JP5252300B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP5252300B2
JP5252300B2 JP2009090062A JP2009090062A JP5252300B2 JP 5252300 B2 JP5252300 B2 JP 5252300B2 JP 2009090062 A JP2009090062 A JP 2009090062A JP 2009090062 A JP2009090062 A JP 2009090062A JP 5252300 B2 JP5252300 B2 JP 5252300B2
Authority
JP
Japan
Prior art keywords
insulated switchgear
surge
voltage circuit
gas
steep wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009090062A
Other languages
Japanese (ja)
Other versions
JP2010246206A (en
Inventor
亮一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009090062A priority Critical patent/JP5252300B2/en
Publication of JP2010246206A publication Critical patent/JP2010246206A/en
Application granted granted Critical
Publication of JP5252300B2 publication Critical patent/JP5252300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Installation Of Bus-Bars (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

本発明は、急峻波サージを抑制したガス絶縁開閉装置に関する。   The present invention relates to a gas insulated switchgear that suppresses a steep wave surge.

ガス絶縁開閉装置は、絶縁性ガスを封入した密閉容器内に高電圧回路導体を密閉容器から電気的に絶縁した状態で支持して、遮断器、断路器などの開閉器や、これらの各機器間を接続する接続用母線等の他に、計器用変圧器や計器用変流器等を接続して構成されている。このようなガス絶縁開閉装置においては、遮断器等の開閉器を操作して高電圧回路を開閉したとき、開閉サージと呼ばれる周波数が高い急峻波サージ電圧が発生して回路内を伝播することが知られている。この急峻なサージは高電圧回路導体を経由して特に計器用変圧器などの二次巻線に移行サージとして伝播し、その二次側に接続されている機器に悪影響を与えることが知られている。一般的に、二次側の機器の絶縁耐力は開閉装置の高電圧回路導体における絶縁耐力と比較して低いため、サージ電圧によって絶縁破壊による破損や誤動作が生じることがある。   Gas-insulated switchgear supports a high-voltage circuit conductor in a sealed container filled with an insulating gas in a state of being electrically insulated from the sealed container, and switches such as circuit breakers and disconnectors, and each of these devices. In addition to connecting buses and the like for connecting between them, an instrument transformer, an instrument current transformer, and the like are connected. In such a gas-insulated switchgear, when a high voltage circuit is opened and closed by operating a switch such as a circuit breaker, a steep wave surge voltage having a high frequency called switching surge may be generated and propagated in the circuit. Are known. It is known that this steep surge propagates as a transition surge to secondary windings such as instrument transformers via high-voltage circuit conductors, and adversely affects equipment connected to the secondary side. Yes. In general, since the dielectric strength of the secondary device is lower than the dielectric strength of the high-voltage circuit conductor of the switchgear, damage or malfunction due to dielectric breakdown may occur due to surge voltage.

通常、この急峻波サージによる影響を抑制する方法として、断路器や遮断器などの開閉器に抵抗接点を設け、高電圧回路の開閉時に抵抗体を挿入することによって発生するサージ電圧を抑制する方法が知られている(例えば、特許文献1を参照)が、構造が複雑で大型化するため、結果として高価になってしまう。他の方法として、計器用変圧器や計器用変流器の二次側巻線に、例えば酸化亜鉛素子などで構成された過電圧抑制装置を設けることが行われているが、過電圧抑制装置そのものにより大型化また高価になることに加え、過電圧抑制装置を監視するための装置を設けたり、過電圧抑制装置を定期的に交換するなどの対応が必要となり、機器の管理保守に多くの労力が必要となってしまう。さらに、ガス絶縁開閉装置の高電圧回路導体の外周部に近接してフェライト材料から成る磁性体を設け、高電圧回路導体の電波インピーダンスを変化させ、通過する急峻波サージを制限するようにしたものが知られている(例えば、特許文献2を参照)。   Normally, as a method of suppressing the influence of this steep wave surge, a method of suppressing a surge voltage generated by providing a resistance contact in a switch such as a disconnector or a circuit breaker and inserting a resistor when opening and closing a high voltage circuit Is known (see, for example, Patent Document 1), but the structure is complicated and large, resulting in an increase in cost. As another method, an overvoltage suppression device made of, for example, a zinc oxide element or the like is provided in the secondary side winding of an instrument transformer or an instrument current transformer. In addition to the increase in size and cost, it is necessary to provide a device for monitoring the overvoltage suppression device or to replace the overvoltage suppression device regularly, which requires a lot of labor for equipment management and maintenance. turn into. In addition, a magnetic material made of a ferrite material is provided close to the outer periphery of the high voltage circuit conductor of the gas insulated switchgear to change the radio wave impedance of the high voltage circuit conductor and limit the steep wave surge that passes through it. Is known (see, for example, Patent Document 2).

特開平4−332416号公報JP-A-4-332416 特開2001−251713号公報JP 2001-251713 A

しかしながら、上述したガス絶縁開閉装置においては、金属製の密閉容器内に高電圧回路導体を密閉容器から電気的に絶縁した状態で支持して構成する必要があり、高電圧回路導体との間の絶縁距離を考慮して密閉容器の径を決定することになるが、新たに急峻波サージを抑制する手段を高電圧回路導体の外周部に設けると密閉容器を大型化してしまい、結果としてガス絶縁開閉装置を大型化してしまう。   However, in the gas insulated switchgear described above, it is necessary to support and configure the high voltage circuit conductor in a state of being electrically insulated from the sealed container in a metal sealed container. The diameter of the sealed container is determined in consideration of the insulation distance. However, if a new means for suppressing a steep wave surge is provided on the outer periphery of the high-voltage circuit conductor, the sealed container becomes larger, resulting in gas insulation. The switchgear will be enlarged.

本発明の目的は、密閉容器を大型化することなく簡単な構成で急峻波サージを抑制することができるようにしたガス絶縁開閉装置を提供することにある。   An object of the present invention is to provide a gas-insulated switchgear that can suppress a steep wave surge with a simple configuration without increasing the size of a sealed container.

本発明は上記目的を達成するために、 絶縁性ガスを封入した密閉容器内に、開閉器およびこの開閉器に電気的に接続されて開閉サージの伝播路となる高電圧回路導体を有して構成したガス絶縁開閉装置において、開閉サージが伝播する前記高電圧回路導体中に、周波数特性を有し開閉サージに対して抵抗成分となる急峻波サージ抑制体を電気的に直列に接続したことを特徴とする。   In order to achieve the above object, the present invention has a switch and a high voltage circuit conductor that is electrically connected to the switch and serves as a propagation path of the switching surge in a sealed container filled with an insulating gas. In the configured gas insulated switchgear, the steep wave surge suppressor that has frequency characteristics and becomes a resistance component with respect to the switching surge is electrically connected in series in the high-voltage circuit conductor through which the switching surge propagates. Features.

また、本発明は上記目的を達成するために、絶縁性ガスを封入した密閉容器内に、開閉器と、この開閉器に電気的に接続されて開閉サージが伝播する高電圧回路導体と、この高電圧回路導体に電気的に接続した計器用変圧器とを備えて構成したガス絶縁開閉装置において、前記高電圧回路導体と前記計器用変圧器間に、周波数特性を有し開閉サージに対して抵抗成分となる急峻波サージ抑制体を電気的に直列に接続したことを特徴とする。 In order to achieve the above object , the present invention provides a switch, a high-voltage circuit conductor that is electrically connected to the switch and propagates a switching surge, in a sealed container filled with an insulating gas. A gas-insulated switchgear comprising an instrument transformer electrically connected to a high voltage circuit conductor, wherein the gas transformer has a frequency characteristic between the high voltage circuit conductor and the instrument transformer and is free from switching surges. A steep wave surge suppressor serving as a resistance component is electrically connected in series.

本発明によるガス絶縁開閉装置によれば、急峻波サージ抑制体を高電圧回路導体中に電気的に直列に設けているため、従来のように外周部に配置した場合に比べて外径寸法を抑えることができ、また、これまでのガス絶縁開閉装置の高電圧回路導体のみの場合と見掛け上、全く同一に構成することができる。従って、密閉容器との間の絶縁にも影響を与えずに密閉容器を構成することができる。しかも、密閉容器の内部には周波数成分に対する抵抗体または磁性体などの急峻波サージ抑制体を配置するだけであるため、機器構造を簡略化することができる。   According to the gas-insulated switchgear according to the present invention, the steep wave surge suppressor is electrically provided in series in the high-voltage circuit conductor. In addition, it can be configured in exactly the same manner as in the case of only the high voltage circuit conductor of the conventional gas insulated switchgear. Therefore, the sealed container can be configured without affecting the insulation between the sealed container. In addition, the device structure can be simplified because only the steep wave surge suppressor such as a resistor or a magnetic material with respect to the frequency component is disposed inside the sealed container.

また、本発明によるガス絶縁開閉装置によれば、開閉器の開閉によって開閉サージが発生した場合、高電圧回路導体を通して計器用変圧器に伝播することになるが、このとき、急峻波サージ抑制体を経由して伝播するため急峻波サージ抑制体により周波数特性を示し、この急峻波サージに対して抵抗成分となり、計器用変圧器に印加されるサージ電圧が分担されるため、計器用変圧器へ印加されるサージ電圧が低減される。この場合、開閉器側の仕様を変更しなくても計器用変圧器内部で有害な移行サージが抑制されるので、信頼性が高く安価なガス絶縁開閉装置を得ることができる。 Further , according to the gas insulated switchgear according to the present invention, when a switching surge occurs due to opening / closing of the switch, it will propagate to the instrument transformer through the high voltage circuit conductor. Because it propagates via a steep wave surge suppressor, it shows frequency characteristics and becomes a resistance component against this steep wave surge, and the surge voltage applied to the instrument transformer is shared. The applied surge voltage is reduced. In this case, since a harmful transition surge is suppressed inside the instrument transformer without changing the specifications on the switch side, a reliable and inexpensive gas insulated switchgear can be obtained.

図1は本発明の一実施の形態によるガス絶縁開閉装置の要部を示す部分断面図である。FIG. 1 is a partial sectional view showing a main part of a gas insulated switchgear according to an embodiment of the present invention. 図2は図1に示したガス絶縁開閉装置の要部拡大断面図である。2 is an enlarged cross-sectional view of a main part of the gas insulated switchgear shown in FIG. 図3は本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention. 図4は本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention. 図5は本発明によるガス絶縁開閉装置を適用する回路図である。FIG. 5 is a circuit diagram to which the gas insulated switchgear according to the present invention is applied. 図6は本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す部分断面図である。FIG. 6 is a partial sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention.

以下、本発明の実施の形態を図面に基づいて説明する。
図6は、本発明の一実施の形態によるガス絶縁開閉装置の要部を示す部分断面図である。絶縁性ガスを封入した金属製の密閉容器10内には、高電圧回路導体9が絶縁支持物23,24によって密閉容器10から電気的に絶縁された状態で支持されている。高電圧導体9は、ガス絶縁開閉装置の図示しない遮断器や断路器などの開閉器に接続され、これら開閉器の開閉に伴う開閉サージの伝播路を形成している。この高電圧回路導体9の途中には、所定距離を隔てた対向配置部が形成され、この対向配置部間には、高電圧回路導体9の外径よりもその外径を多少小さくした急峻波サージ抑制体19が配置されている。この急峻波サージ抑制体19は、対向配置した高電圧回路導体9間を電気的に接続している。この急峻波サージ抑制体19の外周部は、絶縁物20によって絶縁被覆している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 6 is a partial cross-sectional view showing a main part of the gas insulated switchgear according to the embodiment of the present invention. The high voltage circuit conductor 9 is supported in a state of being electrically insulated from the hermetic container 10 by the insulating supports 23 and 24 in the metal hermetic container 10 filled with the insulating gas. The high-voltage conductor 9 is connected to a switch (not shown) such as a circuit breaker or a disconnect switch (not shown) of the gas-insulated switchgear, and forms a propagation path for a switching surge associated with the switching of the switch. In the middle of the high-voltage circuit conductor 9, opposed arrangement portions that are separated by a predetermined distance are formed, and between these opposed arrangement portions, a steep wave whose outer diameter is slightly smaller than the outer diameter of the high-voltage circuit conductor 9. A surge suppressor 19 is disposed. The steep wave surge suppressor 19 electrically connects the high-voltage circuit conductors 9 arranged opposite to each other. The outer periphery of the steep wave surge suppressor 19 is covered with an insulator 20.

急峻波サージ抑制体19は、周波数特性を有して急峻波サージに対して抵抗成分となるものであり、抵抗体または磁性体、例えばフェライトや鉄などで構成している。ガス絶縁開閉装置における開閉サージの周波数は、例えば数10MHzと非常に高く、これに対して通常運転時の周波数は50Hzもしくは60Hzと開閉サージの周波数と比較して低い。また、交流電流に対する抵抗成分、すなわちインピーダンスは一般的に周波数と比透磁率に比例するため、開閉サージのような高周波成分に対して高インピーダンスとなり、通常の運転時の周波数に対しては低インピーダンスとなる特性を示す。   The steep wave surge suppressor 19 has frequency characteristics and becomes a resistance component with respect to the steep wave surge, and is composed of a resistor or a magnetic material such as ferrite or iron. The frequency of the switching surge in the gas insulated switchgear is very high, for example, several tens of MHz, whereas the frequency during normal operation is 50 Hz or 60 Hz, which is lower than the frequency of the switching surge. In addition, since the resistance component against alternating current, that is, the impedance is generally proportional to the frequency and relative permeability, it has a high impedance to a high frequency component such as a switching surge and a low impedance to a frequency during normal operation. The following characteristics are shown.

定常状態で急峻波サージ抑制体19は、周波数特性を有して急峻波サージに対して抵抗成分となるものであるため、高電圧回路に対して殆ど影響を与えない。しかし、高電圧回路に接続されている開閉器の開閉によって開閉サージが発生すると、それは高電圧回路導体9および急峻波サージ抑制体19を通して伝播し、急峻波サージ抑制体19の周波数特性により急峻波サージに対して抵抗成分となりサージ電圧は抑制される。   In a steady state, the steep wave surge suppressor 19 has frequency characteristics and becomes a resistance component with respect to the steep wave surge, and therefore hardly affects the high voltage circuit. However, when a switching surge is generated by opening / closing of a switch connected to the high voltage circuit, it propagates through the high voltage circuit conductor 9 and the steep wave surge suppressor 19, and a steep wave is caused by the frequency characteristics of the steep wave surge suppressor 19. It becomes a resistance component against the surge and suppresses the surge voltage.

このような構成のガス絶縁開閉装置によれば、急峻波サージ抑制体19は高電圧回路導体9中に設けているため、従来のように外周部に配置した場合に比べて外径を抑えることができ、また、このような構成の急峻波サージ抑制体19は、これまでのガス絶縁開閉装置の高電圧回路導体9のみの場合と見掛け上、全く同一構成である。従って、密閉容器10との間の絶縁にも影響を与えないので密閉容器10を比較的小型に構成することができる。しかも、抵抗接点を設けるなど開閉機器の仕様を変更することなく例えば計器用変圧器へのサージを抑制することが可能となり、信頼性が高く安価なガス絶縁開閉装置を提供することが可能となる。しかも、過電圧抑制装置を設けることなく周波数成分に対する抵抗体または磁性体などの急峻波サージ抑制体19を配置するだけであるから、監視装置を設けたり定期的に交換するなどの対応は不要で、機器の管理保守に多くの労力が必要となることもない。   According to the gas insulated switchgear having such a configuration, since the steep wave surge suppressor 19 is provided in the high voltage circuit conductor 9, the outer diameter is suppressed as compared with the case where the steep wave surge suppressor 19 is disposed on the outer periphery as in the prior art. In addition, the steep wave surge suppressor 19 having such a configuration is apparently the same configuration as that of the conventional high voltage circuit conductor 9 of the gas insulated switchgear. Therefore, since the insulation between the hermetic container 10 is not affected, the hermetic container 10 can be made relatively small. Moreover, it is possible to suppress, for example, a surge to an instrument transformer without changing the specifications of the switchgear such as providing a resistance contact, and it is possible to provide a reliable and inexpensive gas-insulated switchgear. . Moreover, since only the steep wave surge suppressor 19 such as a resistor or a magnetic material for the frequency component is provided without providing an overvoltage suppressor, it is not necessary to provide a monitoring device or replace it periodically. There is no need for much labor to manage and maintain the equipment.

次に、本発明の他の実施の形態によるガス絶縁開閉装置を説明するが、ここでは図5に示した回路図に基づいて構成した場合を説明する。
図5では、遮断器1,4や断路器2,3が高電圧回路導体を介して接続され、他に高電圧回路導体に切り離し用断路器5を介して計器用変圧器6が接続され、また切り離し用断路器7を介して他のガス絶縁開閉装置に至る導出手段8が接続されている。遮断器1,4や断路器2,3などの開閉器の開閉によって開閉サージが発生すると、高電圧回路導体を通して伝播し、特に、前述したように計器用変圧器6に悪影響を及ぼしかねない。
Next, a gas insulated switchgear according to another embodiment of the present invention will be described. Here, a case in which the gas insulated switchgear is configured based on the circuit diagram shown in FIG. 5 will be described.
In FIG. 5, the circuit breakers 1, 4 and the disconnectors 2, 3 are connected via a high voltage circuit conductor, and in addition, an instrument transformer 6 is connected to the high voltage circuit conductor via a disconnecting disconnector 5, A lead-out means 8 leading to another gas-insulated switchgear is connected via a disconnecting disconnector 7. When an opening / closing surge is generated by opening / closing of the switches such as the circuit breakers 1 and 4 and the disconnecting switches 2 and 3, the surge propagates through the high-voltage circuit conductor, and in particular, may adversely affect the instrument transformer 6 as described above.

そこで、図1に示したようにガス絶縁開閉装置を構成する。
ガス絶縁開閉装置を構成する断路器2と接続した高電圧回路導体9は、絶縁性ガスを封入した密閉容器10内に図示しない絶縁物を介して支持されており、この高電圧回路導体9には切り離し用断路器5を介して計器用変圧器6が接続されている。密閉容器10と計器用変圧器6間には絶縁スペーサ11が配置されて、両者はガス的に区分されている。高電圧回路導体9における計器用変圧器6の対向部には接触子12が設けられ、一方、計器用変圧器6に接続した絶縁スペーサ11の中心導体11aには固定接触子13が設けられ、接触子12と固定接触子13間を開離可能に橋絡した可動接触子14を設けて切り離し用断路器5が構成されている。この切り離し用断路器5は、密閉容器10の外部から電動操作器あるいは手動操作によってレバー15および絶縁ロッド16を介して可動接触子14を駆動し、可動接触子14を固定接触子13から断路することによって計器用変圧器6をガス絶縁開閉装置から切り離すことができる。
Therefore, a gas insulated switchgear is configured as shown in FIG.
The high-voltage circuit conductor 9 connected to the disconnector 2 constituting the gas-insulated switchgear is supported via an insulator (not shown) in a sealed container 10 filled with an insulating gas. An instrumentation transformer 6 is connected via a disconnecting disconnector 5. An insulating spacer 11 is disposed between the hermetic container 10 and the instrument transformer 6 and both are separated in terms of gas. A contact 12 is provided on the high voltage circuit conductor 9 opposite to the instrument transformer 6, while a fixed contact 13 is provided on the central conductor 11 a of the insulating spacer 11 connected to the instrument transformer 6. The disconnecting disconnector 5 is configured by providing a movable contact 14 that bridges the contact 12 and the fixed contact 13 so as to be separable. The disconnecting disconnector 5 drives the movable contact 14 via the lever 15 and the insulating rod 16 from the outside of the sealed container 10 by an electric actuator or manual operation, and disconnects the movable contact 14 from the fixed contact 13. Thus, the instrument transformer 6 can be disconnected from the gas insulated switchgear.

図2は、可動接触子14を拡大して示す断面図である。
可動接触子14は、閉路状態において固定接触子13と接触するようにアルミニウムや銅などで製作した先端側導体17と、閉路状態において接触子12と接触するようにアルミニウムや銅などで製作した基部側導体18と、これら先端側導体17と基部側導体18間を電気的に接続する急峻波サージ抑制体19と、先端側導体17と基部側導体18間を機械的に連結するように繊維強化プラスチックやエポキシ樹脂などで構成した絶縁物20とから構成している。従って、切り離し用断路器5の閉路状態において、高電圧回路導体9と計器用変圧器6間は切り離し用断路器5によって電気的に接続されているが、より詳細には高電圧回路導体9と計器用変圧器6間は急峻波サージ抑制体19を介して電気的に接続されている。
FIG. 2 is an enlarged cross-sectional view of the movable contact 14.
The movable contact 14 includes a tip end conductor 17 made of aluminum or copper so as to come into contact with the fixed contact 13 in the closed state, and a base made of aluminum or copper so as to come into contact with the contact 12 in the closed state. Fiber reinforced so as to mechanically connect the side conductor 18, the steep wave surge suppressor 19 that electrically connects the tip side conductor 17 and the base side conductor 18, and the tip side conductor 17 and the base side conductor 18. The insulator 20 is made of plastic or epoxy resin. Therefore, in the closed state of the disconnecting disconnector 5, the high voltage circuit conductor 9 and the instrument transformer 6 are electrically connected by the disconnecting disconnector 5. More specifically, the high voltage circuit conductor 9 The instrument transformers 6 are electrically connected via a steep wave surge suppressor 19.

一般に、ガス絶縁開閉装置は、工場での出荷試験を実施後に解体して現地に搬入し、現地で再度組み立て、調整を経た後に絶縁試験を行い、据付および調整作業の健全性の確認を行っている。しかし、ガス絶縁開閉装置に接続された電気機器として、回路の保護および電力量を測定する計器用変圧器6が設置されている場合、計器用変圧器6とガス絶縁開閉装置では規格で定められた絶縁仕様が異なるため、ガス絶縁開閉装置の現地絶縁試験を行うときには計器用変圧器6を切り離し、この絶縁試験終了後に計器用変圧器6を再度接続する必要がある。ガス絶縁開閉装置では、密閉容器10内に絶縁性ガスを封入し、この密閉容器10から電気的に絶縁した状態で高電圧回路導体9を配置して構成しているため、一度密閉容器10内に充填した絶縁性ガスを回収することなく計器用変圧器6をガス絶縁開閉装置から切り離したり接続したりできるように、ガス絶縁開閉装置と計器用変圧器6の間に切り離し用断路器5を設け、現地での絶縁試験時にこの切り離し用断路器5を開動作させて計器用変圧器6を切り離し、試験終了後に切り離し用断路器5を閉動作させて計器用変圧器6を接続するようにしている。   In general, gas insulated switchgear is disassembled after carrying out a factory shipping test, carried to the site, reassembled on site, adjusted, and then tested for insulation to confirm the soundness of installation and adjustment work. Yes. However, when an electrical transformer connected to the gas-insulated switchgear is provided with an instrument transformer 6 that protects the circuit and measures the amount of electric power, the instrument transformer 6 and the gas-insulated switchgear are defined by standards. Since the insulation specifications are different, it is necessary to disconnect the instrument transformer 6 when performing an on-site insulation test of the gas-insulated switchgear and reconnect the instrument transformer 6 after the insulation test is completed. In the gas insulated switchgear, an insulating gas is sealed in the hermetic container 10 and the high voltage circuit conductor 9 is arranged in a state of being electrically insulated from the hermetic container 10. A disconnecting disconnector 5 is provided between the gas-insulated switchgear and the instrumental transformer 6 so that the instrumental transformer 6 can be disconnected from or connected to the gas-insulated switchgear without collecting the insulating gas filled in the container. The disconnecting switch 5 is opened during the on-site insulation test to disconnect the instrument transformer 6, and the disconnecting disconnector 5 is closed after the test to connect the instrument transformer 6. ing.

通常の運転状態において、切り離し用断路器5は閉路され、可動接触子14の先端側導体17は固定接触子13と接触し、また可動接触子14の基部側導体18は接触子12と接触している。上述した現地絶縁試験を実施する場合は、操作器などによってレバー15を介して絶縁ロッド16および可動接触子14を下方に駆動し、可動接触子14を固定接触子13から断路することによって計器用変圧器6をガス絶縁開閉装置から切り離す。この状態で現地にて絶縁試験を実施し、終了後に絶縁ロッド16および可動接触子14を今度は上方に駆動し、可動接触子14を固定接触子13に接触させることによって計器用変圧器6をガス絶縁開閉装置に接続する。   In a normal operation state, the disconnecting disconnector 5 is closed, the distal end side conductor 17 of the movable contact 14 is in contact with the fixed contact 13, and the base side conductor 18 of the movable contact 14 is in contact with the contact 12. ing. When performing the above-mentioned field insulation test, the insulation rod 16 and the movable contact 14 are driven downward via the lever 15 by an operating device or the like, and the movable contact 14 is disconnected from the fixed contact 13 for the instrument. The transformer 6 is disconnected from the gas insulated switchgear. In this state, an insulation test is carried out on site, and after completion, the insulating rod 16 and the movable contact 14 are now driven upward, and the movable contact 14 is brought into contact with the fixed contact 13 to thereby change the instrument transformer 6. Connect to gas insulated switchgear.

上述した構成において、切り離し用断路器5の閉路状態では、接触子12と固定接触子13間、つまり高電圧回路導体9と計器用変圧器6間には、急峻波サージ抑制体19が電気的に接続されている。ここで急峻波サージ抑制体19は、フェライトなどの構成した周波数特性を有し開閉サージ等の急峻波サージに対して抵抗成分となる抵抗体である。このため、急峻波サージ抑制体19の両端間には、計器用変圧器6の負荷電流に抵抗体の抵抗値を乗じた電圧が生じることとなるが、負荷電流は一般的に非常に小さい値であり、測定しようとする回路電圧と比べて非常に小さく測定誤差などに殆ど影響を及ぼさない。なお、急峻波サージ抑制体19の抵抗体の両端間電圧を無視できない場合、この両端間電圧を考慮して計器用変圧器6の出力を予め調整しておくこともできる。   In the above-described configuration, when the disconnecting disconnector 5 is in the closed state, the steep wave surge suppressor 19 is electrically connected between the contact 12 and the stationary contact 13, that is, between the high voltage circuit conductor 9 and the instrument transformer 6. It is connected to the. Here, the steep wave surge suppressor 19 is a resistor having frequency characteristics such as ferrite and having a resistance component against a steep wave surge such as an open / close surge. For this reason, a voltage obtained by multiplying the load current of the instrument transformer 6 by the resistance value of the resistor is generated between both ends of the steep wave surge suppressor 19, but the load current is generally a very small value. Therefore, it is very small compared to the circuit voltage to be measured, and hardly affects the measurement error. If the voltage across the resistor of the steep wave surge suppressor 19 cannot be ignored, the output of the instrument transformer 6 can be adjusted in advance in consideration of the voltage across the resistor.

このような構成のガス絶縁開閉装置によれば、開閉器の開閉によって開閉サージが発生し、高電圧回路導体9および切り離し用断路器5を通して計器用変圧器6に伝播することになるが、このとき、開閉サージは切り離し用断路器5の可動接触子14内に設けた急峻波サージ抑制体19を経由して計器用変圧器6に伝播する。このため、急峻波サージ抑制体19は周波数特性を示しこの急峻波サージに対して抵抗成分となり、計器用変圧器6に印加されるサージ電圧が分担されることになる。その結果、計器用変圧器6に印加されるサージ電圧は低減される。しかも、急峻波サージ抑制体19は切り離し装置5の可動接触子14内に設けているため、見掛け上は通常の切り離し用断路器5とほぼ同一構成であり、構成を複雑にすることなく印加されるサージ電圧を低減することができる。しかも、開閉器側の仕様を変更することなく、切り離し用断路器5および計器用変圧器6側で、計器用変圧器6に対して有害なサージを抑制することができるので、信頼性が高く安価なガス絶縁開閉装置を得ることができる。   According to the gas-insulated switchgear having such a configuration, an open / close surge is generated by opening and closing the switch and propagates to the instrument transformer 6 through the high-voltage circuit conductor 9 and the disconnecting disconnector 5. The switching surge propagates to the instrument transformer 6 via the steep wave surge suppressor 19 provided in the movable contact 14 of the disconnecting disconnector 5. For this reason, the steep wave surge suppressor 19 exhibits frequency characteristics and becomes a resistance component with respect to the steep wave surge, and the surge voltage applied to the instrument transformer 6 is shared. As a result, the surge voltage applied to the instrument transformer 6 is reduced. In addition, since the steep wave surge suppressor 19 is provided in the movable contact 14 of the disconnecting device 5, it appears to have almost the same configuration as that of a normal disconnecting disconnector 5 and is applied without complicating the configuration. The surge voltage can be reduced. Moreover, since the surge that is harmful to the instrument transformer 6 can be suppressed on the disconnecting disconnector 5 and the instrument transformer 6 side without changing the specifications on the switch side, the reliability is high. An inexpensive gas insulated switchgear can be obtained.

特に、上述した開閉サージは図5の回路構成において計器用変圧器6に影響を及ぼすが、この実施の形態では図6で説明したように高電圧回路導体9の途中に急峻波サージ抑制体19を配置するのではなく、図1および図2に示したように高電圧回路導体9と計器用変圧器6間に急峻波サージ抑制体19を配置している。このため、切り離し用断路器5が閉路された定常状態で計器用変圧器6は高電圧回路導体9に接続されているが、電流は殆ど流れない電圧的な接続であるから、この計器用変圧器6の特性を生かして急峻波サージ抑制体19の抵抗体での発熱などを抑えながら急峻波サージを抑制することができる。   In particular, the switching surge described above affects the instrument transformer 6 in the circuit configuration of FIG. 5, but in this embodiment, as described with reference to FIG. 1 and FIG. 2, a steep wave surge suppressor 19 is disposed between the high voltage circuit conductor 9 and the instrument transformer 6. For this reason, the instrument transformer 6 is connected to the high voltage circuit conductor 9 in a steady state in which the disconnecting disconnector 5 is closed. The steep wave surge can be suppressed while suppressing the heat generation at the resistor of the steep wave surge suppressor 19 by utilizing the characteristics of the vessel 6.

しかも、急峻波サージ抑制体19は、従来のように高電圧導体、例えば可動接触子14の外周部に配置するのではなく可動接触子14と一体的に構成しているため、一般的な切り離し用断路器5の構成を殆ど代えることなく急峻波サージ抑制体19を配置することができる。従って、現地での電圧印加試験を行う場合、これまでと全く同様に単に切り離し用断路器5を開閉することができる。   Moreover, since the steep wave surge suppressor 19 is not disposed on the outer peripheral portion of the high voltage conductor, for example, the movable contact 14 as in the prior art, but is integrally formed with the movable contact 14, it is generally separated. The steep wave surge suppressor 19 can be arranged with almost no change in the configuration of the disconnector 5 for use. Therefore, when performing a voltage application test at the site, the disconnecting disconnector 5 can be simply opened and closed just as before.

上述した実施の形態では、周波数特性を有して開閉サージに対して抵抗成分となる抵抗体を用いて急峻波サージ抑制体19を構成したが、この抵抗体の代わりに磁性体、例えば鉄などで構成することによっても同様の効果を得ることが可能である。   In the above-described embodiment, the steep wave surge suppressor 19 is configured using a resistor that has frequency characteristics and becomes a resistance component with respect to the switching surge. However, instead of this resistor, a magnetic material such as iron is used. It is possible to obtain the same effect by configuring with

つまり、ガス絶縁開閉装置における開閉サージの周波数は、例えば数10MHzと非常に高く、これに対して通常運転時の周波数は50Hzもしくは60Hzと開閉サージの周波数と比較して低く、また、交流電流に対する抵抗成分、すなわちインピーダンスは一般的に周波数と比透磁率に比例するため、磁性体を用いた場合でも開閉サージのような高周波成分に対して高インピーダンスを示し、通常の運転時の周波数に対しては低インピーダンスを示す。その結果、通常の運転状態では切り離し用断路器5の磁性体で負担する電圧が低く、開閉サージに対しては切り離し用断路器5の磁性体で負担する電圧が高くなり、開閉サージに対しては上述した抵抗体を用いた場合と同等の効果をより簡素な構造で達成することが可能である。   That is, the frequency of the switching surge in the gas-insulated switchgear is very high, for example, several tens of MHz, whereas the frequency during normal operation is 50 Hz or 60 Hz, which is lower than the frequency of the switching surge, Since the resistance component, that is, the impedance is generally proportional to the frequency and relative permeability, even when a magnetic material is used, it exhibits high impedance to high-frequency components such as switching surges, and to the frequency during normal operation. Indicates low impedance. As a result, in a normal operation state, the voltage borne by the magnetic body of the disconnecting disconnector 5 is low, and the voltage borne by the magnetic body of the disconnecting disconnector 5 is high with respect to the switching surge. Can achieve the same effect as the case of using the resistor described above with a simpler structure.

図3は、本発明の他の実施の形態によるガス絶縁開閉装置における計器用変圧器の接続部近傍を示す部分断面図である。
高電圧回路導体9を収納した密閉容器10と計器用変圧器6間には絶縁スペーサ11が配置され、この絶縁スペーサ11の中心導体11aに切り離し用断路器5の固定接触子13を支持するのが一般的であるが、ここでは中心導体11aに開閉サージに対して抵抗成分となる急峻波サージ抑制体19を取り付け、この急峻波サージ抑制体19に固定接触子13を支持固定している。この急峻波サージ抑制体19は、図2に示した急峻波サージ抑制体19の抵抗体、あるいは上述した磁性体から構成したものである。
FIG. 3 is a partial cross-sectional view showing the vicinity of a connection portion of an instrument transformer in a gas insulated switchgear according to another embodiment of the present invention.
An insulating spacer 11 is disposed between the sealed container 10 containing the high-voltage circuit conductor 9 and the instrument transformer 6, and the fixed contact 13 of the disconnecting disconnector 5 is supported by the central conductor 11 a of the insulating spacer 11. In this case, however, a steep wave surge suppressor 19 that is a resistance component against the open / close surge is attached to the central conductor 11a, and the stationary contact 13 is supported and fixed to the steep wave surge suppressor 19. This steep wave surge suppressor 19 is composed of the resistor of the steep wave surge suppressor 19 shown in FIG. 2 or the magnetic material described above.

このような構成のガス絶縁開閉装置によれば、高電圧回路導体9を伝播した開閉サージは急峻波サージ抑制体19を経由して計器用変圧器6に伝播することになるため、先の実施の形態の場合と同様に作用する急峻波サージ抑制体21によって計器用変圧器6の二次側への移行サージを低減することができる。この場合も、見掛け上は通常の切り離し装置5とほぼ同一構成であり、構成を複雑にすることはない。また、図2および図3に示したように切り離し用断路器5の可動接触子14内に抵抗体を配置して急峻波サージ抑制体19を構成した場合、この構成が接触子12および固定接触子13との摺動接触部が動作や絶縁特性に悪影響を及ぼさないようにする必要があるのに対して、図3の構成の場合は中心導体11aと固定接触子13間は摺動部を構成していないので構成をより簡単にすることができる。   According to the gas-insulated switchgear having such a configuration, the switching surge propagated through the high-voltage circuit conductor 9 is propagated to the instrument transformer 6 via the steep wave surge suppressor 19. Transition surge to the secondary side of the instrument transformer 6 can be reduced by the steep wave surge suppressor 21 that operates in the same manner as in the case of the embodiment. Also in this case, the configuration is almost the same as that of the normal separation device 5, and the configuration is not complicated. Further, when the steep wave surge suppressor 19 is configured by arranging a resistor in the movable contact 14 of the disconnecting disconnector 5 as shown in FIGS. 2 and 3, this configuration is the contact 12 and the fixed contact. While it is necessary that the sliding contact portion with the child element 13 does not adversely affect the operation and insulation characteristics, in the case of the configuration of FIG. 3, the sliding portion is provided between the center conductor 11a and the fixed contact member 13. Since it is not configured, the configuration can be simplified.

図4は、本発明のさらに他の実施の形態によるガス絶縁開閉装置における計器用変圧器の接続部近傍を示す部分断面図である。
この実施の形態は、高電圧回路導体9と計器用変圧器6間に接続していた切り離し用断路器5を別の位置に構成したり、または省略した場合を示しており、高電圧回路導体9と計器用変圧器6間を接続導体22によって直接接続し、計器用変圧器6内に、開閉サージに対して抵抗成分となる抵抗体や磁性体から成る急峻波サージ抑制体19を設けている。つまり、高電圧回路導体9を収納した密閉容器10と計器用変圧器6間には絶縁スペーサ11が配置されており、この絶縁スペーサ11の中心導体11aよりも計器用変圧器6側に急峻波サージ抑制体19を取り付けている。
FIG. 4 is a partial cross-sectional view showing the vicinity of a connection portion of an instrument transformer in a gas insulated switchgear according to still another embodiment of the present invention.
This embodiment shows a case where the disconnecting disconnector 5 connected between the high-voltage circuit conductor 9 and the instrument transformer 6 is configured in another position or omitted, and the high-voltage circuit conductor 9 and the instrument transformer 6 are directly connected by a connecting conductor 22, and a steep wave surge suppressor 19 made of a resistor or a magnetic material is provided in the instrument transformer 6. Yes. That is, the insulating spacer 11 is disposed between the sealed container 10 containing the high-voltage circuit conductor 9 and the instrument transformer 6, and the steep wave is closer to the instrument transformer 6 than the center conductor 11 a of the insulating spacer 11. A surge suppressor 19 is attached.

このように計器用変圧器6の近傍に切り離し用断路器5がない場合でも、開閉サージに対して抵抗成分を示す抵抗体や磁性体から成る急峻波サージ抑制体19を有する計器用変圧器6として製作し、これをガス絶縁開閉装置側に接続することにより、急峻波サージ抑制体19を経由して計器用変圧器6に伝播するサージを抑制することができる。この場合も、見掛け上は切り離し用断路器5を持たない構成とほぼ同一構成であり、構成を複雑にすることはない。また、ガス絶縁開閉装置側は開閉サージ対策として種々の構成を採用することができ、これに接続する計器用変圧器6としては独自に開閉サージ対策を施したものを使用することができる。   Thus, even when there is no disconnecting disconnector 5 in the vicinity of the instrument transformer 6, the instrument transformer 6 having the steep wave surge suppressor 19 made of a resistor or a magnetic material that exhibits a resistance component against the switching surge. By connecting this to the gas-insulated switchgear, the surge that propagates to the instrument transformer 6 via the steep wave surge suppressor 19 can be suppressed. In this case as well, the configuration is substantially the same as the configuration without the disconnecting disconnector 5, and the configuration is not complicated. Further, the gas insulated switchgear can adopt various configurations as countermeasures against switching surges, and the instrument transformer 6 connected to this can be one that has been independently countermeasures against switching surges.

本発明によるガス絶縁開閉装置は、図5に示した回路構成に限らず、他の構成のものにも適用することができる。   The gas insulated switchgear according to the present invention is not limited to the circuit configuration shown in FIG. 5, but can be applied to other configurations.

1,4 遮断器
2,3 断路器
5,7 切り離し用断路器
9 高電圧回路導体
10 密閉容器
11 絶縁スペーサ
12 接触子
13 固定接触子
14 可動接触子
19 急峻波サージ抑制体
DESCRIPTION OF SYMBOLS 1,4 Circuit breaker 2,3 Disconnector 5,7 Disconnecting disconnector 9 High voltage circuit conductor 10 Sealed container 11 Insulating spacer 12 Contact 13 Fixed contact 14 Movable contact 19 Steep wave surge suppressor

Claims (1)

絶縁性ガスを封入した密閉容器内に、開閉器と、この開閉器に電気的に接続されて開閉サージの伝播する高電圧回路導体と、この高電圧回路導体に電気的に接続した計器用変圧器とを備えて構成したガス絶縁開閉装置において、
前記高電圧回路導体と前記計器用変圧器間に切り離し用断路器を備え、前記切り離し用断路器の可動接触子の先端側導体と基部側導体間を、周波数特性を有し開閉サージに対して抵抗成分となる急峻波サージ抑制体で電気的に直列に接続すると共に絶縁物で機械的に連結したことを特徴とするガス絶縁開閉装置。
In a sealed container filled with an insulating gas, a switch, a high-voltage circuit conductor that is electrically connected to the switch and propagates a switching surge, and an instrument transformer electrically connected to the high-voltage circuit conductor In a gas insulated switchgear configured with a container,
It said high voltage circuit conductor and comprising a disconnector for disconnecting between the potential transformer, between the distal end side conductor and the base-side conductor of the movable contact of the disconnecting switch for the disconnection, against switching surge has a frequency characteristic A gas insulated switchgear characterized in that it is electrically connected in series with a steep wave surge suppressor as a resistance component and mechanically connected with an insulator.
JP2009090062A 2009-04-02 2009-04-02 Gas insulated switchgear Active JP5252300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090062A JP5252300B2 (en) 2009-04-02 2009-04-02 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090062A JP5252300B2 (en) 2009-04-02 2009-04-02 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JP2010246206A JP2010246206A (en) 2010-10-28
JP5252300B2 true JP5252300B2 (en) 2013-07-31

Family

ID=43098630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090062A Active JP5252300B2 (en) 2009-04-02 2009-04-02 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP5252300B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332416A (en) * 1991-05-08 1992-11-19 Hitachi Ltd Gas disconnector and gas insulating switch device
JP3395401B2 (en) * 1994-10-11 2003-04-14 三菱電機株式会社 Instrument transformer equipment
JPH11234824A (en) * 1998-02-17 1999-08-27 Takaoka Electric Mfg Co Ltd Gas-insulated switchgear
JP2000050439A (en) * 1998-07-31 2000-02-18 Hitachi Ltd Gas insulated on/off device
JP2001145218A (en) * 1999-11-16 2001-05-25 Hitachi Ltd Gas insulation switch
JP2002135920A (en) * 2000-10-20 2002-05-10 Toshiba Corp Voltage transformer

Also Published As

Publication number Publication date
JP2010246206A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US7027280B2 (en) Gas insulating apparatus and method for locating fault point thereof
US6850399B1 (en) Gas insulated device and failure rating method
KR101072518B1 (en) Disconnecting switch
AU2020396537B2 (en) Switch assembly with energy harvesting
KR20150089377A (en) Withstand voltage test device for switchgear
AU2019357876B2 (en) Reduced size fault interrupter
JP5252300B2 (en) Gas insulated switchgear
EP2733808B1 (en) Method and system for suppressing very fast transients
Schoonenberg et al. Control of inductive load switching transients
Lopez-Roldan et al. A noninvasive method for detecting restriking: Application to the switching of HV shunt reactors
JP3369319B2 (en) Disconnector with resistance
US11249136B2 (en) Switch with a signal generating unit and a self-test unit
Shipp et al. Transformer failure due to circuit breaker induced switching transients appplicable to the cement industry
CN110299673A (en) High-tension switch cabinet
JP3408269B2 (en) Disconnector with resistance
JPH0676697A (en) Gas insulation switch
JPH05334942A (en) Disconnecting switch with resistor
JP2000077248A (en) Transformer for gas insulated instrument
Luckey GIS technology does the talking.
JPH01308114A (en) Gas insulated electric apparatus
JP2009164645A (en) Transformer for gas insulated meter
JPH04262329A (en) Gas insulated electric appliance
KR20130076480A (en) Vaccum circuit breaker for switchgear
JPH07245218A (en) Stationary induction electric equipment
JPH0676696A (en) Gas insulation switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

R150 Certificate of patent or registration of utility model

Ref document number: 5252300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3