JP5251298B2 - Method for producing transparent conductive film - Google Patents

Method for producing transparent conductive film Download PDF

Info

Publication number
JP5251298B2
JP5251298B2 JP2008173534A JP2008173534A JP5251298B2 JP 5251298 B2 JP5251298 B2 JP 5251298B2 JP 2008173534 A JP2008173534 A JP 2008173534A JP 2008173534 A JP2008173534 A JP 2008173534A JP 5251298 B2 JP5251298 B2 JP 5251298B2
Authority
JP
Japan
Prior art keywords
film
atmosphere
dispersant
heating
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008173534A
Other languages
Japanese (ja)
Other versions
JP2010015770A (en
Inventor
敦 傳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008173534A priority Critical patent/JP5251298B2/en
Publication of JP2010015770A publication Critical patent/JP2010015770A/en
Application granted granted Critical
Publication of JP5251298B2 publication Critical patent/JP5251298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明導電膜の製造方法に関する。   The present invention relates to a method for producing a transparent conductive film.

電子機器の分野において、従来より、低温プロセスで低抵抗な導電膜を低コストで製造できる技術の案出が要望されている。この要望を実現するための技術の一つとして、液相法がある。液相法は、導電性微粒子及び分散剤を含む分散液の膜を形成し、その膜を加熱する手法である。導電性微粒子は、その粒径が小さくなるほど互いに融着する温度が低下する。そのため、分散液を加熱すると、分散媒が揮発するとともに導電性微粒子が融点よりも低い温度で互いに融着し、導電性微粒子からなる導電膜を形成することができる。下記特許文献には、分散液を用いて透明導電膜を形成する技術の一例が開示されている。
特開2005−166350号公報 特開2005−183054号公報 特開2006−028431号公報
In the field of electronic equipment, there has been a demand for a technique that can produce a low-resistance conductive film at a low cost by a low-temperature process. One of the techniques for realizing this demand is a liquid phase method. The liquid phase method is a method in which a film of a dispersion liquid containing conductive fine particles and a dispersant is formed and the film is heated. As the particle size of the conductive fine particles decreases, the temperature at which the conductive fine particles are fused to each other decreases. Therefore, when the dispersion is heated, the dispersion medium volatilizes and the conductive fine particles are fused to each other at a temperature lower than the melting point, so that a conductive film made of the conductive fine particles can be formed. The following patent document discloses an example of a technique for forming a transparent conductive film using a dispersion.
JP 2005-166350 A JP 2005-183054 A JP 2006-028431 A

分散液を用いて、低温プロセスで透明導電膜を製造する場合、製造後における導電膜中の分散剤の残留量を十分に低減できなくなる可能性がある。製造後の導電膜中の分散剤の残留量を十分に低減できない場合、例えば低抵抗化が阻害される等、導電膜の性能が低下する可能性がある。   When a transparent conductive film is produced by a low temperature process using a dispersion liquid, there is a possibility that the residual amount of the dispersant in the conductive film after the production cannot be sufficiently reduced. When the residual amount of the dispersant in the conductive film after manufacture cannot be sufficiently reduced, there is a possibility that the performance of the conductive film may be deteriorated, for example, the resistance reduction is hindered.

本発明は、分散液を用いて、低温プロセスで低抵抗な透明導電膜を製造できる製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method which can manufacture a low-resistance transparent conductive film with a low-temperature process using a dispersion liquid.

本発明の態様に従えば、導電性微粒子及び分散剤を含む分散液の膜を基板上に形成する第1工程と、少なくとも大気より低酸素雰囲気で前記膜に含まれる液体成分を低減する第2工程と、前記膜に紫外光を照射する第3工程と、少なくとも大気より低酸素雰囲気で前記膜を加熱する第4工程と、酸素雰囲気で前記膜を加熱する第5工程と、を含む透明導電膜の製造方法が提供される。   According to the aspect of the present invention, the first step of forming a film of a dispersion liquid containing conductive fine particles and a dispersant on the substrate, and the second step of reducing the liquid component contained in the film at least in an oxygen atmosphere lower than the atmosphere. A transparent process comprising: a step; a third step of irradiating the film with ultraviolet light; a fourth step of heating the film in an oxygen atmosphere lower than the atmosphere; and a fifth step of heating the film in an oxygen atmosphere. A method for manufacturing a membrane is provided.

本発明の態様によれば、膜に紫外光を照射する第3工程を設けたので、分散液を用いて、低温プロセスで低抵抗な透明導電膜を製造することができる。すなわち、第3工程により、膜を過剰に加熱することなく、膜中の分散剤を分解して、分散剤の分子量を実質的に小さくすることができる。また、紫外光の照射により、膜中の分散剤の少なくとも一部を膜から除去する効果も期待できる。その後、低酸素雰囲気で膜を加熱する第4工程によって、導電性微粒子の酸化が抑制されつつ、熱により分散剤の分解が促進される。また、導電性微粒子の融着も促進される。その後、酸素雰囲気で膜を加熱する第5工程により、透明導電膜の酸化が実行されるとともに、残留する分散剤が酸化され、膜から除去される。このように、本発明の態様によれば、分散液を用いて、低温プロセスで低抵抗な透明導電膜を製造できる。また、本発明の態様によれば、第1工程において分散液の膜を基板上に形成した後、低酸素雰囲気で膜に含まれる液体成分を低減する第2工程が実行されるので、導電性微粒子の酸化を抑制しつつ、膜に含まれる液体成分を低減することができる。その第2工程後に第3工程を行うことによって、紫外光によって分散剤の分子量を有効に低下させることができる。例えば液体成分(分散媒)が多い状態で紫外光が照射されると、紫外光が液体成分に吸収(吸光)され、分散剤を有効に分解することができない可能性がある。本発明の態様によれば、第2工程の後、第3工程が実行されるので、紫外光の吸収を抑制しつつ、膜に紫外光を照射することができる。   According to the aspect of the present invention, since the third step of irradiating the film with ultraviolet light is provided, it is possible to produce a transparent conductive film having a low resistance by a low temperature process using the dispersion. That is, according to the third step, the dispersant in the film can be decomposed and the molecular weight of the dispersant can be substantially reduced without excessively heating the film. Further, an effect of removing at least a part of the dispersant in the film from the film by irradiation with ultraviolet light can be expected. Thereafter, in the fourth step of heating the film in a low oxygen atmosphere, the decomposition of the dispersant is promoted by heat while the oxidation of the conductive fine particles is suppressed. Further, the fusion of the conductive fine particles is also promoted. Thereafter, in the fifth step of heating the film in an oxygen atmosphere, the transparent conductive film is oxidized and the remaining dispersant is oxidized and removed from the film. Thus, according to the aspect of the present invention, it is possible to produce a transparent conductive film having a low resistance by a low temperature process using a dispersion. Further, according to the aspect of the present invention, the second step of reducing the liquid component contained in the film in the low oxygen atmosphere is performed after the dispersion film is formed on the substrate in the first step. The liquid component contained in the film can be reduced while suppressing the oxidation of the fine particles. By performing the third step after the second step, the molecular weight of the dispersant can be effectively reduced by ultraviolet light. For example, when ultraviolet light is irradiated with a large amount of liquid component (dispersion medium), the ultraviolet light is absorbed (absorbed) by the liquid component, and the dispersant may not be effectively decomposed. According to the aspect of the present invention, since the third step is executed after the second step, the film can be irradiated with ultraviolet light while suppressing absorption of ultraviolet light.

以下、本発明の実施形態について図面を参照しながら説明する。図1は、本実施形態に係る透明導電膜の製造方法の一例を示すフローチャート、図1は、本実施形態に係る透明導電膜の製造方法の一例を示す模式図である。本実施形態においては、本発明に係る透明導電膜の製造方法が、フラットパネルディスプレイの透明電極を製造工程に適用される場合を例にして説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart illustrating an example of a method for manufacturing a transparent conductive film according to the present embodiment, and FIG. 1 is a schematic diagram illustrating an example of a method for manufacturing a transparent conductive film according to the present embodiment. In this embodiment, the case where the transparent conductive film manufacturing method according to the present invention is applied to a manufacturing process using a transparent electrode of a flat panel display will be described as an example.

図1に示すように、本実施形態に係る透明導電膜の製造方法は、導電性微粒子及び分散剤を含む分散液の膜を基板上に形成するための塗布工程(S1)と、少なくとも大気より低酸素雰囲気で膜に含まれる液体成分を低減する乾燥工程(S2)と、膜に紫外光を照射するUV照射工程(S3)と、少なくとも大気より低酸素雰囲気で膜を加熱する第1加熱工程(S4)と、酸素雰囲気で膜を加熱する第2加熱工程(S5)とを含む。   As shown in FIG. 1, the method for producing a transparent conductive film according to the present embodiment includes a coating step (S1) for forming a film of a dispersion liquid containing conductive fine particles and a dispersant on a substrate, and at least from the atmosphere. A drying step (S2) for reducing liquid components contained in the film in a low oxygen atmosphere, a UV irradiation step (S3) for irradiating the film with ultraviolet light, and a first heating step for heating the film in at least a lower oxygen atmosphere than the atmosphere (S4) and a second heating step (S5) for heating the film in an oxygen atmosphere.

図2は、フラットパネルディスプレイ1の一部を示す断面図である。図2に示すように、フラットパネルディスプレイ1は、基板2と、基板2上に形成されたゲート電極3と、ゲート電極3を覆うように基板2上に形成されたゲート絶縁膜4と、ゲート絶縁膜4上に形成された薄膜トランジスタ5とを備えている。基板2は、例えばガラス等からなる透明絶縁性基板である。薄膜トランジスタ5は、ゲート絶縁膜4上に形成されたアモルファスシリコン膜6と、アモルファスシリコン膜6上に形成された低抵抗アモルファスシリコン膜7と、少なくとも一部が低抵抗アモルファスシリコン膜7上に形成されたソース電極8及びドレイン電極9とを備えている。ソース電極8とドレイン電極9との間にはチャネル部10が形成される。薄膜トランジスタ5上に、層間絶縁膜11が形成される。層間絶縁膜11には、ドレイン電極9の表面の少なくとも一部が露出するようにコンタクトホール12が形成される。   FIG. 2 is a cross-sectional view showing a part of the flat panel display 1. As shown in FIG. 2, the flat panel display 1 includes a substrate 2, a gate electrode 3 formed on the substrate 2, a gate insulating film 4 formed on the substrate 2 so as to cover the gate electrode 3, and a gate. And a thin film transistor 5 formed on the insulating film 4. The substrate 2 is a transparent insulating substrate made of, for example, glass. The thin film transistor 5 includes an amorphous silicon film 6 formed on the gate insulating film 4, a low resistance amorphous silicon film 7 formed on the amorphous silicon film 6, and at least a part thereof formed on the low resistance amorphous silicon film 7. Source electrode 8 and drain electrode 9. A channel portion 10 is formed between the source electrode 8 and the drain electrode 9. An interlayer insulating film 11 is formed on the thin film transistor 5. A contact hole 12 is formed in the interlayer insulating film 11 so that at least a part of the surface of the drain electrode 9 is exposed.

本実施形態においては、薄膜トランジスタ5上(層間絶縁膜11上)に透明導電膜(透明電極、画素電極)13を製造する場合を例にして説明する。透明導電膜13はコンタクトホール12において、ドレイン電極9と電気的に接続される。これにより、例えば液晶表示装置等のフラットパネルディスプレイのTFTアレイ基板が製造される。   In the present embodiment, a case where a transparent conductive film (transparent electrode, pixel electrode) 13 is manufactured on the thin film transistor 5 (on the interlayer insulating film 11) will be described as an example. The transparent conductive film 13 is electrically connected to the drain electrode 9 in the contact hole 12. Thereby, for example, a TFT array substrate of a flat panel display such as a liquid crystal display device is manufactured.

以下の説明においては、基板2、その基板2上に形成された薄膜トランジスタ5、及び層間絶縁膜11を合わせて適宜、基板P、と称する。本実施形態においては、基板P上に透明導電膜13を製造する場合を例にして説明する。本実施形態においては、透明導電膜13は、ITO,IZO,IZGO,ZnO,ATO,FTO,GZO,及びITiOの少なくとも1つを含む。以下の説明においては、酸化インジウム錫(ITO)からなる透明導電膜13を製造する場合を例にして説明する。   In the following description, the substrate 2, the thin film transistor 5 formed on the substrate 2, and the interlayer insulating film 11 are appropriately referred to as a substrate P. In the present embodiment, a case where the transparent conductive film 13 is manufactured on the substrate P will be described as an example. In the present embodiment, the transparent conductive film 13 includes at least one of ITO, IZO, IZGO, ZnO, ATO, FTO, GZO, and ITiO. In the following description, the case where the transparent conductive film 13 made of indium tin oxide (ITO) is manufactured will be described as an example.

まず、塗布工程(S1)について説明する。本実施形態においては、導電性微粒子及び分散剤を含む分散液が用意される。分散液に含まれる導電性微粒子は、インジウム(In)、及び錫(Sn)を主成分とする。導電性微粒子の粒径は、100nm以下であり、30nm以下が望ましい。また、粒径が5nm以上の導電性微粒子を用いることによって、導電性微粒子に対して分散剤の体積が過多となることが防止され、形成された透明導電膜における分散剤の残留を低減することができる。   First, the coating step (S1) will be described. In the present embodiment, a dispersion liquid containing conductive fine particles and a dispersant is prepared. The conductive fine particles contained in the dispersion mainly contain indium (In) and tin (Sn). The particle diameter of the conductive fine particles is 100 nm or less, preferably 30 nm or less. Further, by using conductive fine particles having a particle diameter of 5 nm or more, it is possible to prevent the volume of the dispersant from being excessive with respect to the conductive fine particles, and to reduce the residue of the dispersant in the formed transparent conductive film. Can do.

分散剤は、導電性微粒子の分散性を向上させるためのものである。本実施形態において、分散剤は、有機物を含む。分散剤として、例えば脂肪酸を含む有機物、チオール系有機物等が挙げられる。また、分散剤としては、例えばキシレン、トルエン等の有機溶剤が挙げられる。分散液における分散剤の割合は、10wt%(重量%)以下であることが好ましい。   The dispersant is for improving the dispersibility of the conductive fine particles. In the present embodiment, the dispersant contains an organic substance. Examples of the dispersant include organic substances containing fatty acids and thiol-based organic substances. Moreover, as a dispersing agent, organic solvents, such as xylene and toluene, are mentioned, for example. The ratio of the dispersant in the dispersion is preferably 10 wt% (wt%) or less.

分散媒としては、水、アルコール類、炭化水素系化合物、エーテル系化合物、あるいはこれらのうち2種以上の混合物等が挙げられる。また、分散媒の組成や添加物等を調整することにより、分散液を塗布に適した物性に調整してもよい。   Examples of the dispersion medium include water, alcohols, hydrocarbon compounds, ether compounds, or a mixture of two or more thereof. Moreover, you may adjust a dispersion liquid to the physical property suitable for application | coating by adjusting a composition, an additive, etc. of a dispersion medium.

このようにして調整された分散液が、基板Pに塗布され、その分散液の膜が基板P上に形成される。基板Pに分散液を塗布する方法としては、例えばインクジェット法、スクリーン印刷法等が挙げられる。特にインクジェット法を用いる場合、導電性微粒子の粒径を100nm以下、好ましくは30nm以下にすることによって、インクジェット装置の吐出口(吐出ノズル)の目詰り等の発生が抑制される。なお、一般に粒径が小さくなるほど、導電性微粒子が互いに融着する温度が低くなるので好ましい。   The dispersion liquid thus adjusted is applied to the substrate P, and a film of the dispersion liquid is formed on the substrate P. Examples of the method for applying the dispersion liquid to the substrate P include an ink jet method and a screen printing method. In particular, when the ink jet method is used, the occurrence of clogging or the like of the discharge port (discharge nozzle) of the ink jet apparatus is suppressed by setting the particle diameter of the conductive fine particles to 100 nm or less, preferably 30 nm or less. In general, the smaller the particle size, the lower the temperature at which the conductive fine particles are fused together, which is preferable.

次に、乾燥工程(S2)について説明する。乾燥工程(S2)は、塗布工程(S1)の後に実行される。乾燥工程(S2)は、少なくとも大気より低酸素雰囲気で実行される。例えば、チャンバ装置の内部空間を大気より低酸素状態、あるいは大気より減圧状態にして、その内部空間に膜が形成された基板Pを配置して、その膜を加熱する。一例として、雰囲気を制御可能なチャンバ装置の内部空間にホットプレート等の加熱装置を設置しておき、その加熱装置上に分散液が塗布された基板Pを載置する。そして、チャンバ装置内を、酸素濃度が低下された雰囲気とし、50〜100℃程度で1〜90分間程度、基板Pを加熱する。なお、チャンバ装置の内部空間の雰囲気は、N、Ne等の不活性ガスを含有していてもよい。これにより、膜中の導電性微粒子の酸化を抑制しつつ、膜に含まれる液体成分(分散媒)を低減することができる。 Next, the drying step (S2) will be described. The drying step (S2) is performed after the coating step (S1). The drying step (S2) is performed at least in a lower oxygen atmosphere than the atmosphere. For example, the internal space of the chamber apparatus is brought into a lower oxygen state than the atmosphere or a reduced pressure state from the air, the substrate P on which a film is formed is disposed in the internal space, and the film is heated. As an example, a heating device such as a hot plate is installed in the internal space of a chamber device capable of controlling the atmosphere, and the substrate P coated with the dispersion liquid is placed on the heating device. Then, the inside of the chamber apparatus is set to an atmosphere in which the oxygen concentration is lowered, and the substrate P is heated at about 50 to 100 ° C. for about 1 to 90 minutes. Note that the atmosphere in the internal space of the chamber apparatus may contain an inert gas such as N 2 or Ne. Thereby, the liquid component (dispersion medium) contained in a film | membrane can be reduced, suppressing the oxidation of the electroconductive fine particles in a film | membrane.

次に、UV照射工程(S3)について説明する。UV照射工程(S3)は、乾燥工程(S2)の後に実行される。本実施形態においては、乾燥工程S2が終了した後、波長172nmの紫外光が膜に照射される。UV照射により、膜を過剰に加熱することなく、すなわち、高温プロセスを経ることなく、膜中の分散剤を分解して、分散剤の分子量を実質的に小さくすることができる。例えば、UV照射により、有機物を含む分散剤の直鎖を切断することができ、分散剤の分子量を実質的に小さくすることができる。実質的な分子量が小さくなることによって、分散剤の熱分解温度が低下する。   Next, the UV irradiation step (S3) will be described. The UV irradiation step (S3) is performed after the drying step (S2). In the present embodiment, after the drying step S2 is completed, the film is irradiated with ultraviolet light having a wavelength of 172 nm. With UV irradiation, the dispersant in the film can be decomposed without excessively heating the film, that is, without going through a high temperature process, and the molecular weight of the dispersant can be substantially reduced. For example, by UV irradiation, the straight chain of the dispersant containing an organic substance can be cut, and the molecular weight of the dispersant can be substantially reduced. By reducing the substantial molecular weight, the thermal decomposition temperature of the dispersant is lowered.

また、紫外光の照射により、膜中の分散剤が揮発し、その膜中の分散剤の少なくとも一部が膜から除去される効果も期待できる。   Further, it can be expected that the dispersant in the film is volatilized by irradiation with ultraviolet light, and at least a part of the dispersant in the film is removed from the film.

次に、第1加熱工程(S4)について説明する。第1加熱工程(S4)は、UV照射工程(S3)の後に実行される。第1加熱工程(S4)は、少なくとも大気より低酸素雰囲気で実行される。第1加熱工程(S4)では、乾燥工程(S2)より高い温度で基板Pが加熱される。例えば、チャンバ装置の内部空間を大気より低酸素状態、あるいは大気より減圧状態にして、その内部空間に膜が形成された基板Pを配置して、その膜を加熱する。一例として、雰囲気を制御可能なチャンバ装置の内部空間にホットプレート等の加熱装置を設置しておき、その加熱装置上に基板Pを載置する。そして、チャンバ装置内を、酸素濃度が低下された雰囲気とし、200〜250℃程度で1〜90分間程度、基板Pを加熱する。なお、チャンバ装置の内部空間の雰囲気は、N、Ne等の不活性ガスを含有していてもよい。これにより、膜中の導電性微粒子の酸化を抑制しつつ、加熱による分散剤の分解を促進することができる。また、加熱により、導電性微粒子の融着も促進される。 Next, the first heating step (S4) will be described. The first heating step (S4) is performed after the UV irradiation step (S3). The first heating step (S4) is performed at least in a lower oxygen atmosphere than the atmosphere. In the first heating step (S4), the substrate P is heated at a higher temperature than in the drying step (S2). For example, the internal space of the chamber apparatus is brought into a lower oxygen state than the atmosphere or a reduced pressure state from the air, the substrate P on which a film is formed is disposed in the internal space, and the film is heated. As an example, a heating device such as a hot plate is installed in the internal space of a chamber device capable of controlling the atmosphere, and the substrate P is placed on the heating device. Then, the inside of the chamber apparatus is set to an atmosphere in which the oxygen concentration is lowered, and the substrate P is heated at about 200 to 250 ° C. for about 1 to 90 minutes. Note that the atmosphere in the internal space of the chamber apparatus may contain an inert gas such as N 2 or Ne. Thereby, decomposition | disassembly of the dispersing agent by heating can be accelerated | stimulated, suppressing the oxidation of the electroconductive fine particles in a film | membrane. Moreover, the fusion of the conductive fine particles is also promoted by heating.

また、第1加熱工程(S4)は、低酸素雰囲気(減圧雰囲気、不活性ガス雰囲気)でもよいし、水蒸気雰囲気、還元雰囲気で実行することもできる。   Further, the first heating step (S4) may be performed in a low oxygen atmosphere (a reduced pressure atmosphere or an inert gas atmosphere), or may be performed in a water vapor atmosphere or a reducing atmosphere.

次に、第2加熱工程(S5)について説明する。第2加熱工程(S5)は、第1加熱工程(S4)の後に実行される。第2加熱工程(S5)は、酸素雰囲気で実行される。本実施形態においては、第2加熱工程(S5)は、大気雰囲気で実行される。第2加熱工程(S5)では、第1加熱工程(S4)と同程度の温度で基板Pが加熱される。例えば、チャンバ装置の内部空間を酸素雰囲気(大気雰囲気)にして、その内部空間に膜が形成された基板Pを配置して、その膜を加熱する。一例として、雰囲気を制御可能なチャンバ装置の内部空間にホットプレート等の加熱装置を設置しておき、その加熱装置上に基板Pを載置する。そして、チャンバ装置内を、酸素雰囲気(大気雰囲気)とし、200〜250℃程度で1〜90分間程度、基板Pを加熱する。これにより、透明導電膜の酸化が実行されるとともに、残留する分散剤が酸化され、膜から除去される。酸素雰囲気で加熱されることによって、分散剤は、例えば二酸化炭素、あるいは水蒸気等に変化し(ガス化し)、膜から放出される。これにより、膜から分散剤が除去され、分散剤の残留が抑制される。   Next, the second heating step (S5) will be described. The second heating step (S5) is performed after the first heating step (S4). The second heating step (S5) is performed in an oxygen atmosphere. In the present embodiment, the second heating step (S5) is performed in an air atmosphere. In the second heating step (S5), the substrate P is heated at the same temperature as the first heating step (S4). For example, the internal space of the chamber apparatus is set to an oxygen atmosphere (air atmosphere), a substrate P on which a film is formed is disposed in the internal space, and the film is heated. As an example, a heating device such as a hot plate is installed in the internal space of a chamber device capable of controlling the atmosphere, and the substrate P is placed on the heating device. And the inside of a chamber apparatus is made into oxygen atmosphere (atmosphere atmosphere), and the board | substrate P is heated at about 200-250 degreeC for about 1 to 90 minutes. As a result, the transparent conductive film is oxidized and the remaining dispersant is oxidized and removed from the film. By being heated in an oxygen atmosphere, the dispersant is changed to, for example, carbon dioxide or water vapor (gasification) and released from the film. Thereby, a dispersing agent is removed from a film | membrane and the residue of a dispersing agent is suppressed.

以上説明したように、本実施形態によれば、UV照射工程により分散剤の実質的な分子量を小さくすることによって、その後に実行される第1,第2加熱工程において、過剰に基板P(膜)を加熱することなく、膜から分散剤を除去することができる。したがって、分散剤の残留に起因して透明導電膜の低抵抗化が阻害されることが抑制される。このように、本実施形態によれば、分散液を用いて、低温プロセスで、品質のよい透明導電膜を製造できる。   As described above, according to the present embodiment, the substantial molecular weight of the dispersant is reduced by the UV irradiation step, so that the substrate P (film) is excessively added in the first and second heating steps performed thereafter. ) Can be removed from the membrane without heating. Accordingly, it is possible to suppress the lowering of the resistance of the transparent conductive film due to the residual dispersant. Thus, according to the present embodiment, a transparent conductive film with good quality can be manufactured by using a dispersion liquid by a low temperature process.

また、本実施形態によれば、塗布工程(S1)において分散液の膜を基板P上に形成した後、低酸素雰囲気で膜に含まれる液体成分(分散媒)を低減する乾燥工程が実行されるので、導電性微粒子の酸化を抑制しつつ、膜に含まれる液体成分を低減することができる。その後、UV照射工程(S3)を行うことによって、紫外光によって分散剤の分子量を有効に低下させることができる。膜に含まれている液体成分(分散媒)が多い状態で紫外光を照射すると、紫外光が液体成分に吸収(吸光)され、分散剤を有効に分解することができない可能性がある。本実施形態によれば、乾燥工程の後、UV照射工程が実行されるので、紫外光の吸収を抑制しつつ、膜に紫外光を効果的に照射することができる。   Further, according to the present embodiment, after the film of the dispersion liquid is formed on the substrate P in the coating process (S1), the drying process is performed to reduce the liquid component (dispersion medium) contained in the film in a low oxygen atmosphere. Therefore, the liquid component contained in the film can be reduced while suppressing the oxidation of the conductive fine particles. Thereafter, by performing the UV irradiation step (S3), the molecular weight of the dispersant can be effectively reduced by ultraviolet light. When ultraviolet light is irradiated in a state where the liquid component (dispersion medium) contained in the film is large, the ultraviolet light is absorbed (absorbed) by the liquid component, and the dispersant may not be effectively decomposed. According to this embodiment, since the UV irradiation process is performed after the drying process, it is possible to effectively irradiate the film with ultraviolet light while suppressing absorption of ultraviolet light.

本実施形態において、UV照射工程(S3)は、使用される分散剤の物性(種類)に応じて、大気雰囲気(酸素雰囲気)、不活性ガス雰囲気(例えば窒素ガス雰囲気)、及び真空中(減圧雰囲気)のいずれかで実行することができる。   In the present embodiment, the UV irradiation step (S3) is performed in an air atmosphere (oxygen atmosphere), an inert gas atmosphere (for example, a nitrogen gas atmosphere), and in vacuum (reduced pressure) according to the physical properties (type) of the dispersant used. Can be performed in any of the atmosphere).

例えば、分散剤の物性が、UV照射によるエネルギー付与だけでは分解が有効に促進されない場合、大気中でのUV照射を実行することが望ましい。大気中でのUV照射により発生したオゾンにより、分散剤の分解が有効に促進される。但し、UV照射するための光源から試料(基板P)までの距離が大きいと、紫外光が大気中の酸素に吸収(吸光)されてしまう可能性があるので、光源から試料までの距離は、2mm以下とすることが望ましい。また、導電性微粒子のオゾンによる酸化を防止するため、大気中のUV照射時間は、5分未満が望ましい。   For example, it is desirable to perform UV irradiation in the atmosphere when the physical properties of the dispersant are not effectively promoted by the application of energy by UV irradiation alone. Ozone generated by UV irradiation in the air effectively promotes decomposition of the dispersant. However, if the distance from the light source for UV irradiation to the sample (substrate P) is large, ultraviolet light may be absorbed (absorbed) by oxygen in the atmosphere, so the distance from the light source to the sample is It is desirable to be 2 mm or less. Further, in order to prevent the conductive fine particles from being oxidized by ozone, the UV irradiation time in the atmosphere is desirably less than 5 minutes.

また、分散剤の物性が、UV照射によるエネルギー付与だけで、分解が有効に促進される場合、窒素ガス等、不活性ガス雰囲気でUV照射を実行することが望ましい。不活性ガスに対する紫外光の吸収(吸光)は十分に少ないので、例えば光源から試料までの距離を長くすることができるなど、UV照射装置の自由度が増す。また、不活性ガス雰囲気でUV照射を実行した場合、酸化の原因となるオゾンの発生がほぼ無いので、UV照射時間が長くてもよい等、照射時間の自由度が増す。   In addition, when the physical properties of the dispersant are effectively accelerated only by applying energy by UV irradiation, it is desirable to perform UV irradiation in an inert gas atmosphere such as nitrogen gas. Since the absorption (absorption) of ultraviolet light with respect to the inert gas is sufficiently small, the degree of freedom of the UV irradiation apparatus increases, for example, the distance from the light source to the sample can be increased. Further, when UV irradiation is performed in an inert gas atmosphere, there is almost no generation of ozone that causes oxidation, so that the degree of freedom of irradiation time increases, such as a longer UV irradiation time.

また、分散剤の物性が、UV照射によるエネルギー付与により僅かに分解が促進される場合、真空中でのUV照射を選択することができる。例えば、分散剤の物性が、UV照射によるエネルギー付与により分解が促進される場合、高真空中でUV照射を実行することにより、不活性ガス雰囲気でのUV照射とほぼ同様の効果が期待でき、低真空中でUV照射を実行することにより、大気雰囲気でのUV照射とほぼ同等の効果が期待できる。また、真空中でUV照射を実行した場合、UV照射により分子量が小さくなった(蒸気圧が下がった)分散剤が、膜中から減圧雰囲気中に揮発しやすくなるので、膜からの分散剤の除去が促進される。   Further, when the physical properties of the dispersant are slightly decomposed by applying energy by UV irradiation, UV irradiation in a vacuum can be selected. For example, when decomposition of the physical properties of the dispersant is promoted by energy application by UV irradiation, by performing UV irradiation in a high vacuum, it is possible to expect almost the same effect as UV irradiation in an inert gas atmosphere, By performing UV irradiation in a low vacuum, an effect almost equivalent to that of UV irradiation in an air atmosphere can be expected. In addition, when UV irradiation is performed in a vacuum, the dispersant whose molecular weight has been reduced by the UV irradiation (the vapor pressure has decreased) is likely to volatilize from the inside of the film to the reduced-pressure atmosphere. Removal is facilitated.

<実験例>
導電性微粒子として、粒径約20nmのIn−Snナノ粒子を含有する分散液をガラス基板に塗布する塗布工程の後、100Paの減圧雰囲気で10分間乾燥する乾燥工程を実行し、その後、大気雰囲気中で波長172nmの紫外光を膜に照射するUV照射工程を行った。UV照射工程では、光源と膜との距離を0.8mm、照射時間を300秒とした。その後、4Paの窒素ガス雰囲気で230℃で1時間加熱する第1加熱工程を実行し、その後、大気雰囲気で230℃で1時間加熱する第2加熱工程を実行した。
<Experimental example>
After the coating step of applying a dispersion containing In—Sn nanoparticles having a particle size of about 20 nm as conductive fine particles to a glass substrate, a drying step of drying in a 100 Pa reduced pressure atmosphere for 10 minutes is performed, and then the atmosphere In particular, a UV irradiation process was performed in which the film was irradiated with ultraviolet light having a wavelength of 172 nm. In the UV irradiation process, the distance between the light source and the film was 0.8 mm, and the irradiation time was 300 seconds. Then, the 1st heating process heated at 230 degreeC for 1 hour by the nitrogen gas atmosphere of 4 Pa was performed, and the 2nd heating process heated at 230 degreeC for 1 hour by the air atmosphere after that was performed.

<比較例>
導電性微粒子として、粒径約20nmのIn−Snナノ粒子を含有する分散液をガラス基板に塗布する塗布工程の後、4Paの減圧雰囲気で230℃で1時間加熱する工程を実行し、その後、大気雰囲気で230℃で1時間加熱する工程を実行した。
<Comparative example>
After the coating step of applying a dispersion containing In—Sn nanoparticles with a particle size of about 20 nm as conductive fine particles to a glass substrate, a step of heating at 230 ° C. for 1 hour in a reduced pressure atmosphere of 4 Pa, A step of heating at 230 ° C. for 1 hour in an air atmosphere was performed.

<結果>
比較例で得られた透明導電膜の比抵抗は、10mΩ・cmであった。一方、本願発明に係る実験例で得られた透明導電膜の比抵抗は、1mΩ・cmであった。このように、本願発明においては、低抵抗な透明導電膜を得ることができた。また、膜の密度は、実験例に係る膜のほうが、比較例に係る膜より、約2倍であった。
<Result>
The specific resistance of the transparent conductive film obtained in the comparative example was 10 mΩ · cm. On the other hand, the specific resistance of the transparent conductive film obtained in the experimental example according to the present invention was 1 mΩ · cm. Thus, in this invention, the low resistance transparent conductive film was able to be obtained. Further, the film density of the film according to the experimental example was about twice that of the film according to the comparative example.

なお、上述の実施形態においては、フラットパネルディスプレイの画素電極(透明電極)を製造する場合を例にして説明したが、例えば太陽電池用電極等、他の用途にも本発明を適用可能である。   In the above-described embodiment, the case of manufacturing a pixel electrode (transparent electrode) of a flat panel display has been described as an example. However, the present invention can be applied to other uses such as a solar cell electrode. .

本実施形態に係る透明導電膜の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the transparent conductive film which concerns on this embodiment. 本実施形態に係る透明導電膜を備えたデバイスの一例を示す模式図である。It is a schematic diagram which shows an example of the device provided with the transparent conductive film which concerns on this embodiment.

符号の説明Explanation of symbols

1…フラットパネルディスプレイ、5…薄膜トランジスタ、P…基板、S1…塗布工程、S2…乾燥工程、S3…UV照射工程、S4…第1加熱工程、S5…第2加熱工程   DESCRIPTION OF SYMBOLS 1 ... Flat panel display, 5 ... Thin-film transistor, P ... Board | substrate, S1 ... Application | coating process, S2 ... Drying process, S3 ... UV irradiation process, S4 ... 1st heating process, S5 ... 2nd heating process

Claims (4)

導電性微粒子及び分散剤を含む分散液の膜を基板上に形成する第1工程と、
少なくとも大気より低酸素雰囲気で前記膜に含まれる液体成分を低減する第2工程と、
前記膜に紫外光を照射する第3工程と、
少なくとも大気より低酸素雰囲気で前記膜を加熱する第4工程と、
酸素雰囲気で前記膜を加熱する第5工程と、を含む透明導電膜の製造方法。
A first step of forming a dispersion film containing conductive fine particles and a dispersant on a substrate;
A second step of reducing the liquid component contained in the film in an oxygen atmosphere at least lower than the atmosphere;
A third step of irradiating the film with ultraviolet light;
A fourth step of heating the film at least in a lower oxygen atmosphere than the atmosphere;
And a fifth step of heating the film in an oxygen atmosphere.
前記第3工程で、前記膜中の前記分散剤の分子量が小さくなる請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein in the third step, the molecular weight of the dispersant in the film is reduced. 前記第5工程で、前記分散剤が酸化される請求項1又は2記載の製造方法。   The manufacturing method according to claim 1, wherein the dispersant is oxidized in the fifth step. 前記分散剤は、有機物を含む請求項1〜3のいずれか一項記載の製造方法。   The said dispersing agent is a manufacturing method as described in any one of Claims 1-3 containing organic substance.
JP2008173534A 2008-07-02 2008-07-02 Method for producing transparent conductive film Expired - Fee Related JP5251298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173534A JP5251298B2 (en) 2008-07-02 2008-07-02 Method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173534A JP5251298B2 (en) 2008-07-02 2008-07-02 Method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JP2010015770A JP2010015770A (en) 2010-01-21
JP5251298B2 true JP5251298B2 (en) 2013-07-31

Family

ID=41701710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173534A Expired - Fee Related JP5251298B2 (en) 2008-07-02 2008-07-02 Method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP5251298B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242916A (en) * 1997-12-25 1999-09-07 Fuji Photo Film Co Ltd Manufacture of transparent conductive film, and transparent conductive film
JP2005129420A (en) * 2003-10-24 2005-05-19 Seiko Epson Corp Transparent conductive film, forming method of transparent conductive film, electronic device and electronic apparatus
KR100554179B1 (en) * 2004-06-09 2006-02-22 한국전자통신연구원 Flexible dye-sensitized solar cell using conducting metal substrate
JP4535797B2 (en) * 2004-07-21 2010-09-01 ハリマ化成株式会社 Method for forming metal fine-particle sintered body type thin film conductor layer, metal wiring using the method, and method for forming metal thin film
JP4293181B2 (en) * 2005-03-18 2009-07-08 セイコーエプソン株式会社 Metal particle dispersion, method for producing metal particle dispersion, method for producing conductive film-formed substrate, electronic device and electronic apparatus
JP4918790B2 (en) * 2006-02-28 2012-04-18 旭硝子株式会社 Method for producing transparent conductive film, transparent conductive film and coating solution

Also Published As

Publication number Publication date
JP2010015770A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
Song et al. Graphene transfer: Paving the road for applications of chemical vapor deposition graphene
JP6496351B2 (en) Copper and / or copper oxide dispersion, and conductive film formed using the dispersion
Scheideler et al. Low‐temperature‐processed printed metal oxide transistors based on pure aqueous inks
JP5403293B2 (en) Method for producing transparent conductive film, transparent conductive film, element using the same, transparent conductive substrate and device using the same
JP5331382B2 (en) Manufacturing method of semiconductor device
JP2009290112A (en) Conductive inorganic film, method for manufacturing thereof, wiring board, and semiconductor device
JP2009290113A (en) Semiconductor device and manufacturing method thereof, sensor, and electro-optic device
Chen et al. Solution-processed metal oxide arrays using femtosecond laser ablation and annealing for thin-film transistors
TWI483292B (en) Coating liquid for forming metal oxide thin film, metal oxide thin film, field effect transistor, and method for producing the field effect transistor
JP2005260040A (en) Doping method, method for manufacturing semiconductor device and electronic application device
JP4502382B2 (en) Organic transistor
US20140205763A1 (en) Growth of graphene films and graphene patterns
JP5617174B2 (en) Method for manufacturing transistor element
TWI399810B (en) Inorganic semiconductive films and methods therefor
JP2010067558A (en) Method for modifying transparent electrode film, and method of manufacturing substrate with transparent electrode film
JP2006212477A (en) Production method for functional substrate, functional substrate, formation method for fine pattern, electric conductive membrane wiring, electronic optical apparatus and electronic equipment
JP2009147192A (en) Crystalline inorganic film and method of manufacturing the same, and semiconductor device
JP4652866B2 (en) Organic transistor
JP5017338B2 (en) Manufacturing method of organic transistor
JP5251298B2 (en) Method for producing transparent conductive film
JP6028961B2 (en) Method for manufacturing oxide semiconductor film for transistor
JP2009123533A (en) Conductive inorganic film and method of manufacturing the same, wiring board, and semiconductor device
Kwang Cho et al. Electrical, electronic and optical characterization of multilayer graphene films for transparent electrodes
JP2007123076A (en) Electronic circuit device and its manufacturing method
JP2010278095A (en) Method of manufacturing thin film transistor substrate, and intermediate structure for forming thin film transistor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees