JP5241392B2 - Method for producing carbonaceous film - Google Patents

Method for producing carbonaceous film Download PDF

Info

Publication number
JP5241392B2
JP5241392B2 JP2008233555A JP2008233555A JP5241392B2 JP 5241392 B2 JP5241392 B2 JP 5241392B2 JP 2008233555 A JP2008233555 A JP 2008233555A JP 2008233555 A JP2008233555 A JP 2008233555A JP 5241392 B2 JP5241392 B2 JP 5241392B2
Authority
JP
Japan
Prior art keywords
film
inner core
container
thermal conductivity
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008233555A
Other languages
Japanese (ja)
Other versions
JP2010064929A (en
Inventor
卓 稲田
泰司 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008233555A priority Critical patent/JP5241392B2/en
Publication of JP2010064929A publication Critical patent/JP2010064929A/en
Application granted granted Critical
Publication of JP5241392B2 publication Critical patent/JP5241392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子機器、精密機器などで放熱部材として使用される炭素質フィルムの製造方法に関する。   The present invention relates to a method for producing a carbonaceous film used as a heat radiating member in electronic equipment, precision equipment, and the like.

グラファイトは抜群の耐熱性、耐薬品性、熱伝導性、電気伝導性、低ガス透過性のため熱拡散・放熱材料、耐熱シール材、ガスケット、燃料電池用セパレータ、等として広く使用されている。グラファイトはa−b面方向と、c軸方向でその熱的・電気的性質が大きく異なり、a−b面方向とc軸方向の熱伝導度の異方性は50〜400倍に達する。グラファイト放熱フィルムはこの様な性質を利用して、発生した熱をすばやく広範囲に拡散させる事を目的とするものである。放熱用途として用いられるグラファイトの製造方法として、以下に述べる二つの方法がある。   Graphite is widely used as a heat diffusion / heat dissipation material, heat-resistant sealing material, gasket, fuel cell separator, etc. because of its outstanding heat resistance, chemical resistance, thermal conductivity, electrical conductivity, and low gas permeability. Graphite has greatly different thermal and electrical properties in the ab plane direction and c axis direction, and the anisotropy of thermal conductivity in the ab plane direction and c axis direction reaches 50 to 400 times. The purpose of the graphite heat-dissipating film is to quickly diffuse a wide range of generated heat using such properties. There are two methods for producing graphite used for heat dissipation as described below.

その一つは、一般に膨張グラファイト法と呼ばれる方法である。これは天然グラファイト鉛を硫酸などの強酸で処理することで層間化合物を形成させ、これを加熱・膨張させた際に生じる膨張グラファイトを圧延したシート状のグラファイトのフィルムの事である(以下本発明ではこの方法で作製されたグラファイトフィルムを膨張グラファイトフィルムと呼ぶ事にする)。(非特許文献1)   One of them is a method generally called an expanded graphite method. This is a sheet-like graphite film obtained by rolling expanded graphite produced when natural graphite lead is treated with a strong acid such as sulfuric acid to form an intercalation compound, and this is heated and expanded (hereinafter referred to as the present invention). Then, the graphite film produced by this method is called an expanded graphite film). (Non-Patent Document 1)

この様な膨張グラファイトフィルムは面状方向に100〜400W/(m・K)程度の熱伝導度を示し、放熱材料として使用されている。放熱材料として見た膨張グラファイトフィルムには、大面積シートの作製が容易であるという長所がある反面、400W/(m・K)以上の熱伝導度の実現は困難、50μm以下の薄いフィルムの作製が困難であると言った欠点がある。   Such an expanded graphite film exhibits a thermal conductivity of about 100 to 400 W / (m · K) in the planar direction and is used as a heat dissipation material. The expanded graphite film seen as a heat dissipation material has the advantage that it is easy to produce a large-area sheet, but it is difficult to achieve a thermal conductivity of 400 W / (m · K) or more, and a thin film of 50 μm or less is produced. Has the disadvantage that it is difficult.

もう一つの方法が、ポリオキサジアゾール、ポリベンゾチアゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリベンゾビスオキサゾール、ポリチアゾール、ポリイミド、ポリフェニレンビニレン、またはポリアミド等の高分子フィルムをアルゴン、ヘリウム等の不活性雰囲気下や真空下で熱処理する高分子熱分解法(特許文献1、2、3)が知られている。具体的にはこれらの高分子フィルムを、例えば不活性ガス中、好ましくは窒素ガス中で1000℃程度の予備加熱を行ない、ガラス状の炭素質フィルムを調製する炭化工程と、その後に調製した炭素質フィルムを2400℃以上の温度で処理する黒鉛化工程の二つの工程を経る事によってグラファイトフィルムを得る事が出来る。放熱材料として見た高分子グラファイトフィルムには、600〜1800W/(m・K)の非常に高い熱伝導度を示し、薄いシートの作製が可能で25μm以下のシートも容易に作製できる、と言う長所がある反面、大面積シートの作製が困難であると言った欠点がある。   Another method is to use a polymer film such as polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, polythiazole, polyimide, polyphenylene vinylene, or polyamide such as argon or helium. Polymer pyrolysis methods (Patent Documents 1, 2, and 3) in which heat treatment is performed in an inert atmosphere or in a vacuum are known. Specifically, these polymer films are preliminarily heated at, for example, about 1000 ° C. in an inert gas, preferably in a nitrogen gas to prepare a glassy carbonaceous film, and then the carbon prepared. A graphite film can be obtained by passing through two processes of the graphitization process which processes a quality film at the temperature of 2400 degreeC or more. The polymer graphite film viewed as a heat dissipation material has a very high thermal conductivity of 600 to 1800 W / (m · K), and can be produced as a thin sheet, and a sheet of 25 μm or less can be easily produced. On the other hand, it has the disadvantage that it is difficult to produce a large area sheet.

この高分子熱分解法によるグラファイトフィルムの製造方法として、
(方法1)枚葉の原料フィルムを黒鉛板に挟んで熱処理する方法
(方法2)長尺の原料フィルムを円筒に巻き付けて熱処理する方法
の二つの方法が知られている。より詳細にその方法を説明すると以下の通りである。
As a method for producing a graphite film by this polymer pyrolysis method,
(Method 1) Two methods are known: a method in which a single-wafer raw material film is sandwiched between graphite plates and heat-treated (Method 2). The method will be described in more detail as follows.

(方法1)枚葉の原料フィルムを黒鉛板に挟んで熱処理する方法
特許文献1、2の実施例1、2には、以下のように、枚葉で原料フィルムを熱処理する方法が開示されている。25ミクロンのPAフィルム(ポリ(m−フェニレンイソフタルアミド))、PI(ポリ(ピロメリットイミド)) 、PBI(ポリ(m−フェニレンベンゾイミダゾール)) 、PBBI(ポリ(m−フェニレンベンゾビスイミダゾール))をステンレスの枠に固定し、電気炉を用いて、アルゴン中毎分10℃ の速度で室温から700℃まで予備的な加熱処理をした。ステンレスの枠がない場合、PAフィルムはこの温度領域でもとの寸法の50%に縮むので、ステンレス枠による固定は結果的に張力を加えながら予備加熱処理をした事を意味する。この様にして予備熱処理したフィルムを黒鉛板でサンドイッチし、アルゴン気流中、毎分10℃ の速度で昇温し、所望の温度(Tp)で1時間熱処理した。熱処理後毎分20℃ の速度で降温させた。使用した炉は、カーボンヒーターを用いた電気炉である。得られた黒色のフィルムはTpが1400℃ 以下ではもろくフレキシビリティのないものであったが、1800℃ 以上ではフレキシビリティのあるフィルムになった。
(Method 1) Method of heat-treating a single-wafer raw material film between graphite plates Examples 1 and 2 of Patent Documents 1 and 2 disclose a method of heat-treating a raw material film with a single-wafer as follows. Yes. 25 micron PA film (poly (m-phenyleneisophthalamide)), PI (poly (pyromellitimide)), PBI (poly (m-phenylenebenzimidazole)), PBBI (poly (m-phenylenebenzobisimidazole)) Was fixed to a stainless steel frame and preheated from room temperature to 700 ° C. at a rate of 10 ° C. per minute in argon using an electric furnace. In the absence of a stainless steel frame, the PA film shrinks to 50% of its original size even in this temperature range, so fixing with the stainless steel frame means that a preheating treatment was applied while applying tension as a result. The film preliminarily heat-treated in this way was sandwiched between graphite plates, heated in an argon stream at a rate of 10 ° C. per minute, and heat-treated at a desired temperature (Tp) for 1 hour. After the heat treatment, the temperature was lowered at a rate of 20 ° C. per minute. The furnace used was an electric furnace using a carbon heater. The obtained black film was fragile and inflexible at Tp of 1400 ° C. or lower, but became flexible at 1800 ° C. or higher.

(方法2)長尺の原料フィルムを円筒に巻き付けて熱処理する方法
特許文献3の実施例1には、以下のように、長尺の原料フィルムを円筒に巻き付けて熱処理する方法が開示されている。幅180mm・厚さ50μmのPODフィルムを外径68mm・内径64mm・長さ200mmのグラファイト質炭素円筒に3重に巻き付け、アルゴン気流中で室温より毎分10℃ の速度で昇温し、所望の温度Tpで1時間処理し、毎分20℃ の速度で降温させた。使用した炉は進成電炉社製46−6型カーボンヒーター炉である。得られた黒色のフィルムはTpが1600℃ 以下ではもろくフレキシビリティのないものであったが、1800℃ 以上ではフレキシビリティのあるフィルムになった。フィルムの大きさは170×180mmであった。
炭素材料の新展開、日本学術振興会 炭素材料 第117委員会 60周年記念出版 特開昭61−275116号公報 特開昭61−275117号公報 特開昭63−256508号公報
(Method 2) Method of winding a long raw material film around a cylinder and heat-treating In Example 1 of Patent Document 3, a method of winding a long raw material film around a cylinder and heat-treating is disclosed as follows. . A POD film with a width of 180 mm and a thickness of 50 μm is wrapped around a graphitic carbon cylinder with an outer diameter of 68 mm, an inner diameter of 64 mm, and a length of 200 mm. The temperature is raised from room temperature at a rate of 10 ° C. It was treated at a temperature Tp for 1 hour, and the temperature was lowered at a rate of 20 ° C. per minute. The furnace used was a 46-6 type carbon heater furnace manufactured by Shinsei Electric Furnace. The obtained black film was brittle and had no flexibility when Tp was 1600 ° C. or lower, but became a flexible film at 1800 ° C. or higher. The size of the film was 170 × 180 mm.
New development of carbon materials, Japan Society for the Promotion of Science Carbon Material 117th Committee 60th anniversary publication JP 61-275116 A JP-A 61-275117 JP-A-63-256508

枚葉の原料フィルムを焼成してグラファイトフィルムを得る方法は、作製可能なグラファイトのサイズが炉の焼成部の内寸で限定されてしまう為、大面積のグラファイトフィルムを作製するという目的においては不向きであった。一方、円筒治具に長尺の原料フィルムを巻き付けて焼成する方法は、枚葉タイプでは得られない大面積および長尺のグラファイトフィルムを簡便に得られるという点で大変に優れている。しかし、円筒治具による焼成方法には以下のような問題点があった。   The method of obtaining a graphite film by firing a sheet material film is not suitable for the purpose of producing a large area graphite film because the size of the graphite that can be produced is limited by the inner dimensions of the firing part of the furnace. Met. On the other hand, the method of winding a long raw material film around a cylindrical jig and firing it is very excellent in that a large area and long graphite film that cannot be obtained by a single wafer type can be obtained easily. However, the firing method using a cylindrical jig has the following problems.

前述のように高分子フィルムを焼成してグラファイトフィルムを得るには途中段階で非常に機械的強度が弱いガラス状の炭素質フィルムを経る必要がある。この炭化工程ではフィルムが元の原料フィルムの長さの6〜8割ほどに収縮を起こす。長尺のグラファイトフィルムを得るために円筒への巻数が多くなってくると、炭化過程でフィルム同士が収縮と同時に融着を起こして割れてしまうという大きな問題点があった。   As described above, in order to obtain a graphite film by firing a polymer film, it is necessary to go through a glassy carbonaceous film having a very low mechanical strength at an intermediate stage. In this carbonization process, the film shrinks to about 60 to 80% of the length of the original raw material film. In order to obtain a long graphite film, if the number of windings on the cylinder increases, there is a big problem that the films are melted at the same time as shrinkage and carbonized during the carbonization process.

一度融着を起こしてしまった炭素質フィルムはその後の黒鉛化過程においても元に戻る事はなく、結果として割れたグラファイトフィルムや、表面状態が極めて悪いグラファイトフィルムが得られてくる。以上の理由のため、円筒タイプでも製造出来るグラファイトフィルムには長さの限界があった。   The carbonaceous film once fused is not restored in the subsequent graphitization process, and as a result, a cracked graphite film or a graphite film having an extremely poor surface state is obtained. For the above reason, there is a limit in the length of the graphite film that can be manufactured even in the cylindrical type.

高分子分解法で得られたグラファイトフィルムは高い熱伝導率と薄さを有しており、膨張グラファイトフィルムと比較して省スペースで高い放熱効果が期待できる。電子機器の薄型化・高密度実装化が進む昨今の状況においては、狭いスペースにおいても効率的に熱を放熱出来る事は大きな利点となる。しかし高分子グラファイトフィルムは大面積化が困難であり、その高い能力にも関わらず使用が小型機器の一部等に制限されていた。従来品の高分子グラファイトフィルムを大面積部分に使用する場合は、何枚ものグラファイトフィルムを貼り合わせて使用する必要があった。つなぎ合わせた部分は大きな熱抵抗となる為、長所となる高熱伝導率が生かせなくなってしまい、また製造コストの観点から見ても大きな不利となってしまっていた。大面積で品質の良い高分子グラファイトフィルムを効率的に製造する方法が待ち望まれていた。   The graphite film obtained by the polymer decomposition method has high thermal conductivity and thinness, and a high heat dissipation effect can be expected in a space-saving manner as compared with the expanded graphite film. In the current situation where electronic devices are becoming thinner and denser, it is a great advantage that heat can be efficiently radiated even in a narrow space. However, it is difficult to increase the area of the polymer graphite film, and its use is limited to a part of a small device despite its high ability. In the case of using a conventional polymer graphite film for a large area, it is necessary to use a number of graphite films bonded together. Since the joined portion has a large thermal resistance, the high thermal conductivity that is an advantage cannot be utilized, and it is a great disadvantage from the viewpoint of manufacturing cost. A method for efficiently producing a high-quality polymer graphite film having a large area has been awaited.

種々の検討の結果、融着の原因は巻いた原料フィルムの内芯側から収縮が始まり、無理な張力がフィルムにかかってしまう事に起因している事が分かった。そこで巻いた原料フィルムの外側から順々に炭化収縮を起こせば、フィルム同士が融着を起こす事なく長尺の炭素質フィルムを得る事が可能であるという事を見出した。   As a result of various studies, it has been found that the cause of fusion is due to the fact that shrinkage starts from the inner core side of the wound raw material film, and excessive tension is applied to the film. Thus, it has been found that if carbon shrinkage occurs in order from the outside of the wound raw material film, it is possible to obtain a long carbonaceous film without causing fusion between the films.

本発明の第一は、内芯部(A)と外筒部(B)から構成される容器において、内芯部(A)に高分子フィルムを巻き付け熱処理を行ない、炭素質フィルムを製造する方法であって、前記内芯部(A)の素材の熱伝導率が前記外筒部(B)の素材の熱伝導率よりも小さくする事である。内芯部の熱伝導率が外筒部よりも小さいものを使用する事で、内芯部に伝わる熱量を少なくして炭素質フィルムの融着を防ぐ事が可能となる。ここで本発明の内芯部(A)とは、高分子フィルムを巻きつけられる部材をいう。また本発明の外筒部(B)とは、高分子フィルムが巻きつけられた内芯部(A)を収納する部材をいう。   The first of the present invention is a method of producing a carbonaceous film by winding a polymer film around an inner core portion (A) and performing a heat treatment in a container composed of an inner core portion (A) and an outer cylinder portion (B). And the heat conductivity of the raw material of the said inner core part (A) is making it smaller than the heat conductivity of the raw material of the said outer cylinder part (B). By using a material whose thermal conductivity of the inner core part is smaller than that of the outer cylinder part, it becomes possible to reduce the amount of heat transmitted to the inner core part and prevent the carbonaceous film from being fused. Here, the inner core part (A) of the present invention refers to a member around which a polymer film can be wound. Moreover, the outer cylinder part (B) of this invention means the member which accommodates the inner core part (A) by which the polymer film was wound.

本発明の第二は、前記内芯部(A)の熱伝導率が1W/(m・K)以上170W/(m・K)以下であり、前記外筒部(B)の熱伝導率が1W/(m・K)以上300W/(m・K)以下である事である。   In the second aspect of the present invention, the thermal conductivity of the inner core part (A) is 1 W / (m · K) or more and 170 W / (m · K) or less, and the thermal conductivity of the outer cylinder part (B) is 1 W / (m · K) or more and 300 W / (m · K) or less.

本発明の第三は、前記内芯部(A)の素材をアルミナ、ジルコニア、石英、炭化珪素、チタニア、マグネシア、窒化珪素、窒化アルミ、イットリア、ムライト、コージライト、ステアタイト、フォルステライトからなるセラミックスの一群から選ぶ事である。   In the third aspect of the present invention, the material of the inner core (A) is made of alumina, zirconia, quartz, silicon carbide, titania, magnesia, silicon nitride, aluminum nitride, yttria, mullite, cordierite, steatite, forsterite. Choose from a group of ceramics.

本発明の第四は、前記内芯部(A)の素材がC/Cコンポジットである事である。   4th of this invention is that the raw material of the said inner core part (A) is a C / C composite.

本発明の第五は、前記容器を横向きに置いて熱処理を行なう事である。   A fifth aspect of the present invention is to perform heat treatment by placing the container sideways.

本発明の第六は、前記内芯部(A)の中心部に高分子フィルムを巻いて熱処理を行なう事である。   A sixth aspect of the present invention is to perform heat treatment by winding a polymer film around the center of the inner core (A).

本発明の第七は、前記高分子フィルムの幅が250mm以上である事である。   A seventh aspect of the present invention is that the polymer film has a width of 250 mm or more.

本発明の第八は、前記高分子フィルムの長さが10m以上である事である。   The eighth aspect of the present invention is that the polymer film has a length of 10 m or more.

本発明の第九は、前記内芯部(A)の直径が70mm以上である事である。   The ninth of the present invention is that the inner core portion (A) has a diameter of 70 mm or more.

本発明の第十は、前記内芯部(A)の外径と前記外筒部(B)の内径の差が10mm以上である事である。   The tenth aspect of the present invention is that the difference between the outer diameter of the inner core part (A) and the inner diameter of the outer cylinder part (B) is 10 mm or more.

本発明の第十一は、前記記載の方法で得られた炭素質フィルムを2400℃以上で処理する事によって得られるグラファイトフィルムである。   An eleventh aspect of the present invention is a graphite film obtained by treating the carbonaceous film obtained by the above-described method at 2400 ° C. or higher.

炭化工程で原料フィルム同士の融着を防ぐ事で長尺・大面積の炭素質フィルムを得る事が可能となる。得られた炭素質フィルムは既知の技術を用いて良質なグラファイトフィルムに容易に転換が可能である。本発明の方法を用いる事で、これまで作製が困難であった長尺・大面積のグラファイトフィルムを容易に作製する事が出来る。   By preventing fusion of raw material films in the carbonization process, it becomes possible to obtain a long and large area carbonaceous film. The resulting carbonaceous film can be easily converted to a good quality graphite film using known techniques. By using the method of the present invention, a long and large-area graphite film, which has been difficult to produce, can be easily produced.

(高分子フィルム)
本発明で用いることができる高分子フィルムは、特に限定はされないが、ポリイミド(PI)、ポリアミド(PA)、ポリオキサジアゾール(POD)、ポリベンゾオキサゾール(PBO)、ポリベンゾビスオキサザール(PBBO)、ポリチアゾール(PT)、ポリベンゾチアゾール(PBT)、ポリベンゾビスチアゾール(PBBT)、ポリパラフェニレンビニレン(PPV)、ポリベンゾイミダゾール(PBI)、ポリベンゾビスイミダゾール(PBBI)が挙げられ、これらのうちから選ばれる少なくとも1種を含む耐熱芳香族性高分子フィルムであることが、最終的に得られるグラファイトの熱伝導性が大きくなることから好ましい。これらのフィルムは、公知の製造方法で製造すればよい。この中でもポリイミドは、原料モノマーを種々選択することによって様々な構造および特性を有するものを得ることができるために好ましい。また、ポリイミドフィルムは、他の有機材料を原料とする高分子フィルムよりもフィルムの炭化、黒鉛化が進行しやすいため、結晶性、熱伝導性に優れたグラファイトとなりやすい。
(Polymer film)
The polymer film that can be used in the present invention is not particularly limited, but polyimide (PI), polyamide (PA), polyoxadiazole (POD), polybenzoxazole (PBO), polybenzobisoxazal (PBBO) ), Polythiazole (PT), polybenzothiazole (PBT), polybenzobisthiazole (PBBT), polyparaphenylene vinylene (PPV), polybenzimidazole (PBI), and polybenzobisimidazole (PBBI). Of these, a heat-resistant aromatic polymer film containing at least one selected from the above is preferable because the thermal conductivity of the finally obtained graphite is increased. What is necessary is just to manufacture these films with a well-known manufacturing method. Among these, polyimide is preferable because various materials and structures can be obtained by selecting various raw material monomers. In addition, the polyimide film is more likely to be graphite having excellent crystallinity and thermal conductivity because carbonization and graphitization of the film is more likely to proceed than polymer films made from other organic materials.

(熱伝導率の相関に関して)
例えば図1のような内芯部と外筒部から構成される容器の場合、外側から来るヒーターの熱の流路としては、まず外筒に伝わり(1)次いで対流・輻射でフィルム外側に伝熱するパターンと(2)内筒に伝導してフィルム内側に伝熱するパターンの2通りがある。ここで巻いた原料フィルムの外側から順々に収縮を起こしていけばフィルムに無理な力がかからずに炭化を行なう事が可能となる。逆に内芯側から炭化収縮が始まるとフィルムに無理な力がかかり融着および割れを起こしてしまう。
(Regarding correlation of thermal conductivity)
For example, in the case of a container composed of an inner core part and an outer cylinder part as shown in FIG. 1, the heat flow of the heater coming from the outside is first transmitted to the outer cylinder (1) and then transmitted to the outside of the film by convection / radiation. There are two patterns: a pattern that heats and (2) a pattern that conducts to the inner cylinder and transfers heat to the inside of the film. If shrinkage is caused in order from the outside of the wound raw material film, carbonization can be performed without applying excessive force to the film. On the contrary, if carbonization shrinkage starts from the inner core side, an excessive force is applied to the film, causing fusion and cracking.

通常原料となる高分子フィルムの熱伝導率は0.2〜0.4W/(m・K)と低い為、仮に巻いたフィルムの外側から炭化収縮が始まっていたとしても、フィルムの巻厚みが厚い場合は外側表面から内部まで伝熱するのに時間がかかり、その間に芯側からも炭化収縮が始まってしまい結果として融着が発生してしまう。   Since the thermal conductivity of a polymer film that is a normal raw material is as low as 0.2 to 0.4 W / (m · K), even if carbonization shrinkage starts from the outside of the wound film, the film winding thickness is If it is thick, it takes time to transfer heat from the outer surface to the inside, and during that time, carbonization shrinkage also starts from the core side, resulting in fusion.

ここでなるべく内芯に伝わる熱量を下げる、すなわち(2)の伝熱量を抑え、(1)の伝熱量を増加させる事が内部まで順々に炭化収縮を起こさせるキーポイントとなる。その為には内芯の素材を熱伝導が低いもの、かつ外筒の素材を熱伝導が高いものを選択する事で解決される。その熱伝導率の差が大きければ大きいほど、また内芯の熱伝導率の絶対値が低ければ低いほど良い。外筒の素材の熱伝導率としては1W/(m・K)以上300W/(m・K)以下、より好ましくは100W/(m・K)以上300W/(m・K)以下、さらに好ましくは150W/(m・K)以上300W/(m・K)以下である。また内芯の素材の熱伝導率としては1W/(m・K)以上170W/(m・K)以下、より好ましくは1W/(m・K)以上100W/(m・K)以下、さらに好ましくは1W/(m・K)以上50W/(m・K)以下である。   Here, reducing the amount of heat transmitted to the inner core as much as possible, that is, suppressing the amount of heat transfer in (2) and increasing the amount of heat transfer in (1) is a key point for causing carbonization shrinkage sequentially to the inside. This can be solved by selecting a material with a low thermal conductivity for the inner core and a material with a high thermal conductivity for the outer cylinder. The larger the difference in thermal conductivity, the better the lower the absolute value of the thermal conductivity of the inner core. The thermal conductivity of the material of the outer cylinder is 1 W / (m · K) or more and 300 W / (m · K) or less, more preferably 100 W / (m · K) or more and 300 W / (m · K) or less, more preferably It is 150 W / (m · K) or more and 300 W / (m · K) or less. The thermal conductivity of the inner core material is 1 W / (m · K) to 170 W / (m · K), more preferably 1 W / (m · K) to 100 W / (m · K), and even more preferably. Is 1 W / (m · K) or more and 50 W / (m · K) or less.

(容器の素材)
前記熱伝導率条件、および500℃以上での連続使用環境に耐える条件を満たす容器の素材としては押出成型品・型込成型品・冷間等方圧加圧品などの等方性黒鉛素材や、アルミナ(Al23)・ジルコニア(ZrO2)・石英(SiO2)・炭化珪素(SiC)・チタニア(TiO2)、マグネシア(MgO)・窒化珪素(Si34)・窒化アルミ(AlN)・イットリア(Y23)・ムライト(3Al23・2SiO2)・コージライト(2MgO・2Al23・5SiO2)・ステアタイト(MgO・SiO2)・フォルステライト(2MgO・SiO2)などのセラミックス、また黒鉛を炭素繊維で補強した複合材C/Cコンポジット等が考えられる。この中でも、加工の容易さや製造コスト、汎用性という観点から見てカーボンが好適に用いられる。
(Container material)
Examples of the container material that satisfies the thermal conductivity condition and the continuous use environment at 500 ° C. or higher are isotropic graphite materials such as extrusion molded products, die-molded products, and cold isostatic pressure products, Alumina (Al 2 O 3 ), zirconia (ZrO 2 ), quartz (SiO 2 ), silicon carbide (SiC), titania (TiO 2 ), magnesia (MgO), silicon nitride (Si 3 N 4 ), aluminum nitride ( AlN) · yttria (Y 2 O 3) · mullite (3Al 2 O 3 · 2SiO 2 ) · cordierite (2MgO · 2Al 2 O 3 · 5SiO 2) · steatite (MgO · SiO 2) · forsterite (2MgO · Ceramics such as SiO 2 ), and composite C / C composites in which graphite is reinforced with carbon fibers are conceivable. Among these, carbon is preferably used from the viewpoint of ease of processing, manufacturing cost, and versatility.

セラミックスや一部の黒鉛素材は、その後の黒鉛化過程で必要な処理温度(2400℃以上)で溶融や分解、または変形を起こしてしまう可能性があるが、一度1000℃以上で処理した炭素質フィルムはその後再度熱処理を行なっても融着を起こす事はないので、炭素質フィルムを調製後に黒鉛化温度に耐える別の容器に移し替えて黒鉛化を行なえば良い。黒鉛化過程は炭化処理後に降温過程を経て一度容器を取り出した後に行なっても良いし、そのまま取り出さずに連続で黒鉛化を行なっても良い。   Ceramics and some graphite materials may melt, decompose, or deform at the required processing temperature (2400 ° C or higher) during the subsequent graphitization process. Since the film does not cause fusing even if it is heat-treated again after that, the carbonaceous film may be transferred to another container that can withstand the graphitization temperature and graphitized. The graphitization process may be performed after the container is taken out once through the temperature lowering process after the carbonization treatment, or may be continuously graphitized without taking it out as it is.

すなわち本発明にかかる内芯部と外筒部からなる容器を使用するのに好ましい温度範囲は、100℃以上3000℃以下、より好ましくは200℃以上2000℃以下。さらに好ましくは300℃以上1000℃以下である。   That is, a preferable temperature range for using a container comprising an inner core portion and an outer cylinder portion according to the present invention is 100 ° C. or higher and 3000 ° C. or lower, more preferably 200 ° C. or higher and 2000 ° C. or lower. More preferably, it is 300 degreeC or more and 1000 degrees C or less.

(容器の置き方に関して)
縦向きで(すなわち内芯を立てた状態で)容器を置いて炭化処理を行なった場合、ヒーターからの熱は治具の下部から伝熱するため、巻いた原料フィルムの下部から収縮が始まる事となる。結果としてフィルムの上下で歪みが生じ、本発明の容器を使用していたとしても融着が起こりやすくなってしまう。巻いた原料フィルムに外側から均等に熱がかかるようする為にも、容器の置き方は縦置きよりも横置きの方が好ましい。ここで横置きとは内芯がほぼ水平に置かれている状態を、縦置きとは内芯がほぼ垂直に置かれている状態をいう。そして横置きで炭化処理を行なう場合にも、なるべく容器の平面性、すなわち内芯の平行性を保つように炉内に容器を設置する事が融着を起こさないポイントとなる。本発明の容器、内芯等の置き方を、図7に例示する。(1)〜(4)の中では、容器の設置面・容器・内芯ともに水平である(1)が最も好ましい。
(Regarding how to place the container)
When the container is placed in a vertical orientation (ie with the inner core upright) and carbonized, the heat from the heater is transferred from the lower part of the jig, so the shrinkage starts from the lower part of the wound raw material film. It becomes. As a result, distortion occurs at the top and bottom of the film, and even if the container of the present invention is used, fusion is likely to occur. In order to heat the wound raw material film evenly from the outside, it is preferable to place the container horizontally rather than vertically. Here, the horizontal placement refers to a state in which the inner core is placed substantially horizontally, and the vertical placement refers to a state in which the inner core is placed substantially vertically. Even in the case where the carbonization process is performed horizontally, the container is placed in the furnace so as to keep the flatness of the container, that is, the parallelness of the inner core as much as possible. FIG. 7 illustrates how to place the container, inner core and the like of the present invention. Among (1) to (4), (1) in which the installation surface of the container, the container, and the inner core are horizontal is most preferable.

(容器の形状に関して)
外筒部がなく内芯部のみの場合でもフィルムの炭化は可能だが、フィルムが芯から広がり端部が大きく波打ってしまう恐れがある事、ヒーターに通電して加熱する方式の炉では広がったフィルムがヒーターに接触しショートする恐れがある事、の2つの理由から外筒を使用して炭化を行なった方が好ましい。
(Regarding the shape of the container)
Carbonization of the film is possible even when there is only an inner core part without an outer cylinder part, but there is a possibility that the film spreads out from the core and the end part is greatly undulated, and it spreads in a furnace that is heated by energizing the heater It is preferable to perform carbonization using an outer cylinder for two reasons that the film may come into contact with the heater and cause a short circuit.

外筒の形状に関しては特に制限は無いが、炉内で平板上に治具を設置する場合は円筒形状よりも直方体形状の方が容器の安定性が高く、また熱的接触が良いという利点がある。しかし直方体形状の場合は、容器の形状と比較して容器の重量が大きくなるためにヒーターにかかる負荷が大きくなってしまうという恐れがある。作業性および容器重量の軽減という観点から考えると円筒状である事が好ましい。円筒状の外筒を使用する場合でも、容器の安定性および平板との熱的接触を向上するという目的で図2を参照のような支持治具を取り付けても良い。   There is no particular restriction on the shape of the outer cylinder, but when installing a jig on a flat plate in the furnace, the rectangular parallelepiped shape has the advantage that the container has higher stability and better thermal contact than the cylindrical shape. is there. However, in the case of a rectangular parallelepiped shape, since the weight of the container is larger than the shape of the container, there is a fear that the load applied to the heater is increased. From the viewpoint of workability and reduction in container weight, a cylindrical shape is preferable. Even when a cylindrical outer cylinder is used, a support jig as shown in FIG. 2 may be attached for the purpose of improving the stability of the container and the thermal contact with the flat plate.

内芯部の形状は円柱状である事が本発明において必要であるが、断面が真円である必要はなく、少し楕円形や歪んだもの、また溝が入ったもののような形であっても良い。前述のように容器の重量が増加するとヒーターへの負荷が大きくなるので、容器全体の重量を減らすという観点から内芯内部を中空構造にしたり、さらに内芯に細かい穴を開けたりする事は効果的である。   In the present invention, the shape of the inner core portion is required to be a columnar shape, but the cross section does not have to be a perfect circle, and is a little oval, distorted, or shaped like a groove. Also good. As mentioned above, as the weight of the container increases, the load on the heater increases. From the viewpoint of reducing the weight of the entire container, it is effective to make the inner core hollow or to make fine holes in the inner core. Is.

内芯部の直径が小さいものを使用すると巻き癖のあるグラファイトフィルムが得られてくる。このような癖の付いたグラファイトフィルムは、続く圧縮柔軟化工程でシワが入りやすくなってしまうという問題がある。この問題はある程度の大きさの径を有する内芯を用いる事で解決され、その後の圧縮工程においてもシワが入る事なく行なう事が可能となる。内芯部の直径としては、70mm以上が好ましく、80mm以上はより好ましく、90mm以上はさらに好ましい。内芯部の直径が70mm未満だと、シワが入る場合がある。径の大きさに上限は無いが、径が大き過ぎるものを使用すると、容積あたりの処理量が落ちてしまうので好ましくない。すなわち内芯部の直径としては、300mm以下が好ましく、200mm以下がより好ましい。このような場合は、内芯部を中空にくり抜き内部に更に内芯部を設ける事でスペースを有効に活用でき、一度の処理量を増やす事が可能となる。   If a film having a small inner core diameter is used, a graphite film having curled wrinkles can be obtained. Such a wrinkled graphite film has a problem that it is likely to be wrinkled in the subsequent compression softening process. This problem can be solved by using an inner core having a certain size of diameter, and can be performed without wrinkles in the subsequent compression process. As a diameter of an inner core part, 70 mm or more is preferable, 80 mm or more is more preferable, and 90 mm or more is further more preferable. If the diameter of the inner core is less than 70 mm, wrinkles may occur. Although there is no upper limit to the size of the diameter, it is not preferable to use a material having an excessively large diameter because the processing amount per volume is reduced. That is, the diameter of the inner core portion is preferably 300 mm or less, and more preferably 200 mm or less. In such a case, by hollowing out the inner core portion and further providing an inner core portion in the interior, the space can be used effectively, and the amount of processing at one time can be increased.

また、芯に原料フィルムを巻く事が出来るスペース、すなわち内芯部の外径と外筒部の内径の差は10mm以上が好ましく、15mm以上はより好ましく、20mm以上はさらに好ましい。差が10mm以上だと内芯と外筒の間に分解ガスおよび不活性ガスが流れやすくなり、融着を起こしにくくなる。また、この内径の差は1000mm以下であることが好ましい。   Further, the space where the raw material film can be wound around the core, that is, the difference between the outer diameter of the inner core portion and the inner diameter of the outer cylinder portion is preferably 10 mm or more, more preferably 15 mm or more, and further preferably 20 mm or more. If the difference is 10 mm or more, the decomposition gas and the inert gas easily flow between the inner core and the outer cylinder, and it becomes difficult to cause fusion. The difference in inner diameter is preferably 1000 mm or less.

(原料フィルムの巻き方)
容器を内芯の長さ方向に対して横置きにして炭化処理を行なう場合、原料フィルムは図3を参照してなるべく内芯の中心部に巻き、原料フィルムの両端が容器に接触しない巻き方をするのが良い。これはフィルムが内芯部の中心からずれて巻かれていた場合や、図4を参照してフィルム端部が容器に接していた場合は横置きであっても原料フィルムの昇温にムラが生じて融着が起こりやすくなってしまうからである。
(How to wind the raw film)
When carbonizing the container horizontally with respect to the length direction of the inner core, the raw material film is wound around the central portion of the inner core as much as possible with reference to FIG. It is good to do. This is because when the film is wound out of the center of the inner core or when the film end is in contact with the container with reference to FIG. This is because fusion is likely to occur.

(原料フィルムの長さ)
本発明の内芯部に原料フィルムを巻き付けてグラファイトフィルムを作製する方法は、枚葉タイプでは作製が困難な長尺・大面積のグラファイトフィルムを作製できる利点がある。しかし、ある程度の長さの原料フィルムを使用しないと同一容積内で処理できる原料フィルムの量が枚葉タイプに比べて減少してしまう場合がある。その為に使用する原料フィルムは好ましくは10m以上、より好ましくは20m以上、さらに好ましくは50m以上である。また、芯に巻く長さが増えるほど原料フィルム同士が炭化処理の際に融着を起こしやすいという事は言うまでもなく、その際に本発明の作製方法はさらに効果的となる。
(Raw film length)
The method for producing a graphite film by wrapping a raw material film around the inner core part of the present invention has an advantage that a long and large area graphite film, which is difficult to produce with a single wafer type, can be produced. However, if a raw material film having a certain length is not used, the amount of the raw material film that can be processed within the same volume may be reduced as compared with the single wafer type. The raw material film used for that purpose is preferably 10 m or more, more preferably 20 m or more, and even more preferably 50 m or more. In addition, it goes without saying that as the length wound around the core increases, the raw material films are more likely to be fused during the carbonization treatment, and in that case, the production method of the present invention becomes more effective.

以下、実施例および比較例により、本発明をさらに具体的に説明していく。
(容器Aの作製)
図1を参照して、容器Aは縦150mm×横150mm×高さ300mmの直方体から直径120mm×高さ300mmの円柱をくり抜いた形状である外筒部と、直径100mm×高さ280mmの円柱の両端に直径120mm×高さ10mmの円柱が接続した形状である内芯部から構成されている。外筒部および内芯部を等方性黒鉛(熱伝導率180W/(m・K))で作製した。構成を表1にまとめた。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
(Preparation of container A)
Referring to FIG. 1, a container A is composed of a rectangular cylinder having a length of 150 mm, a width of 150 mm, and a height of 300 mm, and a cylindrical portion having a diameter of 120 mm and a height of 300 mm, and a cylinder having a diameter of 100 mm and a height of 280 mm. It is comprised from the inner core part which is the shape which the cylinder of diameter 120mm x height 10mm connected to both ends. The outer cylinder part and the inner core part were made of isotropic graphite (thermal conductivity 180 W / (m · K)). The configuration is summarized in Table 1.

(容器Bの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率150W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container B)
The outer cylinder is made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core is made of isotropic graphite (thermal conductivity 150 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Cの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率140W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container C)
In the same shape as the container A, the outer cylinder part is made of isotropic graphite (thermal conductivity 180 W / (m · K)), and the inner core part is made of isotropic graphite (thermal conductivity 140 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Dの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率120W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container D)
In the same shape as the container A, the outer cylinder part is made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core part is made of isotropic graphite (thermal conductivity 120 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Eの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率100W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container E)
The outer cylinder is made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core is made of isotropic graphite (thermal conductivity 100 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Fの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率80W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container F)
The outer tube is made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core is made of isotropic graphite (thermal conductivity 80 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Gの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率23W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container G)
The outer cylinder is made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core is made of isotropic graphite (thermal conductivity 23 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Hの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率23W/(m・K))、内芯部を等方性黒鉛(熱伝導率180W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container H)
The outer cylinder is made of isotropic graphite (thermal conductivity 23 W / (m · K)) and the inner core is made of isotropic graphite (thermal conductivity 180 W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Iの作製)
容器Aと同様の形状で、外筒部および内芯部を等方性黒鉛(熱伝導率23W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container I)
The outer cylinder part and the inner core part were made of isotropic graphite (thermal conductivity 23 W / (m · K)) in the same shape as the container A. The configuration is summarized in Table 1.

(容器Jの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率230W/(m・K))、内芯部を等方性黒鉛(熱伝導率140W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container J)
The outer cylinder is made of isotropic graphite (thermal conductivity 230W / (m · K)) and the inner core is made of isotropic graphite (thermal conductivity 140W / (m · K)). Produced. The configuration is summarized in Table 1.

(容器Kの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を炭化珪素(熱伝導率60W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container K)
The outer cylinder was made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core was made of silicon carbide (thermal conductivity 60 W / (m · K)). . The configuration is summarized in Table 1.

(容器Lの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部をアルミナ(熱伝導率32W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container L)
The outer cylinder was made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core was made of alumina (thermal conductivity 32 W / (m · K)). The configuration is summarized in Table 1.

(容器Mの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部をジルコニア(熱伝導率3W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container M)
The outer cylinder was made of isotropic graphite (thermal conductivity 180 W / (m · K)) and the inner core was made of zirconia (thermal conductivity 3 W / (m · K)). The configuration is summarized in Table 1.

(容器Nの作製)
図5を参照して、容器Nは直径150mm×高さ300mmの円柱から直径120mm×高さ300mmの円柱をくり抜いた形状である外筒部と、直径100mm×高さ280mmの円柱の両端に直径120mm×高さ10mmの円柱が接続した形状である内芯部から構成されている。外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部を等方性黒鉛(熱伝導率23W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container N)
Referring to FIG. 5, the container N has a diameter of 120 mm × 300 mm in height from a cylinder having a diameter of 150 mm × height of 300 mm, and both ends of a cylinder having a diameter of 100 mm × height of 280 mm. It is comprised from the inner core part which is the shape which the column of 120 mm x height 10mm connected. The outer cylinder part was made of isotropic graphite (thermal conductivity 180 W / (m · K)), and the inner core part was made of isotropic graphite (thermal conductivity 23 W / (m · K)). The configuration is summarized in Table 1.

(容器Oの作製)
容器Aと同様の形状で、外筒部を等方性黒鉛(熱伝導率180W/(m・K))、内芯部をC/Cコンポジット(熱伝導率2.8W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container O)
In the same shape as the container A, the outer cylinder part is isotropic graphite (thermal conductivity 180 W / (m · K)), the inner core part is C / C composite (thermal conductivity 2.8 W / (m · K)) ). The configuration is summarized in Table 1.

(容器Pの作製)
図5を参照して、容器Pは直径150mm×高さ300mmの円柱から直径120mm×高さ300mmの円柱をくり抜いた形状である外筒部と、直径68mm×高さ280mmの円柱の両端に直径120mm×高さ10mmの円柱が接続した形状である内芯部から構成されている。外筒部および内芯部を等方性黒鉛(熱伝導率180W/(m・K))で作製した。構成を表1にまとめた。
(Preparation of container P)
Referring to FIG. 5, container P has a diameter of 150 mm × 300 mm in height and a cylindrical shape of 120 mm × 300 mm in height which is hollowed out, and a diameter of 68 mm × 280 mm in height at both ends of the cylinder. It is comprised from the inner core part which is the shape which the column of 120 mm x height 10mm connected. The outer cylinder part and the inner core part were made of isotropic graphite (thermal conductivity 180 W / (m · K)). The configuration is summarized in Table 1.

Figure 0005241392
Figure 0005241392

(実施例1)
高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。図3を参照して、この高分子フィルムを容器Bの内芯の中央部に20m、40m、60m、80mの長さで巻き付け、フィルムを巻いた内芯を外筒に入れた。この容器を電気炉に横向きに置き、アルゴン雰囲気下で室温(25℃)から1℃/分で昇温させ、温度が1000℃に達した後にこの温度で1時間保持を行なった。得られた4種類の長さの炭素質フィルムが融着を起こしているかどうかを調べた。結果を表2にまとめた。
Example 1
As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 μm) was prepared. Referring to FIG. 3, this polymer film was wound around the center of the inner core of container B with a length of 20 m, 40 m, 60 m, and 80 m, and the inner core wound with the film was placed in an outer cylinder. This container was placed sideways in an electric furnace, heated from room temperature (25 ° C.) at 1 ° C./min under an argon atmosphere, and kept at this temperature for 1 hour after the temperature reached 1000 ° C. It was investigated whether or not the obtained four types of carbonaceous films had fusion. The results are summarized in Table 2.

(実施例2)
容器Bの代わりに容器Cを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 2)
Except that the container C was used instead of the container B, carbonaceous films having four types of lengths were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(実施例3)
容器Bの代わりに容器Dを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 3)
Except that the container D was used instead of the container B, carbonaceous films having four types of lengths were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(実施例4)
容器Bの代わりに容器Eを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
Example 4
Except for using the container E instead of the container B, four types of carbonaceous films were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(実施例5)
容器Bの代わりに容器Fを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 5)
Except for using the container F instead of the container B, carbonaceous films having four types of length were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(実施例6)
容器Bの代わりに容器Gを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 6)
Except that the container G was used instead of the container B, carbonaceous films having four types of lengths were prepared in the same manner as in Example 1. The results are summarized in Table 2.

外筒の素材が同じ場合、内芯の熱伝導率が小さいほど融着が起こりにくくなるという事が分かった。   It was found that when the material of the outer cylinder is the same, the smaller the thermal conductivity of the inner core, the less likely that fusion occurs.

(実施例7)
容器Bの代わりに容器Jを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 7)
Except for using the container J instead of the container B, four types of carbonaceous films were prepared in the same manner as in Example 1. The results are summarized in Table 2.

実施例2と比較して、内芯の素材が同じ場合は、外筒の熱伝導率が大きくなっても融着の度合いにほとんど変化は現れなかった。   Compared to Example 2, when the material of the inner core was the same, there was almost no change in the degree of fusion even when the thermal conductivity of the outer cylinder increased.

(実施例8)
容器Bの代わりに容器Kを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 8)
Except for using the container K instead of the container B, carbonaceous films having four types of length were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(実施例9)
容器Bの代わりに容器Lを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
Example 9
Except that the container L was used in place of the container B, four types of carbonaceous films were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(実施例10)
容器Bの代わりに容器Mを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 10)
Except that the container M was used instead of the container B, carbonaceous films having four types of length were prepared in the same manner as in Example 1. The results are summarized in Table 2.

セラミック製の内芯を使用した場合でも、融着を起こす事なく炭化を行なう事が出来た。   Even when a ceramic inner core was used, carbonization was possible without causing fusion.

(実施例11)
容器Bの代わりに容器Nを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 11)
Except that the container N was used instead of the container B, carbonaceous films having four types of lengths were prepared in the same manner as in Example 1. The results are summarized in Table 2.

外筒の形状が円筒状になっても直方体形状と変わらず、融着を起こす事なく炭化を行なう事が出来た。   Even if the shape of the outer cylinder became cylindrical, the shape was not different from that of the rectangular parallelepiped, and carbonization could be performed without causing fusion.

(実施例12)
容器Bの代わりに容器Oを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 12)
Except that the container O was used instead of the container B, carbonaceous films having four types of lengths were prepared in the same manner as in Example 1. The results are summarized in Table 2.

C/Cコンポジット製の内芯を使用した場合でも、融着を起こす事なく炭化を行なう事が出来た。   Even when an inner core made of C / C composite was used, carbonization could be performed without causing fusion.

(実施例13)
容器Bの代わりに容器Gを使用した事と、図4を参照して高分子フィルムを内芯の端部に巻いた事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 13)
Four types of carbonaceous materials in the same manner as in Example 1 except that the container G was used instead of the container B and that the polymer film was wound around the end of the inner core with reference to FIG. A film was created. The results are summarized in Table 2.

(実施例14)
容器Bの代わりに容器Gを使用した事と、図6を参照して容器を電気炉に縦向きに置いた事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Example 14)
Four types of carbonaceous films were prepared in the same manner as in Example 1 except that the container G was used instead of the container B and that the container was placed vertically in the electric furnace with reference to FIG. Created. The results are summarized in Table 2.

高分子フィルムを芯の端部に寄せて巻いた場合は中央部に巻いた場合と比べて若干融着が起こりやすい事が分かった。また、容器を縦置きにした場合は横置きと比較して明らかに融着が起こりやすい事が分かった。この結果より、本発明の効果を十分に引き出す為には、高分子フィルムは芯の中央部に巻き、容器は横置きで使用すれば良い事が分かる。   It has been found that when the polymer film is wound close to the end of the core, it is slightly easier to fuse than when it is wound around the center. Further, it was found that when the container is placed vertically, fusion is clearly more likely to occur than when it is placed horizontally. From this result, it can be seen that the polymer film is wound around the center of the core and the container is used in a horizontal position in order to sufficiently bring out the effects of the present invention.

(比較例1)
容器Bの代わりに容器Aを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Comparative Example 1)
Except for using the container A in place of the container B, four types of carbonaceous films were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(比較例2)
容器Bの代わりに容器Hを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Comparative Example 2)
Except that the container H was used in place of the container B, four types of carbonaceous films were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(比較例3)
容器Bの代わりに容器Iを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Comparative Example 3)
Except for using the container I in place of the container B, four types of carbonaceous films were prepared in the same manner as in Example 1. The results are summarized in Table 2.

(比較例4)
容器Bの代わりに容器Pを使用した事以外は全て実施例1と同様の方法で4種類の長さの炭素質フィルムを作成した。結果を表2にまとめた。
(Comparative Example 4)
Except that the container P was used instead of the container B, carbonaceous films having four types of lengths were prepared in the same manner as in Example 1. The results are summarized in Table 2.

Figure 0005241392
Figure 0005241392

外筒と内芯の熱伝導率が同じ場合、もしくは外筒の熱伝導率の方が高い場合はフィルムが融着を起こしやすく、長い炭化フィルムは得る事が出来なかった。なおこれらの実施例、比較例において250mm幅の東レ・デュポン社製ポリイミドフィルム(商品名:カプトンHフィルム、厚み75μmおよび50μm)や厚み50μmのアピカル50AHフィルムを原料フィルムに用いた場合でも同様の結果が得られた。   When the thermal conductivity of the outer cylinder and the inner core is the same, or when the thermal conductivity of the outer cylinder is higher, the film tends to cause fusion, and a long carbonized film could not be obtained. In these examples and comparative examples, the same results were obtained even when 250 mm wide polyimide films (trade name: Kapton H film, thickness 75 μm and 50 μm) and 50 μm thick Apical 50AH films were used as raw material films. was gotten.

実施例1〜14で得られた炭素質フィルムを不活性ガス雰囲気下、2800℃で処理したところ良質なグラファイトフィルムに転換する事ができた。また比較例1〜4で得られた炭素質フィルムを同様の条件で処理したところ、表面状態が悪く、割れたグラファイトフィルムが得られた。   When the carbonaceous film obtained in Examples 1 to 14 was treated at 2800 ° C. in an inert gas atmosphere, it could be converted into a high-quality graphite film. Moreover, when the carbonaceous film obtained in Comparative Examples 1-4 was processed on the same conditions, the surface state was bad and the cracked graphite film was obtained.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかる容器の一例を示す概略図である。It is the schematic which shows an example of the container concerning this invention. 本発明にかかる容器および支持容器の一例を示す概略図である。It is the schematic which shows an example of the container concerning this invention, and a support container. 実施例1における容器と原料フィルムを示す概略図である。It is the schematic which shows the container and raw material film in Example 1. FIG. 実施例13における容器と原料フィルムを示す概略図である。It is the schematic which shows the container and raw material film in Example 13. 本発明にかかる容器の他の一例を示す概略図である。It is the schematic which shows another example of the container concerning this invention. 実施例14における容器と原料フィルムを示す概略図である。It is the schematic which shows the container and raw material film in Example 14. 本発明の容器、内芯等の置き方の例Examples of how to place containers, inner cores, etc. of the present invention

符号の説明Explanation of symbols

10 外筒部(直方体型)20 内芯部 30 原料フィルム 40 支持治具50 外筒部(円筒型)   DESCRIPTION OF SYMBOLS 10 Outer cylinder part (cuboid type) 20 Inner core part 30 Raw material film 40 Support jig 50 Outer cylinder part (cylindrical type)

Claims (11)

内芯部(A)と外筒部(B)から構成される容器において、内芯部(A)に高分子フィルムを巻き付け熱処理を行ない、炭素質フィルムを製造する方法であって、前記内芯部(A)の素材の熱伝導率が前記外筒部(B)の素材の熱伝導率よりも小さい事を特徴とする炭素質フィルムの製造方法。   In a container composed of an inner core part (A) and an outer cylinder part (B), a method for producing a carbonaceous film by wrapping a polymer film around the inner core part (A) and performing a heat treatment, the inner core A method for producing a carbonaceous film, wherein the thermal conductivity of the material of the part (A) is smaller than the thermal conductivity of the material of the outer tube part (B). 前記内芯部(A)の熱伝導率が1W/(m・K)以上170W/(m・K)以下であり、前記外筒部(B)の熱伝導率が1W/(m・K)以上300W/(m・K)以下である事を特徴とする請求項1記載の炭素質フィルムの製造方法。   The thermal conductivity of the inner core part (A) is 1 W / (m · K) or more and 170 W / (m · K) or less, and the thermal conductivity of the outer cylinder part (B) is 1 W / (m · K). It is 300W / (m * K) or less above, The manufacturing method of the carbonaceous film of Claim 1 characterized by the above-mentioned. 前記内芯部(A)の素材がアルミナ、ジルコニア、石英、炭化珪素、チタニア、マグネシア、窒化珪素、窒化アルミ、イットリア、ムライト、コージライト、ステアタイト、フォルステライトからなるセラミックスの一群から選ばれる事を特徴とする請求項1又は2記載の炭素質フィルムの製造方法。 The material of the inner core (A) is selected from a group of ceramics consisting of alumina, zirconia, quartz, silicon carbide, titania, magnesia, silicon nitride, aluminum nitride, yttria, mullite, cordierite, steatite, forsterite. The method for producing a carbonaceous film according to claim 1 or 2. 前記内芯部(A)の素材がC/Cコンポジットである事を特徴とする請求項1又は2記載の炭素質フィルムの製造方法。 The method for producing a carbonaceous film according to claim 1 or 2, wherein the material of the inner core (A) is a C / C composite. 前記容器を横向きに置いて熱処理を行なう事を特徴とする請求項1〜4のいずれか1項に記載の炭素質フィルムの製造方法。 The method for producing a carbonaceous film according to any one of claims 1 to 4 , wherein the container is placed sideways to perform heat treatment. 前記内芯部(A)の中心部に高分子フィルムを巻いて熱処理を行なう事を特徴とする請求項1〜5のいずれか1項に記載の炭素質フィルムの製造方法。 The method for producing a carbonaceous film according to any one of claims 1 to 5 , wherein a heat treatment is performed by winding a polymer film around the center of the inner core (A). 前記高分子フィルムの幅が250mm以上である事を特徴とする請求項1〜6のいずれか1項に記載の炭素質フィルムの製造方法。 The method for producing a carbonaceous film according to any one of claims 1 to 6 , wherein the polymer film has a width of 250 mm or more. 前記高分子フィルムの長さが10m以上である事を特徴とする請求項1〜7のいずれか1項に記載の炭素質フィルムの製造方法。 The method for producing a carbonaceous film according to any one of claims 1 to 7 , wherein the polymer film has a length of 10 m or more. 前記内芯部(A)の直径が70mm以上である事を特徴とする請求項1〜8のいずれか1項に記載の炭素質フィルムの製造方法。 The diameter of the said inner core part (A) is 70 mm or more, The manufacturing method of the carbonaceous film of any one of Claims 1-8 characterized by the above-mentioned. 前記内芯部(A)の外径と前記外筒部(B)の内径の差が10mm以上である事を特徴とする請求項1〜9のいずれか1項に記載の炭素質フィルムの製造方法。 The carbonaceous film production according to any one of claims 1 to 9 , wherein a difference between an outer diameter of the inner core part (A) and an inner diameter of the outer cylinder part (B) is 10 mm or more. Method. 請求項1〜10のいずれか1項に記載の製造方法により炭素質フィルムを得た後、当該炭素質フィルムを2400℃以上で処理してグラファイトフィルムを製造することを特徴とする、グラファイトフィルムの製造方法。After obtaining a carbonaceous film with the manufacturing method of any one of Claims 1-10, the said carbonaceous film is processed at 2400 degreeC or more, and a graphite film is manufactured, The graphite film characterized by the above-mentioned. Production method.
JP2008233555A 2008-09-11 2008-09-11 Method for producing carbonaceous film Active JP5241392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233555A JP5241392B2 (en) 2008-09-11 2008-09-11 Method for producing carbonaceous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233555A JP5241392B2 (en) 2008-09-11 2008-09-11 Method for producing carbonaceous film

Publications (2)

Publication Number Publication Date
JP2010064929A JP2010064929A (en) 2010-03-25
JP5241392B2 true JP5241392B2 (en) 2013-07-17

Family

ID=42190841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233555A Active JP5241392B2 (en) 2008-09-11 2008-09-11 Method for producing carbonaceous film

Country Status (1)

Country Link
JP (1) JP5241392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496403B2 (en) 2008-05-28 2013-07-30 Thomas J. Lochtefeld Wave pool with moving reef wave generator extension and counter current
US11400384B2 (en) 2013-10-30 2022-08-02 Whitewater West Industries, Ltd. Inflatable surfing apparatus and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782343B2 (en) * 2011-09-08 2015-09-24 株式会社カネカ Method for producing carbonaceous film and method for producing graphite film
US9249025B2 (en) 2011-09-08 2016-02-02 Kaneka Corporation Method for producing carbonaceous film and method for producing graphite film
TWI473838B (en) 2013-11-13 2015-02-21 財團法人工業技術研究院 Polyamic acid, polyimide, and method for manufacturing graphite sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3061247B2 (en) * 1994-11-18 2000-07-10 東邦レーヨン株式会社 Graphite film, graphitic molded product, precursor film thereof, and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496403B2 (en) 2008-05-28 2013-07-30 Thomas J. Lochtefeld Wave pool with moving reef wave generator extension and counter current
US11400384B2 (en) 2013-10-30 2022-08-02 Whitewater West Industries, Ltd. Inflatable surfing apparatus and method

Also Published As

Publication number Publication date
JP2010064929A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
KR101624212B1 (en) Method for manufacturing carbonaceous film and graphite film obtained thereby
US9845267B2 (en) Method for producing graphite film
JP5241392B2 (en) Method for producing carbonaceous film
CN109874344B (en) Charge conversion film for ion beam
WO2017148105A1 (en) Carbonized membrane prepared from flexible polyimide and preparation method therefor
KR101473432B1 (en) Method for fabricating graphite
KR101952997B1 (en) Graphite plate and method for manufacturing thereof
JP7069509B2 (en) Equipment and firing method for cell firing of solid oxide fuel cells
JP4394345B2 (en) Non-oxide ceramic sintering furnace and non-oxide ceramic sintered body manufacturing method
KR101605414B1 (en) Method for preparing graphite sheet having improved property
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
KR101669155B1 (en) Method for preparing graphite sheet having high thermal conductivity
JP2017202938A (en) Graphite plate and production method of the same
KR101644096B1 (en) Container for preparing graphite sheet
KR101550282B1 (en) Method for producing graphite film by using single continuous furnace
KR101656817B1 (en) Method for preparing graphite sheet and film roll structure used therein
CN113574015A (en) Heating furnace and method for producing graphite
JP2553784B2 (en) Graphite manufacturing method
JPH0742095B2 (en) Graphite manufacturing method
JP6739003B2 (en) Graphite and its manufacturing method
JP4469982B2 (en) Single crystal α-alumina nanotube and method for producing the same
WO2020183911A1 (en) Graphite production method and production device
JP2964710B2 (en) Manufacturing method of graphite
JP4050891B2 (en) Method for producing glassy carbon pipe and core for producing glassy carbon pipe
JP5782343B2 (en) Method for producing carbonaceous film and method for producing graphite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250