JP5249526B2 - Method and apparatus for producing conductive polymer film - Google Patents

Method and apparatus for producing conductive polymer film Download PDF

Info

Publication number
JP5249526B2
JP5249526B2 JP2007140617A JP2007140617A JP5249526B2 JP 5249526 B2 JP5249526 B2 JP 5249526B2 JP 2007140617 A JP2007140617 A JP 2007140617A JP 2007140617 A JP2007140617 A JP 2007140617A JP 5249526 B2 JP5249526 B2 JP 5249526B2
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer film
prism
working electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007140617A
Other languages
Japanese (ja)
Other versions
JP2008010407A (en
Inventor
朴 銭
和宏 加川
雅俊 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007140617A priority Critical patent/JP5249526B2/en
Publication of JP2008010407A publication Critical patent/JP2008010407A/en
Application granted granted Critical
Publication of JP5249526B2 publication Critical patent/JP5249526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、導電性高分子膜からの反射光の吸収スペクトルを用いて所望の特性を有する導電性高分子膜を製造する方法、及びかかる導電性高分子膜の製造装置に関する。   The present invention relates to a method for manufacturing a conductive polymer film having desired characteristics using an absorption spectrum of reflected light from the conductive polymer film, and an apparatus for manufacturing such a conductive polymer film.

高分子アクチュエータにおける導電性高分子膜の膜厚や均一性はアクチュエータの応答速度や変位率に影響するため、精確に制御することが望まれる。導電性高分子膜は、一般にモノマーの溶液に浸漬した作用電極及び対極の間に通電する電気化学的重合法により製造されている。得られた導電性高分子膜を溶液から取り出せば、原子間力顕微鏡により精確に膜厚を測定できるが、溶液から取り出して測定するのは非常に手間がかかる。   Since the film thickness and uniformity of the conductive polymer film in the polymer actuator affect the response speed and displacement rate of the actuator, it is desirable to control them accurately. The conductive polymer film is generally produced by an electrochemical polymerization method in which a current is passed between a working electrode immersed in a monomer solution and a counter electrode. If the obtained conductive polymer film is taken out of the solution, the film thickness can be accurately measured by an atomic force microscope, but it is very troublesome to take out and measure it from the solution.

膜厚を精確に制御するためには、膜の形成中膜厚の経時変化を測定するのが望ましい。気相反応の場合赤外線を照射しながら導電性高分子膜を形成すれば、反射型赤外線膜厚計により膜厚の経時変化を測定することができるが、電気化学的重合法により成膜する場合溶液が邪魔になるので、反射型の赤外線膜厚計により膜厚を測定することはできない。   In order to accurately control the film thickness, it is desirable to measure the change with time of the film thickness during film formation. In the case of a gas phase reaction, if a conductive polymer film is formed while irradiating infrared rays, the change with time of the film thickness can be measured with a reflective infrared film thickness meter. Since the solution gets in the way, the film thickness cannot be measured with a reflective infrared film thickness meter.

高分子アクチュエータ等に利用される導電性高分子膜は、安定した性能を示すように面内方向のみならず膜厚方向にも均質であることが望まれる。大きな伸縮性を示す導電性高分子膜でも膜厚方向に均質でないものは信頼性に欠けるため、実用に適しない。電気化学的重合法により形成する導電性高分子膜を膜厚方向に均質にするには、成膜速度を一定にするのが望ましい。しかし、電気化学的重合法で一般的な定電圧法又は定電流法によると、成膜速度を一定にすることができない。定電圧法の場合、膜の成長につれて電極表面と溶液との界面の電気抵抗が変化するので、印加電圧を一定にしても実際に膜に与えられる電圧は一定にならず、従って成膜速度も一定にならない。定電流法でも、膜の成長につれて膜表面の粗さが変化するために、単位面積当たりの電流が変化し、成膜速度も変化してしまう。よって、いずれの方法でも成膜速度は一定にならず、膜厚方向に均質な膜を得ることができない。   The conductive polymer film used for the polymer actuator or the like is desired to be uniform not only in the in-plane direction but also in the film thickness direction so as to exhibit stable performance. A conductive polymer film exhibiting great stretchability is not suitable for practical use because it is not reliable in the film thickness direction because it is not reliable. In order to make the conductive polymer film formed by the electrochemical polymerization method uniform in the film thickness direction, it is desirable to keep the film formation rate constant. However, according to a constant voltage method or a constant current method which is common in the electrochemical polymerization method, the film forming speed cannot be made constant. In the case of the constant voltage method, the electrical resistance at the interface between the electrode surface and the solution changes as the film grows. Therefore, even if the applied voltage is constant, the voltage actually applied to the film is not constant, so the film formation speed is also low. It will not be constant. Even in the constant current method, since the roughness of the film surface changes as the film grows, the current per unit area changes and the film formation rate also changes. Therefore, in any method, the film forming speed is not constant, and a film uniform in the film thickness direction cannot be obtained.

「分析機器と解析システムに関する東京討論会講演要旨集」(非特許文献1、赤尾ら、「顕微赤外ATR法による導電性高分子膜の生成過程の分析」、57〜58頁、1995年)には、顕微赤外分光光度計のATR(Attenuated Total Reflection)プリズムを電極とし、電気化学的重合法により形成された膜の厚さを測定するシステムが記載されている。ゲルマニウムからなり、作用電極として働くATRプリズムと、対極となる金電極とをピロールを含有する溶液に浸漬し、両極間に電圧を印加すると、ATRプリズム表面にポリピロール膜が形成される。ATRプリズムを介して照射した赤外光の膜からの反射光の吸収スペクトル中には、ポリピロールに帰属するピークが確認される。しかし、均質な膜を得るために一定の速度で膜を形成する方法は知られていない。   "Abstracts of Tokyo Discussion Meeting on Analytical Instruments and Analytical Systems" (Non-Patent Document 1, Akao et al., "Analysis of formation process of conductive polymer film by micro-infrared ATR method", 57-58, 1995) Describes a system for measuring the thickness of a film formed by an electrochemical polymerization method using an ATR (Attenuated Total Reflection) prism of a microinfrared spectrophotometer as an electrode. A polypyrrole film is formed on the surface of the ATR prism by immersing an ATR prism made of germanium and acting as a working electrode and a gold electrode as a counter electrode in a solution containing pyrrole and applying a voltage between both electrodes. A peak attributed to polypyrrole is confirmed in the absorption spectrum of the reflected light from the infrared light film irradiated through the ATR prism. However, there is no known method for forming a film at a constant speed in order to obtain a homogeneous film.

導電性高分子膜の酸化度は導電率に影響するので、高分子アクチュエータ以外の用途で所望の酸化度を得るという要望があるが、導電性高分子膜の酸化度を制御する方法も知られていない。「シンセティックメタルズ」(非特許文献2、第64号、A.G.ランガマニ等、91〜95頁、1994年)には、作用電極として働くケイ素プリズムと、白金電極を電解液に浸漬し、プリズムを介して導電性高分子膜に赤外光を照射することにより、酸化度を調べることが記載されているものの、導電性高分子膜の形成中にリアルタイムで酸化度を制御するには至っていない。   Since the degree of oxidation of a conductive polymer film affects the conductivity, there is a demand for obtaining a desired degree of oxidation in applications other than polymer actuators, but a method for controlling the degree of oxidation of a conductive polymer film is also known. Not. In “Synthetic Metals” (Non-Patent Document 2, No. 64, AG Langamani et al., Pp. 91-95, 1994), a silicon prism serving as a working electrode and a platinum electrode are immersed in an electrolytic solution, Although it is described that the degree of oxidation is examined by irradiating the conductive polymer film with infrared light, the degree of oxidation has not been controlled in real time during the formation of the conductive polymer film.

「分析機器と解析システムに関する東京討論会講演要旨集」、赤尾ら、「顕微赤外ATR法による導電性高分子膜の生成過程の分析」、57〜58頁、1995年"Abstracts of the Tokyo Discussion Meeting on Analytical Instruments and Analytical Systems", Akao et al., "Analysis of Formation Process of Conducting Polymer Films by Microinfrared ATR", 57-58, 1995 シンセティックメタルズ、第64号、A.G.ランガマニら、「ケイ素電極上のポリピロールの全内部反射IRスペクトル」、91〜95頁、1994年Synthetic Metals, No. 64, A.G. Langamani et al., “Total Internal Reflection IR Spectrum of Polypyrrole on Silicon Electrode”, 91-95, 1994

従って本発明の目的は、導電性高分子膜に生じる変化とその吸収スペクトルとの相関関係から導電性高分子膜に生じさせる変化の条件を制御し、もって所望の導電性高分子膜を得る方法、及びかかる方法に用いる装置を提供することである。   Accordingly, an object of the present invention is to provide a method for obtaining a desired conductive polymer film by controlling the conditions of the change generated in the conductive polymer film from the correlation between the change generated in the conductive polymer film and its absorption spectrum. And an apparatus for use in such a method.

上記目的に鑑み鋭意研究の結果、本発明者等は、導電性高分子膜に生じた変化を反映する吸収スペクトルをモニターして吸収スペクトルと導電性高分子膜の変化との相関関係を求め、その関係に基づき導電性高分子膜に生じさせる変化の条件を制御することにより、所望の導電性高分子膜が得られることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventors have monitored the absorption spectrum reflecting the change occurring in the conductive polymer film, and obtained the correlation between the absorption spectrum and the change in the conductive polymer film, Based on this relationship, the inventors have discovered that a desired conductive polymer film can be obtained by controlling the conditions of changes caused in the conductive polymer film, and have arrived at the present invention.

すなわち、導電性高分子膜を製造する本発明の第一の方法は、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有する装置を使用し、(1) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置から前記作用電極及び前記対極に通電することにより前記作用電極上に導電性高分子膜を形成し、(2) 前記プリズムから出射した前記導電性高分子膜の反射光から前記受光部により吸収スペクトルを求め、(3) 前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の膜厚との関係を前記コントローラに蓄積し、(4) 前記吸光度と膜厚との関係に基づき、所望の膜厚を得るように前記作用電極及び前記対極への通電を前記コントローラにより制御することを特徴とする。
That is, the first method of the present invention for producing a conductive polymer film includes a prism having a working electrode formed on one surface, a light irradiation unit and a light receiving unit provided on both sides of the prism, and the working electrode. A container liquid-tightly attached to the prism so that the opening faces, an electrolytic solution containing a monomer for a conductive polymer and a dopant contained in the container, and a counter electrode placed in the electrolytic solution And a device having a power supply device connected to the working electrode and the counter electrode, and a controller connected to the light receiving unit and the power supply device, and (1) while irradiating light to the prism from the light irradiation unit Forming a conductive polymer film on the working electrode by energizing the working electrode and the counter electrode from the power supply device, and (2) receiving the light from the reflected light of the conductive polymer film emitted from the prism. The calculated absorption spectrum, (3) the absorbance of the conductive polymer film obtained from the absorption spectrum a relation between the thickness of the conductive polymer film is accumulated in the controller, (4) the absorbance and film Based on the relationship with the thickness , the controller controls the energization to the working electrode and the counter electrode so as to obtain a desired film thickness .

上記方法において、前記パラメータは好ましくは前記導電性高分子膜の膜厚であり、前記関係は好ましくは前記導電性高分子膜の膜厚と吸光度との検量線により表される。   In the above method, the parameter is preferably the thickness of the conductive polymer film, and the relationship is preferably expressed by a calibration curve between the thickness of the conductive polymer film and the absorbance.

導電性高分子膜の酸化還元状態を変更する本発明の方法は、前記導電性高分子膜が形成された作用電極を一面に有するプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容されたドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有する装置を使用し、(1) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置から前記作用電極及び前記対極に通電することにより前記導電性高分子膜の酸化還元状態を変化させ、(2) 前記プリズムから出射した前記導電性高分子膜の反射光から前記受光部により吸収スペクトルを求め、(3) 前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の酸化還元状態との関係を前記コントローラに蓄積し、(4) 前記吸光度と酸化還元状態の関係に基づき、所望の酸化還元状態を得るように前記作用電極及び前記対極への通電を前記コントローラにより制御することを特徴とする。   The method of the present invention for changing a redox state of a conductive polymer film includes a prism having a working electrode on which the conductive polymer film is formed on one side, a light irradiation unit and a light receiving unit provided on both sides of the prism. , A container liquid-tightly attached to the prism so that the opening faces the working electrode, an electrolytic solution containing a dopant contained in the container, and a counter electrode placed in the electrolytic solution And a device having a power supply device connected to the working electrode and the counter electrode, and a controller connected to the light receiving unit and the power supply device, and (1) while irradiating light to the prism from the light irradiation unit (2) changing the oxidation-reduction state of the conductive polymer film by energizing the working electrode and the counter electrode from the power supply device, and (2) receiving the reflected light from the conductive polymer film emitted from the prism. (3) storing the relationship between the absorbance of the conductive polymer film obtained from the absorption spectrum and the redox state of the conductive polymer film in the controller, and (4) the absorbance. On the basis of the relationship between the redox state and the redox state, the controller controls the energization of the working electrode and the counter electrode so as to obtain a desired redox state.

導電性高分子膜を製造する本発明の第の方法は、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有する装置を使用し、(1) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置から前記作用電極及び前記対極に通電することにより前記作用電極上に導電性高分子膜を形成し、(2) 前記プリズムから出射した前記導電性高分子膜の反射光から前記受光部により吸収スペクトルを求め、(3) 前記吸収スペクトルから求めた吸光度の経時変化と前記導電性高分子膜の膜厚との関係から、前記導電性高分子膜の成膜時間と膜厚を複数の電流レベルで求め、(4) 各電流レベルにおける前記成膜時間と膜厚との関係から微小区間における電流と成膜速度との関係を求めて、前記コントローラに蓄積し、(5) 前記電流と成膜速度との関係から、前記導電性高分子膜の成膜速度が一定となるように電流を制御することを特徴とする。
A second method of the present invention for producing a conductive polymer film includes a prism having a working electrode formed on one surface, a light irradiation unit and a light receiving unit provided on both sides of the prism, and an opening in the working electrode. A container liquid-tightly attached to the prism so as to face, an electrolytic solution containing a conductive polymer monomer and a dopant contained in the container, and a counter electrode placed in the electrolytic solution, Using a power supply device connected to the working electrode and the counter electrode, and a device having a controller connected to the light receiving unit and the power supply device, (1) while irradiating light to the prism from the light irradiation unit, A conductive polymer film is formed on the working electrode by energizing the working electrode and the counter electrode from a power supply device. (2) From the reflected light of the conductive polymer film emitted from the prism, the light receiving unit Suck (3) From the relationship between the change in absorbance obtained from the absorption spectrum with time and the film thickness of the conductive polymer film, the film formation time and film thickness of the conductive polymer film are set to a plurality of current levels. (4) The relationship between the current and the film formation speed in a minute interval is obtained from the relationship between the film formation time and the film thickness at each current level, and stored in the controller. (5) The current and the film formation From the relationship with the speed, the current is controlled so that the film forming speed of the conductive polymer film is constant.

上記いずれの方法においても、前記プリズムはケイ素、ゲルマニウム、セレン化亜鉛、臭ヨウ化タリウム、臭塩化タリウム、石英及びガラスからなる群から選択された少なくとも一種からなるのが好ましい。前記作用電極は貴金属薄膜からなるのが好ましい。前記吸収スペクトルの測定間隔は5μ秒〜60秒であるのが好ましい。前記導電性高分子はポリピロールであるのが好ましい。   In any of the above methods, the prism is preferably made of at least one selected from the group consisting of silicon, germanium, zinc selenide, thallium bromoiodide, thallium bromochloride, quartz, and glass. The working electrode is preferably made of a noble metal thin film. The measurement interval of the absorption spectrum is preferably 5 μs to 60 seconds. The conductive polymer is preferably polypyrrole.

導電性高分子膜を製造する本発明の第一の装置は、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有し、(a) 前記作用電極上に導電性高分子膜を形成するために、前記光照射部から前記プリズムに光を照射しながら、前記電源装置は前記作用電極及び前記対極に通電し、 (b) 前記受光部は前記プリズムから出射した前記導電性高分子膜の反射光から吸収スペクトルを求め、(c) 前記コントローラは前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の膜厚との関係を蓄積し、(d) 前記吸光度と膜厚との関係に基づき所望の膜厚を得るように、前記コントローラは前記作用電極及び前記対極への通電を制御することを特徴とする。
A first apparatus of the present invention for producing a conductive polymer film includes a prism having a working electrode formed on one surface, a light irradiation unit and a light receiving unit provided on both sides of the prism, and an opening in the working electrode. A container liquid-tightly attached to the prism so as to face, an electrolytic solution containing a conductive polymer monomer and a dopant contained in the container, and a counter electrode placed in the electrolytic solution, A power supply device connected to the working electrode and the counter electrode; and a controller connected to the light-receiving unit and the power supply device; (a) to form a conductive polymer film on the working electrode; The power supply device energizes the working electrode and the counter electrode while irradiating the prism with light from an irradiating unit, and (b) the light receiving unit absorbs an absorption spectrum from the reflected light of the conductive polymer film emitted from the prism. (C) The controller accumulates the relationship between the absorbance of the conductive polymer film obtained from the absorption spectrum and the film thickness of the conductive polymer film, and (d) a desired film based on the relationship between the absorbance and the film thickness. In order to obtain the thickness , the controller controls energization to the working electrode and the counter electrode.

導電性高分子膜の酸化還元状態を変更する本発明の装置は、前記導電性高分子膜が形成された作用電極を一面に有するプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容されたドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有し、(a) 前記作用電極上に導電性高分子膜を形成するために、前記光照射部から前記プリズムに光を照射しながら、前記電源装置は前記作用電極及び前記対極に通電し、(b) 前記受光部は前記プリズムから出射した前記導電性高分子膜の反射光から吸収スペクトルを求め、(c) 前記コントローラは前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の酸化還元状態との関係を蓄積し、(d) 前記吸光度と酸化還元状態の関係に基づき、所望の酸化還元状態を得るように前記コントローラは前記作用電極及び前記対極への通電を制御することを特徴とする。   The apparatus of the present invention for changing the oxidation-reduction state of the conductive polymer film includes a prism having a working electrode on which the conductive polymer film is formed on one side, a light irradiation unit and a light receiving unit provided on both sides of the prism. , A container liquid-tightly attached to the prism so that the opening faces the working electrode, an electrolytic solution containing a dopant contained in the container, and a counter electrode placed in the electrolytic solution And a power supply device connected to the working electrode and the counter electrode, and a controller connected to the light receiving unit and the power supply device, (a) In order to form a conductive polymer film on the working electrode, While irradiating light to the prism from the light irradiation unit, the power supply device energizes the working electrode and the counter electrode, and (b) the light receiving unit is reflected from the reflected light of the conductive polymer film emitted from the prism. Absorption spectrum Therefore, (c) the controller accumulates the relationship between the absorbance of the conductive polymer film obtained from the absorption spectrum and the redox state of the conductive polymer film, and (d) the absorbance and the redox state of the conductive polymer film. Based on the relationship, the controller controls energization to the working electrode and the counter electrode so as to obtain a desired redox state.

導電性高分子膜を製造する本発明の第の装置は、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有し、(a) 前記作用電極上に導電性高分子膜を形成するために、前記光照射部から前記プリズムに光を照射しながら、前記電源装置は前記作用電極及び前記対極に通電し、(b) 前記受光部は前記プリズムから出射した前記導電性高分子膜の反射光から吸収スペクトルを求め、(c) 前記コントローラは、前記吸収スペクトルから求めた吸光度の経時変化と前記導電性高分子膜の膜厚との関係から、前記導電性高分子膜の成膜時間と膜厚との関係を複数の電流レベルで求め、(d) 前記コントローラは、各電流レベルにおける前記成膜時間と膜厚との関係から微小区間における電流と成膜速度との関係を求めて蓄積し、(e) 前記コントローラは、前記電流と成膜速度との関係を用いて、前記導電性高分子膜の成膜速度が一定となるように電流を制御することを特徴とする。 A second apparatus of the present invention for producing a conductive polymer film includes a prism having a working electrode formed on one surface, a light irradiation unit and a light receiving unit provided on both sides of the prism, and an opening in the working electrode. A container liquid-tightly attached to the prism so as to face, an electrolytic solution containing a conductive polymer monomer and a dopant contained in the container, and a counter electrode placed in the electrolytic solution, A power supply device connected to the working electrode and the counter electrode; and a controller connected to the light-receiving unit and the power supply device; (a) to form a conductive polymer film on the working electrode; The power supply device energizes the working electrode and the counter electrode while irradiating the prism with light from an irradiating unit, and (b) the light receiving unit absorbs a spectrum of light reflected from the conductive polymer film emitted from the prism. (C) The controller calculates the relationship between the film formation time and the film thickness of the conductive polymer film from a relationship between the change in absorbance obtained from the absorption spectrum and the film thickness of the conductive polymer film at a plurality of current levels. (D) The controller obtains and accumulates the relationship between the current and the deposition rate in a minute interval from the relationship between the deposition time and the thickness at each current level, and (e) the controller Using the relationship between the current and the deposition rate, the current is controlled so that the deposition rate of the conductive polymer film is constant.

本発明により導電性高分子膜に生じさせる変化をリアルタイムで制御することができるので、所望の特性を有する導電性高分子膜を得ることができる。   According to the present invention, since the change generated in the conductive polymer film can be controlled in real time, a conductive polymer film having desired characteristics can be obtained.

[1] 第一の導電性高分子膜の製造方法
(A) 導電性高分子膜製造装置
図1は、本発明の導電性高分子膜の製造方法に用いる装置の一例を示す。この装置は、板状台形プリズム1と、板状台形プリズム1の上面を被覆する作用電極としての貴金属薄膜2と、プリズム1の貴金属薄膜2上にシール15を介して逆さに設けられた容器3と、プリズム1の一端側に設けられた光照射部4と、プリズム1の他端側に設けられた受光部5と、貴金属薄膜2に接続された電源装置16と、受光部5及び電源装置16に接続されたコントローラ6とを有する。
[1] Method for producing first conductive polymer film
(A) Conductive polymer film manufacturing apparatus FIG. 1 shows an example of an apparatus used in the method for manufacturing a conductive polymer film of the present invention. This apparatus includes a plate-shaped trapezoidal prism 1, a noble metal thin film 2 as a working electrode that covers the upper surface of the plate-shaped trapezoidal prism 1, and a container 3 provided upside down on a noble metal thin film 2 of the prism 1 through a seal 15. A light irradiation unit 4 provided on one end side of the prism 1, a light receiving unit 5 provided on the other end side of the prism 1, a power supply device 16 connected to the noble metal thin film 2, a light receiving unit 5 and a power supply device. And a controller 6 connected to 16.

プリズム1は光照射部4から照射される光Lを透過する。貴金属薄膜2の厚さは光Lの波長より小さいので、光Lは貴金属薄膜2を透過する。貴金属薄膜2の厚さは1〜100 nmであるのが好ましく、5〜50 nmであるのがより好ましく、10〜20 nmであるのが特に好ましい。貴金属薄膜2は良好な導電性及び耐食性を有する。プリズム1内で光Lが屈折する回数は特に限定されず、1回でも良いし、図1に示すように複数回でも良い。   The prism 1 transmits the light L emitted from the light irradiation unit 4. Since the thickness of the noble metal thin film 2 is smaller than the wavelength of the light L, the light L passes through the noble metal thin film 2. The thickness of the noble metal thin film 2 is preferably 1 to 100 nm, more preferably 5 to 50 nm, and particularly preferably 10 to 20 nm. The noble metal thin film 2 has good conductivity and corrosion resistance. The number of times the light L is refracted in the prism 1 is not particularly limited, and may be once or may be multiple times as shown in FIG.

貴金属薄膜2の上面に対して液密な容器3内には、ピロール等のモノマー及びドーパントを含有する電解液7が入れられている。電解液7には網状の対極8と、棒状の参照電極9が浸漬されている。対極8及び参照電極9の導線は、容器3の底壁31に設けられた穴31aを通って電源装置16に接続されている。コントローラ6は貴金属薄膜2及び対極8に対する通電を制御する。コントローラ6は、受光部5で感知された吸収スペクトルから求めた吸光度に基づいて、貴金属薄膜2及び対極8への通電を停止するタイミングを決定する。   An electrolytic solution 7 containing a monomer such as pyrrole and a dopant is placed in a liquid-tight container 3 with respect to the upper surface of the noble metal thin film 2. A net-like counter electrode 8 and a rod-like reference electrode 9 are immersed in the electrolytic solution 7. The conducting wires of the counter electrode 8 and the reference electrode 9 are connected to the power supply device 16 through a hole 31 a provided in the bottom wall 31 of the container 3. The controller 6 controls energization of the noble metal thin film 2 and the counter electrode 8. The controller 6 determines the timing for stopping energization of the noble metal thin film 2 and the counter electrode 8 based on the absorbance obtained from the absorption spectrum sensed by the light receiving unit 5.

容器3の底壁31にはガス供給管20及び排気管21が貫通しており、重合反応前及び/又は重合反応中に、容器3内の気体を窒素、アルゴン等の不活性ガスに置換する。ガス供給管20は二つに分岐され、一方は電解液7中で開口し、他方は電解液7の上で開口しており、不活性ガスの供給先を切り替えられるように分岐点には三方弁20aが設けられている。   A gas supply pipe 20 and an exhaust pipe 21 pass through the bottom wall 31 of the container 3, and the gas in the container 3 is replaced with an inert gas such as nitrogen or argon before and / or during the polymerization reaction. . The gas supply pipe 20 is branched into two, one opening in the electrolyte solution 7 and the other opening on the electrolyte solution 7, and the branch point is three-way so that the supply destination of the inert gas can be switched. A valve 20a is provided.

光照射部4は、プリズム1の斜面に所定の角度で光Lを照射する。光Lの波長は導電性高分子膜Fに吸収される限り特に限定されないが、一般的には200 nm〜25000 nm程度であり、赤外線領域内であるのが好ましい。光Lは導電性高分子膜Fで反射され、プリズム1内を透過して受光部5に入射し、吸収スペクトルが測定される。吸収スペクトルを測定する時間間隔は、短いほど導電性高分子膜の形成を精確に制御できるので、60秒以下が好ましいが、現実的な下限値は5μ秒である。   The light irradiation unit 4 irradiates the inclined surface of the prism 1 with the light L at a predetermined angle. The wavelength of the light L is not particularly limited as long as it is absorbed by the conductive polymer film F, but is generally about 200 nm to 25000 nm, and is preferably in the infrared region. The light L is reflected by the conductive polymer film F, passes through the prism 1 and enters the light receiving unit 5, and the absorption spectrum is measured. The shorter the time interval for measuring the absorption spectrum, the more accurately the formation of the conductive polymer film can be controlled. Therefore, 60 seconds or less is preferable, but the practical lower limit is 5 μs.

(B) 検量線
吸光度に基づいて通電の停止を決定するには、吸光度と膜厚の関係を示す検量線が必要である。検量線の作成には、図2に示すように、まず定電流又は定電圧で貴金属薄膜2と対極8との間に通電し、電解液7中のモノマーをドーパントを取り込みながら重合させ、貴金属薄膜2の上面に導電性高分子膜Fを形成する(工程1)。次いで光照射部4からプリズム1に光Lを照射し、プリズム1の下面での屈折と導電性高分子膜Fでの反射を数回繰り返させた後、反射光を受光部5に入射させ、導電性高分子膜Fの吸収スペクトルを測定し、吸光度S1を求める(工程2)。プリズム1に光Lを照射しながら導電性高分子膜Fを形成し、吸光度の経時変化を求めても良いが、検量線の作成には必須ではない。
(B) Calibration curve In order to determine the stop of energization based on the absorbance, a calibration curve indicating the relationship between absorbance and film thickness is required. As shown in FIG. 2, the calibration curve is created by first conducting a current between the noble metal thin film 2 and the counter electrode 8 with a constant current or a constant voltage, polymerizing the monomer in the electrolyte solution 7 while taking in the dopant, A conductive polymer film F is formed on the upper surface of 2 (step 1). Next, the light L is irradiated from the light irradiation unit 4 to the prism 1, and after refraction on the lower surface of the prism 1 and reflection on the conductive polymer film F is repeated several times, the reflected light is incident on the light receiving unit 5, The absorption spectrum of the conductive polymer film F is measured to determine the absorbance S 1 (step 2). The conductive polymer film F may be formed while irradiating the prism 1 with the light L, and the change in absorbance with time may be obtained. However, this is not essential for preparing a calibration curve.

導電性高分子膜Fを電解液7から取り出し、原子間力顕微鏡を用いて膜厚T1を測定する(工程3)。工程2及び3により、吸光度S1を示す導電性高分子膜Fの膜厚T1が分かる。色々な通電時間で工程1〜3を繰り返すことにより、吸光度S2、S3、S4・・・とそれに対応する膜厚T2、T3、T4・・・を測定し、膜厚と吸光度の検量線を作成する(工程4)。 A conductive polymer film F is taken out from the electrolytic solution 7, for measuring the thickness T 1 by using an atomic force microscope (Step 3). By steps 2 and 3, the film thickness T 1 of the conductive polymer film F exhibiting the absorbance S 1 can be found. By repeating steps 1 to 3 with various energization times, the absorbance S 2 , S 3 , S 4 ... And the corresponding film thicknesses T 2 , T 3 , T 4. An absorbance calibration curve is created (step 4).

(C) 導電性高分子膜の製造
図1に示す装置を使用し、得られた検量線を用いて所望の膜厚の導電性高分子膜Fを製造するため、光照射部4からプリズム1に光Lを照射しながら、電源装置16から貴金属薄膜2と対極8との間に通電し、貴金属薄膜2上に導電性高分子膜Fを形成する。導電性高分子膜Fで反射した光Lが受光部5に入射するので、受光部5は導電性高分子膜Fの吸収スペクトルを測定することができる。
(C) Manufacture of Conductive Polymer Film Using the apparatus shown in FIG. 1, in order to manufacture the conductive polymer film F having a desired film thickness using the obtained calibration curve, the light irradiation unit 4 starts the prism 1. While irradiating light L to the noble metal thin film 2 and the counter electrode 8 from the power supply device 16, the conductive polymer film F is formed on the noble metal thin film 2. Since the light L reflected by the conductive polymer film F enters the light receiving unit 5, the light receiving unit 5 can measure the absorption spectrum of the conductive polymer film F.

図3は、貴金属薄膜2と対極8との間に0.8 Vの電圧を印加して製造したポリピロールからなる導電性高分子膜Fに対して、3分経過するまで15秒ごとに測定した吸収スペクトルを示す。電解液7中のピロールモノマー濃度は0.3 mol/Lであり、ドーパントとなるパラトルエンスルホン酸の濃度は0.2 mol/Lである。図3(a) は波数950〜4000 cm-1における吸収スペクトルを示し、図3(b) はその一部である950〜1950 cm-1の範囲の吸収スペクトルを示す。1550 cm-1におけるピークPPrはポリピロールに帰属し、ピークPTSはパラトルエンスルホン酸に帰属する。ピロールの重合が進むにつれてピークPPrは大きくなるが、重合時間が3分を超えると、ピークの増大化ペースは低下する傾向がある。これは、ポリピロール膜が厚くなり過ぎたために、ポリピロール膜による遮光で光Lが達し難くなるためと考えられる。 FIG. 3 shows an absorption spectrum measured every 15 seconds for a conductive polymer film F made of polypyrrole produced by applying a voltage of 0.8 V between the noble metal thin film 2 and the counter electrode 8 until 3 minutes have passed. Indicates. The concentration of pyrrole monomer in the electrolytic solution 7 is 0.3 mol / L, and the concentration of paratoluenesulfonic acid serving as a dopant is 0.2 mol / L. FIG. 3 (a) shows an absorption spectrum at a wave number of 950 to 4000 cm −1 , and FIG. 3 (b) shows an absorption spectrum in the range of 950 to 1950 cm −1 which is a part thereof. The peak PPr at 1550 cm −1 belongs to polypyrrole, and the peak PTS belongs to paratoluenesulfonic acid. The peak PPr increases as the polymerization of pyrrole proceeds, but when the polymerization time exceeds 3 minutes, the peak increasing rate tends to decrease. This is presumably because the light L is difficult to reach due to light shielding by the polypyrrole film because the polypyrrole film has become too thick.

コントローラ6は、受光部5で検知した吸収スペクトルから求めた吸光度から、膜厚と吸光度の検量線を用いて導電性高分子膜Fの膜厚を求めるとともに、成膜時間と吸光度との関係から導電性高分子膜Fが所期の膜厚になるタイミングを求め、そのタイミングで通電を停止する。膜厚を精確に制御するには、導電性高分子膜Fの表面まで光Lが十分に達する必要がある。光Lが十分に達しうる膜厚の上限は導電性高分子の種類により異なるが、ポリピロール膜の場合、概ね2μmである。   The controller 6 obtains the film thickness of the conductive polymer film F from the absorbance obtained from the absorption spectrum detected by the light receiving unit 5 using the calibration curve of the film thickness and absorbance, and from the relationship between the film formation time and the absorbance. The timing at which the conductive polymer film F reaches the desired film thickness is obtained, and the energization is stopped at that timing. In order to accurately control the film thickness, the light L needs to reach the surface of the conductive polymer film F sufficiently. The upper limit of the film thickness that the light L can reach sufficiently varies depending on the type of the conductive polymer, but in the case of a polypyrrole film, it is approximately 2 μm.

[2] 導電性高分子膜の酸化還元状態の変更方法
導電性高分子膜Fの酸化還元状態を変更するには、図1と同じ装置を用い、貴金属薄膜2上に導電性高分子膜Fが形成されたプリズム1を、モノマーを含有せずにドーパントを含有する電解液7に浸漬する。光照射部4によりプリズム1の斜面に所定の角度で光Lを照射しながら、電源装置16により貴金属薄膜2と対極8との間に通電する。通電の方向に応じて導電性高分子膜Fは酸化又は還元され、吸収スペクトルも変化する。吸収スペクトルから吸光度を求めるとともに、導電性高分子膜Fの酸化還元電位を測定する。色々な通電時間で吸光度及び酸化還元電位を測定すると、吸光度と酸化還元電位の検量線を作成できる。コントローラ6は検量線から所望の酸化還元電位のときの吸光度を決定し、吸光度と通電時間との関係から必要な通電時間を決定する。その時間通電すると、所望の酸化還元電位を有する導電性高分子膜Fを得ることができる。導電性高分子膜Fは理想的には酸化状態と還元状態との間を可逆的に往復するので、吸光度の経時変化を参照して通電の停止のタイミングを決定することにより、最も酸化した状態の導電性高分子膜Fを得たり、中性の導電性高分子膜Fを得たり、最も還元した状態の導電性高分子膜Fを得たりすることができる。
[2] Method of changing the redox state of the conductive polymer film To change the redox state of the conductive polymer film F, the conductive polymer film F is placed on the noble metal thin film 2 using the same apparatus as in FIG. The prism 1 formed with is immersed in an electrolytic solution 7 containing a dopant without containing a monomer. The light source 4 energizes between the noble metal thin film 2 and the counter electrode 8 while irradiating the light L on the inclined surface of the prism 1 at a predetermined angle. Depending on the direction of energization, the conductive polymer film F is oxidized or reduced, and the absorption spectrum also changes. Absorbance is obtained from the absorption spectrum, and the redox potential of the conductive polymer film F is measured. When absorbance and oxidation-reduction potential are measured at various energization times, a calibration curve of absorbance and oxidation-reduction potential can be created. The controller 6 determines the absorbance at the desired redox potential from the calibration curve, and determines the necessary energization time from the relationship between the absorbance and the energization time. When energized for that time, a conductive polymer film F having a desired redox potential can be obtained. Since the conductive polymer film F ideally reciprocally reciprocates between the oxidized state and the reduced state, the most oxidized state can be obtained by determining the timing of stopping energization with reference to the change in absorbance over time. The conductive polymer film F can be obtained, the neutral conductive polymer film F can be obtained, or the most reduced conductive polymer film F can be obtained.

[3] 第二の導電性高分子膜の製造方法
図4を参照して、一定の成膜速度で貴金属薄膜2上に導電性高分子膜Fを形成する方法を説明する。図1に示す装置を用い、導電性高分子膜Fの反射光の吸収スペクトル(吸光度)を測定しながら、貴金属薄膜2と対極8との間に一定の電流A1を流し、導電性高分子膜Fを形成する(工程5)。この際、各吸光度における導電性高分子膜Fの膜厚を原子間力顕微鏡を用いて測定し、電流A1における吸光度と膜厚との関係を求める。さらに吸光度の経時変化と各吸光度における膜厚から、電流A1における成膜時間と膜厚の関係を求める(工程6)。複数の電流A2、A3・・・で工程5及び6を繰り返し、それぞれ吸光度と膜厚との関係及び成膜時間と膜厚の関係を求める(工程7)。簡単化のために、図5は電流A1、A2、A3における吸光度と膜厚との関係を示し、図6は電流A1、A2、A3における成膜時間と膜厚との関係を示す。図6から明らかなように、成膜時間に対して膜厚はS字状に変化する。
[3] Method for Producing Second Conductive Polymer Film A method for forming the conductive polymer film F on the noble metal thin film 2 at a constant deposition rate will be described with reference to FIG. Using the apparatus shown in FIG. 1, while measuring the absorption spectrum (absorbance) of the reflected light of the conductive polymer film F, a constant current A 1 is passed between the noble metal thin film 2 and the counter electrode 8, and the conductive polymer film A film F is formed (step 5). At this time, the film thickness of the conductive polymer film F at each absorbance is measured using an atomic force microscope, and the relationship between the absorbance at the current A 1 and the film thickness is obtained. Further, the relationship between the film formation time and the film thickness at the current A 1 is obtained from the change in absorbance with time and the film thickness at each absorbance (step 6). Steps 5 and 6 are repeated with a plurality of currents A 2 , A 3 ... To determine the relationship between absorbance and film thickness and the relationship between film formation time and film thickness (step 7). For simplicity, FIG. 5 shows the relationship between absorbance and the film thickness of the current A 1, A 2, A 3, Figure 6 is the deposition time and the film thickness of the current A 1, A 2, A 3 Show the relationship. As is apparent from FIG. 6, the film thickness changes in an S shape with respect to the film formation time.

例えば図6において点線Vで表される一定の成膜速度で導電性高分子膜Fを製造するとする。図7に拡大して示すように、時刻t1からt2に短い時間Δtが経過したとき、導電性高分子膜FはT1からT2までΔTだけ厚くなる。同じ区間Δtでは、一定の電流A1、A2、A3における導電性高分子膜Fの膜厚の増分はそれぞれΔTA1,ΔTA2,ΔTA3となる。そこで、電流と導電性高分子膜Fの膜厚の増分との関係を図8に示す。電流がA1、A2、A3と変化するにつれて、導電性高分子膜Fの膜厚の増分はΔTA1,ΔTA2,ΔTA3と非直線的に変化する。従って、膜厚の増分を電流の関数としてプログラム化しておけば、区間Δt内で膜厚増分ΔTを得るのに必要な電流AXを計算できる。区間Δtでは電流を一定と仮定しても、区間Δtは非常に短いので、上記計算を全成膜時間で行えば、実質的に一定の成膜速度を得るために時間的に変化する電流を求めることができる。なお電流を制御する代わりに電圧を制御しても良い。 For example, it is assumed that the conductive polymer film F is manufactured at a constant film formation speed represented by the dotted line V in FIG. As shown in FIG. 7 in an enlarged manner, when a short time Δt has elapsed from time t 1 to time t 2 , the conductive polymer film F becomes thicker by ΔT from T 1 to T 2 . In the same section Δt, the increments of the film thickness of the conductive polymer film F at constant currents A 1 , A 2 , and A 3 are ΔT A1 , ΔT A2 , and ΔT A3 , respectively. Therefore, the relationship between the current and the increment of the film thickness of the conductive polymer film F is shown in FIG. As the current changes to A 1 , A 2 , and A 3 , the increment of the film thickness of the conductive polymer film F changes nonlinearly to ΔT A1 , ΔT A2 , and ΔT A3 . Therefore, if programmed thickness increment as a function of current and calculate the necessary current A X to obtain a film thickness increment ΔT in a section Delta] t. Even if the current is assumed to be constant in the interval Δt, the interval Δt is very short. Therefore, if the above calculation is performed for the entire film formation time, the current that changes with time in order to obtain a substantially constant film formation rate is obtained. Can be sought. Note that the voltage may be controlled instead of controlling the current.

[4] 導電性高分子膜製造装置の種々の例
導電性高分子膜製造装置が具備するプリズム1は、図1に示す台形状のものに限定されない。図9は三角柱状プリズム11を示す。光Lは第一斜面11aから三角柱状プリズム11に入り、導電性高分子膜Fで反射されて第二斜面11bから出る。図10は半円柱プリズム12を示す。光Lは曲面12aの一点から半円柱プリズム12に入り、導電性高分子膜Fで反射されて、曲面12aの他の点から出る。
[4] Various Examples of Conductive Polymer Film Manufacturing Apparatus The prism 1 included in the conductive polymer film manufacturing apparatus is not limited to the trapezoidal shape shown in FIG. FIG. 9 shows a triangular prism 11. The light L enters the triangular prism 11 from the first slope 11a, is reflected by the conductive polymer film F, and exits from the second slope 11b. FIG. 10 shows a semi-cylindrical prism 12. The light L enters the semi-cylindrical prism 12 from one point of the curved surface 12a, is reflected by the conductive polymer film F, and exits from the other point of the curved surface 12a.

プリズムを構成する材料の好ましい例としてケイ素、ゲルマニウム、セレン化亜鉛、臭ヨウ化タリウム、臭塩化タリウム、石英及びガラスが挙げられる。貴金属薄膜の好ましい材料として金及び白金が挙げられる。   Preferred examples of the material constituting the prism include silicon, germanium, zinc selenide, thallium bromoiodide, thallium bromochloride, quartz and glass. Preferred materials for the noble metal thin film include gold and platinum.

図11は導電性高分子膜製造装置の別の例を示す。この装置は、導電性高分子膜Fが形成される貴金属薄膜2を有する薄板101を有する点と、薄板101の下面に複数の半円柱プリズム12の底面が付着している点以外、図1に示す例と同じであるので、以下相違点のみ説明する。なお図の簡略化のために、光照射部4、受光部5、コントローラ6、電源装置16、ガス供給管20、及び排気管21を省略する。薄板101は円柱状プリズム12と同じ屈折率を有する。貴金属薄膜2の好ましい厚さは図1に示す例と同じである。   FIG. 11 shows another example of the conductive polymer film production apparatus. This apparatus is shown in FIG. 1 except that it has a thin plate 101 having a noble metal thin film 2 on which a conductive polymer film F is formed and that the bottom surfaces of a plurality of semi-cylindrical prisms 12 are attached to the lower surface of the thin plate 101. Since this is the same as the example shown, only the differences will be described below. For simplification of the drawing, the light irradiation unit 4, the light receiving unit 5, the controller 6, the power supply device 16, the gas supply pipe 20, and the exhaust pipe 21 are omitted. The thin plate 101 has the same refractive index as the cylindrical prism 12. The preferred thickness of the noble metal thin film 2 is the same as the example shown in FIG.

図11に示す例では、2つの半円柱プリズム12,12が同軸的に設けられているが、プリズム12の形状、数及び配置はこれに限定されない。プリズム12は1つ又は3つ以上でも良いし、並列に設けられても良い。プリズム12の直径は一般的に10〜200 mmであるが、10〜50 mmが好ましい。図11に示す装置により、複数箇所で吸収スペクトルを測定しながら導電性高分子膜Fを製造することができる。   In the example shown in FIG. 11, the two semi-cylindrical prisms 12 and 12 are provided coaxially, but the shape, number and arrangement of the prisms 12 are not limited to this. One or more prisms 12 may be provided, or they may be provided in parallel. The diameter of the prism 12 is generally 10 to 200 mm, preferably 10 to 50 mm. With the apparatus shown in FIG. 11, the conductive polymer film F can be manufactured while measuring absorption spectra at a plurality of locations.

以上導電性高分子膜Fの膜厚や酸化還元状態を制御するために作用電極である貴金属薄膜2と対極8との間に与える電流又は電圧を停止したり調整したりする方法を説明したが、コントローラ6による制御はこれらに限らない。モノマー及びドーパントの供給管を容器3に設け、モノマー及び/又はドーパントの濃度を変化させるために、モノマー及び/又はドーパントの供給を制御しても良い。またコントローラ6により電解液7の温度を変えると、モノマーとドーパントの反応速度を変化させることができる。   The method for stopping or adjusting the current or voltage applied between the noble metal thin film 2 as the working electrode and the counter electrode 8 in order to control the film thickness and redox state of the conductive polymer film F has been described. The control by the controller 6 is not limited to these. A monomer and dopant supply pipe may be provided in the container 3 to control the monomer and / or dopant supply in order to change the monomer and / or dopant concentration. Moreover, when the temperature of the electrolyte solution 7 is changed by the controller 6, the reaction rate of the monomer and the dopant can be changed.

本発明による制御対象は、導電性高分子膜Fの膜厚、成膜速度及び酸化還元状態の他、分子集合構造(例えば導電性高分子とドーパントとの結合状態)等が挙げられる。導電性高分子とドーパントとの結合状態を制御するには、これらの結合状態に起因する吸収スペクトルのピークの高さと、X線光電子分光法(XPS)により測定した結合状態から検量線を作成し、それを参照して、ピークの測定高さに基づいて電流又は電圧を制御すればよい。   Examples of the control target according to the present invention include the molecular assembly structure (for example, the bonding state between the conductive polymer and the dopant) in addition to the film thickness of the conductive polymer film F, the deposition rate, and the oxidation-reduction state. To control the bonding state between the conductive polymer and the dopant, create a calibration curve from the peak height of the absorption spectrum caused by these bonding states and the bonding state measured by X-ray photoelectron spectroscopy (XPS). Referring to it, the current or voltage may be controlled based on the measured height of the peak.

溶媒にモノマー及びドーパントを滴下して導電性高分子膜を形成する場合、吸収スペクトルから求めた吸光度から、吸光度と膜厚の関係を示す検量線を利用して膜厚を求め、その膜厚をモニターする。例えば膜厚の増大速度(成膜速度)が一定となるように、モノマー及びドーパントの滴下速度を制御する。   When a conductive polymer film is formed by dropping a monomer and a dopant into a solvent, the film thickness is obtained from the absorbance obtained from the absorption spectrum using a calibration curve indicating the relationship between the absorbance and the film thickness. Monitor. For example, the dropping rate of the monomer and dopant is controlled so that the rate of film thickness increase (film forming rate) is constant.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
(a) 検量線の作成
プリズム1が半円柱状である以外図1と同じ装置を用い、プリズム1上の貴金属薄膜2の上に導電性高分子膜Fを形成し、吸収スペクトルを測定した。導電性高分子の合成条件、及び吸収スペクトルの測定条件は下記のとおりとした。

電解液 ピロールモノマー:0.3 mol/L
パラトルエンスルホン酸ナトリウム:0.2 mol/L
溶媒:水
液量:20 mL
プリズム 半円柱状ケイ素結晶プリズム(φ25 mm×25 mm)
作用電極 厚さ20 nmの金薄膜
対極 白金板(20 mm×40 mm×0.5 mm)
参照電極 銀/塩化銀電極(直径4.6 mm、長さ11.5 mm)
赤外線分光装置 パーキンエルマー社製の「スペクトラムワン」
電流 0.1 A
Example 1
(a) Preparation of calibration curve A conductive polymer film F was formed on the noble metal thin film 2 on the prism 1 except that the prism 1 was semicylindrical, and the absorption spectrum was measured. The synthesis conditions of the conductive polymer and the measurement conditions of the absorption spectrum were as follows.

Electrolyte pyrrole monomer: 0.3 mol / L
Sodium paratoluenesulfonate: 0.2 mol / L
Solvent: water
Liquid volume: 20 mL
Prism Semi-cylindrical silicon crystal prism (φ25 mm × 25 mm)
Working electrode Gold thin film with a thickness of 20 nm Counter electrode Platinum plate (20 mm x 40 mm x 0.5 mm)
Reference electrode Silver / silver chloride electrode (diameter 4.6 mm, length 11.5 mm)
Infrared spectrometer "Spectrum One" manufactured by PerkinElmer
Current 0.1 A

金薄膜2を正極とし、白金板を負極として、0.1 Aの定電流を15秒供給した後、ポリピロール膜Fが形成したプリズム1を電解液7から取り出し、原子間力顕微鏡(日本電子株式会社製、JSPM-4200)で膜厚を測定した。また通電時間を30秒、60秒、90秒及び180秒とした以外は同じ条件でポリピロール膜Fを形成し、それぞれ膜厚を測定した。吸収スペクトルから求めた吸光度と膜厚の測定結果から検量線を作成した。検量線を図12に示す。図12から、約90秒まで検量線は増分(傾斜)が次第に増大する曲線状であり、ポリピロール膜Fの成膜速度は成膜時間とともに増大していることが分かる。図12から、0.1 Aにおける成膜時間と膜厚との関係が分かる。   After supplying a constant current of 0.1 A for 15 seconds using a gold thin film 2 as a positive electrode and a platinum plate as a negative electrode, the prism 1 formed with the polypyrrole film F was taken out from the electrolyte solution 7 and then subjected to atomic force microscope (manufactured by JEOL Ltd. , JSPM-4200). A polypyrrole film F was formed under the same conditions except that the energization time was 30 seconds, 60 seconds, 90 seconds, and 180 seconds, and the film thicknesses were measured. A calibration curve was prepared from the measurement results of absorbance and film thickness obtained from the absorption spectrum. A calibration curve is shown in FIG. From FIG. 12, it can be seen that the calibration curve is a curved line whose increment (inclination) gradually increases until about 90 seconds, and the deposition rate of the polypyrrole film F increases with the deposition time. FIG. 12 shows the relationship between the film formation time and the film thickness at 0.1 A.

(b) 成膜時間と膜厚のグラフを作成
吸収スペクトルを測定しながら、0.05 A及び0.15 Aの定電流でポリピロール膜Fを形成した。ポリピロール膜Fの製造条件、及び吸収スペクトルの測定条件は工程(a) と同じにした。0.05 A及び0.15 Aにおける吸光度と膜厚の関係を図12に併せて示す。0.05 A、0.1 A及び0.15 Aにおける成膜時間と膜厚の関係は、図6に示すようになった。
(b) Creation of graph of film formation time and film thickness Polypyrrole film F was formed at constant currents of 0.05 A and 0.15 A while measuring absorption spectra. The production conditions for the polypyrrole film F and the measurement conditions for the absorption spectrum were the same as in step (a). The relationship between absorbance and film thickness at 0.05 A and 0.15 A is also shown in FIG. The relationship between the film formation time and the film thickness at 0.05 A, 0.1 A, and 0.15 A is as shown in FIG.

(c) ポリピロール膜Fの製造
工程(b) で得られた各電流における成膜時間と膜厚の関係に基づき、図8に示す電流と膜厚の増分との関係を求めた。電流と膜厚の増分との関係に基づき、成膜速度が一定の10 nm/sとなるように、電流をコントローラ6により制御した。工程(a) と同じ条件で、制御した電流で金薄膜2上にポリピロール膜Fを形成した。10秒、20秒、30秒・・・60秒の成膜時間におけるポリピロール膜の膜厚を原子間力顕微鏡で測定した。ポリピロール膜Fの成膜時間と膜厚の関係を図13に示す。図13から明らかなように、電流を制御することによりほぼ一定の成膜速度が得られた。60秒の成膜時間で得られたポリピロール膜F の厚さは600 nmであった。
(c) Production of polypyrrole film F Based on the relationship between the film formation time and the film thickness at each current obtained in step (b), the relationship between the current and the film thickness increment shown in FIG. 8 was determined. Based on the relationship between the current and the increase in film thickness, the current was controlled by the controller 6 so that the film formation rate was a constant 10 nm / s. A polypyrrole film F was formed on the gold thin film 2 with a controlled current under the same conditions as in the step (a). The film thickness of the polypyrrole film was measured with an atomic force microscope for 10 seconds, 20 seconds, 30 seconds, ... 60 seconds. FIG. 13 shows the relationship between the film formation time of the polypyrrole film F and the film thickness. As is apparent from FIG. 13, a substantially constant film formation rate was obtained by controlling the current. The thickness of the polypyrrole film F 1 obtained with a film formation time of 60 seconds was 600 nm.

比較例1
金薄膜2と対極8との間に0.8 Vの定電圧を印加した以外実施例1の工程(c) と同様にしてポリピロール膜Fを製造した。成膜時間と膜厚を図13に併せて示す。図13から明らかなように、成膜速度は一定でなかった。60秒の成膜時間で得られたポリピロール膜の膜厚は700 nmであった。
Comparative Example 1
A polypyrrole film F was produced in the same manner as in step (c) of Example 1 except that a constant voltage of 0.8 V was applied between the gold thin film 2 and the counter electrode 8. The film formation time and film thickness are also shown in FIG. As is clear from FIG. 13, the deposition rate was not constant. The film thickness of the polypyrrole film obtained with a film formation time of 60 seconds was 700 nm.

本発明の導電性高分子膜製造装置の一例を示す断面図である。It is sectional drawing which shows an example of the conductive polymer film manufacturing apparatus of this invention. 検量線の作成方法を示す工程図である。It is process drawing which shows the preparation method of a calibration curve. 導電性高分子膜の吸収スペクトルの経時変化を示すグラフであり、(a) は波数950 cm-1〜4000 cm-1の範囲の吸収スペクトルを示し、(b) は(a) の一部を拡大したもので、波数950 cm-1〜1950 cm-1の範囲の吸収スペクトルを示す。It is a graph showing the time-dependent change of the absorption spectrum of a conductive polymer film. (A) shows the absorption spectrum in the range of wave numbers from 950 cm -1 to 4000 cm -1 , and (b) shows a part of (a). It is an enlarged view showing an absorption spectrum in the range of wave numbers from 950 cm −1 to 1950 cm −1 . 導電性高分子膜の成膜時間と膜厚の関係を求める方法を示す工程図である。It is process drawing which shows the method of calculating | requiring the relationship between the film-forming time and film thickness of a conductive polymer film. 各電流における吸光度と導電性高分子膜の膜厚との関係を概略的に示すグラフである。It is a graph which shows roughly the relationship between the light absorbency in each electric current, and the film thickness of a conductive polymer film. 各電流における成膜時間と導電性高分子膜の膜厚との関係を概略的に示すグラフである。It is a graph which shows roughly the relationship between the film-forming time in each electric current, and the film thickness of a conductive polymer film. 図6の一部を拡大して示すグラフである。It is a graph which expands and shows a part of FIG. 電流と導電性高分子膜の膜厚の増分との関係を概略的に示すグラフである。It is a graph which shows roughly the relationship between an electric current and the increment of the film thickness of a conductive polymer film. 容器が被せられたプリズムの別の例を示す断面図である。It is sectional drawing which shows another example of the prism with which the container was covered. 容器が被せられたプリズムのさらに別の例を示す断面図である。It is sectional drawing which shows another example of the prism with which the container was covered. 導電性高分子膜製造装置の別の例を示す図であり、(a) は縦断面図であり、(b) は(a) のX-X断面図である。FIG. 4 is a view showing another example of the conductive polymer film production apparatus, in which (a) is a longitudinal sectional view and (b) is an XX sectional view of (a). 実施例1で求めた各電流における導電性高分子膜の成膜時間と吸光度の関係を示すグラフである。4 is a graph showing the relationship between the film formation time of a conductive polymer film and the absorbance at each current obtained in Example 1. 実施例1及び比較例1で得られたポリピロール膜の成膜時間と膜厚との関係を示すグラフである。6 is a graph showing the relationship between the film formation time and the film thickness of the polypyrrole films obtained in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1・・・プリズム
2・・・貴金属薄膜
3・・・容器
4・・・光照射部
5・・・受光部
6・・・コントローラ
7・・・電解液
8・・・対極
9・・・参照電極
15・・・シール
16・・・電源装置
20・・・ガス供給管
21・・・排気管
F・・・導電性高分子膜
L・・・光
DESCRIPTION OF SYMBOLS 1 ... Prism 2 ... Precious metal thin film 3 ... Container 4 ... Light irradiation part 5 ... Light receiving part 6 ... Controller 7 ... Electrolyte solution 8 ... Counter electrode 9 ... Refer to electrode
15 ... Seal
16 ... Power supply
20 ... Gas supply pipe
21 ... Exhaust pipe
F ... Conductive polymer film
L ... light

Claims (7)

導電性高分子膜を製造する方法であって、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有する装置を使用し、(1) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置から前記作用電極及び前記対極に通電することにより前記作用電極上に導電性高分子膜を形成し、(2) 前記プリズムから出射した前記導電性高分子膜の反射光から前記受光部により吸収スペクトルを求め、(3) 前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の膜厚との関係を前記コントローラに蓄積し、(4) 前記吸光度と膜厚との関係に基づき、所望の膜厚を得るように前記作用電極及び前記対極への通電を前記コントローラにより制御することを特徴とする方法。   A method of manufacturing a conductive polymer film, comprising a prism having a working electrode formed on one side thereof, a light irradiation unit and a light receiving unit provided on both sides of the prism, and an opening facing the working electrode. A container liquid-tightly attached to the prism, an electrolytic solution containing a monomer for a conductive polymer and a dopant contained in the container, a counter electrode placed in the electrolytic solution, the working electrode, Using a device having a power supply device connected to the counter electrode and a controller connected to the light receiving unit and the power supply device, (1) while irradiating light to the prism from the light irradiation unit, from the power supply device A conductive polymer film is formed on the working electrode by energizing the working electrode and the counter electrode, and (2) an absorption spectrum is reflected by the light receiving unit from the reflected light of the conductive polymer film emitted from the prism. (3) storing the relationship between the absorbance of the conductive polymer film obtained from the absorption spectrum and the film thickness of the conductive polymer film in the controller, and (4) the absorbance and the film thickness. On the basis of the relationship, the controller controls the energization to the working electrode and the counter electrode so as to obtain a desired film thickness. 請求項1に記載の導電性高分子膜の製造方法において、前記関係が前記導電性高分子膜の膜厚と吸光度との検量線により表されることを特徴とする方法。   2. The method for producing a conductive polymer film according to claim 1, wherein the relationship is expressed by a calibration curve between the film thickness and the absorbance of the conductive polymer film. 導電性高分子膜の酸化還元状態を変更する方法であって、前記導電性高分子膜が形成された作用電極を一面に有するプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容されたドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有する装置を使用し、(1) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置から前記作用電極及び前記対極に通電することにより前記導電性高分子膜の酸化還元状態を変化させ、(2) 前記プリズムから出射した前記導電性高分子膜の反射光から前記受光部により吸収スペクトルを求め、(3) 前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の酸化還元状態との関係を前記コントローラに蓄積し、(4) 前記吸光度と酸化還元状態の関係に基づき、所望の酸化還元状態を得るように前記作用電極及び前記対極への通電を前記コントローラにより制御することを特徴とする方法。   A method for changing the oxidation-reduction state of a conductive polymer film, the prism having a working electrode on which the conductive polymer film is formed on one side, and a light irradiation unit and a light receiving unit provided on both sides of the prism A container that is liquid-tightly attached to the prism so that the opening faces the working electrode, an electrolyte containing a dopant contained in the container, and a counter electrode that is placed in the electrolyte , Using a power supply device connected to the working electrode and the counter electrode, and a device having a controller connected to the light receiving unit and the power supply device, (1) while irradiating light to the prism from the light irradiation unit, By energizing the working electrode and the counter electrode from the power supply device, the redox state of the conductive polymer film is changed, and (2) the light reception from the reflected light of the conductive polymer film emitted from the prism (3) storing the relationship between the absorbance of the conductive polymer film obtained from the absorption spectrum and the redox state of the conductive polymer film in the controller, and (4) the absorbance and A method of controlling the energization to the working electrode and the counter electrode by the controller so as to obtain a desired redox state based on the relationship of the redox state. 導電性高分子膜を一定の成膜速度で製造する方法であって、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有する装置を使用し、(1) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置から前記作用電極及び前記対極に通電することにより前記作用電極上に導電性高分子膜を形成し、(2) 前記プリズムから出射した前記導電性高分子膜の反射光から前記受光部により吸収スペクトルを求め、(3) 前記吸収スペクトルから求めた吸光度の経時変化と前記導電性高分子膜の膜厚との関係から、前記導電性高分子膜の成膜時間と膜厚との関係を複数の電流レベルで求め、(4) 各電流レベルにおける前記成膜時間と膜厚との関係から微小区間における電流と成膜速度との関係を求めて、前記コントローラに蓄積し、(5) 前記電流と成膜速度との関係から、前記導電性高分子膜の成膜速度が一定となるように電流を制御することを特徴とする方法。   A method for producing a conductive polymer film at a constant deposition rate, comprising: a prism having a working electrode formed on one surface; a light irradiation unit and a light receiving unit provided on both sides of the prism; and the working electrode. A container liquid-tightly attached to the prism so that the opening faces, an electrolytic solution containing a monomer for a conductive polymer and a dopant contained in the container, and a counter electrode placed in the electrolytic solution And a device having a power supply device connected to the working electrode and the counter electrode, and a controller connected to the light receiving unit and the power supply device, and (1) while irradiating light to the prism from the light irradiation unit Forming a conductive polymer film on the working electrode by energizing the working electrode and the counter electrode from the power supply device, and (2) receiving the light from the reflected light of the conductive polymer film emitted from the prism. Part (3) From the relationship between the change in absorbance obtained from the absorption spectrum with time and the film thickness of the conductive polymer film, the relationship between the film formation time and film thickness of the conductive polymer film (4) Obtain the relationship between the film formation time and the film thickness at each current level from the relationship between the film formation time and the film thickness, and determine the relationship between the current and the film formation rate in the minute section, and accumulate in the controller. A method in which the current is controlled so that the deposition rate of the conductive polymer film is constant from the relationship between the current and the deposition rate. 導電性高分子膜の製造装置であって、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有し、(a) 前記作用電極上に導電性高分子膜を形成するために、前記光照射部から前記プリズムに光を照射しながら、前記電源装置は前記作用電極及び前記対極に通電し、(b) 前記受光部は前記プリズムから出射した前記導電性高分子膜の反射光から吸収スペクトルを求め、(c) 前記コントローラは前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の膜厚との関係を蓄積し、(d) 前記吸光度と膜厚との関係に基づき所望の膜厚を得るように、前記コントローラは前記作用電極及び前記対極への通電を制御することを特徴とする装置。   An apparatus for manufacturing a conductive polymer film, wherein a prism having a working electrode formed on one surface, a light irradiation unit and a light receiving unit provided on both sides of the prism, and an opening facing the working electrode A container liquid-tightly attached to the prism; an electrolytic solution containing a conductive polymer monomer and a dopant contained in the container; a counter electrode placed in the electrolytic solution; the working electrode; A power supply device connected to a counter electrode; and a controller connected to the light receiving unit and the power supply device; (a) from the light irradiation unit to the prism to form a conductive polymer film on the working electrode; (B) The light receiving unit obtains an absorption spectrum from the reflected light of the conductive polymer film emitted from the prism, and (c) ) The control La accumulates the relationship between the absorbance of the conductive polymer film obtained from the absorption spectrum and the film thickness of the conductive polymer film, and (d) a desired film thickness based on the relationship between the absorbance and the film thickness. The controller controls the energization of the working electrode and the counter electrode. 導電性高分子膜の酸化還元状態を変更する装置であって、前記導電性高分子膜が形成された作用電極を一面に有するプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容されたドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有し、(a) 前記光照射部から前記プリズムに光を照射しながら、前記電源装置は前記作用電極及び前記対極に通電し、(b) 前記受光部は前記プリズムから出射した前記導電性高分子膜の反射光から吸収スペクトルを求め、(c) 前記コントローラは前記吸収スペクトルから得た前記導電性高分子膜の吸光度と前記導電性高分子膜の酸化還元状態との関係を蓄積し、(d) 前記吸光度と酸化還元状態の関係に基づき、所望の酸化還元状態を得るように前記コントローラは前記作用電極及び前記対極への通電を制御することを特徴とする装置。   An apparatus for changing the oxidation-reduction state of a conductive polymer film, the prism having a working electrode on which the conductive polymer film is formed on one side, and a light irradiation unit and a light receiving unit provided on both sides of the prism A container that is liquid-tightly attached to the prism so that the opening faces the working electrode, an electrolyte containing a dopant contained in the container, and a counter electrode that is placed in the electrolyte A power supply device connected to the working electrode and the counter electrode, and a controller connected to the light receiving unit and the power supply device, and (a) while irradiating light to the prism from the light irradiation unit, the power supply device Energizes the working electrode and the counter electrode, (b) the light receiving unit obtains an absorption spectrum from the reflected light of the conductive polymer film emitted from the prism, and (c) the controller obtains from the absorption spectrum. Accumulating the relationship between the absorbance of the conductive polymer film and the redox state of the conductive polymer film, (d) based on the relationship between the absorbance and the redox state, so as to obtain a desired redox state The controller controls energization to the working electrode and the counter electrode. 導電性高分子膜を一定の成膜速度で製造する装置であって、一面に作用電極が形成されたプリズムと、前記プリズムの両側に設けられた光照射部及び受光部と、前記作用電極に開口部が面するように前記プリズムに液密に取り付けられた容器と、前記容器内に収容された導電性高分子用モノマー及びドーパントを含有する電解液と、前記電解液内に入れられた対極と、前記作用電極及び前記対極に接続した電源装置と、前記受光部及び前記電源装置に接続したコントローラとを有し、(a) 前記作用電極上に導電性高分子膜を形成するために、前記光照射部から前記プリズムに光を照射しながら、前記電源装置は前記作用電極及び前記対極に通電し、(b) 前記受光部は前記プリズムから出射した前記導電性高分子膜の反射光から吸収スペクトルを求め、(c) 前記コントローラは、前記吸収スペクトルから求めた吸光度の経時変化と前記導電性高分子膜の膜厚との関係から、前記導電性高分子膜の成膜時間と膜厚との関係を複数の電流レベルで求め、(d) 前記コントローラは、各電流レベルにおける前記成膜時間と膜厚との関係から微小区間における電流と成膜速度との関係を求めて蓄積し、(e) 前記コントローラは、前記電流と成膜速度との関係を用いて、前記導電性高分子膜の成膜速度が一定となるように電流を制御することを特徴とする装置。
An apparatus for producing a conductive polymer film at a constant deposition rate, a prism having a working electrode formed on one surface, a light irradiation unit and a light receiving unit provided on both sides of the prism, and a working electrode A container liquid-tightly attached to the prism so that the opening faces, an electrolytic solution containing a monomer for a conductive polymer and a dopant contained in the container, and a counter electrode placed in the electrolytic solution And a power supply device connected to the working electrode and the counter electrode, and a controller connected to the light receiving unit and the power supply device, (a) In order to form a conductive polymer film on the working electrode, While irradiating light to the prism from the light irradiation unit, the power supply device energizes the working electrode and the counter electrode, and (b) the light receiving unit is reflected from the reflected light of the conductive polymer film emitted from the prism. Absorption spectrum Therefore, (c) the controller, the relationship between the change in absorbance with time determined from the absorption spectrum and the film thickness of the conductive polymer film, the relationship between the film formation time and the film thickness of the conductive polymer film (D) The controller obtains and accumulates the relationship between the current and the deposition rate in a minute interval from the relationship between the deposition time and the thickness at each current level, and (e) The controller controls the current using the relationship between the current and the deposition rate so that the deposition rate of the conductive polymer film is constant.
JP2007140617A 2006-05-31 2007-05-28 Method and apparatus for producing conductive polymer film Expired - Fee Related JP5249526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140617A JP5249526B2 (en) 2006-05-31 2007-05-28 Method and apparatus for producing conductive polymer film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006152387 2006-05-31
JP2006152387 2006-05-31
JP2007140617A JP5249526B2 (en) 2006-05-31 2007-05-28 Method and apparatus for producing conductive polymer film

Publications (2)

Publication Number Publication Date
JP2008010407A JP2008010407A (en) 2008-01-17
JP5249526B2 true JP5249526B2 (en) 2013-07-31

Family

ID=39068398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140617A Expired - Fee Related JP5249526B2 (en) 2006-05-31 2007-05-28 Method and apparatus for producing conductive polymer film

Country Status (1)

Country Link
JP (1) JP5249526B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591446B (en) * 2009-06-22 2011-09-07 江西科技师范学院 Method for directly preparing poly(2,2'-dinaphthylether)film on surface of conductive glass or stainless steel
CN104155354A (en) * 2014-07-30 2014-11-19 奉化市宇创产品设计有限公司 Electrochemical drive response measuring device
US20220097294A1 (en) * 2019-02-26 2022-03-31 Sony Group Corporation 3d printer device, manufacturing method of three-dimensional structure, and three-dimensional structure
CN112114015B (en) * 2020-08-10 2022-09-06 华中师范大学 In-situ characterization method and device for electrochemical infrared spectrum combination of pollutant interface reaction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750110A (en) * 1991-09-27 1995-02-21 Kazuo Ikezaki Manufacture of conductive composite film
JP3264552B2 (en) * 1993-03-12 2002-03-11 日本パーカライジング株式会社 Protective coating method for metal surface with organic polymer insulating film
JP2005298764A (en) * 2004-04-15 2005-10-27 Eamex Co Method for preparing polypyrrole film

Also Published As

Publication number Publication date
JP2008010407A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5249526B2 (en) Method and apparatus for producing conductive polymer film
Nishi et al. Ultraslow relaxation of the structure at the ionic liquid| gold electrode interface to a potential step probed by electrochemical surface plasmon resonance measurements: asymmetry of the relaxation time to the potential-step direction
JP3703854B2 (en) Improved electrochemical cell
US7079250B2 (en) Structure, structure manufacturing method and sensor using the same
Kooyman et al. Vibrating mirror surface plasmon resonance immunosensor
EP2317312A2 (en) Method and cell for measuring the overall concentration of ions in a bodily fluid
JPWO2017213118A1 (en) Dew point measuring method and dew point measuring apparatus
EP0316206B1 (en) Method and device for detecting modifications in the state of a surface and for controlling the same
US20120085653A1 (en) Method and apparatus for producing conductive polymer film
CN112014358A (en) Optical film gas sensor with double-pass surface plasma resonance and manufacturing method thereof
Láng Interface stress measurements in an electrochemical environment
JPH01208500A (en) Method and apparatus for controlling and/or preparing metal coating method
Li et al. Interferometric measurement of depletion layer structure and voltammetric data in concentrated organic redox solutions
Hu et al. Novel technology for depositing a Pd–Ag alloy film on a tapered optical fibre for hydrogen sensing
Arsova et al. Ellipsometric study of anodic oxide films formed on niobium surfaces
JPH10158833A (en) Magnetron sputtering film forming system and film formation
Muller Optical studies of electrolyte films on gas electrodes
JP2005171306A (en) Method of producing metal fine particulate layer
Ushenin et al. Аpplication of temperature sensors for improving the device based on the phenomenon of surface plasmon resonance
Maslov et al. Investigation of sensors based on ITO nanofilms in SPR-devices
RU2634137C1 (en) Method of producing electroconducting films on surface of oxide glasses for determination of moisture content in air
RU2718773C1 (en) Device for controlled production of porous oxides of semiconductors in situ
Lebyedyeva et al. Development and application of devices based on surface plasmon resonance
Ryynänen et al. pH electrode based on ALD deposited iridium oxide
Stankowski et al. Voltage-dependent coupling of light into ITO-covered waveguides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Ref document number: 5249526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees