JP5250716B1 - Reflective optical encoder - Google Patents

Reflective optical encoder Download PDF

Info

Publication number
JP5250716B1
JP5250716B1 JP2012254725A JP2012254725A JP5250716B1 JP 5250716 B1 JP5250716 B1 JP 5250716B1 JP 2012254725 A JP2012254725 A JP 2012254725A JP 2012254725 A JP2012254725 A JP 2012254725A JP 5250716 B1 JP5250716 B1 JP 5250716B1
Authority
JP
Japan
Prior art keywords
reflective
reflected light
optical encoder
alternately
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012254725A
Other languages
Japanese (ja)
Other versions
JP2014102167A (en
Inventor
憲宏 柿沼
政秀 日置
崇志 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2012254725A priority Critical patent/JP5250716B1/en
Application granted granted Critical
Publication of JP5250716B1 publication Critical patent/JP5250716B1/en
Publication of JP2014102167A publication Critical patent/JP2014102167A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Transform (AREA)

Abstract

【課題】 反射光を受光するセンサの出力にノイズ成分が発生しないようにする。
【解決手段】 反射部21と非反射部22とが接する線上の部位では、複数の傾斜面22a,22bが交互に接することになるので、一つの傾斜面が連続するわけではない。従って、この部位で角が鈍るとしても連続して同じ方向に散乱光を発生することはなく、各方向に分散される。この結果、センサの出力に含まれるノイズ成分は殆ど無視し得る程度まで低減する。
【選択図】 図2
PROBLEM TO BE SOLVED: To prevent a noise component from being generated in an output of a sensor that receives reflected light.
A plurality of inclined surfaces 22a and 22b are alternately in contact with each other at a portion on a line where a reflecting portion 21 and a non-reflecting portion 22 are in contact with each other, so that one inclined surface is not continuous. Therefore, even if the angle is dull at this part, scattered light is not continuously generated in the same direction, but is dispersed in each direction. As a result, the noise component contained in the sensor output is reduced to a level that can be almost ignored.
[Selection] Figure 2

Description

本発明は、反射型光学式エンコーダに関する。   The present invention relates to a reflective optical encoder.

反射型光学式エンコーダとして、特許文献1に開示されるものが知られている。同公報に開示された光学式エンコーダは、表面を平面状に形成された反射部と、表面を非平面状に形成された非反射部とを備えている。非反射部は、断面が鋸刃状あるいは山谷が連続するV字溝が連続する傾斜面を備えており、この傾斜面が交互に連続する方向に沿って検出用の光束が相対的に走査している。   As a reflective optical encoder, the one disclosed in Patent Document 1 is known. The optical encoder disclosed in the publication includes a reflective portion whose surface is formed in a planar shape and a non-reflective portion whose surface is formed in a non-planar shape. The non-reflective portion has an inclined surface having a saw-tooth cross section or a continuous V-shaped groove having continuous peaks and valleys, and the detection light beam is relatively scanned along a direction in which the inclined surfaces are alternately continued. ing.

特開平11−287671号公報JP-A-11-287671

特許文献1に示す光学式エンコーダでは、一つの傾斜面が連続して反射部と接している。言い換えると、非反射部の端部となる一つの傾斜面が連続して反射部との境界を形成する。しかし、このような端部で一つの連続する面の角を所定の角度で正確に形成させることは現実には容易ではない。特に、端部のエッジにおいては角が鈍る傾向が観察されている。境界部位でこのような鈍った角が形成される結果、反射光には散乱光が発生する。ここで特に問題になるのは、このような角が連続して形成されているので、連続するエッジに沿って同方向に散乱光が多く発生するということである。結果としてセンサの出力に無視し得ない量のノイズが生じることを余儀なくされる。   In the optical encoder shown in Patent Document 1, one inclined surface is continuously in contact with the reflecting portion. In other words, one inclined surface serving as an end portion of the non-reflective portion continuously forms a boundary with the reflective portion. However, in reality, it is not easy to accurately form the angle of one continuous surface at a predetermined angle at such an end. In particular, it has been observed that the corners tend to be dull at the edge of the end. As a result of the formation of such a blunt angle at the boundary portion, scattered light is generated in the reflected light. A particular problem here is that since such corners are formed continuously, a large amount of scattered light is generated in the same direction along successive edges. As a result, a negligible amount of noise is generated in the sensor output.

本発明は、反射光を受光するセンサの出力にノイズ成分が発生しないようにする。   The present invention prevents a noise component from being generated in the output of a sensor that receives reflected light.

本発明は、前記課題を解決するため、検出用の光束が照射される板面に反射素材を備えており、表面を平面状に形成された反射部と、表面を非平面状に形成された非反射部とを、前記光束の相対的な走査方向に沿って交互に形成してあり、かつ、同非反射部は、前記反射部と前記非反射部との並び方向に伸びる複数の傾斜面を前記並び方向と直交する方向に交互に並べて形成してあり、前記板面は円板形状に形成されており、前記反射部と前記非反射部とが交互に形成されるパターン構造部は、同心円状に複数の位置にリング状に形成されていて、同心円状とした複数のリング状の前記パターン構造部では、それぞれの前記反射部と前記非反射部の幅及び間隔が概ね一致する構成としてある。
In order to solve the above-mentioned problems, the present invention is provided with a reflective material on a plate surface irradiated with a light beam for detection, and has a reflective portion having a flat surface and a non-flat surface. Non-reflective portions are alternately formed along the relative scanning direction of the luminous flux, and the non-reflective portions are a plurality of inclined surfaces extending in the direction in which the reflective portions and the non-reflective portions are arranged. Are alternately arranged in a direction orthogonal to the arrangement direction , the plate surface is formed in a disc shape, and the pattern structure portion in which the reflection portion and the non-reflection portion are alternately formed, A plurality of concentric ring-shaped pattern structure portions that are concentrically formed in a plurality of positions, and the width and interval of the reflective portion and the non-reflective portion are substantially the same. is there.

前記構成において、表面を平面状に形成された反射部と、表面を非平面状に形成された非反射部とが、前記光束の相対的な走査方向に沿って交互に形成してあるので、同光束の相対的な走査により、同光束は反射部と非反射部とを交互に走査することになり、その反射光には、走査した部位の反射部と非反射部の数に対応する変化が生じる。
ここで、同非反射部は、前記反射部と前記非反射部との並び方向に伸びる複数の傾斜面を前記並び方向と直交する方向に交互に並べて形成してあるので、前記反射部と前記非反射部とが接する線上の部位では、前記複数の傾斜面が交互に接することになる。すなわち、一つの傾斜面が連続するわけではない。従って、この部位で角が鈍るとしても連続して同じ方向に散乱光を発生することはなく、各方向に分散されるので、センサの出力に含まれるノイズ成分は殆ど無視し得る程度まで低減する。
In the above-described configuration, the reflection portion having a flat surface and the non-reflection portion having a non-planar surface are alternately formed along the relative scanning direction of the light flux. By the relative scanning of the same light beam, the same light beam alternately scans the reflection part and the non-reflection part, and the reflected light changes in accordance with the number of reflection parts and non-reflection parts of the scanned part. Occurs.
Here, the non-reflective portion is formed by alternately arranging a plurality of inclined surfaces extending in the direction in which the reflective portion and the non-reflective portion are arranged in the direction orthogonal to the arrangement direction. In the part on the line where the non-reflective portion is in contact, the plurality of inclined surfaces are alternately in contact. That is, one inclined surface is not continuous. Therefore, even if the angle is dull at this part, scattered light is not continuously generated in the same direction and is dispersed in each direction, so that the noise component included in the output of the sensor is reduced to an almost negligible level. .

本発明の反射型光学式エンコーダによれば、非反射部の端部で発生する散乱光が各方向に分散されるので、反射光を受光するセンサの出力に無視し得ない量のノイズ成分が発生しないようにすることができる。   According to the reflective optical encoder of the present invention, the scattered light generated at the end of the non-reflective portion is dispersed in each direction, so that a noise component that cannot be ignored in the output of the sensor that receives the reflected light. It can be prevented from occurring.

反射型光学式エンコーダの正面図である。It is a front view of a reflection type optical encoder. 反射部と非反射部の拡大図である。It is an enlarged view of a reflective part and a non-reflective part. 反射部と非反射部の正面図である。It is a front view of a reflective part and a non-reflective part. 反射部と非反射部の径方向の概略断面図である。It is a schematic sectional drawing of the radial direction of a reflective part and a non-reflective part. 反射部と非反射部の円周方向の概略断面図である。It is a schematic sectional drawing of the circumference direction of a reflection part and a non-reflection part. 反射部と非反射部の斜視図である。It is a perspective view of a reflective part and a non-reflective part. 金型と製品の製造工程図である。It is a manufacturing process figure of a metal mold | die and a product. 従来例の反射部と非反射部の正面図である。It is a front view of the reflection part and non-reflection part of a prior art example. 従来例の反射部と非反射部の径方向の概略断面図である。It is a schematic sectional drawing of the radial direction of the reflection part and non-reflection part of a prior art example. 従来例の反射部と非反射部の円周方向の概略断面図である。It is a schematic sectional drawing of the circumference direction of the reflection part and non-reflection part of a prior art example. 従来例における金型の反射部と非反射部の接続部の拡大図である。It is an enlarged view of the connection part of the reflective part of a metal mold | die in a prior art example, and a non-reflective part. 入射角30度の場合の反射光の状態を示す図である。It is a figure which shows the state of the reflected light in case of 30 degrees of incident angles. 入射角30度の場合の反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light in the case of 30 degrees of incident angles. 入射角30度の場合の従来のものの反射光の状態を示す図である。It is a figure which shows the state of the reflected light of the conventional thing in the case of 30 degrees of incident angles. 入射角30度の場合の従来のものの反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light of the conventional thing in case of 30 degrees of incident angles. 入射角45度の場合の反射光の状態を示す図である。It is a figure which shows the state of the reflected light in case of 45 degrees of incident angles. 入射角45度の場合の反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light in case of an incident angle of 45 degree | times. 入射角45度の場合の従来のものの反射光の状態を示す図である。It is a figure which shows the state of the reflected light of the conventional thing in the case of 45 degrees of incident angles. 入射角45度の場合の従来のものの反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light of the conventional thing in the case of 45 degrees of incident angles. 入射角60度の場合の反射光の状態を示す図である。It is a figure which shows the state of the reflected light in case of incident angle 60 degree | times. 入射角60度の場合の反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light in case of an incident angle of 60 degree | times. 入射角60度の場合の従来のものの反射光の状態を示す図である。It is a figure which shows the state of the reflected light of the conventional thing in the case of an incident angle of 60 degree | times. 入射角60度の場合の従来のものの反射光の強度を示す図である。It is a figure which shows the intensity | strength of the reflected light of the conventional thing in the case of an incident angle of 60 degree | times. リニア型の反射型光学式エンコーダの場合の実施例を示す斜視図である。It is a perspective view which shows the Example in the case of a linear reflection type optical encoder. 同リニア型の反射型光学式エンコーダにおける反射部と非反射部の拡大斜視図である。It is an expansion perspective view of the reflective part and the non-reflective part in the linear reflective optical encoder. 非反射部におけるV字溝の傾斜面の角度を示す概略断面図である。It is a schematic sectional drawing which shows the angle of the inclined surface of the V-shaped groove in a non-reflective part. 非反射部における鋸刃状の傾斜面の角度を示す概略断面図である。It is a schematic sectional drawing which shows the angle of the sawtooth-shaped inclined surface in a non-reflective part.

以下、図面にもとづいて本発明の実施形態を説明する。
図1は、本発明の一実施形態にかかる反射型光学式エンコーダ10を正面図により示しており、図2は、図1で二点鎖線で示す部位における反射部21と非反射部22の拡大図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of a reflective optical encoder 10 according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a reflecting portion 21 and a non-reflecting portion 22 at a portion indicated by a two-dot chain line in FIG. FIG.

反射型光学式エンコーダ10は、円板形状に形成されており、その一面には、同心円の二つのリング状のパターン構造部20,20が形成されている。それぞれのパターン構造部20,20は、表面が平坦な反射部21と、表面に凹凸を形成して非平面状とした非反射部22とが、それぞれ径方向に長手方向を有する矩形形状となるように形成されている。非反射部22は、略平面状の平坦な板面である反射部21よりも掘り下げられた凹部の底面に形成されている。反射部21はパターン構造部20以外の部位とも連続しており、その意味では径方向の辺は非反射部22と接する部位となるが、円周方向の辺は明確な区切りがなく、矩形形状となっているわけではない。しかし、リング状としたパターン構造部20だけで観察すると、リング状とした内側の円と外側の円とでほぼ平行な二辺を形成するので、矩形形状と言える。   The reflective optical encoder 10 is formed in a disc shape, and two concentric ring-shaped pattern structures 20 are formed on one surface thereof. Each of the pattern structure parts 20 and 20 has a rectangular shape having a flat surface and a non-reflective part 22 having a non-planar shape by forming irregularities on the surface, each having a longitudinal direction in the radial direction. It is formed as follows. The non-reflective portion 22 is formed on the bottom surface of the recessed portion dug down below the reflective portion 21 which is a substantially flat flat plate surface. The reflective part 21 is also continuous with parts other than the pattern structure part 20, and in that sense, the radial side is a part in contact with the non-reflective part 22, but the circumferential side is not clearly separated and is rectangular. It does n’t mean that. However, when only the ring-shaped pattern structure portion 20 is observed, two substantially parallel sides are formed by the ring-shaped inner circle and the outer circle.

同心円とした二つのリング状のパターン構造部20,20は、当然、その円周長が異なる。しかし、同心円状とした複数のリング状のパターン構造部20,20では、前記反射部21と前記非反射部22の幅及び間隔が概ね一致するように形成してあり、その結果、内側の円のパターン構造部20と外側の円のパターン構造部20とでは、前記反射部21と前記非反射部22の数が異なる。従って、内側の円と外側の円とでは前記反射部21と前記非反射部22の形成位置が(角度位置)が異なるが、後述するように本発明の場合は、内側の円と外側の円とで非反射部22の形成位置を容易に変更することができる。   Naturally, the two ring-shaped pattern structures 20, 20 that are concentric circles have different circumferential lengths. However, in the plurality of ring-shaped pattern structure portions 20, 20 that are concentric, the reflective portion 21 and the non-reflective portion 22 are formed so that the widths and intervals thereof are substantially the same. The number of the reflection parts 21 and the non-reflection parts 22 are different between the pattern structure part 20 and the pattern structure part 20 of the outer circle. Accordingly, the formation position (angular position) of the reflection portion 21 and the non-reflection portion 22 is different between the inner circle and the outer circle. However, as will be described later, in the present invention, the inner circle and the outer circle are different. Thus, the formation position of the non-reflective portion 22 can be easily changed.

内側の円と外側の円とで、前記反射部21と前記非反射部22の幅及び間隔が概ね一致することにより、検出用の光束の発光素子と、受光用のセンサとからなる電気回路等を共通にすることが可能である。内側の円と外側の円とで、同じ角度位置に前記反射部21と前記非反射部22を形成しなければならないと、前記反射部21と前記非反射部22の幅及び間隔は内側の円と外側の円とで異なることになり、前記電気回路も異なる仕様で製造する必要が生じてしまう。
なお、本実施例においては、パターン構造部20として、同心円状に複数の位置にリング状に形成しているが、必ずしも複数である必要はなく、一つであっても良い。また、二つに限らず、三つ以上であっても良い。
An electric circuit composed of a light emitting element for detecting light flux and a sensor for receiving light, and the like, by causing the inner and outer circles to have the same width and interval between the reflecting portion 21 and the non-reflecting portion 22. Can be made common. If the reflective part 21 and the non-reflective part 22 have to be formed at the same angular position in the inner circle and the outer circle, the width and spacing of the reflective part 21 and the non-reflective part 22 are the inner circles. Therefore, it is necessary to manufacture the electric circuit with different specifications.
In the present embodiment, the pattern structure portion 20 is formed in a ring shape at a plurality of positions concentrically, but it is not always necessary to have a plurality of pattern structure portions. Moreover, not only two but three or more may be sufficient.

次に、図3は、反射部と非反射部を正面図により示しており、図4は、反射部と非反射部の径方向の概略断面図であり、図5は、反射部と非反射部の円周方向の概略断面図である。また、図6は、反射部と非反射部を斜視図により示している。   Next, FIG. 3 is a front view showing the reflecting portion and the non-reflecting portion, FIG. 4 is a schematic sectional view in the radial direction of the reflecting portion and the non-reflecting portion, and FIG. It is a schematic sectional drawing of the circumferential direction of a part. FIG. 6 is a perspective view showing the reflecting portion and the non-reflecting portion.

図3において、紙面上で左右の方向が、検出用の光束の相対的な走査方向であり、前記反射部21と前記非反射部22は、この走査方向に沿って交互に形成してある。この走査方向を、並び方向とも呼ぶ。また、この並び方向に直交することになる紙面上の上下の方向を直交方向と呼ぶ。実際には検出用の光束は定位置に照射され、反射型光学式エンコーダ10が軸芯を中心に回転するとき、リング状に配置された反射部21と非反射部22とは、交互に光束内に入り、また、出ることになる。この意味で、検出用の光束は移動はしないが、相対的に前記反射部21と前記非反射部22を走査すると称することにする。   In FIG. 3, the left and right directions on the paper surface are the relative scanning directions of the light beam for detection, and the reflection portions 21 and the non-reflection portions 22 are alternately formed along this scanning direction. This scanning direction is also called an arrangement direction. In addition, an up and down direction on the paper surface that is orthogonal to the arrangement direction is referred to as an orthogonal direction. Actually, the detection light beam is irradiated to a fixed position, and when the reflective optical encoder 10 rotates about the axis, the reflecting portion 21 and the non-reflecting portion 22 arranged in a ring shape alternately emit the light beam. Enter and exit. In this sense, the detection light beam does not move, but is relatively referred to as scanning the reflecting portion 21 and the non-reflecting portion 22.

図4〜図6に示すように、非反射部22は、略平面状の平坦な板面である反射部21よりも掘り下げられた凹部の底面に形成されている。非反射部22は断面がV字となるように、傾斜面22a,22bが交互に連続して形成されている。この実施例では、交互に連続して形成される前記傾斜面22a,22bは、二つの傾斜面22a,22bが鉛直面を挟んでほぼ均等に対峙して連続することで山部と谷部とを形成している。ここで、鉛直面とは反射型光学式エンコーダ10の板面に対して垂直な面である。   As shown in FIGS. 4-6, the non-reflective part 22 is formed in the bottom face of the recessed part dug down rather than the reflective part 21 which is a substantially flat flat board surface. The non-reflecting part 22 has inclined surfaces 22a and 22b formed alternately and continuously so that the cross section is V-shaped. In this embodiment, the inclined surfaces 22a and 22b, which are formed alternately and continuously, have two inclined surfaces 22a and 22b facing each other substantially evenly across the vertical surface, so Is forming. Here, the vertical plane is a plane perpendicular to the plate surface of the reflective optical encoder 10.

図26を参照すると、傾斜面22a,22b(図中、単にa斜面、b斜面と表示)が形成する山部の頂角は60度であり、谷部の角度も60度としている。むろん、この角度に限定されるものではなく、例えば頂角と谷部の角度を90度に形成するということも可能である。また、この角度は検出用の光束の入射角度にも依存する。非反射部22として機能させるため、反射光が受光用のセンサに入射されないような角度と選ぶ必要がある。基本的には、一方の傾斜面22aにのみ照射されるような角度にしておくことで、センサの側に反射光が生じないようにすることができる。言い換えると、鉛直面を基準として、光束が入射する側に、反射光も反射されるようにすればよい。   Referring to FIG. 26, the apex angle of the crest formed by the inclined surfaces 22a and 22b (indicated as simply “a slope” and “b slope” in the figure) is 60 degrees, and the trough angle is also 60 degrees. Of course, the angle is not limited to this, and for example, the apex angle and the valley angle may be 90 degrees. This angle also depends on the incident angle of the light beam for detection. In order to function as the non-reflecting portion 22, it is necessary to select an angle so that the reflected light is not incident on the light receiving sensor. Basically, by setting the angle so that only one inclined surface 22a is irradiated, it is possible to prevent the reflected light from being generated on the sensor side. In other words, the reflected light may be reflected on the side on which the light beam is incident with respect to the vertical plane.

また、必ずしも鉛直面に対して対照な傾斜角度とする必要もない。例えば、図27に示すように、交互に連続して形成される傾斜面22a,22b(図中、単にa斜面、b斜面と表示)は、鉛直面を基準として、一方の傾斜面22aはほぼ平行になり、他方の傾斜面22bが同鉛直面に傾斜しつつ前記一方の傾斜面22aと接するようないわゆる鋸刃状にしてもよい。
なお、傾斜面22a,22bは前記並び方向に伸びており、前記直交方向に沿って交互に並べて形成されているが、この方向に伸びた傾斜面22a,22bで検出用の光束を反射部21とは別方向に反射させることで非反射部22として機能させる場合、自ずから検出用の光束は径方向に沿って斜めに反射型光学式エンコーダ10に入射されるべきである。図4には、同光束の入射方向を示すとともに、反射部21で期待される反射光の反射方向を示すとともに、非反射部22で期待される非反射光の進行方向とを示している。同図に示す反射光の進行方向位置に受光用のセンサを配置しておくことにより、検出用の光束が反射部21と非反射部22とを交互に走査するときに所定の電気信号変化が現れることになる。
Further, it is not always necessary to use a contrasting inclination angle with respect to the vertical plane. For example, as shown in FIG. 27, inclined surfaces 22a and 22b (simply indicated as “a slope” and “b slope” in the figure) formed alternately and continuously are substantially the same with respect to a vertical plane. You may make it so-called saw blade shape which becomes parallel and the other inclined surface 22b touches said one inclined surface 22a, inclining to the same vertical surface.
The inclined surfaces 22a and 22b extend in the arrangement direction, and are alternately arranged along the orthogonal direction. The inclined surfaces 22a and 22b extending in this direction cause the detection light beam to be reflected by the reflecting portion 21. When it functions as the non-reflecting part 22 by reflecting in a different direction, the detection light beam should be incident on the reflective optical encoder 10 diagonally along the radial direction. FIG. 4 shows the incident direction of the same light beam, the reflection direction of the reflected light expected by the reflecting portion 21, and the traveling direction of the non-reflected light expected by the non-reflecting portion 22. By arranging a light receiving sensor in the traveling direction position of the reflected light shown in the figure, a predetermined electric signal change occurs when the detection light beam alternately scans the reflecting portion 21 and the non-reflecting portion 22. Will appear.

図7は、本発明に採用される金型と製品の概略の製造工程を示している。
反射型光学式エンコーダは樹脂成形で形成するため、製品を製造する前に、金型を製造するための円筒切削加工S1の工程が必要である。これは、金型となる円盤の上面に所定の凹凸形状を形成する工程である。
上述したように、非反射部22は、反射部21と非反射部22との並び方向に沿って傾斜面22a,22bを備えている。V字溝の山部と谷部とを形成するためには、先端が前記谷部を形成するような山形形状とした切削刃Aを使用し、円盤を回転させながら山部と谷部とを1回転で1つずつ形成するピッチで、徐々に径方向に移動させていく。これによりらせん形状の山部と谷部とができあがる。むろん、始点位置を等間隔で配置して複数のらせん溝を作り、最終的に連続した山部と谷部とを作ることも可能である。以上のようにして非反射部22の溝を形成する非反射部溝加工S2の工程が終了する。なお、同心円状に複数のパターン構造部20を形成する場合には、半径位置を変えて同様の溝加工を行う。
FIG. 7 shows a schematic manufacturing process of a mold and a product employed in the present invention.
Since the reflective optical encoder is formed by resin molding, a cylindrical cutting process S1 for manufacturing a mold is required before manufacturing a product. This is a step of forming a predetermined concavo-convex shape on the upper surface of a disk serving as a mold.
As described above, the non-reflective portion 22 includes the inclined surfaces 22 a and 22 b along the alignment direction of the reflective portion 21 and the non-reflective portion 22. In order to form the peaks and valleys of the V-shaped groove, a cutting blade A having a chevron shape whose tip forms the valley is used, and the peaks and valleys are moved while rotating the disk. It is gradually moved in the radial direction at a pitch formed one by one in one rotation. As a result, spiral peaks and valleys are formed. Of course, it is also possible to form a plurality of spiral grooves by arranging the starting point positions at equal intervals, and finally to form a continuous peak and valley. As described above, the process of the non-reflective portion groove processing S2 for forming the groove of the non-reflective portion 22 is completed. In addition, when forming the some pattern structure part 20 concentrically, the same groove process is performed by changing a radial position.

このままでは非反射部22がリング状に連続して形成されるので、次に、所定の間隔を隔てて個々の反射部21を形成する部位を形成するように円盤を加工する。この加工を反射部溝加工S3と呼ぶ。反射部溝加工S3では、円盤の上面を平坦面とするために先端を平坦に削り取る切削刃Bを使用し、円盤を断続した精密回転を行って一定の微細角度だけ回転させては停止し、停止した状態で同切削刃Bを径方向に直進移動させる。これにより非反射部22の溝加工を形成した部位に断続的に切れ目を形成しつつ、その切れ目の部位は反射部21を形成するために平坦とする。   Since the non-reflective portion 22 is continuously formed in a ring shape as it is, the disk is then processed so as to form portions for forming the individual reflective portions 21 at a predetermined interval. This processing is referred to as reflection portion groove processing S3. In the reflection part grooving S3, the cutting blade B that cuts the tip flatly to make the upper surface of the disk flat is used, and the disk is rotated by a constant fine angle by rotating the disk intermittently and stopped. In the stopped state, the cutting blade B is linearly moved in the radial direction. As a result, a cut is intermittently formed in a portion where the groove processing of the non-reflective portion 22 is formed, and the cut portion is made flat to form the reflective portion 21.

この際、内側の円と外側の円のパターン構造部20では、反射部21と非反射部22の幅及び間隔が概ね一致するようにするには、内側の円と外側の円とでは反射部21と非反射部22の形成角度位置は異なる。しかし、パターン構造部20ごとに必要な反射部21の数だけ円盤を断続的に回転させ、切削刃Bを径方向に移動すれば加工できる。言い換えると、非反射部22については、内側の円と外側の円とで一つの加工で終了している。これに対して、従来のものであると、非反射部の溝の数だけ断続回転が必要になるため、極めて多大な時間がかかる。
また、従来のものは径方向にV字溝を形成しているが、内周側から外周側に切削刃を直線移動させて金型を形成せざるを得ない。この場合、外周側ほど円周が長いのであるから、以下の課題が生じる。すなわち、切削刃で同じ深さのV字溝を形成した場合は、外周側に向かって同一の幅となるので、外周側で溝と溝の間に切削されない平坦な部分が生じるか、内周側で溝と溝の端が重なり合って削りすぎてしまう。あるいは、このようなことが生じないように外周側に向かって溝の幅が広くなる幅狭の扇形としようとするならば、外周側に向かうほど溝が深くなるように切削刃の高さ位置制御を並行して行わなければならず、制御が難しくなる。
At this time, in the pattern structure portion 20 of the inner circle and the outer circle, in order to make the width and interval of the reflecting portion 21 and the non-reflecting portion 22 approximately coincide with each other, the inner circle and the outer circle have a reflecting portion. 21 and the non-reflecting part 22 are formed at different angular positions. However, it can be processed by rotating the disk intermittently by the number of reflection portions 21 required for each pattern structure portion 20 and moving the cutting blade B in the radial direction. In other words, the non-reflective portion 22 is finished in one process for the inner circle and the outer circle. On the other hand, in the case of the conventional one, since it is necessary to rotate intermittently by the number of grooves of the non-reflective portion, it takes a very long time.
Moreover, although the conventional thing has formed the V-shaped groove | channel in radial direction, it must inevitably form a metal mold | die by moving a cutting blade linearly from an inner peripheral side to an outer peripheral side. In this case, since the circumference is longer toward the outer peripheral side, the following problems arise. That is, when the V-shaped groove having the same depth is formed by the cutting blade, the width becomes the same toward the outer peripheral side, so that a flat portion that is not cut between the grooves on the outer peripheral side is generated or the inner peripheral The groove and the edge of the groove overlap each other on the side, and it is cut too much. Or if you want to make a narrow fan shape with the width of the groove widening toward the outer periphery so that this does not occur, the height position of the cutting blade so that the groove becomes deeper toward the outer periphery Control must be performed in parallel, making control difficult.

なお、反射部21と非反射部22とが連続するリング状のパターン構造部20以外の部位に対応する部位については、前記反射部21と連続する平坦面となるように加工する。このようにすると、円盤の金型の表面では非反射部22を形成する部位だけが突き出る状態となり、樹脂成形した場合には、図6に示すように、非反射部22が周囲の反射部21に対して凹部となった底面に形成されることになる。この際、必ずしも反射部21と一体の平面としなければならないわけではないが、一体の平面とすることで樹脂成形時の樹脂の充填精度に影響を与える要素となる。   In addition, about the site | part corresponding to parts other than the ring-shaped pattern structure part 20 with which the reflection part 21 and the non-reflection part 22 continue, it processes so that it may become the flat surface continuous with the said reflection part 21. FIG. If it does in this way, it will be in the state where only the site | part which forms the non-reflective part 22 protrudes on the surface of the metal mold | die of a disk, and when resin molding is carried out, as shown in FIG. It will be formed in the bottom which became a crevice to. At this time, the plane does not necessarily have to be integrated with the reflecting portion 21, but it becomes an element that affects the filling accuracy of the resin at the time of resin molding.

円盤が完成したら、対となる金型を用意しつつ組み立て、射出成型機に装着し、射出成形を行う(金型組立・射出成形工程S4)。射出成形により円盤形状の樹脂成形品ができあがるが、この状態では反射部21の反射性能は十分ではないので、コーティング工程S5にて反射素材としてのアルミなどの金属を蒸着するとともに、表面劣化防止のための透明コーティングとを行い、完成品としての反射型光学式エンコーダ10が出来上がる。   When the disk is completed, a pair of molds are prepared and assembled, mounted on an injection molding machine, and injection molding is performed (mold assembly / injection molding step S4). A disk-shaped resin molded product is produced by injection molding. However, in this state, the reflecting performance of the reflecting portion 21 is not sufficient, so that a metal such as aluminum is deposited as a reflecting material in the coating step S5, and the surface deterioration is prevented. The reflective optical encoder 10 as a finished product is completed.

次に、本発明の反射型光学式エンコーダ10と、従来の構造の反射型光学式エンコーダとの性能比について説明する。本発明の反射型光学式エンコーダ10と、従来の構造の反射型光学式エンコーダPAとでは、傾斜面の形成方向が異なるだけにとどまらない効果の差異が生じている。以下、詳述する。
まず、従来の構造の反射型光学式エンコーダPAについて、その形状を図8〜図10を参照して説明する。同反射型光学式エンコーダPAにおいても、反射部PA1と非反射部PA2とが円周方向に沿って交互に形成されている。非反射部PA2は、平坦な反射部PA1に対して凹部としつつ、その底面に形成されている。非反射部PA2では、径方向に伸びる傾斜面PA2a,PA2bとが交互に形成され、両者によって断面が山部と谷部とを繰り返す形状を形成している。
上述したように、径方向にこのような溝(山谷)形状を形成することは容易ではない。なぜなら、金型となる円盤を溝の数だけ断続回転させては切削刃Aで径方向に金型を削らなければならないからである。本発明のように円盤を回転させて切削刃Aを径方向に徐々に移動させるだけの加工とは全く異なる。
Next, the performance ratio between the reflective optical encoder 10 of the present invention and the reflective optical encoder having the conventional structure will be described. The reflection-type optical encoder 10 of the present invention and the reflection-type optical encoder PA having a conventional structure have a difference in effect that is not limited to the formation direction of the inclined surface. Details will be described below.
First, the shape of a reflection type optical encoder PA having a conventional structure will be described with reference to FIGS. Also in the reflection type optical encoder PA, the reflection portions PA1 and the non-reflection portions PA2 are alternately formed along the circumferential direction. The non-reflective portion PA2 is formed on the bottom surface of the flat reflective portion PA1 while forming a recess. In the non-reflective portion PA2, inclined surfaces PA2a and PA2b extending in the radial direction are alternately formed, and the cross section of the non-reflecting portion PA2 is formed by repeating a peak portion and a valley portion.
As described above, it is not easy to form such a groove (mountain valley) shape in the radial direction. This is because the die must be cut in the radial direction with the cutting blade A after intermittently rotating the disk as the die by the number of grooves. This is completely different from the processing in which the disk is rotated and the cutting blade A is gradually moved in the radial direction as in the present invention.

傾斜面PA2a,PA2bがこの方向に伸びている場合、検出用の光束は円周方向に沿って斜めに反射型光学式エンコーダPAに入射されるべきである。入射方向を図示した図10を参照すると、光束が反射部PA1の平坦部分に入射される場合、入射角度に対応する本来の反射角度で正規の反射光が照出されることになる。また、非反射部PA2に入射される場合は、傾斜面PA2aに照射され、同傾斜面PA2aの傾斜角度に対応した本来の反射方向に向けて非反射光として照出されることになる。   When the inclined surfaces PA2a and PA2b extend in this direction, the detection light beam should be incident on the reflective optical encoder PA obliquely along the circumferential direction. Referring to FIG. 10 illustrating the incident direction, when the light beam is incident on the flat portion of the reflecting portion PA1, normal reflected light is emitted at an original reflection angle corresponding to the incident angle. Further, when the light is incident on the non-reflective portion PA2, the light is irradiated onto the inclined surface PA2a and is emitted as non-reflected light toward the original reflection direction corresponding to the inclination angle of the inclined surface PA2a.

しかしながら、このような円周方向の入射方向を取らざるを得ない従来の構造の反射型光学式エンコーダPAの場合、例えば反射部PA1と非反射部PA2との接続部位の角に入射されるような場合、図10に示すように非反射部PA2は反射部PA1の影の部分に入ってしまい、本来の反射光の照出方向には反射されなくなるし、また、非反射部PA2に入射されるべき光束が非反射部PA2と反射部PA1との境界の鉛直壁面に入射することで、非反射部PA2の逆の傾斜面PA2bに入射して予期しない方向に反射されることが生じる。   However, in the case of the reflection-type optical encoder PA having a conventional structure in which the incident direction in the circumferential direction is unavoidable, for example, it is incident on the corner of the connection portion between the reflection part PA1 and the non-reflection part PA2. In this case, as shown in FIG. 10, the non-reflective portion PA2 enters the shadowed portion of the reflective portion PA1, and is not reflected in the original direction of the reflected light, and is incident on the non-reflective portion PA2. The light flux to be incident on the vertical wall surface at the boundary between the non-reflecting part PA2 and the reflecting part PA1 may be incident on the opposite inclined surface PA2b of the non-reflecting part PA2 and reflected in an unexpected direction.

また、非反射部PA2を形成する金型を製造する際、図11に示すように、端部の傾斜面を形成する部分でバリが出るということも起こる。バリが出た部位では、射出成形した際に精度の高い角を形成することができず、角が鈍りがちである。そして、このような精度の低い部位が、径方向に沿って連続して形成されることにより、反射光も同様に連続して生じてしまうので、無視し得ない量の反射光となり、センサの出力に現れてしまう。   Further, when a mold for forming the non-reflective portion PA2 is manufactured, as shown in FIG. 11, burrs may occur at a portion where the inclined surface of the end portion is formed. In the part where the burrs appear, it is difficult to form corners with high accuracy when injection molding is performed, and the corners tend to be blunt. And since such a low precision site | part is continuously formed along a radial direction, since reflected light will also arise continuously similarly, it becomes the amount of reflected light which cannot be disregarded, and a sensor's Will appear in the output.

図12〜図23は、現実に反射光がどのように得られ、センサの出力に影響を与えるかを示している。それぞれ、図12〜図15は、入射角30度の場合を示し、図16〜図19は、入射角45度の場合を示し、図20〜図23は、入射角60度の場合を示している。ここで、入射角とは、検出用の光束が板面に対して斜めに照射される際、鉛直面からの傾斜角を入射角と称している。   12 to 23 show how the reflected light is actually obtained and affects the output of the sensor. 12 to 15 show the case of an incident angle of 30 degrees, FIGS. 16 to 19 show the case of an incident angle of 45 degrees, and FIGS. 20 to 23 show the case of an incident angle of 60 degrees. Yes. Here, the incident angle refers to the angle of inclination from the vertical plane when the detection light beam is irradiated obliquely with respect to the plate surface.

入射角30度の場合で、図12は本発明の反射型光学式エンコーダ10の反射光の状態を示し、図13はセンサの出力に基づく反射光の強度を示している。これに対して、図14は従来のものの反射光の状態を示し、図15はその反射光の強度を示している。
本発明の反射型光学式エンコーダ10の場合でも、反射部21と非反射部22とが接する境界部分では、樹脂成形品の角の成型精度は落ちることも考えられるが、この境界部分は、本来、一直線状のエッジや面が形成されるのではなく、傾斜面22a,22bがおりなす山部と谷部とによる波線状の境界が形成される。従って、成型精度が落ちるとしても同方向に反射光を生じる性質ではなく、各方向に散乱させる性質のものとなる。この結果、反射光は図12に示すように円形の光束に対して反射部21で反射された概略円形となりつつ、非反射部22がある部位に対して反射光が得られない理想の形状となる。また、図13に示すように、反射光の強度としても、反射部21に対応する部分でのみ強度が出ており、非反射部22に対応する部分では強度が全く出ていない。
In the case of the incident angle of 30 degrees, FIG. 12 shows the state of the reflected light of the reflective optical encoder 10 of the present invention, and FIG. 13 shows the intensity of the reflected light based on the output of the sensor. On the other hand, FIG. 14 shows the state of the reflected light of the conventional one, and FIG. 15 shows the intensity of the reflected light.
Even in the case of the reflective optical encoder 10 of the present invention, the corner molding accuracy of the resin molded product may be lowered at the boundary portion where the reflecting portion 21 and the non-reflecting portion 22 are in contact with each other. Instead of forming a straight edge or surface, a wavy line boundary is formed by the crest and trough formed by the inclined surfaces 22a and 22b. Accordingly, even if the molding accuracy is lowered, the reflected light is not generated in the same direction but is scattered in each direction. As a result, as shown in FIG. 12, the reflected light becomes an approximately circular shape that is reflected by the reflecting portion 21 with respect to the circular light beam, and the reflected light cannot be obtained with respect to the portion where the non-reflecting portion 22 exists. Become. As shown in FIG. 13, the intensity of the reflected light also appears only at the portion corresponding to the reflecting portion 21, and no intensity appears at the portion corresponding to the non-reflecting portion 22.

これに対して従来のものの場合、図14に示すように反射光は概ね円形となりつつも、連続する線状の部位からの散乱光により、予期しない部分に一直線状の散乱光が複数の筋として生じてしまう。図15を参照すると、この筋状の部位では反射光(NZ)の強度もピーク状ではあるが十分に大きく、センサの出力となった場合は全く無視できない。従って、センサの出力にはノイズフィルタが必要となるし、ノイズフィルタを使用することで正常な出力信号のエッジに鈍りを生じさせることを余儀なくされる。さらに、細かな散乱光(NZ)も多数生じている。図14からは細かな散乱光までは識別できないが、図15を参照すると現実には多数のノイズが生じていることが分かる。   On the other hand, in the case of the conventional one, the reflected light is substantially circular as shown in FIG. 14, but the scattered light from the continuous linear portion causes the straight scattered light to be a plurality of streaks in unexpected portions. It will occur. Referring to FIG. 15, the intensity of the reflected light (NZ) is peaked at this streak portion, but is sufficiently large, and cannot be ignored at all when the output of the sensor is obtained. Therefore, a noise filter is required for the output of the sensor, and the use of the noise filter necessitates a dull edge of a normal output signal. Furthermore, a lot of fine scattered light (NZ) is also generated. Although fine scattered light cannot be identified from FIG. 14, it can be seen that a large number of noises are actually generated with reference to FIG.

次に、入射角45度の場合で、図16は本発明の反射型光学式エンコーダ10の反射光の状態を示し、図17はセンサの出力に基づく反射光の強度を示している。これに対して、図18は従来のものの反射光の状態を示し、図19はその反射光の強度を示している。
入射角が45度となっても、本発明の反射型光学式エンコーダ10の場合、反射光は図16に示すように円形の光束に対して反射部21で反射された概略円形となりつつ、非反射部22がある部位に対して反射光が得られない理想の形状となる。また、図17に示すように、反射光の強度としても、反射部21に対応する部分でのみ強度が出ており、非反射部22に対応する部分では強度が全く出ていない。
Next, in the case of an incident angle of 45 degrees, FIG. 16 shows the state of the reflected light of the reflective optical encoder 10 of the present invention, and FIG. 17 shows the intensity of the reflected light based on the output of the sensor. On the other hand, FIG. 18 shows the state of the reflected light of the conventional one, and FIG. 19 shows the intensity of the reflected light.
Even when the incident angle is 45 degrees, in the case of the reflective optical encoder 10 of the present invention, the reflected light becomes a substantially circular shape reflected by the reflecting portion 21 with respect to a circular light beam as shown in FIG. It becomes an ideal shape in which reflected light cannot be obtained with respect to the part where the reflection part 22 is. As shown in FIG. 17, the intensity of the reflected light is high only in the part corresponding to the reflection part 21, and no intensity is shown in the part corresponding to the non-reflection part 22.

一方、従来のものの場合、図18に示すように反射光は概ね円形となっており、一見、問題はなさそうに見えるが、図19を参照すると、本来の反射部の部位に対応する以外の部位には細かく無数の反射光(NZ)が生じてしまっていることが分かる。この例ではピーク状の強度となるほどではないが、別の角度の例を参照して推測すると、筋状の反射光は反射部21の部位に重なっているだけに過ぎず、実際にはピーク状に生じていると思われる。   On the other hand, in the case of the conventional one, the reflected light is generally circular as shown in FIG. 18, and at first glance it seems that there is no problem. However, referring to FIG. 19, the part other than the part corresponding to the part of the original reflecting part. It can be seen that countless reflected light (NZ) has been generated. In this example, it is not so strong as to have a peak shape, but if it is estimated with reference to an example of another angle, the streak-like reflected light only overlaps the part of the reflecting portion 21 and is actually a peak shape. Seems to have occurred.

次に、入射角60度の場合で、図20は本発明の反射型光学式エンコーダ10の反射光の状態を示し、図21はセンサの出力に基づく反射光の強度を示している。これに対して、図22は従来のものの反射光の状態を示し、図23はその反射光の強度を示している。
本発明の反射型光学式エンコーダ10の場合、入射角度にかかわらず、反射光は図20に示すように円形の光束に対して反射部21で反射された概略円形となりつつ、非反射部22がある部位に対して反射光が得られない理想の形状となる。また、図21に示すように、反射光の強度としても、反射部21に対応する部分でのみ強度が出ており、非反射部22に対応する部分では強度が全く出ていない。
Next, in the case of an incident angle of 60 degrees, FIG. 20 shows the state of the reflected light of the reflective optical encoder 10 of the present invention, and FIG. 21 shows the intensity of the reflected light based on the output of the sensor. On the other hand, FIG. 22 shows the state of the reflected light of the conventional one, and FIG. 23 shows the intensity of the reflected light.
In the case of the reflective optical encoder 10 of the present invention, regardless of the incident angle, the reflected light becomes a substantially circular shape reflected by the reflecting portion 21 with respect to a circular light beam as shown in FIG. It becomes an ideal shape in which reflected light cannot be obtained for a certain part. Further, as shown in FIG. 21, the intensity of the reflected light also appears only at the part corresponding to the reflection part 21, and no intensity appears at the part corresponding to the non-reflection part 22.

これに対して従来のものの場合、図22に示すように反射光は概ね円形となりつつも、連続する線状の部位からの散乱光により、予期しない部分に一直線状の散乱光が複数の筋として生じている。また、入射角30の例とは逆の側に生じていることを考えると、上述した入射角45度の場合は、両者の中間の部位に筋状に散乱光を生じているものの、単に反射部からの反射光と重なってしまっただけという推測が現実的である。さらに、図23を参照すると、筋状の部位では反射光(NZ)の強度もピーク状ではあるが十分に大きく、上述したのと同様にセンサの出力となった場合は無視できず、ノイズフィルタを使用すれば正常な出力信号のエッジに鈍りを生じさせることを余儀なくされる。さらに、細かな散乱光(NZ)も多数生じている。   On the other hand, in the case of the conventional one, the reflected light is almost circular as shown in FIG. 22, but the scattered light from the continuous linear portion causes the scattered light in a straight line to be a plurality of streaks in unexpected parts. Has occurred. Further, considering that the incident angle is on the opposite side of the example of the incident angle 30, in the case of the incident angle of 45 degrees described above, although scattered light is generated in a streak shape at the intermediate portion between the two, it is simply reflected. It is realistic to speculate that it has only overlapped with the reflected light from the part. Furthermore, referring to FIG. 23, the intensity of the reflected light (NZ) is also peaked at the streak portion, but is sufficiently large, and when the sensor output is the same as described above, the noise filter cannot be ignored. If this is used, the edge of a normal output signal will be blunted. Furthermore, a lot of fine scattered light (NZ) is also generated.

以上説明したように、本発明の反射型光学式エンコーダ10の場合、従来の構造の反射型光学式エンコーダと比較すると、単に傾斜面22a,22bの形成方向が異なっただけではなく、従来であれば甘んじざるを得なかったノイズ成分を劇的に軽減されるという、当業者においても全く予知し得なかった効果が生じていることが実証された。   As described above, in the case of the reflective optical encoder 10 of the present invention, compared with the reflective optical encoder having the conventional structure, not only the forming directions of the inclined surfaces 22a and 22b are different, but also the conventional one. In other words, it has been proved that an effect that could not be predicted even by those skilled in the art, that the noise component that had to be sweetened, is dramatically reduced.

ところで、上述した実施例は反射型光学式エンコーダにおいても、いわゆる円盤型に適用したものであった。しかし、反射型光学式エンコーダとしては、これ以外にリニア型のものが存在し、本発明は、リニア型のものにも適用できることはいうまでもない。
図24は、リニア型の反射型光学式エンコーダの場合の実施例を斜視図により示し、図25は反射部と非反射部を拡大斜視図により示している。
同図に示すように、反射部31と非反射部32とが交互に形成される板面は帯板状に形成されており、さらに、反射部31と非反射部32は帯板状とした長手方向に連続して交互に並べることでパターン構造部30として形成され、非反射部32を形成する傾斜面32a,32bは帯板における幅方向に伸び、長手方向に交互に連続して形成されている。
By the way, the embodiment described above is applied to a so-called disk type also in the reflection type optical encoder. However, there are other linear optical encoders as well, and it goes without saying that the present invention can also be applied to linear optical encoders.
FIG. 24 is a perspective view showing an embodiment of a linear reflective optical encoder, and FIG. 25 is an enlarged perspective view showing a reflecting portion and a non-reflecting portion.
As shown in the figure, the plate surface on which the reflective portion 31 and the non-reflective portion 32 are alternately formed is formed in a strip shape, and the reflective portion 31 and the non-reflective portion 32 are formed in a strip shape. The inclined surfaces 32a and 32b forming the non-reflective portion 32 extend in the width direction of the strip and are formed alternately and continuously in the longitudinal direction. ing.

この構造のリニア型の反射型光学式エンコーダの場合、検出用の光束は、幅方向に沿って斜めに前記パターン構造部30に対して照射される。この例でも、非反射部32を形成する傾斜面32a,32bは、山部と谷部とで形成され、V字状の山部と谷部としても良いし、鋸刃状の山部と谷部としても良い。   In the case of the linear reflection type optical encoder having this structure, the detection light beam is irradiated to the pattern structure 30 obliquely along the width direction. Also in this example, the inclined surfaces 32a and 32b that form the non-reflective portion 32 are formed by crests and troughs, and may be V-shaped crests and troughs, or sawtooth crests and troughs. It is good as a part.

なお、本発明は前記実施例に限られるものでないことは言うまでもない。当業者であれば言うまでもないことであるが、
・前記実施例の中で開示した相互に置換可能な部材および構成等を適宜その組み合わせを変更して適用すること
・前記実施例の中で開示されていないが、公知技術であって前記実施例の中で開示した部材および構成等と相互に置換可能な部材および構成等を適宜置換し、またその組み合わせを変更して適用すること
・前記実施例の中で開示されていないが、公知技術等に基づいて当業者が前記実施例の中で開示した部材および構成等の代用として想定し得る部材および構成等と適宜置換し、またその組み合わせを変更して適用すること
は本発明の一実施例として開示されるものである。
Needless to say, the present invention is not limited to the above embodiments. It goes without saying for those skilled in the art,
-Applying the combination of the mutually replaceable members and configurations disclosed in the above-described embodiments as appropriate-The above-described embodiments are not disclosed in the above-described embodiments, but are publicly known techniques. The members and structures that can be mutually replaced with the members and structures disclosed in the above are appropriately replaced, and the combination is changed and applied. It is an embodiment of the present invention that a person skilled in the art appropriately replaces the members and configurations that can be assumed as substitutes for the members and configurations disclosed in the above-described embodiments, and changes the combination to apply. It is disclosed as.

10…反射型光学式エンコーダ、20…パターン構造部、21…反射部、22…非反射部、22a,22b…傾斜面、30…パターン構造部、31…反射部、32…非反射部、32a,32b…傾斜面。 DESCRIPTION OF SYMBOLS 10 ... Reflective type optical encoder, 20 ... Pattern structure part, 21 ... Reflection part, 22 ... Non-reflection part, 22a, 22b ... Inclined surface, 30 ... Pattern structure part, 31 ... Reflection part, 32 ... Non-reflection part, 32a , 32b ... inclined surface.

Claims (4)

検出用の光束が照射される板面に反射素材を備えており、表面を平面状に形成された反射部と、表面を非平面状に形成された非反射部とを、前記光束の相対的な走査方向に沿って交互に形成してあり、かつ、同非反射部は、前記反射部と前記非反射部との並び方向に伸びる複数の傾斜面を前記並び方向と直交する方向に交互に並べて形成してあり、前記板面は円板形状に形成されており、前記反射部と前記非反射部とが交互に形成されるパターン構造部は、同心円状に複数の位置にリング状に形成されていて、同心円状とした複数のリング状の前記パターン構造部では、それぞれの前記反射部と前記非反射部の幅及び間隔が概ね一致することを特徴とする反射型光学式エンコーダ。 A reflective surface is provided on a plate surface to which a detection light beam is irradiated, and a reflective portion having a flat surface and a non-reflective portion having a non-planar surface are arranged relative to each other. The non-reflective portions are alternately formed in a direction perpendicular to the alignment direction, and the non-reflective portions are alternately formed in a direction orthogonal to the alignment direction. Tile formed tare is, the plate surface is formed in a disc shape, the reflective portion and the pattern structure of a non-reflecting portion are alternately formed is a ring-shaped in a plurality of positions concentrically A reflective optical encoder , wherein the plurality of ring-shaped pattern structure portions that are formed concentrically have the same width and interval between the reflecting portion and the non-reflecting portion . 交互に連続して形成される前記傾斜面は、二つの傾斜面が鉛直面を挟んでほぼ均等に対峙して連続することで山部と谷部とを形成することを特徴とする請求項1に記載の反射型光学式エンコーダ。   2. The inclined surface formed alternately and continuously forms a crest and a trough by two inclined surfaces that are substantially evenly opposed to each other across a vertical surface. The reflective optical encoder described in 1. 交互に連続して形成される傾斜面は、鉛直面を基準として、一方の傾斜面はほぼ平行になり、他方の傾斜面が同鉛直面に傾斜しつつ前記一方の傾斜面と接することを特徴とする請求項1に記載の反射型光学式エンコーダ。   The inclined surfaces formed alternately and alternately are characterized in that one inclined surface is substantially parallel with respect to the vertical surface, and the other inclined surface is in contact with the one inclined surface while being inclined to the vertical surface. The reflective optical encoder according to claim 1. 前記反射部となる略平面状の板面に対して凹部が形成されるとともに、同凹部の底面に前記非反射部が形成されていることを特徴とする請求項1に記載の反射型光学式エンコーダ。   The reflective optical system according to claim 1, wherein a concave portion is formed on a substantially flat plate surface serving as the reflective portion, and the non-reflective portion is formed on a bottom surface of the concave portion. Encoder.
JP2012254725A 2012-11-20 2012-11-20 Reflective optical encoder Active JP5250716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254725A JP5250716B1 (en) 2012-11-20 2012-11-20 Reflective optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254725A JP5250716B1 (en) 2012-11-20 2012-11-20 Reflective optical encoder

Publications (2)

Publication Number Publication Date
JP5250716B1 true JP5250716B1 (en) 2013-07-31
JP2014102167A JP2014102167A (en) 2014-06-05

Family

ID=49041921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254725A Active JP5250716B1 (en) 2012-11-20 2012-11-20 Reflective optical encoder

Country Status (1)

Country Link
JP (1) JP5250716B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623616A (en) * 1985-06-28 1987-01-09 Canon Inc Optical scale
JPH0584818U (en) * 1993-04-08 1993-11-16 キヤノン株式会社 Optical scale
JPH11287671A (en) * 1998-04-01 1999-10-19 Fanuc Ltd Optical encoder
JP2003114140A (en) * 2001-10-04 2003-04-18 Fuji Electric Co Ltd Scale and optical detector
JP2004264098A (en) * 2003-02-28 2004-09-24 Optolab Licensing Gmbh Gage for location measuring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623616A (en) * 1985-06-28 1987-01-09 Canon Inc Optical scale
JPH0584818U (en) * 1993-04-08 1993-11-16 キヤノン株式会社 Optical scale
JPH11287671A (en) * 1998-04-01 1999-10-19 Fanuc Ltd Optical encoder
JP2003114140A (en) * 2001-10-04 2003-04-18 Fuji Electric Co Ltd Scale and optical detector
JP2004264098A (en) * 2003-02-28 2004-09-24 Optolab Licensing Gmbh Gage for location measuring system

Also Published As

Publication number Publication date
JP2014102167A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
US3069721A (en) Tools for making surface patterns
JP2006243508A (en) Fresnel lens
JP6129735B2 (en) Rotary encoder scale, injection molding method thereof, and rotary encoder using the same
JP6930908B2 (en) tire
JP6199915B2 (en) Surface lighting device
US10759232B2 (en) Tire
JP5250716B1 (en) Reflective optical encoder
JP2004122300A (en) Rotating saw
CN105987714B (en) Optical encoder
JP4644388B2 (en) Hole cutter
JP4647376B2 (en) Bending sensor and manufacturing method thereof
EP3725560B1 (en) Tire
JP3851616B2 (en) Code board manufacturing method for optical encoder
US20140349083A1 (en) Code plate of optical encoder
JP2014020904A (en) Encoder and slit plate to be used in the encoder
JP6057884B2 (en) Encoder and manufacturing method thereof
JP6930907B2 (en) tire
CN210036764U (en) Encoder for encoding a video signal
JP2004271271A (en) Projection type rotary encoder
KR100485921B1 (en) Diffraction grating member and method manufacturing therefor
CN113557455A (en) Reflector for reflecting electromagnetic waves from a rotating electromagnetic wave source
JPH09217817A (en) Crown gear and machining method therefor
KR102200971B1 (en) Light-receiving element of Optical Encoder
US20240190181A1 (en) Pneumatic tire
US20240190182A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5250716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250