JP5242971B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP5242971B2
JP5242971B2 JP2007206923A JP2007206923A JP5242971B2 JP 5242971 B2 JP5242971 B2 JP 5242971B2 JP 2007206923 A JP2007206923 A JP 2007206923A JP 2007206923 A JP2007206923 A JP 2007206923A JP 5242971 B2 JP5242971 B2 JP 5242971B2
Authority
JP
Japan
Prior art keywords
current collector
sealing member
fuel cell
gas
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007206923A
Other languages
Japanese (ja)
Other versions
JP2009043550A (en
Inventor
佑介 藤堂
泰志 墨
昌宏 柴田
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007206923A priority Critical patent/JP5242971B2/en
Publication of JP2009043550A publication Critical patent/JP2009043550A/en
Application granted granted Critical
Publication of JP5242971B2 publication Critical patent/JP5242971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた固体電解質型燃料電池に関する。   The present invention relates to a solid oxide fuel cell in which a fuel electrode in contact with a fuel gas is provided on one side of a solid electrolyte body and an air electrode in contact with an oxidant gas is provided on the other side.

従来より、固体電解質型燃料電池では、固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた単セルを構成し、一つの単セルでは高い電圧が得られないので、例えば、平板型の固体電解質型燃料電池では、単セルとインターコネクタ板とを交互に積層してスタック化している。燃料ガスや酸化剤ガスは、積層方向と直交する横方向から燃料極や空気極に接するように燃料極や空気極の表面に沿って流れ、使用に供された燃料ガスや酸化剤ガスは、同様に横方向から排出される。   Conventionally, in a solid oxide fuel cell, a single cell is provided in which a fuel electrode in contact with fuel gas is provided on one side of a solid electrolyte body and an air electrode in contact with oxidant gas is provided on the other side. Since a high voltage cannot be obtained, for example, in a flat solid oxide fuel cell, single cells and interconnector plates are alternately stacked to form a stack. Fuel gas and oxidant gas flow along the surface of the fuel electrode and air electrode so as to come into contact with the fuel electrode and air electrode from the lateral direction perpendicular to the stacking direction. Similarly, it is discharged from the lateral direction.

また、酸化剤ガスや燃料ガスの利用率を向上させるために、特許文献1にあるように、燃料ガスの流通方向に対して、燃料極の左右両側に封止材としてのアルミナのバルク体やニッケルフェルトを配置し、燃料ガスのバイパスを抑制したものが提案されている。あるいは、特許文献2にあるように、電気絶縁性でかつ酸化剤ガスの透過を抑制する封止材としてセラミックファイバーやガラスファイバーなどを空気極の左右両外側空間に配置し、酸化剤ガスを空気極のみに供給することで酸化剤ガスの利用率を高めたものも提案されている。
特開2004−303666号公報 特開2005−317279号公報
In order to improve the utilization rate of the oxidant gas and the fuel gas, as disclosed in Patent Document 1, with respect to the flow direction of the fuel gas, a bulk body of alumina as a sealing material on both the left and right sides of the fuel electrode Proposals have been made in which nickel felt is arranged to suppress fuel gas bypass. Alternatively, as disclosed in Patent Document 2, ceramic fibers, glass fibers, and the like are disposed in the left and right outer spaces of the air electrode as a sealing material that is electrically insulating and suppresses permeation of the oxidant gas, and the oxidant gas is air. There has also been proposed one that increases the utilization rate of oxidant gas by supplying only to the electrode.
JP 2004-303666 A JP 2005-317279 A

しかしながら、こうした従来の特許文献1及び特許文献2のものでは、封止材を配置して利用率の向上を図ることができるが、発電時には単セル自体が抵抗発熱し、高温になる。そのため、封止材が膨張すると、その膨張により単セルに応力が加わり、単セルの割れや反りを助長する場合があるという問題がある。また、燃料極あるいは空気極の左右両側にのみ封止材を設けているので、流入室の空間が大きいと、利用率が十分に改善されないという問題があった。   However, in these conventional Patent Documents 1 and 2, it is possible to improve the utilization rate by arranging a sealing material. However, during power generation, the single cell itself generates resistance and becomes high temperature. Therefore, when the sealing material expands, there is a problem that stress is applied to the single cell due to the expansion, which may promote cracking and warping of the single cell. In addition, since the sealing material is provided only on the left and right sides of the fuel electrode or the air electrode, there is a problem that the utilization rate is not sufficiently improved if the space of the inflow chamber is large.

本発明の課題は、単セルに加わる応力を緩和すると共に、ガスの利用率の改善を図った固体電解質型燃料電池を提供することにある。   An object of the present invention is to provide a solid oxide fuel cell in which stress applied to a single cell is relaxed and gas utilization is improved.

かかる課題を達成すべく、本発明は課題を解決するため次の手段を取った。即ち、
平板状の固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた単セルを備えた固体電解質型燃料電池において、
前記燃料ガスと前記酸化剤ガスとを分離するセパレータを前記単セルの表裏面の少なくとも一方に積層配置すると共に、前記単セルを間にして積層方向に一対のインターコネクタ板を設け、前記燃料極及び前記空気極と前記各インターコネクタ板との間にそれぞれ集電体を配置し、
前記セパレータの表裏両側に、それぞれ前記ガスが流入する同一形状の中抜き孔が形成されたフレームを積層配置し、かつ、3MPaの応力を加えて50ミクロン以上変形する柔軟性を有する封止部材を、前記中抜き孔と前記集電体との間に前記集電体の周囲を囲んでそれぞれ重なり合う位置に配置したことを特徴とする固体電解質型燃料電池がそれである。
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
In a solid oxide fuel cell comprising a single cell provided with a fuel electrode in contact with fuel gas on one side of a flat solid electrolyte body and an air electrode in contact with oxidant gas on the other side,
A separator that separates the fuel gas and the oxidant gas is stacked on at least one of the front and back surfaces of the single cell, and a pair of interconnector plates are provided in the stacking direction with the single cell in between, and the fuel electrode And a current collector between each air electrode and each interconnector plate,
The front and back sides of the separator, the frame vent holes are formed in the same shape the gas respectively flows stacked arrangement, and a sealing member having a flexibility you modified 50 microns or more in addition to the stress of 3MPa Is disposed between the hollow hole and the current collector at positions where they surround the current collector and overlap each other.

その際、前記各フレームと前記各インターコネクタ板との間に、シール板を積層配置した構成としてもよい。また、前記集電体と前記封止部材との間に、前記集電体を間にして対向するように、流入室と流出室とを形成した構成としてもよい。更に、前記各インターコネクタ板に前記流入室と前記流出室とにそれぞれ連通する流入溝と流出溝とを形成し、前記シール板は前記封止部材を覆う大きさに形成された構成としてもよい。 At that time, between the front SL between each frame and each interconnector plate may have a structure in which the seal plate is stacked. Further, an inflow chamber and an outflow chamber may be formed between the current collector and the sealing member so as to face each other with the current collector therebetween. In addition, an inflow groove and an outflow groove communicating with the inflow chamber and the outflow chamber may be formed in each interconnector plate, and the seal plate may be formed to have a size that covers the sealing member. .

前記燃料ガスと前記酸化剤ガスとの流れがクロスフローである構成でもよい。また、前記シール板は、絶縁性を有するものでもよい。更に、前記封止部材は、無機ファイバーであってもよい。   The flow of the fuel gas and the oxidant gas may be a cross flow. The seal plate may have an insulating property. Furthermore, the sealing member may be an inorganic fiber.

本発明の固体電解質型燃料電池は、柔軟性を有する封止部材をセパレータの表裏両側に、かつ両集電体の周囲を囲んでそれぞれ重なり合う位置に配置したので、高温となっても、単セルに加わる応力を緩和できると共に、ガスの利用率を改善することができるという効果を奏する。ここでいう柔軟性とは、3MPaの応力を加えた場合に、50ミクロン以上変形することを意味する。   In the solid oxide fuel cell according to the present invention, the flexible sealing members are arranged on both the front and back sides of the separator and in positions overlapping each other around the current collectors. In addition to relieving the stress applied to the gas, the gas utilization rate can be improved. The term “flexibility” as used herein means that the film is deformed by 50 microns or more when a stress of 3 MPa is applied.

また、セパレータの両側のフレームに形成した中抜き孔と集電体との間に封止部材をそれぞれ配置することにより、セパレータの表裏両側の封止部材の形状がほぼ同じになり、単セルに加わる応力がほぼつり合って、単セルの割れや反りを抑制できる。更に、集電体と封止部材との間で、集電体を間に対向するように、流入室と流出室とを形成することにより、より利用率を改善できる。インターコネクタ板に流入溝と流出溝とを形成しても、シール板を封止部材を覆う大きさに形成することにより、封止部材が流入溝と流出溝とを塞ぐのを防止できる。   In addition, by arranging the sealing members between the hollow holes formed in the frames on both sides of the separator and the current collector, the shapes of the sealing members on both the front and back sides of the separator are substantially the same, so that a single cell is formed. The applied stress is almost balanced, and the crack and warpage of the single cell can be suppressed. Furthermore, the utilization factor can be further improved by forming the inflow chamber and the outflow chamber between the current collector and the sealing member so as to face the current collector therebetween. Even if the inflow groove and the outflow groove are formed in the interconnector plate, it is possible to prevent the sealing member from closing the inflow groove and the outflow groove by forming the seal plate in a size that covers the sealing member.

以下本発明を実施するための最良の形態を図面に基づいて詳細に説明する。
図1に示すように、1は単セルで、単セル1は、平板状の固体酸化物を用いた固体電解質体2を備え、固体電解質体2の一方の側に燃料極4が、固体電解質体2の他方の側に空気極6が設けられている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
As shown in FIG. 1, 1 is a single cell, and the single cell 1 includes a solid electrolyte body 2 using a flat solid oxide, and a fuel electrode 4 is provided on one side of the solid electrolyte body 2. An air electrode 6 is provided on the other side of the body 2.

空気極6は、気相の酸素が電子と反応して酸素イオンになる場であり、酸素が空気極6上に吸着・隔離し、電子と反応場において結合し、酸素イオンとなる。
空気極6には多孔質体が用いられ、その材料としては、例えば、各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。金属としては、Pt、Au、Ag、Pd、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。更に、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La23、SrO、Ce23、Co23、MnO2及びFeO等)が挙げられる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1-xSrxCoO3系複酸化物、La1-xSrxFeO3系複酸化物、La1-xSrxCo1-yFey3系複酸化物、La1-xSrxMnO3系複酸化物、Pr1-xBaxCoO3系複酸化物及びSm1-xSrxCoO3系複酸化物等)が挙げられる。
The air electrode 6 is a field where oxygen in the gas phase reacts with electrons to become oxygen ions, and oxygen is adsorbed and sequestered on the air electrode 6 and combined with electrons in the reaction field to become oxygen ions.
A porous body is used for the air electrode 6, and as the material, for example, various metals, metal oxides, metal double oxides, and the like can be used. Examples of the metal include metals such as Pt, Au, Ag, Pd, Ir, Ru, and Rh, or alloys containing two or more metals. Furthermore, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 and FeO). It is done. As the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-x Sr x CoO 3 -based double oxide, La 1-x Sr x FeO 3 -based double oxide, La 1-x Sr x Co 1-y Fe y O 3 -based double oxide, La 1-x Sr x MnO 3 -based double oxide, Pr 1-x Ba x CoO 3 -based double oxide Oxide and Sm 1-x Sr x CoO 3 -based double oxide).

固体電解質体2は、空気極6から燃料極4に酸素イオンを運ぶ働きをし、空気極6において生成する酸素イオンは固体電解質体2に移動し、固体電解質体2の酸素空孔と位置を交換しながら燃料極4側に移動する。固体電解質体2は酸素イオン導電性酸化物であり、電子導電性はなく、気相の水素と酸素とを物理的に隔離する。   The solid electrolyte body 2 functions to carry oxygen ions from the air electrode 6 to the fuel electrode 4. The oxygen ions generated in the air electrode 6 move to the solid electrolyte body 2, and the oxygen vacancies and positions of the solid electrolyte body 2 are moved. It moves to the fuel electrode 4 side while exchanging. The solid electrolyte body 2 is an oxygen ion conductive oxide, has no electronic conductivity, and physically separates hydrogen and oxygen in the gas phase.

固体電解質体2の材料としては、例えばZrO2系セラミック、LaGaO3系セラミック、BaCeO3系セラミック、SrCeO3系セラミック、SrZrO3系セラミック、及びCaZrO3系セラミック等が挙げられる。 Examples of the material of the solid electrolyte body 2 include ZrO 2 ceramics, LaGaO 3 ceramics, BaCeO 3 ceramics, SrCeO 3 ceramics, SrZrO 3 ceramics, and CaZrO 3 ceramics.

燃料極4は、水素が酸素イオンと反応して水蒸気と電子を生成する反応場であり、水素は燃料極4上に吸着・解離して水素原子になり、更に固体電解質体2の酸素イオンと反応して水蒸気になる。   The fuel electrode 4 is a reaction field in which hydrogen reacts with oxygen ions to generate water vapor and electrons. Hydrogen is adsorbed and dissociated on the fuel electrode 4 to form hydrogen atoms, and further, oxygen ions of the solid electrolyte body 2 Reacts to steam.

燃料極4には多孔質体が用いられ、その材料としては、例えば、Ni及びFe等の金属と、Sc、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO2系セラミック、CeO2系セラミック等のセラミックのうちの少なくとも1種との混合物などが挙げられる。 A porous body is used for the fuel electrode 4, and examples of the material thereof include ZrO 2 such as zirconia stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y. Examples thereof include a mixture with at least one of ceramics such as ceramics and CeO 2 ceramics.

また、Pt、Au、Ag、Pd、Ir、Ru、Rh、Ni及びFe等の金属が挙げられる。これらの金属は1種のみでもよいし、2種以上の金属の合金でもよい。更に、これらの金属や合金と、上記セラミックの各々の少なくとも1種との混合物(サーメットを含む)が挙げられる。また、Ni及びFe等の金属の酸化物と、上記セラミックの各々の少なくとも1種との混合物などが挙げられる。   Moreover, metals, such as Pt, Au, Ag, Pd, Ir, Ru, Rh, Ni, and Fe, are mentioned. These metals may be used alone or in an alloy of two or more metals. Furthermore, a mixture (including cermet) of these metals and alloys and at least one of each of the above ceramics can be mentioned. Moreover, the mixture of metal oxides, such as Ni and Fe, and at least 1 type of each of the said ceramic etc. are mentioned.

本実施形態では、燃料極4の厚さを厚く形成して、燃料極4で支持するように構成されており、いわゆる支持膜式といわれる構成である。図1、図4に示すように、単セル1は、金属製のセパレータ8に取り付けられており、セパレータ8は枠状に形成されて、中央には貫通窓10が形成されている。貫通窓10は空気極6よりも大きく、固体電解質体2よりも小さく形成されており、空気極6が貫通窓10を通して臨むように、単セル1にセパレータ8が積層して配置、本実施形態では、単セル1の表面にセパレータ8が積層配置されている。これに限らず、燃料極4が貫通窓10を通して臨むように、単セル1の裏面にセパレータ8を積層配置してもよい。また、セパレータ8には、その周囲に等間隔で取付孔12が、本実施例では8個の取付孔12が貫通形成されている。   In the present embodiment, the fuel electrode 4 is formed to be thick and supported by the fuel electrode 4, which is a so-called support film type. As shown in FIGS. 1 and 4, the single cell 1 is attached to a metal separator 8, the separator 8 is formed in a frame shape, and a through window 10 is formed in the center. The through window 10 is larger than the air electrode 6 and smaller than the solid electrolyte body 2, and the separator 8 is stacked on the single cell 1 so that the air electrode 6 faces through the through window 10. Then, the separator 8 is laminated and disposed on the surface of the single cell 1. However, the separator 8 may be laminated on the back surface of the single cell 1 so that the fuel electrode 4 faces through the through window 10. In addition, the separator 8 is provided with mounting holes 12 at equal intervals around the separator 8 and in this embodiment, eight mounting holes 12 are formed therethrough.

セパレータ8の表面(単セル1が配置された反対面)には、空気極フレーム14が積層されており、空気極フレーム14は中央に中抜き孔16が形成された枠状に形成されると共に、その周囲に取付孔18がセパレータ8の取付孔12と同じ位置に設けられている。   An air electrode frame 14 is laminated on the surface of the separator 8 (the opposite surface on which the single cell 1 is disposed), and the air electrode frame 14 is formed in a frame shape with a hollow hole 16 formed in the center. The mounting hole 18 is provided around the mounting hole 18 at the same position as the mounting hole 12 of the separator 8.

空気極フレーム14には中央に中抜き孔20が形成された枠状のシール板22が積層されており、シール板22はシール性を有すると共に電気絶縁性を有し、また、取付孔24が、セパレータ8の取付孔12と同じ位置に設けられている。本実施形態では、シール板22の材質には、マイカセラミックが用いられている。   A frame-shaped seal plate 22 having a hollow hole 20 formed in the center is laminated on the air electrode frame 14. The seal plate 22 has a sealing property and an electrical insulation property, and the mounting hole 24 has a mounting hole 24. The separator 8 is provided at the same position as the mounting hole 12. In the present embodiment, mica ceramic is used as the material of the seal plate 22.

シール板22には平板状のインターコネクタ板26が積層されており、インターコネクタ板26は電気導電性を有する金属板等により形成されている。インターコネクタ板26にも取付孔28が形成されており、セパレータ8の取付孔12と同じ位置に設けられている。   A flat interconnector plate 26 is laminated on the seal plate 22, and the interconnector plate 26 is formed of a metal plate having electrical conductivity. An attachment hole 28 is also formed in the interconnector plate 26 and is provided at the same position as the attachment hole 12 of the separator 8.

インターコネクタ板26と空気極6との間の中抜き孔16,20には、電気導電性を有する金属メッシュや目の粗い発泡金属等からなる集電体30が配置されて、インターコネクタ板26と空気極6とが集電体30を介して導通されている。本実施形態では、集電体30は空気極6の表面と同じ大きさの表面を有し、四角柱状に形成されている。   In the hollow holes 16 and 20 between the interconnector plate 26 and the air electrode 6, a current collector 30 made of a metal mesh having electrical conductivity or a foamed metal having a coarse mesh is disposed. And the air electrode 6 are electrically connected via the current collector 30. In the present embodiment, the current collector 30 has a surface having the same size as the surface of the air electrode 6 and is formed in a quadrangular prism shape.

本実施形態では、インターコネクタ板26の複数の取付孔28のうちの単セル1を間に対向する2つの取付孔28に連通して流入溝32と流出溝34とが形成されている。流入溝32と流出溝34とは、インターコネクタ板26のシール板22側の平坦面が溝状に窪まされて、取付孔28と空気極フレーム14の中抜き孔16とが連通されるように形成されている。   In this embodiment, the inflow groove 32 and the outflow groove 34 are formed by communicating the single cell 1 among the plurality of attachment holes 28 of the interconnector plate 26 with the two attachment holes 28 facing each other. The inflow groove 32 and the outflow groove 34 are formed so that the flat surface on the seal plate 22 side of the interconnector plate 26 is recessed in a groove shape so that the mounting hole 28 and the hollow hole 16 of the air electrode frame 14 communicate with each other. Is formed.

また、セパレータ8の裏面(単セル1が配置された面)には、中央に中抜き孔36が形成された枠状の燃料極フレーム38が重ね合わされ、セパレータ8と燃料極フレーム38とが積層されている。   In addition, a frame-shaped fuel electrode frame 38 having a hollow hole 36 formed in the center is overlaid on the back surface of the separator 8 (the surface on which the single cell 1 is disposed), and the separator 8 and the fuel electrode frame 38 are stacked. Has been.

中抜き孔36は、燃料極4よりも大きく形成されて、中抜き孔36内に燃料極4が収納できるように形成されている。燃料極フレーム38の中抜き孔36と空気極フレーム14の中抜き孔16とは同一形状に形成されている。燃料極フレーム38の厚さは、固体電解質体2と燃料極4との合計厚さよりも厚く形成されている。燃料極フレーム38にも複数の取付孔40が、セパレータ8の取付孔12と同じ位置に設けられている。   The hollow hole 36 is formed to be larger than the fuel electrode 4 so that the fuel electrode 4 can be accommodated in the hollow hole 36. The hole 36 in the fuel electrode frame 38 and the hole 16 in the air electrode frame 14 are formed in the same shape. The thickness of the fuel electrode frame 38 is formed to be thicker than the total thickness of the solid electrolyte body 2 and the fuel electrode 4. The fuel electrode frame 38 is also provided with a plurality of mounting holes 40 at the same positions as the mounting holes 12 of the separator 8.

燃料極フレーム38には、更に、中央に中抜き孔41が形成された枠状のシール板42が重ね合わされて、燃料極フレーム38とシール板42とが積層されている。シール板42はシール性を有すると共に電気絶縁性を有し、また、シール板42にも取付孔44が、セパレータ8の取付孔12と同じ位置に設けられている。本実施形態では、シール板42の材質には、マイカセラミックが用いられている。また、本実施形態では、両シール板22,42は共に、電気絶縁性を有するが、両シール板22,42の一方が電気絶縁性を有すればよく、あるいは、絶縁板を別途設けるようにしてもよい。   Further, a frame-shaped seal plate 42 having a hollow hole 41 formed in the center is overlaid on the fuel electrode frame 38, and the fuel electrode frame 38 and the seal plate 42 are laminated. The seal plate 42 has sealing properties and electrical insulation, and the mounting holes 44 are also provided in the sealing plate 42 at the same positions as the mounting holes 12 of the separator 8. In the present embodiment, mica ceramic is used as the material of the seal plate 42. In the present embodiment, both the seal plates 22 and 42 are electrically insulative. However, one of the seal plates 22 and 42 may be electrically insulative, or an insulating plate may be provided separately. May be.

シール板42には平板状のインターコネクタ板46が重ね合わされて、シール板42とインターコネクタ板46とが積層され、単セル1を間にして積層方向に一対のインターコネクタ板26,46が設けられている。このインターコネクタ板46も電気導電性を有する金属板等により形成されている。インターコネクタ板46にも取付孔48が形成されており、セパレータ8の取付孔12と同じ位置に設けられている。   A flat interconnector plate 46 is overlaid on the seal plate 42, the seal plate 42 and the interconnector plate 46 are laminated, and a pair of interconnector plates 26, 46 are provided in the lamination direction with the single cell 1 in between. It has been. The interconnector plate 46 is also formed of an electrically conductive metal plate or the like. An attachment hole 48 is also formed in the interconnector plate 46 and is provided at the same position as the attachment hole 12 of the separator 8.

燃料極4とインターコネクタ板46との間には、電気導電性を有する金属メッシュや目の粗い発泡金属等からなる集電体50が配置されて、燃料極4とインターコネクタ板46とが集電体50を介して導通されている。本実施形態では、燃料極4側の集電体50が燃料極4に接触する面積と空気極6側の集電体30が空気極6に接触する面積とが同じになるように形成されている。   Between the fuel electrode 4 and the interconnector plate 46, a current collector 50 made of a metal mesh having electrical conductivity or a foamed metal having a coarse mesh is disposed, and the fuel electrode 4 and the interconnector plate 46 are collected. Conduction is made through the electric body 50. In the present embodiment, the area where the current collector 50 on the fuel electrode 4 side contacts the fuel electrode 4 and the area where the current collector 30 on the air electrode 6 side contacts the air electrode 6 are the same. Yes.

本実施形態では、インターコネクタ板46の複数の取付孔48のうちの単セル1を間に対向する2つの取付孔48に連通して流入溝52と流出溝54とが形成されている。流入溝52と流出溝54とは、インターコネクタ板46のシール板42側の平坦面が溝状に窪まされて、取付孔48と燃料極フレーム38の中抜き孔36とが連通されるように形成されている。燃料極フレーム38の流入溝52及び流出溝54は、空気極フレーム14の流入溝32及び流出溝34と位相が90度異なるように形成されて、ガスの流れがクロスフローとなるように構成されている。   In the present embodiment, the inflow groove 52 and the outflow groove 54 are formed by communicating the single cell 1 of the plurality of mounting holes 48 of the interconnector plate 46 with the two mounting holes 48 facing each other. The inflow groove 52 and the outflow groove 54 are formed so that the flat surface on the seal plate 42 side of the interconnector plate 46 is recessed in a groove shape so that the mounting hole 48 and the hollow hole 36 of the fuel electrode frame 38 communicate with each other. Is formed. The inflow grooves 52 and the outflow grooves 54 of the fuel electrode frame 38 are formed so as to be 90 degrees out of phase with the inflow grooves 32 and the outflow grooves 34 of the air electrode frame 14, so that the gas flow becomes a cross flow. ing.

空気極フレーム14の中抜き孔16内には、封止部材60が収納されている。封止部材60は絶縁性を有すると共に、柔軟性を有し、また、耐熱性を有するが、通気性は必要としない。本実施形態では、封止部材60に無機ファイバーが用いられており、例えば、アルミナ若しくはシリカアルミナフェルト等が挙げられる。空気極6の近傍に配置されるので絶縁性を有し、また、発熱により高温に晒されるので耐熱性を有する。また、部材が発熱により膨張する際に、部材の膨張率等の違いに基づく膨張差を吸収できる程度であって、3MPaの応力を加えた場合に、50ミクロン以上変形する程度の柔軟性を有する。   A sealing member 60 is accommodated in the hollow hole 16 of the air electrode frame 14. The sealing member 60 has insulating properties, flexibility, and heat resistance, but does not require air permeability. In the present embodiment, inorganic fibers are used for the sealing member 60, and examples thereof include alumina or silica alumina felt. Since it is disposed in the vicinity of the air electrode 6, it has insulating properties, and since it is exposed to high temperatures due to heat generation, it has heat resistance. In addition, when the member expands due to heat generation, it can absorb a difference in expansion based on a difference in expansion coefficient of the member, and has flexibility enough to deform by 50 microns or more when a stress of 3 MPa is applied. .

封止部材60は集電体30の周囲を囲むように設けられており、本実施形態では、封止部材60の外形は空気極フレーム14の中抜き孔16の内壁に隙間なく接触して中抜き孔16に収納できる大きさに形成されている。また、封止部材60の中央に収納孔62が形成されており、流入溝32から流出溝34に流れる酸化剤ガスの流れ方向左右側では、封止部材60と集電体30との間に隙間が形成されないように、収納孔62と集電体30とのガス流れ方向左右の幅はほぼ同じ大きさに形成されている。   The sealing member 60 is provided so as to surround the current collector 30, and in this embodiment, the outer shape of the sealing member 60 is in contact with the inner wall of the hollow hole 16 of the air electrode frame 14 without a gap. It is formed in a size that can be accommodated in the hole 16. In addition, a housing hole 62 is formed in the center of the sealing member 60, and between the sealing member 60 and the current collector 30 on the left and right sides in the flow direction of the oxidant gas flowing from the inflow groove 32 to the outflow groove 34. The left and right widths of the storage hole 62 and the current collector 30 in the gas flow direction are formed to be approximately the same so that no gap is formed.

また、酸化剤ガスの流れ方向では、集電体30と封止部材60との間に、流入溝32側に流入室64が、流出溝34側に流出室66が形成されるように、収納孔62が形成されている。そして、流入室64と流出室66とが集電体30を間に対向するように形成されている。   In the flow direction of the oxidant gas, the inflow chamber 64 is formed on the inflow groove 32 side and the outflow chamber 66 is formed on the outflow groove 34 side between the current collector 30 and the sealing member 60. A hole 62 is formed. The inflow chamber 64 and the outflow chamber 66 are formed so as to face the current collector 30 therebetween.

インターコネクタ板26の流入溝32は流入室64に連通するように形成されており、インターコネクタ板26の流出溝34は流出室66に連通するように形成されている。収納孔62の大きさと、シール板22の中抜き孔20の大きさとは同じに形成されている。従って、シール板22により封止部材60が覆われて、封止部材60が流入溝32や流出溝34に侵入して塞ぐことがないように押さえられている。   The inflow groove 32 of the interconnector plate 26 is formed so as to communicate with the inflow chamber 64, and the outflow groove 34 of the interconnector plate 26 is formed so as to communicate with the outflow chamber 66. The size of the storage hole 62 is the same as the size of the hollow hole 20 in the seal plate 22. Therefore, the sealing member 60 is covered with the seal plate 22 and is pressed so that the sealing member 60 does not enter and close the inflow groove 32 or the outflow groove 34.

一方、燃料極フレーム38の中抜き孔36内にも、封止部材70が収納されている。封止部材70は、前述した空気極フレーム14内の封止部材60と同じ材質で形成されており、同様に、絶縁性を有すると共に、柔軟性を有し、また、耐熱性を有するが、通気性は必要としない。   On the other hand, the sealing member 70 is also accommodated in the hollow hole 36 of the fuel electrode frame 38. The sealing member 70 is formed of the same material as the sealing member 60 in the air electrode frame 14 described above. Similarly, the sealing member 70 has insulating properties, flexibility, and heat resistance. Breathability is not required.

この封止部材70は固体電解質体2、燃料極4、集電体50の周囲を囲むように設けられており、本実施形態では、封止部材70の外形は燃料極フレーム38の中抜き孔36の内壁に隙間なく接触して中抜き孔36に収納できる大きさに形成されている。また、封止部材70の中央に大収納孔72及び収納孔73が形成されており、封止部材70と固体電解質体2及び燃料極4との間に隙間が形成されないように、大収納孔72と固体電解質体2及び燃料極4とはほぼ同じ大きさに形成されている。   The sealing member 70 is provided so as to surround the solid electrolyte body 2, the fuel electrode 4, and the current collector 50. In this embodiment, the outer shape of the sealing member 70 is a hollow hole in the fuel electrode frame 38. It is formed in a size that can be accommodated in the hollow hole 36 by contacting the inner wall 36 without any gap. In addition, a large storage hole 72 and a storage hole 73 are formed in the center of the sealing member 70, so that no gap is formed between the sealing member 70, the solid electrolyte body 2, and the fuel electrode 4. 72, the solid electrolyte body 2 and the fuel electrode 4 are formed in substantially the same size.

大収納孔72に連接して収納孔73が形成されており、流入溝52から流出溝54に流れる燃料ガスの流れ方向左右側では、封止部材70と集電体50との間に隙間が形成されないように、収納孔73と集電体50とのガス流れ方向左右の幅はほぼ同じ大きさに形成されている。   A storage hole 73 is formed so as to be connected to the large storage hole 72, and there is a gap between the sealing member 70 and the current collector 50 on the left and right sides in the flow direction of the fuel gas flowing from the inflow groove 52 to the outflow groove 54. In order not to be formed, the left and right widths of the storage hole 73 and the current collector 50 in the gas flow direction are formed to have substantially the same size.

また、燃料ガスの流れ方向では、集電体50と封止部材70との間に、流入溝52側に流入室74が、流出溝54側に流出室76が形成されるように、収納孔73が形成されている。そして、流入室74と流出室76とが集電体50を間に対向するように形成されている。   Further, in the flow direction of the fuel gas, the storage hole is formed so that the inflow chamber 74 is formed on the inflow groove 52 side and the outflow chamber 76 is formed on the outflow groove 54 side between the current collector 50 and the sealing member 70. 73 is formed. The inflow chamber 74 and the outflow chamber 76 are formed to face the current collector 50 therebetween.

インターコネクタ板46の流入溝52は流入室74に連通するように形成されており、インターコネクタ板46の流出溝54は流出室76に連通するように形成されている。収納孔73の大きさと、シール板42の中抜き孔41の大きさとはほぼ同じ大きさに形成されている。従って、シール板42により封止部材70が覆われて、封止部材70が流入溝52や流出溝54に侵入して塞がないように押さえられている。   The inflow groove 52 of the interconnector plate 46 is formed to communicate with the inflow chamber 74, and the outflow groove 54 of the interconnector plate 46 is formed to communicate with the outflow chamber 76. The size of the storage hole 73 and the size of the hollow hole 41 of the seal plate 42 are formed to be approximately the same size. Accordingly, the sealing member 70 is covered with the seal plate 42 and is pressed so as not to enter the inflow groove 52 and the outflow groove 54 and to be blocked.

インターコネクタ板26、シール板22、空気極フレーム14、セパレータ8、燃料極フレーム38、シール板42、インターコネクタ板46の各取付孔28,24,18,12,40,44,48には、それぞれボルト80が挿入されて、これらが積層固定されている。尚、これらが複数交互に積層されて燃料電池が構成されている。   In each of the mounting holes 28, 24, 18, 12, 40, 44, 48 of the interconnector plate 26, the seal plate 22, the air electrode frame 14, the separator 8, the fuel electrode frame 38, the seal plate 42, and the interconnector plate 46, Bolts 80 are respectively inserted, and these are laminated and fixed. A plurality of these are alternately stacked to constitute a fuel cell.

また、空気極6側のインターコネクタ板26の流入溝32に連通する各取付孔28,24,18,12,40,44,48には、酸化剤ガスが供給されて、流入溝32から流入室64に流入する。インターコネクタ板26の流出溝34に連通する各取付孔28,24,18,12,40,44,48には、流出室66から消費された酸化剤ガスが流出する。   The mounting holes 28, 24, 18, 12, 40, 44, 48 communicating with the inflow grooves 32 of the interconnector plate 26 on the air electrode 6 side are supplied with oxidant gas and flow in from the inflow grooves 32. It flows into the chamber 64. The oxidant gas consumed from the outflow chamber 66 flows out into the mounting holes 28, 24, 18, 12, 40, 44, 48 that communicate with the outflow groove 34 of the interconnector plate 26.

更に、燃料極4側のインターコネクタ板46の流入溝52に連通する各取付孔28,24,18,12,40,44,48には、燃料ガスが供給されて、流入溝52から流入室74に流入する。インターコネクタ板46の流出溝54に連通している各取付孔28,24,18,12,40,44,48からは、流出室76から消費された燃料ガスが流出する。   Furthermore, fuel gas is supplied to each of the mounting holes 28, 24, 18, 12, 40, 44, and 48 that communicate with the inflow groove 52 of the interconnector plate 46 on the fuel electrode 4 side, and the inflow chamber is formed from the inflow groove 52. 74 flows in. The fuel gas consumed from the outflow chamber 76 flows out from the mounting holes 28, 24, 18, 12, 40, 44, 48 communicating with the outflow groove 54 of the interconnector plate 46.

次に、前述した本実施形態の固体電解質型燃料電池の作動について説明する。
まず、インターコネクタ板26の流入溝32に、本実施形態では、空気を用いた酸化剤ガスが供給されると、酸化剤ガスは流入溝32から流入室64に流入する。そして、空気極6に接して流れた酸化剤ガスは、酸素が電子と反応して酸素イオンになり、生成された酸素イオンが固体電解質体2に移動し、固体電解質体2の酸素空孔と位置を交換しながら燃料極4側に移動する。空気のうち、酸素が消費された酸化剤ガスは流出室66から流出溝34を通り、排出される。
Next, the operation of the above-described solid oxide fuel cell of this embodiment will be described.
First, in this embodiment, when an oxidant gas using air is supplied to the inflow groove 32 of the interconnector plate 26, the oxidant gas flows into the inflow chamber 64 from the inflow groove 32. The oxidant gas that has flowed in contact with the air electrode 6 is converted into oxygen ions when oxygen reacts with the electrons, and the generated oxygen ions move to the solid electrolyte body 2 to form oxygen vacancies in the solid electrolyte body 2. It moves to the fuel electrode 4 side while exchanging the position. Of the air, the oxidant gas in which oxygen is consumed passes through the outflow groove 34 from the outflow chamber 66 and is discharged.

一方、インターコネクタ板46の流入溝52に流入した燃料ガスは、流入溝52から流入室74に流入する。そして、流入室74から燃料極4に供給され、燃料極4に供給された燃料ガスは、本実施形態では燃料ガスとして用いた水素が酸素イオンと反応して水蒸気と電子を生成する。水素が消費され、生成された水蒸気が燃料ガスに混じり合いながら、流出室76及び流出溝54から、排出される。   On the other hand, the fuel gas that has flowed into the inflow groove 52 of the interconnector plate 46 flows into the inflow chamber 74 from the inflow groove 52. The fuel gas supplied from the inflow chamber 74 to the fuel electrode 4, and hydrogen used as the fuel gas in this embodiment reacts with oxygen ions to generate water vapor and electrons. Hydrogen is consumed, and the generated water vapor is discharged from the outflow chamber 76 and the outflow groove 54 while mixing with the fuel gas.

空気極6側では酸化剤ガスが流入溝32から流出溝34に流れるが、流入室64及び流出室66を除き、集電体30の周囲は封止部材60により囲まれているので、酸化剤ガスが効率よく空気極6に供給されて利用率が向上し、使用されない酸化剤ガスが供給されることによる温度低下を防止でき、使用されない酸化剤ガスを予熱する必要がなくなる。   On the air electrode 6 side, the oxidant gas flows from the inflow groove 32 to the outflow groove 34, but the current collector 30 is surrounded by the sealing member 60 except for the inflow chamber 64 and the outflow chamber 66. The gas is efficiently supplied to the air electrode 6 to improve the utilization rate, and it is possible to prevent a temperature drop due to the supply of the unused oxidant gas, and it is not necessary to preheat the unused oxidant gas.

また、燃料極4側では燃料ガスが流入溝52から流出溝54に流れるが、流入室74及び流出室76を除き、集電体50の周囲は封止部材70により囲まれているので、燃料ガスが効率よく燃料極4に供給されて利用率が向上し、使用されない燃料ガスが供給されることによる燃費の悪化を防止できると共に、使用されない燃料ガスを予熱する必要がなくなる。更に、封止部材60,70は絶縁性を有するので、封止部材60,70を設けても、短絡が生じることはない。   On the fuel electrode 4 side, the fuel gas flows from the inflow groove 52 to the outflow groove 54, but the current collector 50 is surrounded by the sealing member 70 except for the inflow chamber 74 and the outflow chamber 76. Gas is efficiently supplied to the fuel electrode 4 to improve the utilization rate, and it is possible to prevent deterioration of fuel consumption due to supply of unused fuel gas, and it is not necessary to preheat unused fuel gas. Furthermore, since the sealing members 60 and 70 have insulating properties, even if the sealing members 60 and 70 are provided, a short circuit does not occur.

発電反応の際に、自身が発熱して高温になり、封止部材60,70が熱膨張するが、空気極6側の封止部材60と燃料極4側の封止部材70とがそれぞれ重なり合う位置に配置されているので、また、両封止部材60,70の形状がほぼ同じである。よって、両封止部材60,70の熱応力が互いに打ち消しあって、単セル1に加わる応力を緩和でき、単セル1の割れや反りを招くのを防止する。また、両封止部材60,70は柔軟性を有するので、両封止部材60,70の膨張に差があっても、更には、周囲の部材の膨張率に差があっても、両封止部材60,70の柔軟性が膨張の差を吸収して、単セル1の割れや反りを招くのを防止する。   During the power generation reaction, it generates heat and becomes high temperature, and the sealing members 60 and 70 thermally expand. However, the sealing member 60 on the air electrode 6 side and the sealing member 70 on the fuel electrode 4 side overlap each other. Since they are arranged at the positions, the shapes of the sealing members 60 and 70 are substantially the same. Therefore, the thermal stresses of the sealing members 60 and 70 cancel each other, the stress applied to the single cell 1 can be relaxed, and the single cell 1 is prevented from being cracked or warped. Further, since both the sealing members 60 and 70 have flexibility, even if there is a difference in expansion between both the sealing members 60 and 70, and even when there is a difference in expansion coefficient between surrounding members, The flexibility of the stop members 60 and 70 absorbs the difference in expansion and prevents the single cell 1 from being cracked or warped.

前述した実施形態と比較するために、空気極6側の封止部材60の材質を柔軟性のあるシリカ・アルミナフェルトとし、燃料極4側の封止部材70の材質を柔軟性のないアルミナのバルク体として、他は前述した実施形態と同様の構成とした比較例1により実験した。その結果、両封止部材60,70に加わる応力が不均一となることにより、単セル1の割れや反りを助長してしまい、発電特性を評価することができなかった。   For comparison with the embodiment described above, the material of the sealing member 60 on the air electrode 6 side is made of flexible silica / alumina felt, and the material of the sealing member 70 on the fuel electrode 4 side is made of non-flexible alumina. As the bulk body, the experiment was performed according to Comparative Example 1 having the same configuration as that of the above-described embodiment. As a result, the stress applied to both sealing members 60 and 70 becomes non-uniform, which promotes cracking and warping of the single cell 1 and makes it impossible to evaluate the power generation characteristics.

また、空気極6側と燃料極4側のそれぞれの封止部材60,70の材質を共に導電性のあるニッケルフェルトとした比較例2により実験を行った。その結果、インターコネクタ板26から空気極6側の封止部材60、セパレータ8、燃料極4側の封止部材70、さらにインターコネクタ板46の順へと短絡してしまい、発電特性を評価することができなかった。   In addition, an experiment was performed in Comparative Example 2 in which the sealing members 60 and 70 on the air electrode 6 side and the fuel electrode 4 side were both made of conductive nickel felt. As a result, the interconnector plate 26 is short-circuited in the order of the sealing member 60 on the air electrode 6 side, the separator 8, the sealing member 70 on the fuel electrode 4 side, and further the interconnector plate 46, and the power generation characteristics are evaluated. I couldn't.

更に、空気極6側と燃料極4側のそれぞれの封止部材60,70の材質を共に絶縁性のアルミナのバルク体とした比較例3により実験を行った。その結果、空気極6と燃料極4の集電体30,50とインターコネクタ板26,46との間の電気的な接触不良が起こり、さらにはアルミナのバルク体とそれを取り囲む空気極フレーム14や燃料極フレーム38の隙間からガスが漏出して、発電特性を評価することができなかった。   Further, an experiment was conducted according to Comparative Example 3 in which the sealing members 60 and 70 on the air electrode 6 side and the fuel electrode 4 side were both made of an insulating alumina bulk body. As a result, poor electrical contact occurs between the current collectors 30 and 50 of the air electrode 6 and the fuel electrode 4 and the interconnector plates 26 and 46, and further, the alumina bulk body and the air electrode frame 14 surrounding it. In addition, gas leaked from the gap between the fuel electrode frames 38, and the power generation characteristics could not be evaluated.

以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。   The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.

本発明の一実施形態としての固体電解質型燃料電池の断面図である。It is sectional drawing of the solid oxide fuel cell as one Embodiment of this invention. 本実施形態の空気極側の流入室と流出室の説明図である。It is explanatory drawing of the inflow chamber and outflow chamber by the side of the air electrode of this embodiment. 本実施形態の燃料極側の流入室と流出室の説明図である。It is explanatory drawing of the inflow chamber and outflow chamber of the fuel electrode side of this embodiment. 本実施形態の固体電解質型燃料電池の分解斜視図である。It is a disassembled perspective view of the solid oxide fuel cell of this embodiment.

符号の説明Explanation of symbols

1…単セル 2…固体電解質体
4…燃料極 6…空気極
8…セパレータ 10…貫通窓
12,18,24,28,40,44,48…取付孔
14…空気極フレーム
16,20,36,41…中抜き孔
22,42…シール板
26,46…インターコネクタ板
30,50…集電体 32,52…流入溝
34,54…流出溝 38…燃料極フレーム
60,70…封止部材
62,73…収納孔 64,74…流入室
66,76…流出室 72…大収納孔
80…ボルト
DESCRIPTION OF SYMBOLS 1 ... Single cell 2 ... Solid electrolyte body 4 ... Fuel electrode 6 ... Air electrode 8 ... Separator 10 ... Through-hole 12, 18, 24, 28, 40, 44, 48 ... Mounting hole 14 ... Air electrode frame 16, 20, 36 , 41... Holes 22 and 42... Sealing plates 26 and 46... Interconnector plates 30 and 50... Current collectors 32 and 52. 62, 73 ... storage hole 64, 74 ... inflow chamber 66, 76 ... outflow chamber 72 ... large storage hole 80 ... bolt

Claims (7)

平板状の固体電解質体の一方の側に燃料ガスに接する燃料極を他方の側に酸化剤ガスに接する空気極を設けた単セルを備えた固体電解質型燃料電池において、
前記燃料ガスと前記酸化剤ガスとを分離するセパレータを前記単セルの表裏面の少なくとも一方に積層配置すると共に、前記単セルを間にして積層方向に一対のインターコネクタ板を設け、前記燃料極及び前記空気極と前記各インターコネクタ板との間にそれぞれ集電体を配置し、
前記セパレータの表裏両側に、それぞれ前記ガスが流入する同一形状の中抜き孔が形成されたフレームを積層配置し、かつ、3MPaの応力を加えて50ミクロン以上変形する柔軟性を有する封止部材を、前記中抜き孔と前記集電体との間に前記集電体の周囲を囲んでそれぞれ重なり合う位置に配置したことを特徴とする固体電解質型燃料電池。
In a solid oxide fuel cell comprising a single cell provided with a fuel electrode in contact with fuel gas on one side of a flat solid electrolyte body and an air electrode in contact with oxidant gas on the other side,
A separator that separates the fuel gas and the oxidant gas is stacked on at least one of the front and back surfaces of the single cell, and a pair of interconnector plates are provided in the stacking direction with the single cell in between, and the fuel electrode And a current collector between each air electrode and each interconnector plate,
The front and back sides of the separator, the frame vent holes are formed within the same shape in which the gas respectively flows stacked arrangement, and a sealing member having a flexibility you modified 50 microns or more in addition to the stress of 3MPa Is disposed between the hollow hole and the current collector so as to surround the current collector and overlap each other.
記各フレームと前記各インターコネクタ板との間に、シール板を積層配置したことを特徴とする請求項1に記載の固体電解質型燃料電池。 Between the front SL each frame and each interconnector plates, solid oxide fuel cell according to claim 1, characterized in that the sealing plate is stacked. 前記集電体と前記封止部材との間に、前記集電体を間にして対向するように、流入室と流出室とを形成したことを特徴とする請求項2に記載の固体電解質型燃料電池。   3. The solid electrolyte mold according to claim 2, wherein an inflow chamber and an outflow chamber are formed between the current collector and the sealing member so as to face each other with the current collector interposed therebetween. Fuel cell. 前記各インターコネクタ板に前記流入室と前記流出室とにそれぞれ連通する流入溝と流出溝とを形成し、前記シール板は前記封止部材を覆う大きさに形成されていることを特徴とする請求項3に記載の固体電解質型燃料電池。   Each interconnector plate is formed with an inflow groove and an outflow groove communicating with the inflow chamber and the outflow chamber, respectively, and the seal plate is formed in a size that covers the sealing member. The solid oxide fuel cell according to claim 3. 前記燃料ガスと前記酸化剤ガスとの流れがクロスフローであることを特徴とする請求項1ないし請求項4のいずれかに記載の固体電解質型燃料電池。   5. The solid oxide fuel cell according to claim 1, wherein the flow of the fuel gas and the oxidant gas is a cross flow. 前記シール板は、絶縁性を有することを特徴とする請求項2ないし請求項5のいずれかに記載の固体電解質型燃料電池。   6. The solid oxide fuel cell according to claim 2, wherein the seal plate has an insulating property. 前記封止部材は、無機ファイバーであることを特徴とする請求項1ないし請求項6のいずれかに記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 6, wherein the sealing member is an inorganic fiber.
JP2007206923A 2007-08-08 2007-08-08 Solid oxide fuel cell Expired - Fee Related JP5242971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206923A JP5242971B2 (en) 2007-08-08 2007-08-08 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206923A JP5242971B2 (en) 2007-08-08 2007-08-08 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2009043550A JP2009043550A (en) 2009-02-26
JP5242971B2 true JP5242971B2 (en) 2013-07-24

Family

ID=40444085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206923A Expired - Fee Related JP5242971B2 (en) 2007-08-08 2007-08-08 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5242971B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2800518C (en) * 2010-05-26 2015-01-27 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell including gas sealing with at least first and second gas flowing paths
JP6175410B2 (en) 2013-06-28 2017-08-02 日本特殊陶業株式会社 Fuel cell and manufacturing method thereof
WO2017069033A1 (en) 2015-10-23 2017-04-27 日本特殊陶業株式会社 Interconnector-electrochemical reaction single cell composite body, and electrochemical reaction cell stack
CN110337747B (en) 2017-02-27 2022-08-02 森村索福克科技股份有限公司 Electrochemical reaction unit, electrochemical reaction battery, and method for producing electrochemical reaction unit
EP3588644B1 (en) * 2017-02-27 2024-05-08 Morimura Sofc Technology Co., Ltd. Electrochemical reaction unit and electrochemical reaction cell stack

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065803B2 (en) * 1992-08-20 2000-07-17 大阪瓦斯株式会社 Fuel cell
JPH0850911A (en) * 1994-08-05 1996-02-20 Sekiyu Sangyo Kasseika Center Platelike solid electrolytic fuel cell
JPH10106597A (en) * 1996-09-25 1998-04-24 Fuji Electric Co Ltd Solid electrolyte fuel cell
JPH10106608A (en) * 1996-10-02 1998-04-24 Murata Mfg Co Ltd Solid electrolyte fuel cell and manufacture thereof
JP3494560B2 (en) * 1997-09-30 2004-02-09 三洋電機株式会社 Solid oxide fuel cell
AU2001287397B2 (en) * 2000-08-18 2007-05-10 Versa Power Systems, Ltd. High temperature gas seals
JP4615143B2 (en) * 2001-05-14 2011-01-19 東京瓦斯株式会社 Flat plate solid oxide fuel cell and alloy separator therefor
US7553579B2 (en) * 2003-04-04 2009-06-30 Versa Power Systems Ltd. Solid oxide fuel cell stack with floating cells
JP3799038B2 (en) * 2003-11-11 2006-07-19 ニッタ株式会社 Separator for polymer electrolyte fuel cell
US20060286428A1 (en) * 2005-06-20 2006-12-21 General Electric Company Composite sealing structure for SOFC modules and stacks and related method
US7736787B2 (en) * 2005-09-06 2010-06-15 Nextech Materials, Ltd. Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP2007134133A (en) * 2005-11-09 2007-05-31 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JP2009043550A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4800439B1 (en) Fuel cell structure
US20100015491A1 (en) Solid oxide fuel cell stack for portable power generation
JP6360794B2 (en) Fuel cell
JP5198797B2 (en) Solid electrolyte fuel cell
US20070281194A1 (en) Portable fuel cell assembly
JP5242971B2 (en) Solid oxide fuel cell
JP5646779B2 (en) Fuel cell
JP6131426B2 (en) Fuel cell seal structure
JP6283330B2 (en) Electrochemical reaction unit and fuel cell stack
JP5254588B2 (en) Solid oxide fuel cell module
JP5319460B2 (en) Cell stack device, fuel cell module and fuel cell device
TWI729087B (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
JP5270115B2 (en) Solid oxide fuel cell
JP2008010240A (en) Solid oxide fuel cell and its manufacturing method
JP5362605B2 (en) Solid oxide fuel cell
JP2022125885A (en) Fuel battery cell and fuel battery stack
JP7087624B2 (en) Fuel cell stack
JP2003086204A (en) Solid electrolyte type fuel cell
JP5840983B2 (en) Solid oxide fuel cell and fuel cell unit
JP2012209121A (en) Solid oxide fuel battery cell, fuel cell module having the same and fuel cell device
JP5620785B2 (en) Fuel cell
JP2017212032A (en) Electrochemical reaction cell stack
JP6488333B2 (en) Fuel cell and cell stack device
JP6501843B2 (en) Cell stack device
JP6827672B2 (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5242971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees