JP5245365B2 - Rare earth hydroxide coating and method for forming rare earth oxide coating - Google Patents

Rare earth hydroxide coating and method for forming rare earth oxide coating Download PDF

Info

Publication number
JP5245365B2
JP5245365B2 JP2007293030A JP2007293030A JP5245365B2 JP 5245365 B2 JP5245365 B2 JP 5245365B2 JP 2007293030 A JP2007293030 A JP 2007293030A JP 2007293030 A JP2007293030 A JP 2007293030A JP 5245365 B2 JP5245365 B2 JP 5245365B2
Authority
JP
Japan
Prior art keywords
rare earth
film
forming
coating
earth hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007293030A
Other languages
Japanese (ja)
Other versions
JP2009120409A (en
Inventor
裕司 木村
瑞 中野
孝雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007293030A priority Critical patent/JP5245365B2/en
Publication of JP2009120409A publication Critical patent/JP2009120409A/en
Application granted granted Critical
Publication of JP5245365B2 publication Critical patent/JP5245365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、希土類水酸化物被膜及び希土類酸化物被膜の形成方法に関するものである。   The present invention relates to a rare earth hydroxide coating and a method for forming a rare earth oxide coating.

希土類酸化物は、その良好な耐プラズマ性から、プラズマエッチング装置のプラズマが接触する処理室内壁部分の耐食性被膜として使用されている。この耐プラズマ被膜は、形成の容易さやコストの関係からプラズマ溶射法が主に採用されている(特開2001−164354号公報:特許文献1)。ところが、プラズマ溶射法によって形成された被膜表面は未溶融粒子や高温プラズマ中で蒸発、析出した微細な粒子の付着、あるいは溶融、衝突、急冷によるクラックなどによって凹凸が大きく、エッチングプロセスで微細な粒子が脱離し易く、半導体ウェハーへのコンタミネーションを起こすという問題がある。これに対し、スパッタリングなどのPVD法やCVD等の緻密平滑膜が検討されているが、真空プロセス等の高コスト法である上、複雑な形状を有する部材には施工が不可能である。それを解決する方法としてゾルゲル塗布法が提案されており、比較的簡単な工程で緻密平滑膜が得られるとされている(特開2007−27329号公報:特許文献2)。   Rare earth oxides are used as a corrosion resistant coating on the inner wall of the processing chamber where the plasma of the plasma etching apparatus comes into contact due to its good plasma resistance. For this plasma-resistant coating, a plasma spraying method is mainly employed because of ease of formation and cost (Japanese Patent Laid-Open No. 2001-164354: Patent Document 1). However, the coating surface formed by plasma spraying has large irregularities due to adhesion of unmelted particles or fine particles evaporated or precipitated in high-temperature plasma, or cracks caused by melting, collision, or rapid cooling. Is liable to be detached and causes contamination to the semiconductor wafer. On the other hand, dense smooth films such as PVD methods such as sputtering and CVD have been studied, but they are high cost methods such as vacuum processes and cannot be applied to members having complicated shapes. A sol-gel coating method has been proposed as a method for solving this problem, and it is said that a dense smooth film can be obtained by a relatively simple process (Japanese Patent Laid-Open No. 2007-27329: Patent Document 2).

また、希土類酸化物は、水銀蒸気を吸着しにくい性質があり、蛍光ランプなどのガラスバルブが内部の水銀蒸気を吸着することによって起こる輝度劣化を防ぐために、ガラスバルブ内面に希土類酸化物被膜を形成することが行われている。   In addition, rare earth oxides are difficult to adsorb mercury vapor, and a rare earth oxide film is formed on the inner surface of the glass bulb to prevent luminance deterioration caused by the glass bulb of a fluorescent lamp adsorbing mercury vapor inside. To be done.

この形成方法には、希土類酸化物やその前駆体微粒子のゾルを塗布、乾燥、焼成させるゾルゲル法と、加熱分解することによって希土類酸化物となるような希土類化合物の溶液を塗布、乾燥、加熱分解する方法がある。   In this formation method, a sol-gel method in which a sol of rare earth oxide or its precursor fine particles is applied, dried, and fired, and a solution of a rare earth compound that becomes a rare earth oxide by thermal decomposition is applied, dried, and thermally decomposed. There is a way to do it.

しかし、このようなゾルゲル法や溶液塗布法は、溶媒を使用している点で共通の問題を抱えている。つまり、ゾルゲル法ではゾルの乾燥時に溶媒の蒸発による収縮が起こり、クラックが発生し易いという問題がある。しかも、前駆体ゾルはアルコキシドの加水分解などにより製造されるため多量の有機溶媒を用いることが多く、コストや環境上の問題もある。また、溶液塗布法も同様の問題を抱える上、溶媒蒸発時に溶質が部分的に結晶析出して偏在し易く、緻密平滑な膜を得ることが難しかった。更に、これらの方法で一定の膜厚を得ようとすると、0.1μm以下の膜を数十〜数百回も塗り重ねる必要があり、高コストである。   However, such sol-gel method and solution coating method have a common problem in that a solvent is used. In other words, the sol-gel method has a problem that shrinkage occurs due to evaporation of the solvent when the sol is dried, and cracks are likely to occur. In addition, since the precursor sol is produced by hydrolysis of alkoxide or the like, a large amount of organic solvent is often used, and there are also problems in cost and environment. In addition, the solution coating method has the same problems, and the solute is likely to be partially crystallized and unevenly distributed when the solvent is evaporated, making it difficult to obtain a dense and smooth film. Furthermore, if it is intended to obtain a certain film thickness by these methods, it is necessary to coat a film of 0.1 μm or less several tens to several hundreds of times, which is expensive.

特開2001−164354号公報JP 2001-164354 A 特開2007−27329号公報JP 2007-27329 A

本発明は、上記事情に鑑みなされたもので、簡便に緻密平滑な希土類水酸化物被膜あるいは酸化物被膜が得られる希土類水酸化物被膜及び希土類酸化物被膜の形成方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rare earth hydroxide coating and a method for forming a rare earth oxide coating which can easily obtain a dense and smooth rare earth hydroxide coating or oxide coating. To do.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、溶媒を使うことなく、化合物自体が非分解融点を持つ希土類有機錯体を使用し、加熱溶融状態におけるその融液によって被膜を形成し、有機錯体が加熱溶融された状態で、十分な量の水蒸気を強制的に供給してやることによって、速やかに配位子と水酸基の置換反応がおこり、配位子の蒸気が抜けるとともに、緻密平滑な希土類水酸化物被膜が形成されることを知見した。
更に、得られた希土類水酸化物被膜を熱処理することにより、希土類酸化物被膜が得られることを見出し、本発明をなすに至った。
As a result of intensive studies to achieve the above object, the present inventors used a rare earth organic complex having a non-decomposable melting point without using a solvent, and formed a film with the melt in a heated and melted state. In a state where the organic complex is heated and melted, a sufficient amount of water vapor is forcibly supplied, so that the substitution reaction between the ligand and the hydroxyl group occurs quickly, and the vapor of the ligand escapes. It was found that a dense and smooth rare earth hydroxide film was formed.
Furthermore, it has been found that a rare earth oxide film can be obtained by heat-treating the obtained rare earth hydroxide film, and the present invention has been achieved.

ここで、プラズマ耐食性被膜用途において、上述のように希土類元素は酸化物の被膜として用いられるのが普通であるが、RE(OH)3,REO(OH)のような化学式で表される希土類元素水酸化物であっても、同様の効果を示すと考えられる。
また、蛍光ランプの一般的な製造工程においては、500℃付近での蛍光体被膜の焼成工程があるため、水酸化物被膜はこの際に酸化物被膜に変化すると考えられる。
Here, as described above, rare earth elements are usually used as oxide films in plasma corrosion resistance coating applications, but rare earth elements represented by chemical formulas such as RE (OH) 3 and REO (OH) are used. Even if it is a hydroxide, it is thought that the same effect is shown.
Moreover, in a general manufacturing process of a fluorescent lamp, there is a baking process of a phosphor film at around 500 ° C., so that the hydroxide film is considered to change into an oxide film at this time.

なお、本発明者らは、溶媒を使うことなく、化合物自体が非分解融点を持つ希土類有機錯体を使用し、加熱溶融状態におけるその融液によって被膜を形成し、これを酸化雰囲気で加熱分解することによって緻密平滑な希土類酸化物被膜を形成できることを知見している。有機錯体を加熱分解して酸化物に変換するために必要な温度は、500℃以上と高く、また、500〜600℃付近の低い温度では、長時間の加熱処理を行わないと若干の炭素成分が残留してしまい、被膜が褐色に着色する場合があり、樹脂部材や大型アルミニウム部材など500℃以上の高温に曝されると分解や変形が起こるようなものには施工できない場合があったが、本発明においては、希土類水酸化物被膜を比較的低温にて加熱処理することで希土類酸化物被膜が得られるため、高温で処理できないアルミニウム部材等においても問題なく、緻密平滑な希土類酸化物被膜を形成できるものである。   In addition, the present inventors use a rare earth organic complex in which the compound itself has a non-decomposable melting point without using a solvent, and forms a film with the melt in a heated and melted state, and thermally decomposes this in an oxidizing atmosphere. Thus, it has been found that a dense and smooth rare earth oxide film can be formed. The temperature necessary for thermally decomposing an organic complex to convert it into an oxide is as high as 500 ° C. or higher, and at a low temperature around 500 to 600 ° C., a slight amount of carbon component is required unless heat treatment is performed for a long time. May remain, and the coating may be colored brown, and it may not be possible to construct a resin member or large aluminum member that decomposes or deforms when exposed to high temperatures of 500 ° C or higher. In the present invention, a rare earth oxide film can be obtained by heat-treating the rare earth hydroxide film at a relatively low temperature. Therefore, there is no problem even in an aluminum member that cannot be processed at a high temperature. Can be formed.

従って、本発明は、下記に示す希土類水酸化物被膜及び希土類酸化物被膜の形成方法を提供する。
〔1〕 非分解の融点を持つ希土類元素の有機錯体を溶媒を使うことなく加熱溶融し、その融液によって被膜を形成し、次に溶融状態において被膜に水蒸気を接触させることによって、配位子と水酸基の置換反応を起こさせることを特徴とする希土類水酸化物被膜の形成方法。
〔2〕 溶融温度が、有機錯体の分解温度未満であることを特徴とする〔1〕に記載の希土類水酸化物被膜の形成方法。
〔3〕 希土類元素の有機錯体が有する配位子としては、8−キノリノール、ジピバロイルメタン、2,4−ペンタンジオン、ベンゾイルアセトン、β−ジケトン類、芳香族カルボン酸、1,10−フェナントロリン、2,2’−ビピリジン、及びトリフェニルホスフィンオキサイドから選ばれるものであることを特徴とする〔1〕又は〔2〕に記載の希土類水酸化物被膜の形成方法。
〔4〕 加熱溶融から被膜形成までを、水蒸気の含有量が雰囲気中1容量%以下の雰囲気下で行うことを特徴とする〔1〕〜〔3〕のいずれかに記載の希土類水酸化物被膜の形成方法。
〔5〕 加熱溶融から被膜形成までを、酸素の含有量が雰囲気中1容量%以下の雰囲気下で行うことを特徴とする〔1〕〜〔4〕のいずれかに記載の希土類水酸化物被膜の形成方法。
〔6〕 不活性ガス雰囲気下で、水蒸気を1〜50容量%導入しながら、被膜に水蒸気を接触させることを特徴とする〔1〕〜〔5〕のいずれかに記載の希土類水酸化物被膜の形成方法。
〔7〕 〔1〕〜〔6〕のいずれかに記載の方法によって得られた希土類水酸化物被膜を熱処理することからなる希土類酸化物被膜の形成方法。
Accordingly, the present invention provides the following rare earth hydroxide coating and method for forming the rare earth oxide coating.
[1] An organic complex of a rare earth element having a non-decomposable melting point is heated and melted without using a solvent, a film is formed by the melt, and then the water vapor is brought into contact with the film in the molten state. And a hydroxyl group substitution reaction. A method for forming a rare earth hydroxide film.
[2] The method for forming a rare earth hydroxide film according to [1], wherein the melting temperature is lower than the decomposition temperature of the organic complex.
[3] As ligands possessed by organic complexes of rare earth elements, 8-quinolinol, dipivaloylmethane, 2,4-pentanedione, benzoylacetone, β-diketones, aromatic carboxylic acids, 1,10- The method for forming a rare earth hydroxide film according to [1] or [2], which is selected from phenanthroline, 2,2′-bipyridine, and triphenylphosphine oxide.
[4] The rare earth hydroxide coating according to any one of [1] to [3], wherein the process from heat melting to film formation is performed in an atmosphere having a water vapor content of 1% by volume or less in the atmosphere. Forming method.
[5] The rare earth hydroxide coating according to any one of [1] to [4], wherein the process from heat melting to film formation is performed in an atmosphere having an oxygen content of 1% by volume or less in the atmosphere. Forming method.
[6] The rare earth hydroxide coating according to any one of [1] to [5], wherein water vapor is brought into contact with the coating while introducing 1 to 50% by volume of water vapor under an inert gas atmosphere. Forming method.
[7] A method for forming a rare earth oxide film comprising heat-treating a rare earth hydroxide film obtained by the method according to any one of [1] to [6].

本発明によれば、有機錯体溶融成膜及び加水分解法によって焼成温度を下げて簡便に緻密平滑な希土類水酸化物被膜を得ることができ、また、得られた被膜は低温焼成にて酸化物被膜に変えることができ、産業上その利用価値は極めて高い。   According to the present invention, it is possible to easily obtain a dense and smooth rare earth hydroxide coating by lowering the firing temperature by an organic complex melt film formation and hydrolysis method. It can be converted into a coating, and its utility value is extremely high in industry.

以下、本発明を詳細に説明する。本発明の希土類水酸化物被膜の形成方法は、非分解融点を持つ希土類有機錯体の融液を成膜し、溶融状態において水蒸気処理することを特徴とするものである。
まず、本発明で言う希土類元素とは、Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luである。
希土類元素酸化物を蛍光ランプのガラスバルブ内面の保護膜として使用する場合など、光を透過する用途においては、酸化物自体が無色透明である方がよく、特にSc,Y,La,Gd,Yb,Luが好ましい。
Hereinafter, the present invention will be described in detail. The method for forming a rare earth hydroxide film of the present invention is characterized in that a melt of a rare earth organic complex having a nondecomposable melting point is formed and steam-treated in a molten state.
First, the rare earth elements referred to in the present invention are Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
For applications that transmit light, such as when a rare earth element oxide is used as a protective film on the inner surface of a glass bulb of a fluorescent lamp, it is better that the oxide itself is colorless and transparent, especially Sc, Y, La, Gd, Yb. , Lu is preferred.

希土類水酸化物被膜の前駆物質となる希土類元素の有機錯体は、非分解の融点を持つものが好ましく、配位子としては、8−キノリノール、ジピバロイルメタン、2,4−ペンタンジオン、ベンゾイルアセトン、その他β−ジケトン類、芳香族カルボン酸、1,10−フェナントロリン、2,2’−ビピリジン、及びトリフェニルホスフィンオキサイドなどから選ぶことができる。   The rare earth element organic complex that is a precursor of the rare earth hydroxide film preferably has a non-decomposable melting point, and the ligand includes 8-quinolinol, dipivaloylmethane, 2,4-pentanedione, It can be selected from benzoylacetone, other β-diketones, aromatic carboxylic acid, 1,10-phenanthroline, 2,2′-bipyridine, triphenylphosphine oxide, and the like.

錯体の組成としては、例えば、
トリス(8−キノリノラト)(8−キノリノール)RE=[RE(C96NO)3(C97NO)]、
トリス(ベンゾイルアセトナト)RE=[RE(C10923]、
トリス(2,4−ペンタンジオナト)RE=[RE(C5723
(REは希土類元素)
などが挙げられる。これらの融点は通常100〜140℃の範囲であり、分解温度は通常140〜180℃の範囲である。
As the composition of the complex, for example,
Tris (8-quinolinolato) (8-quinolinol) RE = [RE (C 9 H 6 NO) 3 (C 9 H 7 NO)],
Tris (benzoylacetonato) RE = [RE (C 10 H 9 O 2 ) 3 ],
Tris (2,4-pentanedionato) RE = [RE (C 5 H 7 O 2 ) 3 ]
(RE is a rare earth element)
Etc. These melting points are usually in the range of 100 to 140 ° C, and the decomposition temperature is usually in the range of 140 to 180 ° C.

これらの有機錯体を有機錯体の分解温度未満で加熱溶融して基材に被膜を形成する。溶融温度としては錯体の種類により融点以上分解温度未満で金属錯体を溶融する。溶融された希土類元素有機錯体の被膜形成方法としては、ドクターブレード,スピンコート,ロールコート,はけ塗り,ディップコートなど各種の方法を選択できるが、これらに限るものではない。また、ガラス管内壁に塗布する場合などは、融液吸引塗布が可能である。
被膜厚さは、1〜500μm、特に5〜100μmとすることが好ましい。
These organic complexes are heated and melted below the decomposition temperature of the organic complex to form a film on the substrate. As the melting temperature, the metal complex is melted at a melting point or higher and lower than a decomposition temperature depending on the type of the complex. Various methods such as doctor blade, spin coating, roll coating, brush coating, and dip coating can be selected as a method for forming a film of the molten rare earth element organic complex, but are not limited thereto. Moreover, when apply | coating to a glass tube inner wall etc., melt suction application | coating is possible.
The film thickness is preferably 1 to 500 μm, more preferably 5 to 100 μm.

これらの被膜形成方法において注意しなければならないのは、基材やコート機器類,雰囲気を全て有機錯体の非分解溶融温度範囲の一定温度にコントロールしておくことである。基材や機器類や雰囲気が溶融温度よりも低いと、部分的に固化したり、融液粘度が変化して均一な膜が形成できない場合がある。また、有機錯体の分解開始温度よりも高いと、部分的に分解固化したり、融液粘度が変化して均一な膜が形成できない場合がある。   In these film forming methods, care must be taken to control the substrate, the coating equipment, and the atmosphere to a constant temperature within the non-decomposition melting temperature range of the organic complex. If the substrate, equipment, or atmosphere is lower than the melting temperature, the film may partially solidify or the melt viscosity may change and a uniform film may not be formed. On the other hand, when the temperature is higher than the decomposition start temperature of the organic complex, the film may be partially decomposed and solidified, or the melt viscosity may change and a uniform film may not be formed.

融液による被膜形成時の雰囲気は、酸素あるいは水蒸気を実質的に含んでいない窒素やアルゴンなどの不活性ガス雰囲気であることが好ましい。これは一般に、酸素や水蒸気の存在により、有機錯体が分解しないで融解して得られる温度範囲が狭まり、温度コントロールが難しくなるからである。ここで、実質的に含まないとは、酸素又は水蒸気の含有量が雰囲気中1容量%以下、特に0.1容量%以下であることを意味する。   The atmosphere at the time of film formation by the melt is preferably an inert gas atmosphere such as nitrogen or argon which does not substantially contain oxygen or water vapor. This is because, in general, the presence of oxygen or water vapor narrows the temperature range obtained by melting the organic complex without decomposing, making it difficult to control the temperature. Here, “substantially free” means that the content of oxygen or water vapor is 1% by volume or less, particularly 0.1% by volume or less in the atmosphere.

以上のようにして得られた希土類有機錯体の被膜を溶融状態に保ったまま、次に水蒸気をアルゴン等の不活性ガス又は窒素雰囲気中に導入することによって雰囲気中の水蒸気濃度を1〜50%(容量%、以下同じ)、好ましくは5〜20%にする。こうすると、希土類有機錯体被膜は、例えば、下記反応例のように希土類水酸化物被膜に変化する。なお、処理時間は適宜選定し得るが、10分〜10時間、特に30分〜5時間であることが好ましい。
トリス(ベンゾイルアセトナト)RE=[RE(C10923]の場合
[RE(C10923]+3H2O→RE(OH)3+3C10102↑(ベンゾイルアセトン)
上記水蒸気濃度が低すぎると被膜が完全に水酸化物に変化するまでの時間がかかり過ぎる場合があり、高すぎると被膜に剥離を生じる場合がある。なお、水酸化物被膜の膜厚は0.1〜100μm、好ましくは1〜50μmである。
While keeping the film of the rare earth organic complex obtained as described above in a molten state, the water vapor concentration in the atmosphere is reduced to 1 to 50% by introducing water vapor into an inert gas such as argon or a nitrogen atmosphere. (Volume%, the same applies hereinafter), preferably 5 to 20%. In this way, the rare earth organic complex coating is changed to a rare earth hydroxide coating as in the following reaction example, for example. In addition, although processing time can be selected suitably, it is preferable that it is 10 minutes-10 hours, especially 30 minutes-5 hours.
When tris (benzoylacetonato) RE = [RE (C 10 H 9 O 2 ) 3 ] [RE (C 10 H 9 O 2 ) 3 ] + 3H 2 O → RE (OH) 3 + 3C 10 H 10 O 2 ↑ (Benzoylacetone)
If the water vapor concentration is too low, it may take too much time for the coating to completely change to hydroxide, and if it is too high, the coating may peel off. In addition, the film thickness of a hydroxide film is 0.1-100 micrometers, Preferably it is 1-50 micrometers.

その後、水酸化物被膜を酸化性雰囲気(大気又は酸素含有気体等)中で焼成することによって酸化物被膜に変えることも可能であり、その場合の焼成温度は、300〜450℃程度、好ましくは350〜400℃と比較的低温でよいため、大型アルミニウム部材が対象であっても、変形を起こさずに表面に希土類酸化物被膜を形成することができる。焼成温度が低すぎると被膜が完全に酸化物に変化しない場合があり、高すぎると対象部材が変形を起こす場合がある。なお、焼成時間は1〜100時間、好ましくは1〜50時間であり、酸化物被膜の厚さは0.1〜100μm、好ましくは1〜50μmである。   Thereafter, the hydroxide film can be changed to an oxide film by firing in an oxidizing atmosphere (air or oxygen-containing gas, etc.). In that case, the firing temperature is about 300 to 450 ° C., preferably Since a relatively low temperature of 350 to 400 ° C. is sufficient, a rare earth oxide film can be formed on the surface without causing deformation even if a large aluminum member is the object. If the firing temperature is too low, the coating may not completely change to an oxide, and if it is too high, the target member may be deformed. The firing time is 1 to 100 hours, preferably 1 to 50 hours, and the thickness of the oxide film is 0.1 to 100 μm, preferably 1 to 50 μm.

被膜を形成させる基材としては、炭素、金属(Al、SUS)、セラミック(アルミナ、ジルコニア、窒化珪素、窒化ホウ素)、石英等が挙げられる。   Examples of the substrate on which the film is formed include carbon, metal (Al, SUS), ceramic (alumina, zirconia, silicon nitride, boron nitride), quartz, and the like.

本発明の被膜は、プラズマエッチング装置のプラズマが接触する処理室内壁接触部材、蛍光ランプ用ガラスバルブの内壁保護膜として用いることができる。   The coating film of the present invention can be used as a processing chamber inner wall contact member that comes into contact with plasma in a plasma etching apparatus, or as an inner wall protective film of a glass bulb for a fluorescent lamp.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
酸素及び水蒸気が0.1容量%未満の窒素置換された密閉容器中、100mm×100mm×2mmtのアルミニウム板を160℃に加温し、トリス(ベンゾイルアセトナト)イットリウム塩(融点114℃、分解点140℃)0.1gを表面に落とし、全体が溶融したことを確認してから、あらかじめ125℃に温めておいた間隙5μmのドクターブレードで成膜した。次に、溶融状態を保ったまま、系内に水蒸気を10容量%導入し、その表面に水酸化イットリウムの被膜を得た。表面と断面を電子顕微鏡で観察すると、約1μm厚の被膜が形成されていたが、クラックや異物のない緻密平滑膜であった。これを、大気中400℃にて焼成し、その表面に酸化イットリウムの被膜を得たが、水酸化物被膜と同様、クラックや異物のない緻密平滑膜であった。
[Example 1]
A 100 mm × 100 mm × 2 mmt aluminum plate was heated to 160 ° C. in a closed container with oxygen and water vapor substituted by less than 0.1% by volume of nitrogen, and tris (benzoylacetonato) yttrium salt (melting point 114 ° C., decomposition point) (140 ° C.) 0.1 g was dropped on the surface, and after confirming that the whole was melted, a film was formed with a doctor blade having a gap of 5 μm that had been heated to 125 ° C. in advance. Next, while maintaining the molten state, 10% by volume of water vapor was introduced into the system to obtain a yttrium hydroxide coating on the surface. When the surface and cross section were observed with an electron microscope, a film having a thickness of about 1 μm was formed, but it was a dense smooth film free from cracks and foreign matter. This was baked at 400 ° C. in the atmosphere to obtain a yttrium oxide film on the surface thereof, and as with the hydroxide film, it was a dense smooth film free from cracks and foreign matter.

[実施例2]
実施例1に記載の密閉容器中で100mm×100mm×2mmtの石英ガラス板を150℃に加温し、トリス(2,4−ペンタンジオン)エルビウム塩(融点140℃、分解点165℃)0.1gを表面に落とし、全体が溶融したことを確認してから、あらかじめ150℃に温めておいた間隙5μmのドクターブレードで成膜した。次に、溶融状態を保ったまま、系内に10容量%水蒸気を導入し、その表面に水酸化エルビウムの被膜を得た。表面と断面を電子顕微鏡で観察すると、約1μm厚の被膜が形成されていたが、クラックや異物のない緻密平滑膜であった。これを、大気中400℃にて焼成し、その表面に酸化エルビウムの被膜を得たが、水酸化物被膜と同様、クラックや異物のない緻密平滑膜であった。
[Example 2]
A quartz glass plate of 100 mm × 100 mm × 2 mmt was heated to 150 ° C. in the closed container described in Example 1, and tris (2,4-pentanedione) erbium salt (melting point: 140 ° C., decomposition point: 165 ° C.) After 1 g was dropped on the surface and it was confirmed that the whole was melted, a film was formed with a doctor blade having a gap of 5 μm that had been heated to 150 ° C. in advance. Next, while maintaining the molten state, 10 vol% water vapor was introduced into the system to obtain a coating of erbium hydroxide on the surface. When the surface and cross section were observed with an electron microscope, a film having a thickness of about 1 μm was formed, but it was a dense smooth film free from cracks and foreign matter. This was baked at 400 ° C. in the atmosphere to obtain an erbium oxide film on the surface thereof. As with the hydroxide film, it was a dense smooth film free from cracks and foreign matter.

[比較例1]
100mm×100mm×2mmtのアルミニウム板に、イットリウムイソプロポキシドの5質量%エタノール溶液をディップコート法によって塗布し、ゲル化,乾燥した。この操作を20回繰り返した後、大気中100℃にて乾燥した。表面と断面を電子顕微鏡で観察すると、約1μm厚の水酸化イットリウムと考えられる緻密膜が形成されていたが、1〜数μm幅のクラックが各所に観察された。更に、大気中500℃にて焼成したものの表面と断面を電子顕微鏡で観察すると、約1μm厚の酸化イットリウムと考えられる緻密膜が形成されていたが、1〜数十μm幅のクラックが各所に観察された。
[Comparative Example 1]
A 5% by mass ethanol solution of yttrium isopropoxide was applied to a 100 mm × 100 mm × 2 mmt aluminum plate by a dip coating method, gelled, and dried. This operation was repeated 20 times and then dried at 100 ° C. in the atmosphere. When the surface and cross section were observed with an electron microscope, a dense film considered to be about 1 μm thick yttrium hydroxide was formed, but cracks with a width of 1 to several μm were observed in various places. Furthermore, when the surface and cross section of the material fired at 500 ° C. in the atmosphere were observed with an electron microscope, a dense film considered to be about 1 μm thick yttrium oxide was formed, but cracks with a width of 1 to several tens of μm were observed in various places. Observed.

[比較例2]
100mm×100mm×2mmtの石英ガラス板に、トリス(2,4−ペンタンジオン)エルビウム塩の5質量%エタノール溶液をディップコート法によって塗布し、乾燥後、大気中550℃にて焼成した。この操作を10回繰り返した後、表面を電子顕微鏡で観察すると、5μm程の不定形状をした酸化エルビウム粒子が石英ガラス表面に多数点在していることが確認された。有機錯体の結晶が析出し、これが形を崩しながら熱分解して酸化物に変化したものと考えられる。
[Comparative Example 2]
A 5% by mass ethanol solution of tris (2,4-pentanedione) erbium salt was applied to a 100 mm × 100 mm × 2 mmt quartz glass plate by a dip coating method, dried, and fired at 550 ° C. in the atmosphere. After repeating this operation 10 times, when the surface was observed with an electron microscope, it was confirmed that many erbium oxide particles having an indefinite shape of about 5 μm were scattered on the surface of the quartz glass. It is considered that crystals of the organic complex were precipitated, and these were transformed into oxides by thermal decomposition while losing their shape.

Claims (7)

非分解の融点を持つ希土類元素の有機錯体を溶媒を使うことなく加熱溶融し、その融液によって被膜を形成し、次に溶融状態において被膜に水蒸気を接触させることによって、配位子と水酸基の置換反応を起こさせることを特徴とする希土類水酸化物被膜の形成方法。 By heating and melting an organic complex of a rare earth element having a non-decomposing melting point without using a solvent , forming a film with the melt, and then bringing water vapor into contact with the film in the molten state, A method for forming a rare earth hydroxide coating, characterized by causing a substitution reaction. 溶融温度が、有機錯体の分解温度未満であることを特徴とする請求項1に記載の希土類水酸化物被膜の形成方法。   The method for forming a rare earth hydroxide film according to claim 1, wherein the melting temperature is lower than the decomposition temperature of the organic complex. 希土類元素の有機錯体が有する配位子としては、8−キノリノール、ジピバロイルメタン、2,4−ペンタンジオン、ベンゾイルアセトン、β−ジケトン類、芳香族カルボン酸、1,10−フェナントロリン、2,2’−ビピリジン、及びトリフェニルホスフィンオキサイドから選ばれるものであることを特徴とする請求項1又は2に記載の希土類水酸化物被膜の形成方法。 As ligands possessed by organic complexes of rare earth elements, 8-quinolinol, dipivaloylmethane, 2,4-pentanedione, benzoylacetone, β-diketones, aromatic carboxylic acids, 1,10-phenanthroline, 2 3. The method for forming a rare earth hydroxide film according to claim 1, wherein the rare earth hydroxide film is selected from 1,2′-bipyridine and triphenylphosphine oxide. 加熱溶融から被膜形成までを、水蒸気の含有量が雰囲気中1容量%以下の雰囲気下で行うことを特徴とする請求項1〜3のいずれか1項に記載の希土類水酸化物被膜の形成方法。 The method for forming a rare earth hydroxide film according to any one of claims 1 to 3, wherein the process from heat melting to film formation is performed in an atmosphere having a water vapor content of 1% by volume or less in the atmosphere. . 加熱溶融から被膜形成までを、酸素の含有量が雰囲気中1容量%以下の雰囲気下で行うことを特徴とする請求項1〜4のいずれか1項に記載の希土類水酸化物被膜の形成方法。 The method for forming a rare earth hydroxide film according to any one of claims 1 to 4, wherein the process from heat melting to film formation is performed in an atmosphere having an oxygen content of 1% by volume or less in the atmosphere. . 不活性ガス雰囲気下で、水蒸気を1〜50容量%導入しながら、被膜に水蒸気を接触させることを特徴とする請求項1〜5のいずれか1項に記載の希土類水酸化物被膜の形成方法。   The method for forming a rare earth hydroxide film according to any one of claims 1 to 5, wherein the film is brought into contact with water vapor while introducing 1 to 50% by volume of water vapor under an inert gas atmosphere. . 請求項1〜6のいずれか1項に記載の方法によって得られた希土類水酸化物被膜を熱処理することからなる希土類酸化物被膜の形成方法。   A method for forming a rare earth oxide coating, comprising heat-treating the rare earth hydroxide coating obtained by the method according to any one of claims 1 to 6.
JP2007293030A 2007-11-12 2007-11-12 Rare earth hydroxide coating and method for forming rare earth oxide coating Expired - Fee Related JP5245365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293030A JP5245365B2 (en) 2007-11-12 2007-11-12 Rare earth hydroxide coating and method for forming rare earth oxide coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293030A JP5245365B2 (en) 2007-11-12 2007-11-12 Rare earth hydroxide coating and method for forming rare earth oxide coating

Publications (2)

Publication Number Publication Date
JP2009120409A JP2009120409A (en) 2009-06-04
JP5245365B2 true JP5245365B2 (en) 2013-07-24

Family

ID=40812992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293030A Expired - Fee Related JP5245365B2 (en) 2007-11-12 2007-11-12 Rare earth hydroxide coating and method for forming rare earth oxide coating

Country Status (1)

Country Link
JP (1) JP5245365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087830B2 (en) * 2018-03-22 2022-06-21 日立金属株式会社 Manufacturing method of RTB-based sintered magnet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510993B2 (en) * 1999-12-10 2004-03-29 トーカロ株式会社 Plasma processing container inner member and method for manufacturing the same
JP4003007B2 (en) * 2000-07-27 2007-11-07 日亜化学工業株式会社 Composition for oxide transparent conductive thin film and method for producing oxide transparent conductive thin film
JP4312006B2 (en) * 2003-08-25 2009-08-12 株式会社Adeka Rare earth metal complex, raw material for thin film formation, and method for producing thin film
JP4518844B2 (en) * 2004-06-11 2010-08-04 第一稀元素化学工業株式会社 Method for producing yttria sol
JP4813115B2 (en) * 2005-07-14 2011-11-09 国立大学法人東北大学 Semiconductor manufacturing apparatus member and cleaning method thereof

Also Published As

Publication number Publication date
JP2009120409A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
KR102243956B1 (en) Chamber coatings
US3894164A (en) Chemical vapor deposition of luminescent films
JP5014656B2 (en) Plasma processing apparatus member and manufacturing method thereof
Madhuri Thermal protection coatings of metal oxide powders
CN109072432B (en) Plasma etching resistant film and method for producing same
JP2007217782A (en) Corrosion-resistant film having fluoride film of rare earth element, and its manufacturing method
CN110225882B (en) Process for preparing graphene, graphene and substrate thereof
TWI375734B (en) Ceramic coating material for thermal spray on the parts of semiconductor processing devices and fabrication method and coating method thereof
TW201805450A (en) Yttrium oxyfluoride sprayed coating and method for producing the same, and sprayed member
US20150291470A1 (en) Metallic surfaces by metallothermal reduction
JP5816753B2 (en) Method for producing thermochromic glass using low-temperature metal vapor deposition process and thermochromic glass using the same
KR20180044851A (en) Method for forming pzt ferroelectric film
JP5245365B2 (en) Rare earth hydroxide coating and method for forming rare earth oxide coating
JP5212607B2 (en) Method for forming rare earth oxide film
JP2007239083A (en) Method for forming film of metal oxide on surface of substrate, and nozzle of air-open-type cvd apparatus used in the method
US20090091033A1 (en) Fabrication of metal oxide films
JP5554934B2 (en) Method for producing spinel precursor sol, and method for producing spinel-coated aluminum titanate sintered body
KR102272156B1 (en) Yttrium-based ceramics and method for manufacturing the same
WO2011135786A1 (en) Insulation coating method for metal base, insulation coated metal base, and semiconductor manufacturing apparatus using same
JP6883274B2 (en) Metal oxide thin film manufacturing method and thin film manufacturing equipment
RU2447190C2 (en) Method for production of photocatalytically active coating
KR102390123B1 (en) Plasma resistant ceramic substrate and manufacturing method of the same
JPH09195050A (en) Production of oxide or metal
JP5167822B2 (en) Indium oxide film laminate and manufacturing method thereof
KR100995252B1 (en) Method of preparing molybdenum trioxide thin film using molybdenum trioxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees