媒(特許文献5)などが知られているが、低い温度域でのCO酸化選択性は、さらに改善する必要がある。
CO + 3H 2 → CH 4 + H 2 O (Scheme 5)
Conventionally, as a catalyst having high selectivity to CO oxidation, a catalyst in which a platinum-ruthenium alloy is supported on alumina (Patent Document 1), or a catalyst in which a bimetal made of a transition metal such as platinum and iron is supported on alumina. (Patent Documents 2 and 3), a catalyst carrying a composite oxide such as ruthenium and titanium (Patent Document 4), a catalyst using cobalt oxide and its composite oxide (Patent Document 5), etc. are known, but low The CO oxidation selectivity in the temperature range needs to be further improved.

また、近年、FSM−16等のメソポーラスシリカに担持した白金触媒が、高い選択性を有することが明らかになってきた(非特許文献1)。この触媒は、助触媒等を用いることなく、非常に高いCO酸化選択性を発現することから、有望視されている。   In recent years, it has become clear that platinum catalysts supported on mesoporous silica such as FSM-16 have high selectivity (Non-patent Document 1). This catalyst is considered promising because it exhibits a very high CO oxidation selectivity without using a cocatalyst or the like.

しかしながら、FSM−16やMCM−41などのメソポーラスシリカは、それ自体を作製するために、テンプレートとなる有機物を大量に使用し、最終的にそれらを燃焼除去することが必要なため、環境負荷が大きく、また、製造コストも高い。   However, mesoporous silicas such as FSM-16 and MCM-41 use a large amount of organic substances as a template to produce themselves, and ultimately they must be burned and removed. Large and also expensive to manufacture.

特許3746401Patent 3746401 特開2007−111695JP2007-111695A 特開2003−164764JP 2003-164664 A 特開2002−226205JP 2002-226205 A 特開2006−116475JP 2006-116475 A A. Fukuoka et al., J. Am. Chem. Soc. 129, 10120 (2007).A. Fukuoka et al., J. Am. Chem. Soc. 129, 10120 (2007).

本発明は、以上のとおりの背景から、従来技術の問題点を解消し、環境負荷の小さい製造プロセスによる担体を用いて、簡便な方法で調製可能な、水素中の一酸化炭素の酸化反応に、より低い温度域においても高い反応選択性を有する触媒を提供することを課題とする。   From the background as described above, the present invention eliminates the problems of the prior art and uses a carrier produced by a manufacturing process with a low environmental load to prepare an oxidation reaction of carbon monoxide in hydrogen that can be prepared by a simple method. Another object of the present invention is to provide a catalyst having high reaction selectivity even in a lower temperature range.

本発明の触媒は、前記課題を解決するものとして以下のことを特徴としている。   The catalyst of the present invention is characterized by the following in order to solve the above problems.

第1:H(水素)とCO(一酸化炭素)を含むガスからCOを酸化除去するための、非晶質アルミニウムケイ酸塩に白金、ルテニウム及び鉄の少なくとも1種の金属を担持したCO選択酸化触媒である。 First: CO in which at least one metal of platinum, ruthenium and iron is supported on amorphous aluminum silicate for oxidizing and removing CO from a gas containing H 2 (hydrogen) and CO (carbon monoxide) It is a selective oxidation catalyst.

第2:前記ガスは、固体高分子型燃料電池に用いられる改質ガスである。   Second: The gas is a reformed gas used in a polymer electrolyte fuel cell.

第3:前記非晶質アルミニウムケイ酸塩は、Si/Al比が0.7〜1で、かつ、29Si固体高分解能NMRスペクトルにおいて、−78ppmおよび−87ppm付近にピークを有するものである。 Third: The amorphous aluminum silicate has a Si / Al ratio of 0.7 to 1 and peaks in the vicinity of -78 ppm and -87 ppm in a 29 Si solid high-resolution NMR spectrum.

そして、本発明は、以上の触媒を用いての、HとCOを含むガスからの選択的なCO酸化除去反応の方法も提供する。 Then, the present invention is to use the above catalyst, also provides a method for selective CO oxidation reaction of removing from a gas containing H 2 and CO.

以上の例で説明したように、本発明による触媒を用いた場合、H中のCOを高い選択性で酸化除去することが出来る。また、反応選択性は低温で、より増大する傾向があり、PEFCの動作温度である80℃付近で動作するCO選択酸化触媒として有効である。 As described in the above example, when the catalyst according to the present invention is used, CO in H 2 can be oxidized and removed with high selectivity. In addition, the reaction selectivity tends to increase at low temperatures, and is effective as a CO selective oxidation catalyst that operates near 80 ° C., which is the operating temperature of PEFC.

実施例1での反応結果を例示した図である。2 is a diagram illustrating a reaction result in Example 1. FIG. 比較例1での反応結果を示した図である。FIG. 4 is a view showing a reaction result in Comparative Example 1. 比較例2での反応結果を示した図である。FIG. 6 is a view showing a reaction result in Comparative Example 2. 比較例3での反応結果を示した図である。FIG. 6 is a view showing a reaction result in Comparative Example 3.

本発明においては、前記のとおり、非晶質のアルミニウムケイ酸化合物を担体として用い、これに、周期律表8〜10族元素、たとえばPt,Ru,Pd,Rh,Ni,Co,Fe等の元素のうちのすくなくとも種もしくはこれらの合金を担持した触媒であることを特徴としている。この特徴によって、たとえば、白金化合物を含浸・焼成して作製した触媒をもちいた場合、水素中の一酸化炭素の酸化反応に対して、低温ほど高い反応選択性を発現することを見いだしている。   In the present invention, as described above, an amorphous aluminum silicate compound is used as a carrier, and this includes elements of groups 8 to 10 of the periodic table, such as Pt, Ru, Pd, Rh, Ni, Co, and Fe. The catalyst is characterized in that it is a catalyst supporting at least one of the elements or an alloy thereof. With this feature, for example, when a catalyst prepared by impregnating and calcining a platinum compound is used, it has been found that a higher reaction selectivity is exhibited at a lower temperature with respect to an oxidation reaction of carbon monoxide in hydrogen.

本発明の担体として用いられる非晶質アルミニウムケイ酸塩は、従来公知のように調製することができ、たとえば、本発明においてより好適なものとしては、モノケイ酸水溶液とアルミニウム水溶液をSi/Al比が0.7〜1となるように混合し、酸またはアルカリによってpH6〜8に調製し、その後、脱塩処理し、110℃以下で加熱することにより得ることができる(特開2008−179533参照)。   The amorphous aluminum silicate used as the carrier of the present invention can be prepared as conventionally known. For example, in the present invention, a monosilicate aqueous solution and an aluminum aqueous solution are mixed with a Si / Al ratio. Is adjusted to pH 6-8 with an acid or alkali, then desalted and heated at 110 ° C. or lower (see JP 2008-179533 A). ).

金属を該担体に担持する方法としては、金属イオンを担体に含浸した後、空気中焼成および還元雰囲気下で焼成する方法が想定されるが、金属微粒子が該担体上に担持される方法であれば、この方法に限定されるものではない。金属の担持量については、特に限定的ではないが、一般的目安として、触媒の全体量の0.1〜20質量%の範囲とすることが考慮される。   As a method of supporting the metal on the carrier, a method of impregnating the metal ion with the carrier and then firing in air and in a reducing atmosphere is assumed, but any method in which metal fine particles are supported on the carrier. For example, it is not limited to this method. The amount of metal supported is not particularly limited, but as a general guideline, it is considered that the amount is 0.1 to 20% by mass of the total amount of the catalyst.

本発明の触媒では、最初に仕込む金属の量や、焼成温度を変化させることにより、金属微粒子のサイズを変化させることが可能である。金属微粒子の粒径としては、まず一般的な目安としては0.5〜10nmの範囲とすることが考慮される。金属微粒子のサイズは反応選択性の重要なパラメータの一つであるので、これを変化させることで、種々の反応系において、従来触媒とは異なる選択性を発現することも期待できる。   In the catalyst of the present invention, it is possible to change the size of the metal fine particles by changing the amount of metal initially charged and the firing temperature. As a particle size of the metal fine particles, it is considered that a range of 0.5 to 10 nm is a general guideline. Since the size of the metal fine particles is one of the important parameters of the reaction selectivity, it can be expected that the selectivity different from that of the conventional catalyst is expressed in various reaction systems by changing the size.

次に、実施例により本発明をさらに詳細に説明する。もちろん、本発明はこれらの例によってなんら限定されるものではない。
<担体の調製>
担体となる非晶質アルミニウムケイ酸化合物を公知の方法で作製した(特許文献6)。すなわち、Si濃度が、383mmol/Lになるように、純水で希釈したオルトケイ酸ナトリウム水溶液400mlを調製した。また、これとは別に、塩化アルミニウムを純水に溶解させ、Al濃度が450mmol/Lの水溶液400mlを調製した。次に、塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を混合し、マグネティックスターラーで撹拌した。このときのケイ素/アルミニウム比は0.85であった。更に、この混合溶液に、1N水酸化ナトリウム水溶液18mlを滴下しpHを7とした。この溶液から遠心分離により前駆体を回収し、4Lの純水中に分散させた。室温下で1時間攪拌した後、4Lの密閉容器に移し替え、恒温槽にて98℃で2日間加熱を行った。冷却後、遠心分離により3回洗浄後、60℃で乾燥を行った。
Next, the present invention will be described in more detail with reference to examples. Of course, the present invention is not limited to these examples.
<Preparation of carrier>
An amorphous aluminum silicate compound as a carrier was produced by a known method (Patent Document 6). That is, 400 ml of a sodium orthosilicate aqueous solution diluted with pure water was prepared so that the Si concentration was 383 mmol / L. Separately, aluminum chloride was dissolved in pure water to prepare 400 ml of an aqueous solution having an Al concentration of 450 mmol / L. Next, the sodium orthosilicate aqueous solution was mixed with the aluminum chloride aqueous solution and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time was 0.85. Further, 18 ml of 1N aqueous sodium hydroxide solution was added dropwise to the mixed solution to adjust the pH to 7. The precursor was recovered from this solution by centrifugation and dispersed in 4 L of pure water. After stirring at room temperature for 1 hour, the mixture was transferred to a 4 L sealed container and heated at 98 ° C. for 2 days in a thermostatic bath. After cooling, it was washed three times by centrifugation and then dried at 60 ° C.

得られたアルミニウムケイ酸塩について、X線回折、および、29Si固体高分解能NMR測定をおこなった。X線回折パターンにおいては、2θ=27°および40°にブロードなピークが観測されるのみの、非晶質アルミニウムケイ酸塩に特徴的なパターンであった。この結果から、この物質は非晶質のアルミニウムケイ酸塩であることが確認された。 The obtained aluminum silicate was subjected to X-ray diffraction and 29 Si solid high-resolution NMR measurement. The X-ray diffraction pattern was a pattern characteristic of amorphous aluminum silicate, with only broad peaks observed at 2θ = 27 ° and 40 °. From this result, it was confirmed that this material was an amorphous aluminum silicate.

29Si固体高分解能NMRスペクトルにおいては、−78ppmおよび−87ppm付近にピークが見られる。このことから、生成物は、−78ppmにピークを示す、OH−Si−(OAl)3の配位を含むイモゴライトに特徴的な構造と、−87ppmにピークを示す、Si−O−Siの重合構造を併せ持つ物質であることが確認された。 In the 29 Si solid high-resolution NMR spectrum, peaks are observed around -78 ppm and -87 ppm. From this, the product has a characteristic structure of imogolite including the coordination of OH—Si— (OAl) 3, which shows a peak at −78 ppm, and polymerization of Si—O—Si which shows a peak at −87 ppm. The substance was confirmed to have a structure.

<実施例1> <Example 1>

作製したアルミニウムケイ酸塩0.3gを蒸留水2mlに分散し、白金量5wt%の亜硝酸ジニトロ白金アンモニア水溶液60.6μlを混合し、室温で24時間撹拌した。その後、蒸気浴で混合液を加熱しながら撹拌し、水を蒸発させ、さらに110℃に加熱した乾燥機で2時間乾燥させた。このようにして得られた粉体を、300ml/minの空気気流中400℃で焼成した後、さらに、50ml/minのH/Ar(1:1)混合気流中、400℃で2時間熱処理し、触媒試料とした。白金仕込み量は1wt%である。 0.3 g of the produced aluminum silicate was dispersed in 2 ml of distilled water, 60.6 μl of dinitroplatinum ammonia aqueous solution having a platinum amount of 5 wt% was mixed, and stirred at room temperature for 24 hours. Thereafter, the mixed solution was stirred while being heated in a steam bath to evaporate water, and further dried for 2 hours in a dryer heated to 110 ° C. The powder thus obtained was calcined at 400 ° C. in an air stream of 300 ml / min, and further heat-treated at 400 ° C. for 2 hours in a mixed air stream of H 2 / Ar (1: 1) at 50 ml / min. And used as a catalyst sample. The amount of platinum charged is 1 wt%.

この様にして作製した触媒試料(白金仕込み量1wt%)0.1gをパイレックス(登録商標)ガラス製の反応管に詰め、固定床流通式反応装置を用いて、水素中でのCO酸化反応の転換率を種々の温度下にて測定した。用いた混合ガスの組成はCO:O:H=1:0.5:98.5であり、ガスの流量は16.7ml/minである。触媒層通過前後のCOおよびOの濃度をガスクロマトグラフにより検出した。 0.1 g of the catalyst sample (platinum charge 1 wt%) prepared in this way is packed in a Pyrex (registered trademark) glass reaction tube, and CO oxidation reaction in hydrogen using a fixed bed flow type reactor. Conversion was measured at various temperatures. The composition of the mixed gas used is CO: O 2 : H 2 = 1: 0.5: 98.5, and the gas flow rate is 16.7 ml / min. The concentrations of CO and O 2 before and after passing through the catalyst layer were detected by gas chromatography.

図1にCOおよびOの転換率(それぞれ○および●)、CO酸化選択性(+)を温度の関数として示す。COおよびOの転換率は、触媒層通過前のCOおよびOの濃度を[CO]、[O、通過後のCOおよびOの濃度を[CO]、[O]とした時、それぞれ、{1−([CO]/[CO])}*100、および、{1−([O]/[O)}*100で表される。また、CO酸化選択性は、消費されたOのうちの何割がCOの酸化に使われたかを示す量であり、1/2×([CO]−[CO])/([O−[O])で定義される。 FIG. 1 shows the CO and O 2 conversions (◯ and ●, respectively) and CO oxidation selectivity (+) as a function of temperature. The conversion of CO and O 2 is the concentration of CO and O 2 of the front catalyst layer pass [CO] 0, [O 2 ] 0, the concentration of CO and O 2 after passing through [CO], [O 2] Are represented by {1-([CO] / [CO] 0 )} * 100 and {1-([O 2 ] / [O 2 ] 0 )} * 100, respectively. The CO oxidation selectivity is an amount indicating what percentage of the consumed O 2 was used for the oxidation of CO. 1/2 × ([CO] 0 − [CO]) / ([O 2 ] 0- [O 2 ]).

PEFCにおいて好適な、CO酸化触媒の動作温度は80℃〜150℃程度であるが、この温度領域において、作製した非晶質アルミニウムケイ酸塩担持の白金触媒は、60%以上の反応選択性を示した。
<実施例2>
The operating temperature of the CO oxidation catalyst suitable for PEFC is about 80 ° C. to 150 ° C. In this temperature range, the produced platinum catalyst supported on amorphous aluminum silicate has a reaction selectivity of 60% or more. Indicated.
<Example 2>

該アルミニウムケイ酸塩0.5gを蒸留水2mlに分散し、ルテニウム量1.6wt%の塩化ルテニウム水溶液305μlを混合し、室温で24時間撹拌した。その後、蒸気浴で混合液を加熱しながら撹拌し、水を蒸発させ、さらに110℃に加熱した乾燥機で2時間乾燥させた。このようにして得られた粉体を、300ml/minの空気気流中200℃で焼成した後、さらに、50ml/minのH/Ar(1:1)混合気流中、200℃で2時間熱処理し、触媒試料とした。ルテニウム担持量は、仕込みで1.0wt%である。
<実施例3>
0.5 g of the aluminum silicate was dispersed in 2 ml of distilled water, mixed with 305 μl of a ruthenium chloride aqueous solution having a ruthenium content of 1.6 wt%, and stirred at room temperature for 24 hours. Thereafter, the mixed solution was stirred while being heated in a steam bath to evaporate water, and further dried for 2 hours in a dryer heated to 110 ° C. The powder thus obtained was calcined at 200 ° C. in an air stream of 300 ml / min, and further heat-treated at 200 ° C. for 2 hours in a mixed air stream of H 2 / Ar (1: 1) at 50 ml / min. And used as a catalyst sample. The amount of ruthenium supported is 1.0 wt% in preparation.
<Example 3>

該アルミニウムケイ酸塩0.5gを蒸留水2mlに分散し、白金量2.1wt%のテトラアンミン白金塩化物水溶液222μlとルテニウム量1.6wt%の塩化ルテニウム水溶液153μlを混合し、室温で24時間撹拌した。その後、蒸気浴で混合液を加熱しながら撹拌し、水を蒸発させ、さらに110℃に加熱した乾燥機で2時間乾燥させた。このようにして得られた粉体を、300ml/minの空気気流中200℃で焼成した後、さらに、50ml/minのH/Ar(1:1)混合気流中、200℃で2時間熱処理し、触媒試料とした。白金およびルテニウム担持量は、仕込みで1.9および1.0wt%である(モル比で1:1)。
<実施例4>
0.5 g of the aluminum silicate is dispersed in 2 ml of distilled water, and 222 μl of a tetraammineplatinum chloride aqueous solution with a platinum amount of 2.1 wt% and 153 μl of a ruthenium chloride aqueous solution with a ruthenium amount of 1.6 wt% are mixed and stirred at room temperature for 24 hours. did. Thereafter, the mixed solution was stirred while being heated in a steam bath to evaporate water, and further dried for 2 hours in a dryer heated to 110 ° C. The powder thus obtained was calcined at 200 ° C. in an air stream of 300 ml / min, and further heat-treated at 200 ° C. for 2 hours in a mixed air stream of H 2 / Ar (1: 1) at 50 ml / min. And used as a catalyst sample. The loadings of platinum and ruthenium are 1.9 and 1.0 wt% in the charge (1: 1 in molar ratio).
<Example 4>

該アルミニウムケイ酸塩0.5gを蒸留水2mlに分散し、白金量2.1wt%のテトラアンミン白金塩化物水溶液443μlと鉄量1.3wt%の酢酸鉄水溶液217μlを混合し、室温で24時間撹拌した。その後、蒸気浴で混合液を加熱しながら撹拌し、水を蒸発させ、さらに110℃に加熱した乾燥機で2時間乾燥させた。このようにして得られた粉体を、300ml/minの空気気流中200℃で焼成した後、さらに、50ml/minのH/Ar(1:1)混合気流中、200℃で2時間熱処理し、触媒試料とした。白金および鉄担持量は、仕込みで3.8および1.1wt%である(モル比で1:1)。 0.5 g of the aluminum silicate is dispersed in 2 ml of distilled water, 443 μl of a tetraammine platinum chloride aqueous solution with a platinum amount of 2.1 wt% and 217 μl of an iron acetate aqueous solution with an iron amount of 1.3 wt% are mixed and stirred at room temperature for 24 hours. did. Thereafter, the mixed solution was stirred while being heated in a steam bath to evaporate water, and further dried for 2 hours in a dryer heated to 110 ° C. The powder thus obtained was calcined at 200 ° C. in an air stream of 300 ml / min, and further heat-treated at 200 ° C. for 2 hours in a mixed air stream of H 2 / Ar (1: 1) at 50 ml / min. And used as a catalyst sample. The loadings of platinum and iron are 3.8 and 1.1 wt% in the charge (1: 1 in molar ratio).

実施例2〜4の試料を0.1gをパイレックス(登録商標)ガラス製の反応管に詰め、固定床流通式反応装置を用いて、水素中でのCO酸化反応の転換率を種々の温度下にて測定した。用いた混合ガスの組成はCO:O:H=1:0.5:98.5であり、ガスの流量は16.7ml/minである。触媒層通過前後のCOおよびOの濃度をガスクロマトグラフにより検出した。 0.1 g of the samples of Examples 2 to 4 were packed in a Pyrex (registered trademark) glass reaction tube, and the conversion rate of the CO oxidation reaction in hydrogen at various temperatures using a fixed bed flow reactor. Measured with The composition of the mixed gas used is CO: O 2 : H 2 = 1: 0.5: 98.5, and the gas flow rate is 16.7 ml / min. The concentrations of CO and O 2 before and after passing through the catalyst layer were detected by gas chromatography.

いずれの場合にも、低温ほど高いCO酸化選択性を示した(下記、表1参照)。
<比較例1>
アルミナを担体とした場合と比較した。実施例1と同様の方法で、アルミナ(触媒学会参照触媒JRC−ALO−1)担体とした触媒を作製し、触媒反応特性を比較した。
In either case, the lower the temperature, the higher the CO oxidation selectivity (see Table 1 below).
<Comparative Example 1>
The comparison was made with alumina as a carrier. In the same manner as in Example 1, a catalyst using alumina (catalyst society reference catalyst JRC-ALO-1) support was prepared, and the catalytic reaction characteristics were compared.

結果を図2に示す。80℃〜150℃の温度範囲において、CO酸化反応選択性は40%以下であり、また、選択性は低温ほど低くなった。
<比較例2>
シリカを担体とした場合と比較した。テトラメチルシリケイト51gをメタノール107gと混合し、撹拌した。その後撹拌しながら溶液中にアンモニア水36gを加えた。この時、テトラメチルシリケイトとメタノール、水の比はモル比で1:10:6であった。1分ほど撹拌した後、混合液を円柱形の型(直径40mm,深さ10mm)に流し込んだ。約1時間放置し反応液がゼリー状に固まっていることを確認してから、乾燥するのを防ぐためポリ塩化ビニリデンフィルムで密封をした。その後1日放置しゲル化を進行させた。その後、型から取り出し、エタノールに浸して1日以上放置した。ゲル中に残存する水やアンモニアを完全に除去するため、その後エタノールの取替えを2回おこなった。得られたバルク体を空気中で乾燥し、粉砕した。このようにして得られたシリカ粉体に、実施例1と同様の方法で白金を担持した。
The results are shown in FIG. In the temperature range of 80 ° C. to 150 ° C., the CO oxidation reaction selectivity was 40% or less, and the selectivity became lower as the temperature was lower.
<Comparative example 2>
Comparison was made with silica as the carrier. 51 g of tetramethyl silicate was mixed with 107 g of methanol and stirred. Thereafter, 36 g of aqueous ammonia was added to the solution while stirring. At this time, the ratio of tetramethyl silicate to methanol and water was 1: 10: 6 in molar ratio. After stirring for about 1 minute, the mixture was poured into a cylindrical mold (diameter 40 mm, depth 10 mm). After standing for about 1 hour and confirming that the reaction solution had hardened in a jelly form, it was sealed with a polyvinylidene chloride film to prevent drying. Thereafter, the gelation was allowed to proceed for 1 day. Thereafter, it was removed from the mold, immersed in ethanol, and left for one day or longer. In order to completely remove water and ammonia remaining in the gel, ethanol was replaced twice thereafter. The obtained bulk body was dried in air and pulverized. The silica powder thus obtained was loaded with platinum in the same manner as in Example 1.

反応試験の結果を図3に示す。80℃〜150℃の温度範囲において、CO酸化反応選択性は30%以下であり、また、選択性は低温ほど低くなった。
<比較例3>
チューブ状アルミニウムケイ酸塩である、イモゴライトを担体とした場合と比較した。Si濃度が60mmol/Lになるように純水で希釈したオルトケイ酸ナトリウム水溶液200mlを調製した後。また、これとは別に塩化アルミニウムを純水に溶解させ、Al濃度が150mmol/L水溶液200mlを調製した。塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を混合し、マグネティックスターラーで撹拌した。このときのケイ素/アルミニウム比は0.4である。この混合溶液に、1N水酸化ナトリウム水溶液44.8mlを滴下しpHを6とした。この溶液から遠心分離により前駆体を回収し、更に、純水で前駆体を2回遠心分離により洗浄した後、2Lの純水中に分散させた。この前駆体の懸濁液2Lに、1N塩酸を10ml加えpHを4.2とした後、室温下で1時間攪拌した後、テフロン(登録商標)製の2L密閉容器に移し替え、恒温槽にて100℃で4日間加熱を行った。こうしてイモゴライトを含む水溶液を得た。冷却後、この水溶液を60℃で乾燥させた後、孔径0.2μmのフィルターを用いて洗浄を行った。
The results of the reaction test are shown in FIG. In the temperature range of 80 ° C. to 150 ° C., the CO oxidation reaction selectivity was 30% or less, and the selectivity was lower at lower temperatures.
<Comparative Example 3>
This was compared with the case where imogolite, which is a tubular aluminum silicate, was used as a carrier. After preparing 200 ml of a sodium orthosilicate aqueous solution diluted with pure water so that the Si concentration becomes 60 mmol / L. Separately, aluminum chloride was dissolved in pure water to prepare 200 ml of an aqueous solution having an Al concentration of 150 mmol / L. A sodium orthosilicate aqueous solution was mixed with the aluminum chloride aqueous solution and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time is 0.4. To this mixed solution, 44.8 ml of 1N aqueous sodium hydroxide solution was added dropwise to adjust the pH to 6. The precursor was recovered from this solution by centrifugation, and the precursor was washed twice with pure water by centrifugation, and then dispersed in 2 L of pure water. To 2 L of this precursor suspension, 10 ml of 1N hydrochloric acid was added to adjust the pH to 4.2, and the mixture was stirred at room temperature for 1 hour, and then transferred to a 2 L sealed container made of Teflon (registered trademark). And heated at 100 ° C. for 4 days. Thus, an aqueous solution containing imogolite was obtained. After cooling, the aqueous solution was dried at 60 ° C. and then washed using a filter having a pore size of 0.2 μm.

得られた生成物について、その粉末X線回折を測定したところ、2θ=4,9.5,14,27,40°付近にピークを有する、チューブ状アルミニウムケイ酸塩特有のX線回折パターンを示した。   When the powder X-ray diffraction of the obtained product was measured, an X-ray diffraction pattern peculiar to tubular aluminum silicate having a peak in the vicinity of 2θ = 4, 9.5, 14, 27, and 40 ° was obtained. Indicated.

このようにして得られたイモゴライト粉体に、実施例1と同様の方法で白金を担持した。図4に触媒反応試験の結果を示す。80℃〜150℃の温度範囲において、CO酸化反応選択性は40%以下であり、また、選択性は低温ほど低くなった。   The imogolite powder thus obtained was loaded with platinum in the same manner as in Example 1. FIG. 4 shows the results of the catalytic reaction test. In the temperature range of 80 ° C. to 150 ° C., the CO oxidation reaction selectivity was 40% or less, and the selectivity became lower as the temperature was lower.

実施例1〜4、および、比較例1〜3の100℃および150℃における、OおよびCOの転換率、反応選択性を表1にまとめて示した。 The conversion rates of O 2 and CO and reaction selectivity at 100 ° C. and 150 ° C. of Examples 1 to 4 and Comparative Examples 1 to 3 are summarized in Table 1.

Figure 0005252453
Figure 0005252453

Claims (3)

とCOを含むガスからCOを酸化除去するための、非晶質アルミニウムケイ酸塩に白金、ルテニウム及び鉄の少なくとも1種の金属を担持したことを特徴とするCO選択酸化触媒。 A CO selective oxidation catalyst , wherein at least one metal of platinum, ruthenium and iron is supported on an amorphous aluminum silicate for oxidizing and removing CO from a gas containing H 2 and CO. とCOを含むガスが、固体高分子型燃料電池に用いられる改質ガスであることを特徴とする請求項1に記載の触媒。 The catalyst according to claim 1, wherein the gas containing H 2 and CO is a reformed gas used in a polymer electrolyte fuel cell. 非晶質アルミニウムケイ酸塩が、そのSi/Al比が0.7〜1で、かつ、29Si固体高分解能NMRスペクトルにおいて、−78ppmおよび−87ppm付近にピークを有することを特徴とする請求項1に記載の触媒。 The amorphous aluminum silicate has a Si / Al ratio of 0.7 to 1 and has peaks in the vicinity of -78 ppm and -87 ppm in a 29 Si solid high-resolution NMR spectrum. 1. The catalyst according to 1.
JP2009153927A 2009-06-29 2009-06-29 CO selective oxidation catalyst Expired - Fee Related JP5252453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153927A JP5252453B2 (en) 2009-06-29 2009-06-29 CO selective oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153927A JP5252453B2 (en) 2009-06-29 2009-06-29 CO selective oxidation catalyst

Publications (2)

Publication Number Publication Date
JP2011005461A JP2011005461A (en) 2011-01-13
JP5252453B2 true JP5252453B2 (en) 2013-07-31

Family

ID=43562760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153927A Expired - Fee Related JP5252453B2 (en) 2009-06-29 2009-06-29 CO selective oxidation catalyst

Country Status (1)

Country Link
JP (1) JP5252453B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691842A (en) * 1979-12-27 1981-07-25 Shin Meiwa Ind Co Ltd Oxidation catalyst of carbon monoxide
JP3746401B2 (en) * 1999-07-05 2006-02-15 田中貴金属工業株式会社 Selective oxidation catalyst for carbon monoxide in reformed gas
JP2002121008A (en) * 2000-10-10 2002-04-23 Mitsubishi Heavy Ind Ltd Method of removing carbon monoxide
JP2002226205A (en) * 2001-01-29 2002-08-14 Sumitomo Chem Co Ltd Oxidation method for carbon monoxide
JP2003164764A (en) * 2001-09-21 2003-06-10 Katsuhiko Wakabayashi Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide
JP2006116475A (en) * 2004-10-22 2006-05-11 Sakaguchi Giken:Kk Carbon monoxide-removing catalyst, carbon monoxide-removing method, and fuel for fuel battery
KR101193163B1 (en) * 2005-10-21 2012-10-19 삼성에스디아이 주식회사 Catalyst for oxidizing carbon monoxide and method of producing the same
US7887770B2 (en) * 2006-12-27 2011-02-15 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range

Also Published As

Publication number Publication date
JP2011005461A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
Wang et al. CuNi@ C catalysts with high activity derived from metal–organic frameworks precursor for conversion of furfural to cyclopentanone
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
TWI600468B (en) Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
CN102275963B (en) Preparation method of aluminium oxide material
WO2008110331A1 (en) Metal-doped nickel oxides as catalysts for the methanation of carbon monoxide
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
Nagao et al. Magneli-phase titanium suboxide nanocrystals as highly active catalysts for selective acetalization of furfural
Wang et al. Neighboring Cu toward Mn site in confined mesopore to trigger strong interplay for boosting catalytic epoxidation of styrene
KR102077263B1 (en) Catalyst composite for conversion of mathane gas and method for converting mathane gas using the same
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
Wang et al. A facile synthesis of Pt@ Ir zigzag bimetallic nanocomplexes for hydrogenation reactions
US20050276741A1 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
Gonçalves et al. Catalytic abatement of CO over highly stable Pt supported on Ta2O5 nanotubes
KR20130041011A (en) Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same
JP5252453B2 (en) CO selective oxidation catalyst
JP3885139B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP5854993B2 (en) Catalyst for reforming methane gas to hydrogen, synthesis method thereof, and reforming method of methane gas using the catalyst
KR102271431B1 (en) A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen
JP6851860B2 (en) Hydrogen production catalyst and hydrogen production method
JP2019195783A (en) Steam modification catalyst, and steam modification method
JP2001224965A (en) Carbon monoxide selective oxidation catalyst and selective removal method for carbon monoxide
TWI469830B (en) Preparation of iron oxide-titania-supported nano-gold catalysts and its application on preferential oxidation of carbon monoxide in hydrogen stream
de Gyves et al. Enhanced performance of glycerol electro-oxidation in alkaline media using bimetallic Au–Cu NPs supported by MWCNTs and reducible metal oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5252453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees