JP5249948B2 - Blast furnace hearth - Google Patents

Blast furnace hearth Download PDF

Info

Publication number
JP5249948B2
JP5249948B2 JP2009544766A JP2009544766A JP5249948B2 JP 5249948 B2 JP5249948 B2 JP 5249948B2 JP 2009544766 A JP2009544766 A JP 2009544766A JP 2009544766 A JP2009544766 A JP 2009544766A JP 5249948 B2 JP5249948 B2 JP 5249948B2
Authority
JP
Japan
Prior art keywords
brick
mass
aluminum
hot metal
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009544766A
Other languages
Japanese (ja)
Other versions
JPWO2009072652A1 (en
Inventor
昌昭 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2009544766A priority Critical patent/JP5249948B2/en
Publication of JPWO2009072652A1 publication Critical patent/JPWO2009072652A1/en
Application granted granted Critical
Publication of JP5249948B2 publication Critical patent/JP5249948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Description

本発明は、高炉の出銑口よりも下側でしかも溶銑と接触する部位の高炉炉床(炉床部)に関し、とくにアルミニウム化合物を結合組織とする高炉炉床用耐火れんがをライニングした高炉炉床に関する。 TECHNICAL FIELD The present invention relates to a blast furnace hearth (a hearth part ) below a blast furnace outlet and in contact with hot metal, and more particularly , a blast furnace furnace lining a refractory brick for a blast furnace hearth having a connective structure of an aluminum compound. Regarding the floor .

高炉の炉床部には、シャモットれんが、高アルミナれんが、サイアロンボンドアルミナ系れんが、炭化珪素ボンドアルミナカーボン系れんが、あるいはカーボンれんが等が一般に使用されている。   In the hearth of the blast furnace, chamotte brick, high alumina brick, sialon bond alumina brick, silicon carbide bond alumina carbon brick, carbon brick, or the like is generally used.


これらのれんがは長期に渡って使用される間に溶銑と反応し損傷されてゆく。高炉の内張り耐火物のうち炉腹部やシャフト部等は不定形耐火物で補修して延命できるが、炉床部は補修が難しいためこの炉床部れんがの寿命が高炉の寿命を決めることになる。このため、従来から長寿命の炉床部用れんがが望まれている。

These bricks react with hot metal and are damaged during long-term use. Of the blast furnace refractories, the furnace belly and shafts can be repaired with an irregular refractory to extend their life, but the hearth brick life determines the life of the blast furnace because the hearth is difficult to repair. . For this reason, long-life hearth bricks have been desired.


例えば、特許文献1では、高炉湯溜りの側壁部及び炉底部用として、質量%で、炭素50〜85%、アルミナ5〜15%、金属珪素5〜15%、及びバナジウム、ニオブ、タンタル、又はこれらの元素の炭化物、窒化物、炭化物の1種又は2種以上を合計で5〜20%含有する炭素質耐火物が開示されている。そして、炭素質耐火物は溶鉄、特に溶銑に触れると炭素骨材が加炭溶解して消耗が起きるが、炭素質耐火物中にアルミナ等が含まれると、炭素骨材溶出後にそれらが炭素質耐火物の表面に残存し、炭素質耐火物と溶銑の間に介在することにより、炭素質耐火物と溶銑の接触を妨げ、炭素質耐火物の消耗速度を下げることができるとされている。しかしながら、炭素質耐火物中に多量のアルミナが含有されていると、炭素骨材溶出後の残存アルミナ層が炭素質耐火物の全表面を覆い、その結果、耐溶鉄・耐スラグ性の両者をバランスさせるには、アルミナの含有量を適正な範囲にする必要があると記述されている。

For example, in Patent Document 1, for the side wall part and the bottom part of the blast furnace hot water pool, the mass is 50 to 85% carbon, 5 to 15% alumina, 5 to 15% metallic silicon, and vanadium, niobium, tantalum, or A carbonaceous refractory containing 5 to 20% in total of one or more of carbides, nitrides and carbides of these elements is disclosed. And when carbonaceous refractories come into contact with molten iron, especially hot metal, the carbon aggregate dissolves and wears out, but if the carbonaceous refractory contains alumina or the like, the carbon It remains on the surface of the refractory and is interposed between the carbonaceous refractory and the hot metal, thereby preventing the contact between the carbonaceous refractory and the hot metal and reducing the consumption rate of the carbonaceous refractory. However, if a large amount of alumina is contained in the carbonaceous refractory, the residual alumina layer after elution of the carbon aggregate covers the entire surface of the carbonaceous refractory, and as a result, both molten iron resistance and slag resistance are achieved. It is described that the content of alumina needs to be in an appropriate range for balancing.


また、窒化アルミニウム、炭化アルミニウム、酸炭化アルミニウム、アルミナ等のアルミニウム化合物を主な結合組織とするアルミニウム化合物結合れんが、中でも、窒化アルミニウムを結合組織とするアルミニウム化合物結合れんがは、溶融金属に対して濡れ難く、熱伝導率が高いという特性を有しており、高炉用れんがへの適用も検討されている。

In addition, aluminum compound-bonded bricks mainly composed of aluminum compounds such as aluminum nitride, aluminum carbide, aluminum oxycarbide, and alumina, especially aluminum compound-bonded bricks composed of aluminum nitride are wetted against molten metal. It is difficult and has high heat conductivity, and its application to blast furnace bricks is also being studied.


例えば、特許文献2には、人造黒鉛、焙焼無煙炭などの炭素原料に、平均粒径25μm以下のAl粉末を0.1〜20重量%配合し、有機系結合剤と混練成形後、CO含有還元性雰囲気又は窒素含有不活性雰囲気中で焼成することで、開気孔の一部が、繊維状のAl、AlN結晶、あるいは酸窒化アルミニウム結晶により充填された高炉用炭素質れんがが得られると記載されている。この炭素質れんがは、高炉内で蒸発凝固を繰り返して炉内を循環するカリウム等のアルカリ成分の浸透を抑制することで耐アルカリ性が改善されると記載されている。

For example, in Patent Document 2, 0.1 to 20% by weight of Al powder having an average particle size of 25 μm or less is blended with carbon raw materials such as artificial graphite and roasted anthracite, and after kneading and molding with an organic binder, CO content Baking in a reducing atmosphere or a nitrogen-containing inert atmosphere provides a blast furnace carbonaceous brick in which some of the open pores are filled with fibrous Al 2 O 3 , AlN crystals, or aluminum oxynitride crystals. It is stated that This carbonaceous brick is described as having improved alkali resistance by suppressing permeation of alkali components such as potassium circulating in the furnace by repeated evaporation and solidification in the blast furnace.


また、特許文献3には、アルミナ、天然黒鉛及びアルミニウムからなる配合物の成形体を密閉可能な容器に入れ窒化珪素粒を充填した状態で焼成することで、アルミニウムが気相反応によって窒化して窒化アルミニウム結合耐火れんがが簡便に得られると記載されている。ただし、この窒化アルミニウム結合耐火れんがを高炉の炉床部に使用することに関しては記載されていない。

特開2003−95742号公報 特開平8−143361号公報 特開2004−83365号公報

Patent Document 3 discloses that a molded body made of alumina, natural graphite and aluminum is placed in a sealable container and fired in a state filled with silicon nitride particles, so that aluminum is nitrided by a gas phase reaction. It is described that an aluminum nitride bonded refractory brick can be easily obtained. However, there is no description about using this aluminum nitride bonded refractory brick for the hearth of a blast furnace.

JP 2003-95742 A JP-A-8-143361 JP 2004-83365 A

上記特許文献1に開示されたれんがには炭素が最低でも50質量%以上含まれ、また、上記特許文献2に開示されたれんがは、アルミニウム以外に人造黒鉛、焙焼無煙炭等の炭素原料のみが使用され、両者とも炭素の多いれんがである。   The brick disclosed in Patent Document 1 contains at least 50% by mass of carbon, and the brick disclosed in Patent Document 2 includes only carbon raw materials such as artificial graphite and roasted anthracite in addition to aluminum. Used, both are carbon rich bricks.


このように炭素成分の多いれんがは、特許文献1にも記載されているように高炉の炉床での使用時に炭素が溶銑中へ溶け出しやすく耐用性が悪い。そのため、炉外からの冷却を強化してれんが稼働面に溶銑粘稠層を形成して、炭素の溶銑中への溶け出しを防止することによって耐用性を確保している。しかしながら、このような炉外からの冷却は、大きいエネルギーロスをもたらすことになる。

As described in Patent Document 1, bricks with a large amount of carbon components are easy to melt into the hot metal when used in the hearth of a blast furnace and have poor durability. For this reason, cooling from the outside of the furnace is strengthened to form a hot metal viscous layer on the working surface of the brick, thereby ensuring the durability by preventing the carbon from melting into the hot metal. However, such cooling from outside the furnace results in a large energy loss.


上記特許文献3に開示されたれんがは、高炉の炉床部に使用するにはまだ満足する耐用性が得られない。

The brick disclosed in Patent Document 3 cannot yet have satisfactory durability for use in the hearth of a blast furnace.

本発明の課題は、長寿命でエネルギーロスも少ない耐用性の高い高炉炉床用れんがをライニングした高炉炉床を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a blast furnace hearth lining a blast furnace brick with a long service life and low energy loss and high durability.

本発明者は、窒化アルミニウムや酸炭化アルミニウム(AlOCあるいはAlC)を結合組織とする耐火物の溶銑に対する耐食性テストを種々行った結果、結合組織としての窒化アルミニウムや酸炭化アルミニウムは溶銑中へアルミニウムとして一旦溶解するが、このアルミニウムはその後直ぐに酸化されてアルミナとなり、このアルミナがアルミニウム化合物結合れんがの表面に析出し被覆することで耐食性が向上することを知見した。The present inventor has conducted various corrosion resistance tests on molten iron of a refractory having a connective structure of aluminum nitride or aluminum oxycarbide (Al 2 OC or Al 4 O 4 C). It was found that the aluminum was once dissolved as molten aluminum into the hot metal, but this aluminum was immediately oxidized to alumina, and this alumina was deposited on the surface of the aluminum compound-bonded brick and coated to improve the corrosion resistance.


同時に、前記耐食性テストにおいて、シャモットれんが、高アルミナれんが、サイアロンボンドアルミナ系れんが、炭化珪素ボンドアルミナカーボン系れんがなど、Siを含有するれんがは、溶銑中へSiが溶解するが、れんがの表面にシリカとして析出することはなくSiの含有率が高い程耐食性が悪いことも知見した。

At the same time, in the corrosion resistance test, Si-containing bricks such as chamotte bricks, high alumina bricks, sialon bond alumina bricks, silicon carbide bond alumina carbon bricks, etc., dissolve Si into the hot metal, but the silica on the brick surface. It was also found that the higher the Si content, the worse the corrosion resistance.


以上の知見をもとに、本発明のれんがは、アルミナを主成分としてアルミニウム化合物を結合組織とし且つSi含有量の少ない構成としたもので、この本発明のれんがは、長期にわたって溶銑と接触する高炉炉床部に適用することで従来の高炉炉床用れんがと比較し、耐食性に格段に優れしかも低熱伝導率と言う特徴を有するものである。

Based on the above knowledge, the brick of the present invention is composed of alumina as a main component, an aluminum compound as a connective structure and a low Si content, and the brick of the present invention is in contact with hot metal for a long time. When applied to the blast furnace hearth, it has a feature of excellent corrosion resistance and low thermal conductivity compared to conventional bricks for blast furnace hearth.

すなわち、本発明の高炉炉床は、主成分がアルミナとアルミニウム粉末とからなり、アルミナを85〜99質量%とアルミニウム粉末を1〜15質量%含有し、且つ、炭素質原料を含有せず、Si含有量が3質量%以下である耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気下又は炭素粒中で1000℃以上で焼成して得たアルミニウム化合物結合れんがをライニングしたものである。なお、以下、本発明に係る前記アルミニウム化合物結合れんがを「高炉炉床用アルミニウム化合物結合れんが」ともいう。 That is, the blast furnace hearth of the present invention consists mainly of alumina and aluminum powder, contains 85 to 99 mass% alumina and 1 to 15 mass% aluminum powder, and contains no carbonaceous raw material, An aluminum compound bonded brick obtained by adding a binder to a refractory raw material composition having an Si content of 3% by mass or less, kneading and molding, and firing at 1000 ° C. or higher in a nitrogen atmosphere or in carbon grains was lined. Is . Hereinafter, the aluminum compound bonded brick according to the present invention is also referred to as “aluminum compound bonded brick for blast furnace hearth”.


本発明に係る高炉炉床用アルミニウム化合物結合れんがにおいては、上記耐火原料配合物中のアルミニウム粉末がれんがに成形された後、窒素雰囲気中で加熱されることによって窒化アルミニウムとなり、又は、容器中で炭素粒を充満した状態のCO含有雰囲気中で焼成することによって、主にAlOCあるいはAlCの酸炭化アルミニウムとなり、互いに焼結することによって、れんが中で緻密で強力な結合組織を形成する。また、生成する窒化アルミニウム又は酸炭化アルミニウムは微細な繊維状あるいは針状の形態でれんがの開気孔内を充填するように成長するので、れんがの実質的な開気孔径が減少して溶銑のれんが中への浸透が抑止される。さらに、この窒化アルミニウムや酸炭化アルミニウムによる結合組織は、Siを含有せずしかも溶銑に対して濡れ難いため溶銑に対する耐食性が非常に優れる。

In the aluminum compound bonded brick for blast furnace hearth according to the present invention, after the aluminum powder in the refractory raw material mixture is formed into a brick, it is heated in a nitrogen atmosphere to become aluminum nitride, or in a container. By firing in a CO-containing atmosphere filled with carbon grains, mainly Al 2 OC or Al 4 O 4 C aluminum oxycarbide is formed, and by sintering together, a dense and strong connective structure in the brick Form. In addition, the produced aluminum nitride or aluminum oxycarbide grows so as to fill the open pores of the brick in the form of fine fibers or needles, so that the actual open pore diameter of the brick is reduced and the hot metal brick is reduced. Infiltration into the inside is suppressed. Furthermore, since the connective structure made of aluminum nitride or aluminum oxycarbide does not contain Si and hardly wets the hot metal, the corrosion resistance to the hot metal is very excellent.


アルミニウム粉末は、耐火原料配合物中に1〜15質量%、より好ましくは5〜13質量%配合する。1質量%未満では生成する窒化アルミニウムや酸炭化アルミニウムの量が少なくなるので結合組織が不足し強度が不十分となる。また、15質量%を超えると窒化アルミニウムや酸炭化アルミニウムの生成に伴う微小な体積増加が累積して焼成に際して亀裂が発生し、製造歩留まりが低下する。

Aluminum powder is 1-15 mass% in a refractory raw material compound, More preferably, 5-13 mass% is mix | blended. If the amount is less than 1% by mass, the amount of aluminum nitride or aluminum oxycarbide produced decreases, so that the connective structure is insufficient and the strength is insufficient. On the other hand, if it exceeds 15% by mass, a minute volume increase accompanying the production of aluminum nitride or aluminum oxycarbide accumulates, cracks occur during firing, and the production yield decreases.

本発明に係る高炉炉床用アルミニウム化合物結合れんがの耐火原料配合物の主成分は、アルミナとアルミニウム粉末(炭素質原料は含有せず)からなる。アルミナは溶銑に対して反応せず耐食性が極めて優れている点、長期間(10年以上)の使用でも変質しない点、さらに低熱伝導率の点から高炉の炉床部用のれんがの原料として最適である。 Main component of the blast furnace hearth for aluminum compounds bonded refractory raw material formulation of a brick according to the present invention, consists of an alumina and aluminum powder (carbonaceous feedstock does not contain). Alumina does not react with hot metal, has excellent corrosion resistance, does not change even after long-term use (over 10 years), and is also ideal as a raw material for bricks for the hearth of blast furnaces because of its low thermal conductivity. It is.


耐火原料配合物がアルミナとアルミニウム粉末とを主成分とする場合、アルミナは、85〜99質量%、より好ましくは90〜99質量%で使用する。85質量%未満では耐食性が不足し、99質量%を超えると相対的にアルミニウム粉末が不足し結合組織が少なくなるため強度が不十分となる。この耐火原料配合物を使用して製造されたアルミニウム化合物結合れんがは、溶銑に対して解けやすい炭素質原料を含有しないため極めて耐食性に優れる。

When the refractory raw material composition is mainly composed of alumina and aluminum powder, alumina is used in an amount of 85 to 99% by mass, more preferably 90 to 99% by mass. If it is less than 85% by mass, the corrosion resistance is insufficient, and if it exceeds 99% by mass, the aluminum powder is relatively insufficient and the connective structure is reduced, so that the strength is insufficient. Aluminum compound-bonded bricks manufactured using this refractory raw material blend are extremely excellent in corrosion resistance because they do not contain a carbonaceous raw material that is easy to dissolve against molten iron.


耐火原料配合物中のSi成分は無いことが最も良いが、アルミナ原料や炭素質原料にはSiOとして含有されているためSi換算で3質量%以下とし、好ましくは1質量%以下までは耐食性に与える悪影響が少ないことから使用することができる。ここでSiとは、Si以外に、Si合金、SiO等の酸化物、あるいはSi等の非酸化物などに含まれるSiである。耐火原料配合物中にSiOを含有する場合には、このSiOは前述のように使用時に溶銑中のカーボンによって還元されSiとして溶解するため、耐食性が低下する。また窒化珪素や炭化珪素等として含有する場合にも前述のようにSiとして溶解するため、あるいは窒化珪素や炭化珪素等が還元性雰囲気中で気相酸化を受けてSiOを生成し、耐食性の低下につながる。

Although it is best that there is no Si component in the refractory raw material composition, since it is contained as SiO 2 in the alumina raw material and the carbonaceous raw material, it is 3% by mass or less in terms of Si, and preferably up to 1% by mass or less. It can be used because it has less adverse effects on it. Here, Si is Si contained in Si alloys, oxides such as SiO 2 or non-oxides such as Si 3 N 4 in addition to Si. When SiO 2 is contained in the refractory raw material composition, this SiO 2 is reduced by the carbon in the hot metal during use and dissolved as Si as described above, so that the corrosion resistance is lowered. Further, when it is contained as silicon nitride, silicon carbide, etc., it is dissolved as Si as described above, or silicon nitride, silicon carbide, etc. is subjected to gas phase oxidation in a reducing atmosphere to produce SiO 2 , which is corrosion resistant. Leading to a decline.


また、アルミナの一部をチタニアに置換しても高炉炉床用れんがとして好適な作用効果が得られる。チタニアは、溶銑に接すると還元されてTiとなり溶銑中に溶解する。溶解したTiは溶銑の粘性を高めるため、れんが稼動面付近に一種の保護膜を形成し、れんがの耐用性を高めることが知られている。具体的にはチタニアは、耐火原料配合物中で1〜20質量%使用することができる。1質量%未満の場合は高炉炉床用れんがとして好適な作用効果の程度が低く、使用量が20質量%を超えるとチタニアの溶銑中への溶解に伴うれんが組織の脆弱化が顕在化して好ましくない。チタニアはその結晶相がルチルであるものを使用することがより好ましい。

Moreover, even if a part of alumina is replaced with titania, a suitable effect can be obtained as a brick for a blast furnace hearth. When titania comes into contact with the hot metal, it is reduced to Ti to dissolve in the hot metal. Since the dissolved Ti increases the viscosity of the hot metal, it is known that a kind of protective film is formed in the vicinity of the working surface of the brick to improve the durability of the brick. Specifically, titania can be used in an amount of 1 to 20% by mass in the refractory raw material composition. If the amount is less than 1% by mass, the degree of action and effect suitable as a brick for a blast furnace hearth is low, and if the amount used exceeds 20% by mass, the brittleness of the brick associated with the dissolution of titania in the hot metal becomes obvious, which is preferable. Absent. It is more preferable to use titania whose crystal phase is rutile.


本発明のアルミニウム化合物結合れんがは、以上のような耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気下又は炭素粒中で1000℃以上、より好ましくは1300℃以上1700℃以下で焼成することによって得られる。このようにして得られた本発明のアルミニウム化合物結合れんがは、れんがの組織が結晶相と非晶質相とからなり、結晶相が主としてコランダムが80〜98質量%、並びに窒化アルミニウム結晶及び/又は酸炭化アルミニウム結晶が1〜18質量%であり、非晶質相が0.5〜10質量%であるれんが組織を有し、さらにれんが中のSi含有量が3質量%以下となる。

The aluminum compound-bonded brick of the present invention is added to a refractory raw material composition as described above, kneaded and molded, and then in a nitrogen atmosphere or in carbon grains at 1000 ° C. or higher, more preferably 1300 ° C. or higher and 1700 ° C. or lower It is obtained by baking with. The aluminum compound-bonded brick of the present invention thus obtained has a brick structure consisting of a crystalline phase and an amorphous phase, the crystalline phase is mainly 80 to 98% by mass of corundum, and aluminum nitride crystals and / or The aluminum oxycarbide crystal is 1 to 18% by mass, the amorphous phase is 0.5 to 10% by mass, the brick has a structure, and the Si content in the brick is 3% by mass or less.


また、コランダムの一部をルチルに置換しても高炉炉床用れんがとして好適な作用効果が得られる。具体的にはルチルは、れんがの全組織に対して1〜18質量%含有することができる。含有量が1質量%未満の場合は高炉炉床用れんがとして好適な作用効果の程度が低く、含有量が18質量%を超えるとルチルの溶銑中への溶解に伴うれんが組織の脆弱化が顕在化して好ましくない。

Moreover, even if a part of corundum is replaced with rutile, a favorable effect can be obtained as a brick for a blast furnace hearth. Specifically, rutile can be contained in an amount of 1 to 18% by mass based on the entire brick structure. When the content is less than 1% by mass, the degree of action and effect suitable as a brick for a blast furnace hearth is low, and when the content exceeds 18% by mass, the brittleness of the brick accompanying the dissolution of rutile into the hot metal is apparent. This is not preferable.


なお、SiOが3質量%以下、Alが97質量%以上のアルミナれんがも高炉炉床用れんがとして良好に使用することができる。SiOの含有量を3質量%以下とすることで前述のように溶銑中へのSiの溶解による悪影響を防止でき、しかもAlは溶銑に対して反応しないため極めて耐食性に優れた高炉炉床用れんがとなる。このアルミナれんがは、粒度調整されたアルミナ原料を使用し、酸化雰囲気下で焼成する通常の製法によって得ることができる。

Note that an alumina brick having a SiO 2 content of 3% by mass or less and an Al 2 O 3 content of 97% by mass or more can also be used favorably as a brick for a blast furnace hearth. By making the content of SiO 2 3% by mass or less, it is possible to prevent adverse effects due to the dissolution of Si in the hot metal as described above, and Al 2 O 3 does not react with the hot metal, and therefore has a very excellent corrosion resistance. Become a hearth brick. This alumina brick can be obtained by an ordinary manufacturing method in which an alumina raw material whose particle size is adjusted is used and fired in an oxidizing atmosphere.

本発明のアルミニウム化合物結合れんがは、Si成分を使用しないかあるいは3質量%以下に制限しているため、使用時にれんが組織中からSiの溶銑中への溶解による耐食性の低下を抑制することができ、しかも窒化アルミニウム及び/又は酸炭化アルミニウムを結合組織分としているためれんがの稼動面にアルミナの保護層が形成されるため、従来のアルミニウム化合物含有れんがと比較すると格段に耐食性が優れる。したがって、本発明のアルミニウム化合物結合れんがを使用することによって、高炉の炉床用れんがの耐食性が向上するため高炉の寿命を延ばすことができる。   Since the aluminum compound bonded brick of the present invention does not use the Si component or is limited to 3% by mass or less, it is possible to suppress a decrease in corrosion resistance due to dissolution of the brick from the structure into the molten iron during use. Moreover, since aluminum nitride and / or aluminum oxycarbide is used as a connective structure, a protective layer of alumina is formed on the working surface of the brick, so that the corrosion resistance is remarkably superior to that of the conventional aluminum compound-containing brick. Therefore, by using the aluminum compound bonded brick of the present invention, the corrosion resistance of the hearth brick for the blast furnace is improved, so that the life of the blast furnace can be extended.


また、アルミニウム化合物結合れんがが緻密であるために、高炉のライニング厚さを薄く形成できるので、炉内容積が大きくなり生産性も向上する。

Further, since the aluminum compound-bonded brick is dense, the lining thickness of the blast furnace can be reduced, so that the furnace volume increases and the productivity is improved.


さらに、本発明のアルミニウム化合物結合れんがは、従来のカーボンれんがと比較すると前記の理由から格段に耐食性に優れるため、れんがの耐食性を向上するための過剰な水冷が不要となりエネルギーロスが少なくなる。

Furthermore, the aluminum compound-bonded brick of the present invention is extremely excellent in corrosion resistance for the above reasons as compared with the conventional carbon brick, so that excessive water cooling for improving the corrosion resistance of the brick is not required and energy loss is reduced.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明で使用されるアルミニウム粉末としては、通常、耐火物に使用されている粉末状のものであれば問題なく使用することができ、微粉で使用する方がより反応性が高い点から好ましい。この点からアルミニウム粉末の粒度としては74μm以下であることがより好ましい。   As the aluminum powder used in the present invention, it can be used without any problem as long as it is a powder used for refractories, and it is preferable to use it in a fine powder because it is more reactive. From this point, the particle size of the aluminum powder is more preferably 74 μm or less.


アルミナはコランダムを使用し、通常の耐火物の原料として使用されているものであれば問題無く使用することが可能で、電融アルミナ、焼結アルミナ、仮焼アルミナ等を使用することができる。ただし、SiOの含有量は少ない程耐食性が向上し、好ましくはSiOの含有量が1質量%以下、より好ましくは0.5質量%以下のアルミナを使用することができる。またAl純度としては溶銑に対する耐食性の面から90質量%以上のものを使用することが好ましく、98質量%以上のものがより好ましい。

As the alumina, corundum is used, and any alumina can be used without any problem as long as it is used as a raw material for ordinary refractories, and electrofused alumina, sintered alumina, calcined alumina, and the like can be used. However, the smaller the SiO 2 content, the better the corrosion resistance. Preferably, alumina having a SiO 2 content of 1% by mass or less, more preferably 0.5% by mass or less can be used. In addition, the Al 2 O 3 purity is preferably 90% by mass or more, more preferably 98% by mass or more from the viewpoint of corrosion resistance to hot metal.

本発明の耐火原料配合物の主成分は、アルミニウム粉末とアルミナで構成されるが、窒化アルミニウム、AlOC、AlC、あるいはジルコニアを10質量%以下で使用しても良い。ただし、耐火原料配合物中のSi含有量は3質量%以下にする必要がある。もちろん、アルミナ原料中不純物としてのSiO等のSi成分もこれに含まれる。 The main component of the refractory raw material formulation of the present invention is composed of an aluminum powder and alumina, aluminum nitride, Al 2 OC, Al 4 O 4 C, or zirconia may be used in 10 mass% or less. However, the Si content in the refractory raw material composition must be 3% by mass or less. Of course, Si component as SiO 2 or the like as impurities in the alumina feed is also included.


耐火原料配合物は、これを常法で混練後成形し、必要に応じて乾燥した後、焼成する。混練する際には、耐火物として一般的に使用されているバインダーを使用するが、バインダーの残炭率は10質量%以下であることがより好ましい。バインダーの残炭率が10質量%を超えると、アルミニウムとバインダー中のC成分とが反応して炭化アルミニウムとなり、この炭化アルミニウムが耐消化性を低下させるなどの悪影響を及ぼすことがある。

The refractory raw material composition is kneaded and molded by a conventional method, dried as necessary, and then fired. When kneading, a binder generally used as a refractory is used, but the residual carbon ratio of the binder is more preferably 10% by mass or less. When the residual carbon ratio of the binder exceeds 10% by mass, the aluminum and the C component in the binder react to form aluminum carbide, which may adversely affect digestion resistance.


焼成方法としては、窒素気流中で焼成する方法、あるいは通常マッフルと呼ばれる耐火物製の容器の中に、炭素粒を充満して焼成する方法を採ることができる。このマッフルは、耐火物の焼成で一般的に使用されているものを使用することができる。マッフル内では、空気中の酸素と反応したCOガスが発生し、このCOガスとアルミニウムとが反応することで、AlOCやAlCが生成するものと推定される。このとき、窒化アルミニウムは少量生成するかあるいは全く生成しない。炭素粒としては、通常マッフルに入れて使用されているコークス粉、炭素含有れんが屑等を使用することができる。

As a firing method, a method of firing in a nitrogen stream or a method of firing by filling carbon particles in a refractory container usually called muffle can be adopted. This muffle can use what is generally used by baking of a refractory. In the muffle, CO gas that reacts with oxygen in the air is generated, and it is presumed that Al 2 OC and Al 4 O 4 C are generated by the reaction of this CO gas and aluminum. At this time, aluminum nitride is produced in a small amount or not at all. As the carbon particles, coke powder, carbon-containing brick scraps and the like that are usually used in a muffle can be used.


この焼成により、窒化アルミニウム(AlN)と、AlOCやAlCのような酸炭化アルミニウムとのうち1つ以上が生成すれば緻密で強力な結合組織を形成し、効果が十分に得られる。

If this firing produces one or more of aluminum nitride (AlN) and aluminum oxycarbide such as Al 2 OC and Al 4 O 4 C, a dense and strong connective structure is formed, and the effect is sufficient can get.

上記製法によって得られる本発明のアルミニウム化合物結合れんがの組織は、骨材がアルミナ(コランダム)、マトリックス部の結合組織がAlN結晶、AlOC結晶及びAlC結晶のうち1種以上からなる。このマトリックス部は、アルミナ粒粒界で、緻密な連続した焼結相として強固な結合力を発揮する。なお、れんが中のSiO、SiC、Si等のSi含有成分の含有量はSi換算で3質量%以下とする。 The structure of the aluminum compound-bonded brick according to the present invention obtained by the above-described manufacturing method is that the aggregate is alumina (corundum) and the matrix structure is one or more of AlN crystal, Al 2 OC crystal, and Al 4 O 4 C crystal. Consists of. This matrix portion exhibits a strong bonding force as a dense continuous sintered phase at the grain boundaries of the alumina grains. Incidentally, SiO 2, SiC in brick, the content of Si-containing component such as Si 3 N 4 is 3 wt% or less in terms of Si.


本発明の高炉炉床用アルミニウム化合物結合れんがを高炉に使用する場合、従来のカーボンれんがと併用してあるいは、全て置き換えて使用することができる。具体的には、出銑孔より下の側壁あるいは炉底に適用することができる。高炉の出銑孔より下の側壁あるいは炉底は、常に溶銑と接触した状態で10年前後もの間補修することなく使用されるが、本発明のれんがは溶銑に対する耐食性に極めて優れるため、高炉の寿命をさらに延ばすことができる。

When the aluminum compound bonded brick for a blast furnace hearth of the present invention is used in a blast furnace, it can be used in combination with a conventional carbon brick or by replacing it all. Specifically, it can be applied to the side wall or the bottom of the furnace below the tap hole. The side wall or the bottom of the bottom of the blast furnace is always in contact with the hot metal without repairing for about 10 years. However, the brick of the present invention is extremely excellent in corrosion resistance against hot metal. The life can be further extended.

表1、表2及び表3は、本発明の実施例及び比較例を示し、試験用サンプルの作製に使用した耐火原料配合物とそれによって得られた試験用サンプルの試験結果を示す。   Tables 1, 2 and 3 show examples and comparative examples of the present invention, and show the test results of the refractory raw material blends used for the production of the test samples and the test samples obtained thereby.

表1、表2及び表3の耐火原料配合物にバインダーとして液状のフェノール樹脂を添加して混練し、成形し、乾燥後、1500℃で所定の雰囲気下で焼成した。成形体の大きさはJIS
R2101規定の並形とした。表1に示す実施例1、比較例2及び比較例4、並びに表2に示す参考例、実施例4〜7、比較例5及び比較例6については、炭化珪素材質の耐火れんが製マッフル内に乾燥した成形体を入れてコークス粒中に埋設し大気雰囲気下で焼成した。また、表1に示す参考例2及び比較例1、表2に示す実施例8、並びに表3の各実施例と比較例については、密閉式の電気炉で窒素を炉内に供給し余剰な炉内ガスを排出しながら窒素気流中で焼成した。表1に示す比較例3については大気中で焼成した。
A liquid phenol resin as a binder was added to the refractory raw material compositions shown in Tables 1, 2 and 3 and kneaded, molded, dried, and fired at 1500 ° C. in a predetermined atmosphere. The size of the molded body is JIS
R2101 standard parallel shape. For Example 1, Comparative Example 2 and Comparative Example 4 shown in Table 1, and Reference Example 3 , Examples 4 to 7, Comparative Example 5 and Comparative Example 6 shown in Table 2, a silicon carbide refractory brick is used in the muffle. The dried molded body was put in, embedded in coke grains, and fired in an air atmosphere. In addition, for Reference Example 2 and Comparative Example 1 shown in Table 1, Example 8 shown in Table 2, and each Example and Comparative Example shown in Table 3, nitrogen was supplied into the furnace with a sealed electric furnace, which was redundant. Firing was performed in a nitrogen stream while discharging the gas in the furnace. About the comparative example 3 shown in Table 1, it baked in air | atmosphere.


それぞれの焼成物から20mm×20mm×200mmの試験片を切り出し溶銑浸漬テストを行った。溶銑浸漬テストは誘導炉で溶解した1600℃の溶銑中で試験片を5時間回転させた。冷却後、試験片をカットして断面の様子を観察し、試験片の寸法から損耗特性を比較した。

A test piece of 20 mm × 20 mm × 200 mm was cut out from each fired product, and a hot metal immersion test was performed. In the hot metal immersion test, a test piece was rotated for 5 hours in hot metal melted in an induction furnace at 1600 ° C. After cooling, the test piece was cut, the state of the cross section was observed, and the wear characteristics were compared from the dimensions of the test piece.


耐火原料配合物中のSi含有成分の含有量は、均一に混合した耐火原料配合物の化学成分を測定してSiの含有量に換算し、耐火原料配合物100質量%中の割合で示した。同様に、焼成後のれんが中のSi含有成分の含有量についても測定し、れんが100質量%中のSiの割合で示した(例えば測定結果がSiOの場合には、SiO中のSiの量を組成比から算出し、全体に占める割合に換算した。)。

The content of the Si-containing component in the refractory raw material composition was measured as a chemical component of the uniformly mixed refractory raw material composition, converted to the Si content, and expressed as a ratio in 100% by mass of the refractory raw material composition. . Similarly, the content of the Si-containing component in the brick after firing was also measured and indicated by the proportion of Si in 100% by mass of the brick (for example, when the measurement result is SiO 2 , the content of Si in SiO 2 is The amount was calculated from the composition ratio and converted to the proportion of the whole.)


表1において、実施例1は、特性X線分析から結合組織がAlOC結晶及びAlC結晶から成っていることを確認した。溶銑浸漬テスト後のカット面において残存部分の寸法が19.5mmと表1中では最も大きく、しかも表面にアルミナの緻密化層が形成されていることがわかった。

In Table 1, Example 1 confirmed that the connective structure was composed of Al 2 OC crystals and Al 4 O 4 C crystals from characteristic X-ray analysis. It was found that the dimension of the remaining portion on the cut surface after the hot metal immersion test was 19.5 mm, which was the largest in Table 1, and an alumina densified layer was formed on the surface.


この実施例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真を図1A〜図1Dに示す。図1Aは組織写真を、また図1BはFe、図1CはO、及び図1DはAlのEPMA分析結果を示している。図1Cの稼動面付近にOの密度の高い部分が観察される。この組織中には、Al以外には、酸化物はほとんど含まれてなく、溶銑中にも酸素はほとんど無いことから図1Cの稼動面のOはAl中のOと判断される。そして図1Dと併せて考察すると、れんがの稼動面にはAlの密度の高い部分が観察されると言える。そして図1Bから、銑鉄成分の浸透が少なく耐用性に優れることがわかる。

EPMA observation photographs on the brick cut surface after the hot metal immersion test of Example 1 are shown in FIGS. 1A to 1D. 1A shows a structure photograph, FIG. 1B shows the results of EPMA analysis of Fe, FIG. 1C shows O, and FIG. 1D shows Al. A portion with a high density of O is observed near the working surface in FIG. 1C. In this structure, there is almost no oxide other than Al 2 O 3 , and there is almost no oxygen in the hot metal, so that O on the working surface in FIG. 1C is determined to be O in Al 2 O 3. Is done. When considered in conjunction with FIG. 1D, it can be said that a high-density portion of Al 2 O 3 is observed on the working surface of the brick. And from FIG. 1B, it can be seen that the penetration of the pig iron component is small and the durability is excellent.


この実施例1のれんがは、結合組織としてのAlOC及びAlC並びに骨材のAlが稼動面付近で溶銑と接触すると、骨材のAlは安定であるが結合組織は溶銑中にAlとして溶解すると考えられる。AlOC及びAlCは溶銑に接触すると酸化アルミニウム部分と炭化アルミニウムのうち後者が溶銑中へ溶解するが、溶解したAlは溶銑中の溶存酸素によって直ちに酸化アルミニウムを生成する。すなわち、アルミニウム化合物は溶銑に接触すると容易に酸化アルミニウムへ転化すると考えられる。これらの理由により、アルミニウム化合物を結合組織としアルミナを主成分とするれんがは溶銑に対する耐食性が優れることになると考えられえる。

In the brick of this Example 1, when Al 2 OC and Al 4 O 4 C as the connective tissue and the Al 2 O 3 of the aggregate come into contact with the hot metal near the working surface, the Al 2 O 3 of the aggregate is stable. However, the connective tissue is considered to dissolve as Al in the hot metal. When Al 2 OC and Al 4 O 4 C come into contact with the hot metal, the latter part of the aluminum oxide portion and aluminum carbide dissolves into the hot metal, but the dissolved Al immediately generates aluminum oxide by the dissolved oxygen in the hot metal. That is, it is considered that the aluminum compound is easily converted to aluminum oxide when it comes into contact with the hot metal. For these reasons, it can be considered that a brick mainly composed of an aluminum compound and having alumina as a main component has excellent corrosion resistance against hot metal.

参考例2は、X線分析から結合組織がAlN結晶から成っていることを確認した。溶銑浸漬テスト後の試験片は、実施例1と同様に残存部分が多く、表面にアルミナの緻密化層が形成されていた。この参考例2は、耐火原料配合物中に炭素質原料として仮焼無煙炭を15質量%含むものであるが、仮焼無煙炭を全く含まない実施例1と比較すると溶銑浸漬テストにおいて溶損量が大きくなっている。この理由は、今回の溶銑浸漬テストでは試験片を回転させているため、仮焼無煙炭の使用によってやや強度が低い参考例2は溶銑によって表面が摩耗されたためと考えられる。 In Reference Example 2, it was confirmed from X-ray analysis that the connective tissue was composed of AlN crystals. The test piece after the hot metal immersion test had many remaining portions as in Example 1, and an alumina densified layer was formed on the surface. Although this reference example 2 contains 15 mass% of calcined anthracite as a carbonaceous raw material in the refractory raw material composition, the amount of erosion increases in the hot metal immersion test as compared with Example 1 which does not contain any calcined anthracite. ing. This is because the test piece was rotated in the hot metal immersion test this time, and the surface of Reference Example 2 having a slightly lower strength due to the use of calcined anthracite was worn by the hot metal.


比較例1は、X線分析から結合組織がサイアロンから成っていることを確認した。この比較例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真を図2A〜図2Dに示す。図2Aは組織写真を、また図2BはFe、図2CはSi、及び図2DはAlのEPMA分析結果を示している。図2Cでは、表面から1mm程度までSiが消失し、しかも図2Bでは銑鉄成分が浸透した組織を形成しており、マトリックス等が侵食されていることがわかる。

In Comparative Example 1, it was confirmed from X-ray analysis that the connective tissue was composed of sialon. The EPMA observation photograph in the brick cut surface after the hot metal immersion test of this comparative example 1 is shown to FIG. 2A-FIG. 2D. FIG. 2A shows the structure photograph, FIG. 2B shows the results of EPMA analysis of Fe, FIG. 2C shows Si, and FIG. 2D shows Al. In FIG. 2C, Si disappears to about 1 mm from the surface, and in FIG. 2B, a structure in which the pig iron component penetrates is formed, and it can be seen that the matrix and the like are eroded.


この比較例1のれんがは、Si含有成分はサイアロンとして含まれており、Si換算で8質量%である。このサイアロン中のSiは、稼動面付近で溶銑と接触することで、少しずつ溶銑中へ溶解したと推定される。そしてこの溶解したSiは溶銑中に溶けている酸素によって酸化され再びSiOになるが、今度は溶銑中に浮遊するCaOを主体とするスラグ中に溶解するためAlの場合のように耐火物の稼動面に付着しないと推定する。これらの理由により、サイアロンを含有する場合には溶損が進んで行くと推定される。

In the brick of Comparative Example 1, the Si-containing component is contained as sialon, and the amount is 8% by mass in terms of Si. It is presumed that Si in the sialon was gradually dissolved into the hot metal by coming into contact with the hot metal near the working surface. And this dissolved Si is oxidized by oxygen dissolved in the hot metal and becomes SiO 2 again, but this time it dissolves in the slag mainly composed of CaO floating in the hot metal, so as in the case of Al 2 O 3. Presumed not to adhere to the working surface of the refractory. For these reasons, when sialon is contained, it is presumed that melting damage proceeds.


比較例2は、X線分析から結合組織が炭化珪素から成っていることを確認した。溶銑浸漬テスト後のカット面観察においては、マトリックス相が優先的に損耗しており、アルミナ骨材の一部が溶銑中へ流出し、残存部分の寸法が18mmと小さかった。

In Comparative Example 2, it was confirmed from X-ray analysis that the connective tissue was made of silicon carbide. In the observation of the cut surface after the hot metal immersion test, the matrix phase was preferentially worn out, part of the alumina aggregate flowed into the hot metal, and the size of the remaining part was as small as 18 mm.


比較例3は、溶銑浸漬テスト後のカット面観察においては、表面1mm程度の範囲がほぼ完全に変質して原れんが組織が消失していた。その内部は組織が残っているが、骨材のムライトはこの境界面で溶損していた。この比較例3の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真を図3A〜図3Dに示す。図3Aは組織写真を、また図3BはFe、図3CはSi、及び図3DはAlのEPMA分析結果を示している。図3Cでは、表面から0.5mm程度までSiが消失し、しかも図3Bでは銑鉄成分が浸透した組織を形成しており、侵食されていることがわかる。

In Comparative Example 3, in the cut surface observation after the hot metal immersion test, the range of about 1 mm on the surface was almost completely altered and the original brick structure was lost. The tissue remains inside, but the aggregate mullite was melted at this interface. The EPMA observation photograph in the brick cut surface after the hot metal immersion test of this comparative example 3 is shown to FIG. 3A-FIG. 3D. FIG. 3A shows a structure photograph, FIG. 3B shows a result of EPMA analysis of Fe, FIG. 3C shows Si, and FIG. 3D shows Al. In FIG. 3C, Si disappears from the surface to about 0.5 mm, and in FIG. 3B, a structure in which the pig iron component has penetrated is formed and it can be seen that it is eroded.


この比較例3のれんがは、Si含有成分は原料のムライトと粘土中にSiOとして含まれており、Si換算で15質量%である。このムライトや粘土中のSiOは、稼動面付近で溶銑と接触することで溶銑中の炭素によって還元されてSiとなり、同時に溶銑中へ溶解したと推定される。そしてこの溶解したSiは、溶銑中に解けている酸素によって酸化され再びSiOになるが、今度は溶銑中に浮遊するCaOを主体とするスラグ中に溶解するためAlの場合のように耐火物の稼動面に付着しないと推定する。これらの理由により、SiOを含有する場合には溶損が進んで行くと推定される。

In the brick of Comparative Example 3, the Si-containing component is contained as SiO 2 in the raw material mullite and clay, and is 15% by mass in terms of Si. It is presumed that SiO 2 in the mullite and clay is reduced to carbon by contacting with hot metal near the working surface to be Si and simultaneously dissolved in the hot metal. This dissolved Si is oxidized by the oxygen dissolved in the hot metal and becomes SiO 2 again. This time, however, it dissolves in the slag mainly composed of CaO floating in the hot metal, so as in the case of Al 2 O 3. It is estimated that it does not adhere to the working surface of the refractory. For these reasons, it is presumed that when SiO 2 is contained, melting loss proceeds.


比較例1〜3の結果から、高炉炉床用れんがにおいてSi含有成分は溶損の原因となることがわかる。

From the results of Comparative Examples 1 to 3, it can be seen that Si-containing components cause melting damage in the blast furnace hearth brick.


比較例4は、カーボンを主成分としたれんがであるが、耐食性が劣り高熱伝導率になっている。

Comparative Example 4 is a brick mainly composed of carbon, but has poor corrosion resistance and high thermal conductivity.

表2において、参考例3は、X線分析から結合組織がAlOC結晶及びAlC結晶から成っていることを確認した。溶銑浸漬テスト後の表面にアルミナの緻密化層が形成されていた。仮焼無煙炭を含むため、含まない実施例1と比較すると耐食性がやや劣るが実用上は問題の無い範囲である。 In Table 2, in Reference Example 3, it was confirmed from X-ray analysis that the connective structure was composed of Al 2 OC crystals and Al 4 O 4 C crystals. A densified layer of alumina was formed on the surface after the hot metal immersion test. Since calcined anthracite is included, the corrosion resistance is somewhat inferior to that of Example 1 which does not include, but in practical use there is no problem.


実施例4は、表1の実施例1のアルミナの一部をチタニアに置換したものであるが溶銑に対する耐食性は実施例1とほぼ同じである。

In Example 4, a part of the alumina of Example 1 in Table 1 was replaced with titania, but the corrosion resistance against hot metal is almost the same as in Example 1.


実施例5〜7は、シリコンを原料として使用することでれんが中に炭化珪素が生成しているものであるが、耐火原料配合物中のSiが3質量%以下であり溶銑に対する良好な耐食性を示している。

In Examples 5 to 7, silicon carbide is generated in the brick by using silicon as a raw material, but Si in the refractory raw material composition is 3% by mass or less and has good corrosion resistance to hot metal. Show.


比較例5及び6は、耐火原料配合物中のSi含有量が本発明の範囲外であり、溶銑に対する耐食性が悪くなっている。

In Comparative Examples 5 and 6, the Si content in the refractory raw material composition is outside the scope of the present invention, and the corrosion resistance against hot metal is poor.


実施例8は、X線分析から結合組織がAlN結晶から成っていることを確認した。溶銑浸漬テスト後の表面にアルミナの緻密化層が形成されていた。

In Example 8, it was confirmed by X-ray analysis that the connective tissue was composed of AlN crystals. A densified layer of alumina was formed on the surface after the hot metal immersion test.


表3の例はすべて窒素気流下で焼成した実施例及び比較例であり、窒素気流下で焼成することでAlNが生成しており、窒化アルミニウムボンドになっている。実施例9〜11は耐火原料配合物中のSiの量が異なり、その量が少ないほど溶銑に対する耐食性が優れる傾向にある。比較例7と8は耐火原料配合物中のSi含有量が本発明の範囲外であり、実施例と比較すると耐食性が大幅に劣っていることがわかる。

The examples in Table 3 are all examples and comparative examples fired under a nitrogen stream, and AlN is produced by firing under a nitrogen stream, resulting in an aluminum nitride bond. Examples 9-11 differ in the quantity of Si in a refractory raw material composition, and it exists in the tendency for the corrosion resistance with respect to molten iron to be excellent, so that the quantity is small. In Comparative Examples 7 and 8, the Si content in the refractory raw material composition is outside the range of the present invention, and it can be seen that the corrosion resistance is significantly inferior to the Examples.

以上のとおり、本発明のアルミニウム化合物結合れんがは、溶銑に対する耐食性が従来の耐火物よりも格段に優れており、高炉炉床用れんがとして最適である。
As described above, the aluminum compound-bonded brick of the present invention is far superior in corrosion resistance to hot metal than conventional refractories, and is optimal as a blast furnace hearth brick.

表1に示す実施例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(組織写真)を示す。The EPMA observation photograph (structure | tissue photograph) in the brick cut surface after the hot metal immersion test of Example 1 shown in Table 1 is shown. 表1に示す実施例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Fe分析結果)を示す。The EPMA observation photograph (Fe analysis result) in the brick cut surface after the hot metal immersion test of Example 1 shown in Table 1 is shown. 表1に示す実施例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(O分析結果)を示す。The EPMA observation photograph (O analysis result) in the brick cut surface after the hot metal immersion test of Example 1 shown in Table 1 is shown. 表1に示す実施例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Al分析結果)を示す。The EPMA observation photograph (Al analysis result) in the brick cut surface after the hot metal immersion test of Example 1 shown in Table 1 is shown. 表1に示す比較例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(組織写真)を示す。The EPMA observation photograph (structure | tissue photograph) in the brick cut surface after the hot metal immersion test of the comparative example 1 shown in Table 1 is shown. 表1に示す比較例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Fe分析結果)を示す。The EPMA observation photograph (Fe analysis result) in the brick cut surface after the hot metal immersion test of Comparative Example 1 shown in Table 1 is shown. 表1に示す比較例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Si分析結果)を示す。The EPMA observation photograph (Si analysis result) in the brick cut surface after the hot metal immersion test of Comparative Example 1 shown in Table 1 is shown. 表1に示す比較例1の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Al分析結果)を示す。The EPMA observation photograph (Al analysis result) in the brick cut surface after the hot metal immersion test of the comparative example 1 shown in Table 1 is shown. 表1に示す比較例3の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(組織写真)を示す。The EPMA observation photograph (structure | tissue photograph) in the brick cut surface after the hot metal immersion test of the comparative example 3 shown in Table 1 is shown. 表1に示す比較例3の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Fe分析結果)を示す。The EPMA observation photograph (Fe analysis result) in the brick cut surface after the hot metal immersion test of the comparative example 3 shown in Table 1 is shown. 表1に示す比較例3の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Si分析結果)を示す。The EPMA observation photograph (Si analysis result) in the brick cut surface after the hot metal immersion test of the comparative example 3 shown in Table 1 is shown. 表1に示す比較例3の溶銑浸漬テスト後のれんがカット面におけるEPMA観察写真(Al分析結果)を示す。The EPMA observation photograph (Al analysis result) in the brick cut surface after the hot metal immersion test of the comparative example 3 shown in Table 1 is shown.

Claims (4)

主成分がアルミナとアルミニウム粉末とからなり、アルミナを85〜99質量%とアルミニウム粉末を1〜15質量%含有し、且つ、炭素質原料を含有せず、Si含有量が3質量%以下である耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気下又は炭素粒中で1000℃以上で焼成して得られたアルミニウム化合物結合れんがをライニングした高炉炉床The main component is composed of alumina and aluminum powder, 85 to 99% by mass of alumina, 1 to 15% by mass of aluminum powder, no carbonaceous raw material, and Si content of 3% by mass or less. A blast furnace hearth in which a binder is added to a refractory raw material composition , kneaded and molded, and then lined with an aluminum compound-bonded brick obtained by firing at 1000 ° C. or higher in a nitrogen atmosphere or in carbon grains. 前記耐火原料配合物中のアルミナの一部をチタニアで置換したアルミニウム化合物結合れんがをライニングした請求項1に記載の高炉炉床 The blast hearth according to claim 1 in which a portion of the alumina of the refractory raw material formulation lined aluminum compounds bonded brick was replaced with titania. れんがの組織が結晶相と非晶質相とからなり、結晶相が、コランダムが80〜98質量%、並びに窒化アルミニウム結晶及び/又は酸炭化アルミニウム結晶が1〜18質量%であり、非晶質相が0.5〜10質量%であり、且つ、Si含有量が3質量%以下であるアルミニウム化合物結合れんがをライニングした高炉炉床The structure of the brick is composed of a crystalline phase and an amorphous phase. The crystalline phase is 80 to 98% by mass of corundum, and 1 to 18% by mass of aluminum nitride crystal and / or aluminum oxycarbide crystal. A blast furnace hearth lined with an aluminum compound-bonded brick having a phase of 0.5 to 10% by mass and an Si content of 3% by mass or less. 前記コランダムの一部をルチルで置換したアルミニウム化合物結合れんがをライニングした請求項3に記載の高炉炉床The blast furnace hearth according to claim 3, wherein an aluminum compound-bonded brick in which a part of the corundum is substituted with rutile is lined .
JP2009544766A 2007-12-07 2008-12-08 Blast furnace hearth Active JP5249948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009544766A JP5249948B2 (en) 2007-12-07 2008-12-08 Blast furnace hearth

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007316942 2007-12-07
JP2007316942 2007-12-07
JP2009544766A JP5249948B2 (en) 2007-12-07 2008-12-08 Blast furnace hearth
PCT/JP2008/072271 WO2009072652A1 (en) 2007-12-07 2008-12-08 Aluminum compound-bonded brick for furnace hearth

Publications (2)

Publication Number Publication Date
JPWO2009072652A1 JPWO2009072652A1 (en) 2011-04-28
JP5249948B2 true JP5249948B2 (en) 2013-07-31

Family

ID=40717829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009544766A Active JP5249948B2 (en) 2007-12-07 2008-12-08 Blast furnace hearth

Country Status (3)

Country Link
JP (1) JP5249948B2 (en)
TW (1) TW200938509A (en)
WO (1) WO2009072652A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087672A1 (en) * 2013-12-11 2015-06-18 黒崎播磨株式会社 Blast furnace hearth lining structure
CN113430314A (en) * 2021-06-10 2021-09-24 北京金隅通达耐火技术有限公司 Long-life blast furnace bottom hearth refractory structure and maintenance method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91767B1 (en) 2010-12-17 2012-06-18 Wurth Paul Sa Ceramic bottom lining of a blast furnace hearth
JP5630871B2 (en) * 2011-03-02 2014-11-26 黒崎播磨株式会社 Refractory
JP2015193511A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
WO2016208666A1 (en) * 2015-06-25 2016-12-29 黒崎播磨株式会社 Furnace bed bricks for molten iron production furnace
KR102214879B1 (en) * 2016-04-13 2021-02-09 제이에프이 스틸 가부시키가이샤 Slag analysis method and molten iron refining method
WO2018123726A1 (en) 2016-12-28 2018-07-05 黒崎播磨株式会社 Brick for blast furnace hearths and blast furnace hearth using same, and method for producing brick for blast furnace hearths
CN107602099B (en) * 2017-09-22 2020-01-14 马鞍山利尔开元新材料有限公司 Low-carbon sliding plate brick containing modified graphite for pushing off slag of converter and preparation method thereof
CN109928737A (en) * 2017-12-19 2019-06-25 郑州华祥耐材有限公司 A kind of addition active organosilicon alkanol does not burn sliding plate brick and its production method
CN113213897B (en) * 2021-06-23 2022-08-19 郑州振东科技有限公司 Steel ladle low-carbon aluminum-magnesium-carbon brick
CN115057692B (en) * 2022-06-08 2023-04-18 郑州海迈高温材料研究院有限公司 Aluminum-carbon sliding brick added with ferrotitanium alloy and production method thereof
CN116789458A (en) * 2023-07-06 2023-09-22 杨国成 Whisker reinforced refractory material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308865A (en) * 1988-06-07 1989-12-13 Kawasaki Steel Corp Unburned alumina magnesia brick and lining thereof
JPH0360859A (en) * 1989-07-28 1991-03-15 Kawasaki Refract Co Ltd Sliding nozzle plate
JPH09249449A (en) * 1996-03-13 1997-09-22 Kurosaki Refract Co Ltd Refractory member for steel material sliding part of induction heating furnace
JP2004083365A (en) * 2002-08-28 2004-03-18 Kurosaki Harima Corp Process for producing aluminum nitride-bonded refractory brick

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308865A (en) * 1988-06-07 1989-12-13 Kawasaki Steel Corp Unburned alumina magnesia brick and lining thereof
JPH0360859A (en) * 1989-07-28 1991-03-15 Kawasaki Refract Co Ltd Sliding nozzle plate
JPH09249449A (en) * 1996-03-13 1997-09-22 Kurosaki Refract Co Ltd Refractory member for steel material sliding part of induction heating furnace
JP2004083365A (en) * 2002-08-28 2004-03-18 Kurosaki Harima Corp Process for producing aluminum nitride-bonded refractory brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087672A1 (en) * 2013-12-11 2015-06-18 黒崎播磨株式会社 Blast furnace hearth lining structure
JP2015113254A (en) * 2013-12-11 2015-06-22 黒崎播磨株式会社 Lining structure of blast furnace hearth
CN113430314A (en) * 2021-06-10 2021-09-24 北京金隅通达耐火技术有限公司 Long-life blast furnace bottom hearth refractory structure and maintenance method

Also Published As

Publication number Publication date
TW200938509A (en) 2009-09-16
WO2009072652A1 (en) 2009-06-11
JPWO2009072652A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5249948B2 (en) Blast furnace hearth
JP5539201B2 (en) Carbonaceous refractory and method for producing the same, blast furnace bottom or side wall and method for producing the same
JP4681456B2 (en) Low carbon magnesia carbon brick
JP3593101B2 (en) Carbonaceous refractory and method for producing the same
WO2018123726A1 (en) Brick for blast furnace hearths and blast furnace hearth using same, and method for producing brick for blast furnace hearths
JP5697210B2 (en) Converter operating method, magnesia carbon brick used in the converter, manufacturing method of the brick, and lining structure of the converter lining
JP6662346B2 (en) Refractory and manufacturing method thereof
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP6194257B2 (en) Magnesia carbon brick
JP2011104596A (en) Sliding nozzle plate
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP6266968B2 (en) Blast furnace hearth lining structure
JP2617086B2 (en) Silicon carbide casting material
JP4245122B2 (en) Method for producing aluminum nitride bonded refractory brick
JPH11322405A (en) Low carbon refractory and its production
JP3853151B2 (en) Blast furnace outlet closure material
JP2020083678A (en) Zirconia-carbon containing refractory
JP2002362969A (en) Plate brick
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP2529501B2 (en) Carbon-containing refractory
WO1984000158A1 (en) Magnesia-carbon-silicon carbide refractory
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP2004059390A (en) Castable refractory for blast furnace trough
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JP2004323260A (en) Nozzle material for continuous casting and nozzle for continuous casting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5249948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250